
Enterprise COBOL for z/OS

Programming Guide
Version 5.2

SC14-7382-03

IBM

Enterprise COBOL for z/OS

Programming Guide
Version 5.2

SC14-7382-03

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
825.

Fourth edition (March 2019)

This edition applies to Version 5 Release 2 of IBM Enterprise COBOL for z/OS (program number 5655-W32) and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using
the correct edition for the level of the product.

You can view or download softcopy publications free of charge at www.ibm.com/shop/publications/order/.

© Copyright IBM Corporation 1991, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|
|
|

|

Contents

Tables xiii

Preface xv
About this information xv

How this information will help you xv
Abbreviated terms xv
Comparison of commonly used terms xvi
How to read syntax diagrams xvi
How examples are shown xviii

Additional documentation and support xviii
Summary of changes xviii

Version 5 Release 2 with PTFs installed xix
Version 5 Release 2 xix

How to send your comments xx
Accessibility xx

Interface information xxi
Keyboard navigation xxi
Accessibility of this information xxi
IBM and accessibility xxi

Part 1. Coding your program 1

Chapter 1. Structuring your program . . 3
Identifying a program 3

Identifying a program as recursive 4
Marking a program as callable by containing
programs 4
Setting a program to an initial state. 5
Changing the header of a source listing 5

Describing the computing environment 5
Example: FILE-CONTROL entries 6
Specifying the collating sequence 6
Defining symbolic characters 8
Defining a user-defined class 8
Defining files to the operating system 8

Describing the data 11
Using data in input and output operations . . . 11
Comparison of WORKING-STORAGE and
LOCAL-STORAGE 14
Using data from another program 16

Processing the data 17
How logic is divided in the PROCEDURE
DIVISION 18
Declaratives 21

Chapter 2. Using data 23
Using variables, structures, literals, and constants . 23

Using variables 23
Using data items and group items 24
Using literals 25
Using constants 26
Using figurative constants 26

Assigning values to data items 27
Examples: initializing data items 28

Initializing a structure (INITIALIZE) 30
Assigning values to elementary data items
(MOVE) 32
Assigning values to group data items (MOVE) . 33
Assigning arithmetic results (MOVE or
COMPUTE) 34
Assigning input from a screen or file (ACCEPT) 34

Displaying values on a screen or in a file (DISPLAY) 35
Displaying data on the system logical output
device 36
Using WITH NO ADVANCING 37

Using intrinsic functions (built-in functions) . . . 38
Using tables (arrays) and pointers 39
Storage and its addressability 39

Restrictions for AMODE 40
Settings for RMODE 41
Storage restrictions for passing data 41
Location of data areas 42
Storage for LOCAL-STORAGE data 42
Storage for external data 42
Storage for QSAM input-output buffers 42

Chapter 3. Working with numbers and
arithmetic 43
Defining numeric data. 43
Displaying numeric data 45
Controlling how numeric data is stored 46
Formats for numeric data. 47

External decimal (DISPLAY and NATIONAL)
items 47
External floating-point (DISPLAY and
NATIONAL) items 48
Binary (COMP) items 48
Native binary (COMP-5) items 49
Packed-decimal (COMP-3) items 50
Internal floating-point (COMP-1 and COMP-2)
items 50
Examples: numeric data and internal
representation 51

Data format conversions 52
Conversions and precision 52

Sign representation of zoned and packed-decimal
data 53
Checking for incompatible data (numeric class test) 54
Performing arithmetic 56

Using COMPUTE and other arithmetic
statements 56
Using arithmetic expressions 57
Using numeric intrinsic functions 57
Using math-oriented callable services 59
Using date callable services 60
Examples: numeric intrinsic functions 60

Fixed-point contrasted with floating-point arithmetic 62
Floating-point evaluations 63
Fixed-point evaluations 63

© Copyright IBM Corp. 1991, 2018 iii

||
||

Arithmetic comparisons (relation conditions) . . 63
Examples: fixed-point and floating-point
evaluations 64

Using currency signs 65
Example: multiple currency signs 66

Chapter 4. Handling tables 67
Defining a table (OCCURS) 67
Nesting tables 69

Example: subscripting 70
Example: indexing 70

Referring to an item in a table 70
Subscripting 71
Indexing 72

Putting values into a table 73
Loading a table dynamically. 73
Initializing a table (INITIALIZE) 73
Assigning values when you define a table
(VALUE) 75
Example: PERFORM and subscripting 76
Example: PERFORM and indexing. 77

Creating variable-length tables (DEPENDING ON) 78
Loading a variable-length table 80
Assigning values to a variable-length table . . . 81

Complex OCCURS DEPENDING ON 81
Example: complex ODO 82
Effects of change in ODO object value 83

Searching a table 85
Doing a serial search (SEARCH) 86
Doing a binary search (SEARCH ALL) 87

Sorting a table 88
Processing table items using intrinsic functions . . 89

Example: processing tables using intrinsic
functions 89

Working with unbounded tables and groups . . . 90
Example: Using unbounded tables for parsing
XML documents 90

Chapter 5. Selecting and repeating
program actions 93
Selecting program actions 93

Coding a choice of actions 93
Coding conditional expressions 98

Repeating program actions 101
Choosing inline or out-of-line PERFORM . . . 102
Coding a loop 103
Looping through a table 103
Executing multiple paragraphs or sections. . . 104

Chapter 6. Handling strings 105
Joining data items (STRING) 105

Example: STRING statement 106
Splitting data items (UNSTRING) 107

Example: UNSTRING statement 108
Manipulating null-terminated strings 110

Example: null-terminated strings 111
Referring to substrings of data items. 111

Reference modifiers 113
Example: arithmetic expressions as reference
modifiers 114

Example: intrinsic functions as reference
modifiers 114

Tallying and replacing data items (INSPECT) . . . 115
Examples: INSPECT statement. 115

Converting data items (intrinsic functions). . . . 116
Changing case (UPPER-CASE, LOWER-CASE) 117
Transforming to reverse order (REVERSE) . . . 117
Converting to numbers (NUMVAL,
NUMVAL-C) 117
Converting from one code page to another . . 118

Evaluating data items (intrinsic functions) 119
Evaluating single characters for collating
sequence 119
Finding the largest or smallest data item . . . 120
Finding the length of data items 122
Finding the date of compilation 123

Chapter 7. Processing data in an
international environment 125
COBOL statements and national data 126
Intrinsic functions and national data. 128
Unicode and the encoding of language characters 129
Using national data (Unicode) in COBOL 130

Defining national data items 130
Using national literals 131
Using national-character figurative constants 132
Defining national numeric data items 133
National groups 133
Using national groups 134
Storage of character data 137

Converting to or from national (Unicode)
representation 137

Converting alphanumeric, DBCS, and integer to
national (MOVE) 138
Converting alphanumeric or DBCS to national
(NATIONAL-OF) 139
Converting national to alphanumeric
(DISPLAY-OF) 139
Overriding the default code page. 140
Conversion exceptions 140
Example: converting to and from national data 140

Processing UTF-8 data 141
Using intrinsic functions to process UTF-8
encoded data 142

Processing Chinese GB 18030 data 146
Comparing national (UTF-16) data 147

Comparing two class national operands . . . 148
Comparing class national and class numeric
operands 148
Comparing national numeric and other numeric
operands 149
Comparing national and other character-string
operands 149
Comparing national data and
alphanumeric-group operands 149

Coding for use of DBCS support 150
Defining DBCS data 150
Using DBCS literals 150
Testing for valid DBCS characters 151
Processing alphanumeric data items that contain
DBCS data 152

iv Enterprise COBOL for z/OS, V5.2 Programming Guide

||

Chapter 8. Processing files 153
File organization and input-output devices . . . 153
Choosing file organization and access mode . . . 155

Format for coding input and output 156
Allocating files 157
Checking for input or output errors 158

Chapter 9. Processing QSAM files . . 159
Defining QSAM files and records in COBOL . . . 159

Establishing record formats. 160
Setting block sizes 167

Coding input and output statements for QSAM
files 170

Opening QSAM files 170
Dynamically creating QSAM files. 171
Adding records to QSAM files. 172
Updating QSAM files 172
Writing QSAM files to a printer or spooled data
set 172
Closing QSAM files 173

Handling errors in QSAM files 174
Working with QSAM files 174

Defining and allocating QSAM files 174
Retrieving QSAM files 177
Ensuring that file attributes match your
program 178
Using striped extended-format QSAM data sets 180
Allocation of buffers for QSAM files. 181

Accessing z/OS UNIX files using QSAM 181
Processing QSAM ASCII files on tape 182

Chapter 10. Processing VSAM files 185
VSAM files 186
Defining VSAM file organization and records . . 187

Specifying sequential organization for VSAM
files 188
Specifying indexed organization for VSAM files 188
Specifying relative organization for VSAM files 190
Specifying access modes for VSAM files . . . 191
Defining record lengths for VSAM files. . . . 191

Coding input and output statements for VSAM
files 193

File position indicator 195
Opening a file (ESDS, KSDS, or RRDS) 195
Reading records from a VSAM file 198
Updating records in a VSAM file 199
Adding records to a VSAM file 199
Replacing records in a VSAM file. 200
Deleting records from a VSAM file 200
Closing VSAM files 200

Handling errors in VSAM files 201
Protecting VSAM files with a password 202

Example: password protection for a VSAM
indexed file 202

Working with VSAM data sets under z/OS and
z/OS UNIX 202

Defining VSAM files 203
Creating alternate indexes 204
Allocating VSAM files 206
Sharing VSAM files through RLS 207

Allocation of record areas for VSAM files 209
Improving VSAM performance 209
Extended addressability support 211

Chapter 11. Processing line-sequential
files 213
Defining line-sequential files and records in
COBOL 213

Describing the structure of a line-sequential file 214
Control characters in line-sequential files . . . 214

Allocating line-sequential files 214
Coding input-output statements for line-sequential
files 215

Opening line-sequential files 216
Reading records from line-sequential files . . . 216
Adding records to line-sequential files 217
Closing line-sequential files. 217

Handling errors in line-sequential files 218

Chapter 12. Sorting and merging files 219
Sort and merge process 220
Describing the sort or merge file 220
Describing the input to sorting or merging . . . 221

Example: describing sort and input files for
SORT 221

Coding the input procedure 222
Describing the output from sorting or merging . . 223
Coding the output procedure 224

Example: coding the output procedure when
using DFSORT 224

Restrictions on input and output procedures . . . 225
Defining sort and merge data sets 225
Sorting variable-length records 226
Requesting the sort or merge 226

Setting sort or merge criteria 227
Example: sorting with input and output
procedures 228
Choosing alternate collating sequences 229
Preserving the original sequence of records with
equal keys 230

Determining whether the sort or merge was
successful 230
Stopping a sort or merge operation prematurely 231
Improving sort performance with FASTSRT . . . 231

FASTSRT requirements for JCL 231
FASTSRT requirements for sort input and
output files 231

Checking for sort errors with NOFASTSRT . . . 233
Controlling sort behavior 234

Changing DFSORT defaults with control
statements 235
Allocating storage for sort or merge operations 235
Allocating space for sort files 236

Using checkpoint/restart with DFSORT 236
Sorting under CICS 237

CICS SORT application restrictions 237

Chapter 13. Handling errors 239
Requesting dumps 239
Handling errors in joining and splitting strings . . 240

Contents v

||

Handling errors in arithmetic operations 240
Example: checking for division by zero 241

Handling errors in input and output operations 241
Using the end-of-file condition (AT END) . . . 243
Coding ERROR declaratives 244
Using file status keys 245
Example: file status key 246
Using VSAM status codes (VSAM files only) 246
Example: checking VSAM status codes 247
Coding INVALID KEY phrases 249
Example: FILE STATUS and INVALID KEY . . 249

Handling errors when calling programs 250
Writing routines for handling errors 250

Part 2. Compiling and debugging
your program 253

Chapter 14. Compiling under z/OS 255
Compiling with JCL 255

Using a cataloged procedure 256
Writing JCL to compile programs. 260

Compiling under TSO 262
Example: ALLOCATE and CALL for compiling
under TSO 263
Example: CLIST for compiling under TSO . . . 264

Starting the compiler from an assembler program 265
Defining compiler input and output 266

Data sets used by the compiler under z/OS . . 267
Defining the source code data set (SYSIN) . . . 269
Defining a compiler-option data set (SYSOPTF) 269
Specifying source libraries (SYSLIB) 270
Defining the output data set (SYSPRINT) . . . 270
Directing compiler messages to your terminal
(SYSTERM) 271
Creating object code (SYSLIN or SYSPUNCH) 271
Defining an associated-data file (SYSADATA) 271
Defining the Java-source output file (SYSJAVA) 272
Defining the library-processing output file
(SYSMDECK) 272

Specifying compiler options under z/OS 272
Specifying compiler options in the PROCESS
(CBL) statement 273
Example: specifying compiler options using JCL 274
Example: specifying compiler options under
TSO 274
Compiler options and compiler output under
z/OS 274

Compiling multiple programs (batch compilation) 275
Example: batch compilation 276
Specifying compiler options in a batch
compilation 277
Example: precedence of options in a batch
compilation 278
Example: LANGUAGE option in a batch
compilation 278

Correcting errors in your source program 279
Generating a list of compiler messages 280
Messages and listings for compiler-detected
errors 280
Format of compiler diagnostic messages . . . 281

Severity codes for compiler diagnostic messages 282

Chapter 15. Compiling under z/OS
UNIX 283
Setting environment variables under z/OS UNIX 283
Specifying compiler options under z/OS UNIX . . 284
Compiling and linking with the cob2 command 285

Creating a DLL under z/OS UNIX 286
Example: using cob2 to compile and link under
z/OS UNIX 286
cob2 syntax and options 287
cob2 input and output files 288

Compiling using scripts 289

Chapter 16. Compiling, linking, and
running OO applications 291
Compiling, linking, and running OO applications
under z/OS UNIX. 291

Compiling OO applications under z/OS UNIX 291
Preparing OO applications under z/OS UNIX 292
Example: compiling and linking a COBOL class
definition under z/OS UNIX 293
Running OO applications under z/OS UNIX 293

Compiling, linking, and running OO applications
in JCL or TSO/E 295

Compiling OO applications in JCL or TSO/E 295
Preparing and running OO applications in JCL
or TSO/E. 296
Example: compiling, linking, and running an
OO application using JCL 298

Using Java SDKs for z/OS 299
Object-oriented syntax, and Java 6, Java 7, or
Java 8 300

Chapter 17. Compiler options 301
Option settings for 85 COBOL Standard
conformance. 304
Conflicting compiler options 304
ADATA 305
ADV 306
AFP 307
ARCH. 307
ARITH 309
AWO 310
BLOCK0 310
BUFSIZE 312
CICS 312
CODEPAGE 313
COMPILE 316
COPYRIGHT 316
CURRENCY. 317
DATA 318
DBCS 319
DECK 319
DIAGTRUNC 320
DISPSIGN 320
DLL 321
DUMP 322
DYNAM 323
EXIT 324

vi Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

||

EXPORTALL 326
FASTSRT 327
FLAG 328
FLAGSTD 329
HGPR 331
INITCHECK. 331
INTDATE 332
LANGUAGE 333
LINECOUNT 334
LIST 334
MAP 335
MAXPCF 336
MDECK 337
NAME 339
NSYMBOL 340
NUMBER 340
NUMCHECK 341
NUMPROC 343
OBJECT 344
OFFSET 345
OPTFILE 345
OPTIMIZE 346
OUTDD 348
PGMNAME 348

PGMNAME(COMPAT) 349
PGMNAME(LONGUPPER). 349
PGMNAME(LONGMIXED) 350
Usage notes 350

QUALIFY 351
QUOTE/APOST 352
RENT 352
RMODE 353
RULES 354
SEQUENCE 356
SERVICE 356
SOURCE 357
SPACE 357
SQL 358
SQLCCSID 359
SQLIMS 360
SSRANGE 361
STGOPT 362
TERMINAL 363
TEST 364
THREAD 366
TRUNC 368

TRUNC example 1 369
TRUNC example 2 370

VBREF 370
VLR 371
VSAMOPENFS 372
WORD 372
XMLPARSE 373
XREF 374
ZONECHECK 375
ZONEDATA. 377
ZWB 379

Chapter 18. Compiler-directing
statements 381

Chapter 19. Debugging 385
Debugging with source language 385

Tracing program logic 386
Finding and handling input-output errors . . . 387
Validating data 387
Moving, initializing or setting uninitialized data 388
Generating information about procedures . . . 388

Debugging using compiler options 390
Finding coding errors 390
Finding line sequence problems 391
Checking for valid ranges 391
Selecting the level of error to be diagnosed . . 392
Finding program entity definitions and
references 394
Listing data items 394

Using the debugger 395
Getting listings 395

Example: short listing 397
Example: SOURCE and NUMBER output . . . 399
Example: MAP output 400
Reading LIST output 405
Example: XREF output: data-name
cross-references. 421
Example: OFFSET compiler output 424
Example: VBREF compiler output 425

Part 3. Targeting COBOL programs
for certain environments 427

Chapter 20. Developing COBOL
programs for CICS 429
Coding COBOL programs to run under CICS . . 429

Getting the system date under CICS. 431
Calling to or from COBOL programs 431
Determining the success of ECI calls. 433

Compiling with the CICS option 433
Separating CICS suboptions 435
Integrated CICS translator 435

Using the separate CICS translator 436
CICS reserved-word table 437
Handling errors by using CICS HANDLE 438

Example: handling errors by using CICS
HANDLE 439

Chapter 21. Programming for a DB2
environment 441
DB2 coprocessor 441
Coding SQL statements 442

Using SQL INCLUDE with the DB2 coprocessor 442
Using character data in SQL statements . . . 443
Using national decimal data in SQL statements 444
Using national group items in SQL statements 444
Using binary items in SQL statements 445
Determining the success of SQL statements . . 445

Compiling with the SQL option 445
Separating DB2 suboptions 446

Contents vii

||

||

||

||

||

||
||

||

||
||

COBOL and DB2 CCSID determination. 447
Code-page determination for string host
variables in SQL statements 447
Programming with the SQLCCSID or
NOSQLCCSID option 448

Differences in how the DB2 precompiler and
coprocessor behave 449

Period at the end of EXEC SQL INCLUDE
statements 449
EXEC SQL INCLUDE and nested COPY
REPLACING 449
EXEC SQL and REPLACE or COPY
REPLACING 449
Source code after an END-EXEC statement . . 450
Multiple definitions of host variables 450
EXEC SQL statement continuation lines . . . 450
Bit-data host variables 450
SQL-INIT-FLAG 450

Choosing the DYNAM or NODYNAM compiler
option 451

Chapter 22. Developing COBOL
programs for IMS. 453
IMS SQL coprocessor 453
Coding SQLIMS statements 454

Using SQLIMS INCLUDE with the IMS SQL
coprocessor 454
Using character data in SQLIMS statements . . 455
Using binary items in SQLIMS statements . . . 455
Determining the success of SQLIMS statements 455

Compiling with the SQLIMS option 455
Separating IMS suboptions 456

Compiling and linking COBOL programs for
running under IMS 457
Using object-oriented COBOL and Java under IMS 458

Calling a COBOL method from a Java
application under IMS 458
Building a mixed COBOL-Java application that
starts with COBOL 459
Writing mixed-language IMS applications . . . 459

Chapter 23. Running COBOL
programs under z/OS UNIX 463
Running in z/OS UNIX environments 463
Setting and accessing environment variables . . . 464

Setting environment variables that affect
execution 465
Runtime environment variables 465
Example: setting and accessing environment
variables 466

Calling UNIX/POSIX APIs 466
Accessing main program parameters under z/OS
UNIX 468

Example: accessing main program parameters
under z/OS UNIX. 469

Part 4. Structuring complex
applications 471

Chapter 24. Using subprograms . . . 473
Main programs, subprograms, and calls 473
Ending and reentering main programs or
subprograms 474
Transferring control to another program 475

Making static calls. 476
Making dynamic calls 477
AMODE switching 479
Performance considerations of static and
dynamic calls 481
Making both static and dynamic calls 481
Examples: static and dynamic CALL statements 482
Calling nested COBOL programs 483

Making recursive calls 487
Calling to and from object-oriented programs . . 487
Using procedure and function pointers 487

Deciding which type of pointer to use 489
Calling alternate entry points 489

Making programs reentrant 490

Chapter 25. Sharing data 491
Passing data. 491

Describing arguments in the calling program 493
Describing parameters in the called program 494
Testing for OMITTED arguments 495

Coding the LINKAGE SECTION 495
Coding the PROCEDURE DIVISION for passing
arguments 496

Grouping data to be passed 496
Handling null-terminated strings 496
Using pointers to process a chained list . . . 497

Passing return-code information 500
Using the RETURN-CODE special register. . . 500
Using PROCEDURE DIVISION RETURNING . .
. 500
Specifying CALL . . . RETURNING 501

Sharing data by using the EXTERNAL clause. . . 501
Sharing files between programs (external files) . . 501

Example: using external files 502
Accessing main program parameters under z/OS 505

Example: accessing main program parameters
under z/OS 505

Chapter 26. Creating a DLL or a DLL
application 507
Dynamic link libraries (DLLs) 507
Compiling programs to create DLLs 508
Linking DLLs 509
Example: sample JCL for a procedural DLL
application 510
Using CALL identifier with DLLs 510

Search order for DLLs in the z/OS UNIX file
system. 511

Using DLL linkage and dynamic calls together . . 512
Using procedure or function pointers with DLLs 512
Calling DLLs from non-DLLs 513
Example: calling DLLs from non-DLLs 514

Using COBOL DLLs with C/C++ programs . . . 515
Using DLLs in OO COBOL applications 516

viii Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 27. Preparing COBOL
programs for multithreading 517
Multithreading 518
Choosing THREAD to support multithreading . . 519
Transferring control to multithreaded programs 519
Ending multithreaded programs 520
Processing files with multithreading 520

File-definition (FD) storage 521
Serializing file access with multithreading . . . 521
Example: usage patterns of file input and
output with multithreading. 522

Handling COBOL limitations with multithreading 522

Part 5. Using XML and COBOL
together 525

Chapter 28. Processing XML input 527
XML parser in COBOL 528
Accessing XML documents 530
Parsing XML documents 530

Writing procedures to process XML 532
XML events 534
Transforming XML text to COBOL data items 539
Parsing XML documents with validation . . . 540
Parsing XML documents one segment at a time 543
Handling splits using the XML-INFORMATION
special register 545

The encoding of XML documents. 546
XML input document encoding 547
Parsing XML documents encoded in UTF-8 . . 551

Handling XML PARSE exceptions 552
How the XML parser handles errors. 554
Handling encoding conflicts 555

Terminating XML parsing 556
XML PARSE examples 557

Example: parsing a simple document 557
Example: program for processing XML 558
Example: parsing an XML document that uses
namespaces 563
Example: parsing an XML document one
segment at a time 566
Example: parsing XML documents with
validation 568

Chapter 29. Producing XML output 571
Generating XML output 571
Controlling the encoding of generated XML output 576
Handling XML GENERATE exceptions 577
Example: generating XML 578

Program XGFX 578
Program Pretty 580
Output from program XGFX 582

Enhancing XML output 583
Example: enhancing XML output 583

Part 6. Developing object-oriented
programs 587

Chapter 30. Writing object-oriented
programs 589
Example: accounts. 590

Subclasses 591
Defining a class 592

CLASS-ID paragraph for defining a class . . . 594
REPOSITORY paragraph for defining a class 594
WORKING-STORAGE SECTION for defining
class instance data 596
Example: defining a class 597

Defining a class instance method 597
METHOD-ID paragraph for defining a class
instance method 598
INPUT-OUTPUT SECTION for defining a class
instance method 599
DATA DIVISION for defining a class instance
method 599
PROCEDURE DIVISION for defining a class
instance method 600
Overriding an instance method 601
Overloading an instance method 602
Coding attribute (get and set) methods 603
Example: defining a method 604

Defining a client 606
REPOSITORY paragraph for defining a client 607
DATA DIVISION for defining a client 608
Comparing and setting object references . . . 609
Invoking methods (INVOKE) 610
Creating and initializing instances of classes . . 614
Freeing instances of classes 616
Example: defining a client 616

Defining a subclass 617
CLASS-ID paragraph for defining a subclass 618
REPOSITORY paragraph for defining a subclass 618
WORKING-STORAGE SECTION for defining
subclass instance data 619
Defining a subclass instance method 619
Example: defining a subclass (with methods) 620

Defining a factory section 621
WORKING-STORAGE SECTION for defining
factory data 622
Defining a factory method 622
Example: defining a factory (with methods) . . 625

Wrapping procedure-oriented COBOL programs 630
Structuring OO applications 630

Examples: COBOL applications that run using
the java command. 631

Chapter 31. Communicating with Java
methods 633
Accessing JNI services 633

Handling Java exceptions 634
Managing local and global references 636
Java access controls 637

Sharing data with Java 637
Coding interoperable data types in COBOL and
Java 638
Declaring arrays and strings for Java 639
Manipulating Java arrays 640
Manipulating Java strings 642

Contents ix

||

Example: J2EE client written in COBOL 644
COBOL client (ConverterClient.cbl) 645
Java client (ConverterClient.java) 647

Part 7. Specialized processing . . 649

Chapter 32. Interrupts and
checkpoint/restart 651
Setting checkpoints 651

Designing checkpoints 652
Testing for a successful checkpoint 652
DD statements for defining checkpoint data sets 653
Messages generated during checkpoint 654

Restarting programs 654
Requesting automatic restart 655
Requesting deferred restart 655
Formats for requesting deferred restart 656
Resubmitting jobs for restart 657
Example: restarting a job at a specific
checkpoint step. 657
Example: requesting a step restart 657
Example: resubmitting a job for a step restart 657
Example: resubmitting a job for a checkpoint
restart 658

Part 8. Improving performance and
productivity 659

Chapter 33. Tuning your program. . . 661
Using an optimal programming style 661

Using structured programming 662
Factoring expressions. 662
Using symbolic constants 662

Choosing efficient data types 662
Choosing efficient computational data items . . 663
Using consistent data types. 663
Making arithmetic expressions efficient 664
Making exponentiations efficient 664
Using VOLATILE clauses efficiently 664

Handling tables efficiently 664
Optimization of table references 666

Optimizing your code 667
Optimization 667

Choosing compiler features to enhance
performance 668

Performance-related compiler options 669
Evaluating performance 672

Running efficiently with CICS, IMS, or VSAM . . 672
Choosing static or dynamic calls 673

Chapter 34. Simplifying coding 675
Eliminating repetitive coding 675

Example: using the COPY statement. 676
Using Language Environment callable services . . 677

Sample list of Language Environment callable
services 678
Calling Language Environment services . . . 679
Example: Language Environment callable
services 680

Using the format 2 SORT statement to sort a table 681

Part 9. Appendixes 683

Appendix A. Intermediate results and
arithmetic precision 685
Terminology used for intermediate results 686
Example: calculation of intermediate results . . . 687
Fixed-point data and intermediate results 687

Addition, subtraction, multiplication, and
division 687
Exponentiation 688
Example: exponentiation in fixed-point
arithmetic 689
Truncated intermediate results. 690
Binary data and intermediate results 690

Intrinsic functions evaluated in fixed-point
arithmetic 690

Integer functions 690
Mixed functions 691

Floating-point data and intermediate results . . . 692
Exponentiations evaluated in floating-point
arithmetic 693
Intrinsic functions evaluated in floating-point
arithmetic 693

Arithmetic expressions in nonarithmetic statements 693

Appendix B. Converting double-byte
character set (DBCS) data 695
DBCS notation 695
Alphanumeric to DBCS data conversion
(IGZCA2D) 695

IGZCA2D syntax 695
IGZCA2D return codes 696
Example: IGZCA2D 697

DBCS to alphanumeric data conversion (IGZCD2A) 698
IGZCD2A syntax 698
IGZCD2A return codes 699
Example: IGZCD2A 699

Appendix C. XML reference material 701
XML PARSE exceptions with XMLPARSE(XMLSS)
in effect 701
XML PARSE exceptions with
XMLPARSE(COMPAT) in effect 703

XML PARSE exceptions that allow continuation 703
XML PARSE exceptions that do not allow
continuation 707

XML GENERATE exceptions 710

Appendix D. EXIT compiler option . . 711
Using the user-exit work area 711
Calling from exit modules 712
Processing of INEXIT. 712

INEXIT parameters 712
Processing of LIBEXIT 713

Processing of LIBEXIT with nested COPY
statements 714
LIBEXIT parameters 715

x Enterprise COBOL for z/OS, V5.2 Programming Guide

||

||

|
|
|
||
||
|
||

Processing of PRTEXIT 716
PRTEXIT parameters 717

Processing of ADEXIT 717
ADEXIT parameters 718

Processing of MSGEXIT 719
MSGEXIT parameters 719
Customizing compiler-message severities . . . 720
Example: MSGEXIT user exit 723

Error handling for exit modules 727
Using the EXIT compiler option with CICS, SQL
and SQLIMS statements 728

Appendix E. JNI.cpy copybook 731

Appendix F. COBOL SYSADATA file
contents 737
Compiler options that affect the SYSADATA file 737
SYSADATA record types 738
Example: SYSADATA 739
SYSADATA record descriptions 740
Common header section 741
Job identification record: X'0000' 743
ADATA identification record: X'0001' 744
Compilation unit start | end record: X'0002' . . . 744
Options record: X'0010' 745
External symbol record: X'0020' 755
Parse tree record: X'0024' 755
Token record: X'0030' 771
Source error record: X'0032'. 785
Source record: X'0038' 785
COPY REPLACING record: X'0039' 786
Symbol record: X'0042' 787

Symbol cross-reference record: X'0044' 798
Nested program record: X'0046' 799
Library record: X'0060' 800
Statistics record: X'0090' 800
EVENTS record: X'0120' 801

Appendix G. Using sample programs 805
IGYTCARA: batch application 805

Input data for IGYTCARA 806
Report produced by IGYTCARA 807
Preparing to run IGYTCARA 808

IGYTCARB: interactive program 809
Preparing to run IGYTCARB 810

IGYTSALE: nested program application 812
Input data for IGYTSALE 813
Reports produced by IGYTSALE 815
Preparing to run IGYTSALE 818

Language elements and concepts that are
illustrated 819

Notices 825
Trademarks 827

Glossary 829

List of resources 863
Enterprise COBOL for z/OS 863
Related publications 863

Index 865

Contents xi

xii Enterprise COBOL for z/OS, V5.2 Programming Guide

Tables

1. FILE-CONTROL entries 6
2. FILE SECTION entries 12
3. Assignment to data items in a program 27
4. Effect of RMODE and RENT compiler

options on the RMODE attribute 41
5. Ranges in value of COMP-5 data items 49
6. Internal representation of numeric items 51
7. NUMCLS(PRIM) and valid signs 55
8. NUMCLS(ALT) and valid signs 55
9. Order of evaluation of arithmetic operators 57

10. Numeric intrinsic functions 58
11. Compatibility of math intrinsic functions and

callable services 59
12. INTDATE(LILIAN) and compatibility of date

intrinsic functions and callable services . . . 60
13. INTDATE(ANSI) and compatibility of date

intrinsic functions and callable services . . . 60
14. Hexadecimal values of the euro sign 65
15. COBOL statements and national data 126
16. Intrinsic functions and national character

data. 128
17. National group items that are processed

with group semantics 136
18. Encoding and size of alphanumeric, DBCS,

and national data 137
19. Summary of file organizations, access

modes, and record formats of COBOL files . 155
20. QSAM file allocation. 175
21. Maximum record length of QSAM files 179
22. Comparison of VSAM, COBOL, and

non-VSAM terminology 185
23. Comparison of VSAM data-set types 187
24. VSAM file organization, access mode, and

record format 188
25. Definition of VSAM fixed-length records 192
26. Definition of VSAM variable-length records 192
27. I/O statements for VSAM sequential files 194
28. I/O statements for VSAM relative and

indexed files 194
29. Statements to load records into a VSAM file 197
30. Statements to update records in a VSAM

file 199
31. Methods for improving VSAM performance 209
32. Methods for checking for sort errors with

NOFASTSRT 233
33. Methods for controlling sort behavior 234
34. Compiler data sets 267
35. Block size of fixed-length compiler data sets 269
36. Block size of variable-length compiler data

sets 269
37. Types of compiler output under z/OS 274
38. Severity codes for compiler diagnostic

messages 282
39. Input files to the cob2 command 289
40. Output files from the cob2 command 289

41. Commands for compiling and linking a
class definition 292

42. java command options for customizing the
JVM 294

43. Compiler options 301
44. Mutually exclusive compiler options 305
45. EBCDIC multibyte coded character set

identifiers 315
46. DISPLAY output with the DISPSIGN(COMPAT)

option or the DISPSIGN(SEP) option specified: . 321
47. Values of the LANGUAGE compiler option 333
48. Mapping of removed options to new options 347
49. Severity levels of compiler messages 392
50. Using compiler options to get listings 396
51. Terms used in MAP output 403
52. Symbols used in LIST and MAP output 404
53. Compiler options in the INFO BYTE section 407
54. Signature information bytes 407
55. Calls between COBOL and assembler under

CICS 432
56. Compiler options required for the integrated

CICS translator 434
57. Compiler options required for the separate

CICS translator 437
58. TRUNC compiler options recommended for

the separate CICS translator 437
59. Samples with POSIX function calls 467
60. Effects of termination statements. 474
61. Methods for passing data in the CALL

statement 492
62. Compiler options for DLL applications 508
63. Binder options for DLL applications 509
64. Special registers used by the XML parser 532
65. Results of processing-procedure changes to

XML-CODE with XMLPARSE(XMLSS) in effect . . 535
66. Results of processing-procedure changes to

XML-CODE with XMLPARSE(COMPAT) in effect . . 536
67. Coded character sets for XML documents 547
68. Hexadecimal values of white-space

characters 548
69. Aliases for XML encoding declarations 550
70. Hexadecimal values of special characters for

various EBCDIC CCSIDs 550
71. XML events and special registers 557
72. XML events and special registers 563
73. XML events and special registers from

parsing XML document with an undeclared
namespace prefix 565

74. Encoding of generated XML if the
ENCODING phrase is omitted 577

75. Structure of class definitions 592
76. Structure of instance method definitions 598
77. Structure of COBOL clients 606
78. Conformance of arguments in a COBOL

client 611

© Copyright IBM Corp. 1991, 2018 xiii

|
||
|
||

79. Conformance of the returned data item in a
COBOL client 613

80. Structure of factory definitions 621
81. Structure of factory method definitions 623
82. JNI services for local and global references 637
83. Interoperable data types in COBOL and Java 638
84. Interoperable arrays and strings in COBOL

and Java 639
85. Noninteroperable array types in COBOL

and Java 640
86. JNI array services 640
87. Services that convert between jstring

references and national data 642
88. Services that convert between jstring

references and alphanumeric data 643
89. Performance-related compiler options 669
90. Performance-tuning worksheet 672
91. Language Environment callable services 678
92. Comparison of format 1 and format 2 SORT

statements 681
93. IGZCA2D return codes 696
94. IGZCD2A return codes 699
95. Reason codes for XML PARSE exceptions

that are unique to Enterprise COBOL . . . 702
96. XML PARSE exceptions that allow

continuation 703
97. XML PARSE exceptions that do not allow

continuation (for XMLPARSE(COMPAT)) 707
98. XML GENERATE exceptions 710
99. Layout of the user-exit work area 711

100. INEXIT processing 712
101. INEXIT parameters 713
102. LIBEXIT processing 713
103. LIBEXIT processing with nonnested COPY

statements 714
104. LIBEXIT processing with nested COPY

statements 715
105. LIBEXIT parameters 715

106. PRTEXIT processing 716
107. PRTEXIT parameters 717
108. ADEXIT processing 718
109. ADEXIT parameters 718
110. MSGEXIT processing 719
111. MSGEXIT parameters 720
112. FIPS (FLAGSTD) message categories 722
113. Actions possible in exit modules for CICS,

SQL and SQLIMS statements 729
114. SYSADATA record types 738
115. SYSADATA common header section 741
116. SYSADATA job identification record 743
117. ADATA identification record 744
118. SYSADATA compilation unit start | end

record 744
119. SYSADATA options record 745
120. SYSADATA external symbol record 755
121. SYSADATA parse tree record 755
122. SYSADATA token record 771
123. SYSADATA source error record 785
124. SYSADATA source record 785
125. SYSADATA COPY REPLACING record 786
126. SYSADATA symbol record 787
127. SYSADATA symbol cross-reference record 798
128. SYSADATA nested program record 799
129. SYSADATA library record 800
130. SYSADATA statistics record 800
131. SYSADATA EVENTS TIMESTAMP record

layout 801
132. SYSADATA EVENTS PROCESSOR record

layout 801
133. SYSADATA EVENTS FILE END record

layout 802
134. SYSADATA EVENTS PROGRAM record

layout 802
135. SYSADATA EVENTS FILE ID record layout 802
136. SYSADATA EVENTS ERROR record layout 803

xiv Enterprise COBOL for z/OS, V5.2 Programming Guide

|
||

|
||
|
||

Preface

About this information
This information is for COBOL programmers and system programmers. It helps
you understand how to use Enterprise COBOL for z/OS® to compile COBOL
programs. It also describes the operating system features that you might need to
optimize program performance or handle errors.

For information about COBOL language, and for references needed to write a
program for an IBM® COBOL compiler, see the Enterprise COBOL Language
Reference.

Important: Enterprise COBOL for z/OS is referred to as Enterprise COBOL
throughout this information.

How this information will help you
This information will help you write and compile Enterprise COBOL programs. It
will also help you define object-oriented classes and methods, invoke methods, and
refer to objects in your programs.

This information assumes experience in developing application programs and
some knowledge of COBOL. It focuses on using Enterprise COBOL to meet your
programming objectives and not on the definition of the COBOL language. For
complete information about COBOL syntax, see the IBM Enterprise COBOL
Language Reference.

For information about migrating programs to Enterprise COBOL, see the IBM
Enterprise COBOL Migration Guide.

IBM z/OS Language Environment® provides the runtime environment and runtime
services that are required to run Enterprise COBOL programs. You can find
information about link-editing and running programs in the IBM z/OS Language
Environment Programming Guide and IBM z/OS Language Environment Programming
Reference.

For a comparison of commonly used Enterprise COBOL and Language
Environment terms, see “Comparison of commonly used terms” on page xvi.

Abbreviated terms
Certain terms are used in a shortened form in this information. Abbreviations for
the product names used most frequently are listed alphabetically in the following
table.

Term used Long form

CICS® CICS Transaction Server

Enterprise COBOL IBM Enterprise COBOL for z/OS

Language Environment IBM z/OS Language Environment

MVS™ MVS/ESA

z/OS UNIX z/OS UNIX System Services

© Copyright IBM Corp. 1991, 2018 xv

In addition to these abbreviated terms, the term "85 COBOL Standard" is used to
refer to the combination of the following standards:
v ISO 1989:1985, Programming languages - COBOL
v ISO/IEC 1989/AMD1:1992, Programming languages - COBOL: Intrinsic function

module
v ISO/IEC 1989/AMD2:1994, Programming languages - Correction and

clarification amendment for COBOL
v ANSI INCITS 23-1985, Programming Languages - COBOL
v ANSI INCITS 23a-1989, Programming Languages - Intrinsic Function Module for

COBOL
v ANSI INCITS 23b-1993, Programming Language - Correction Amendment for

COBOL

The ISO standards are identical to the American National standards.

Other terms, if not commonly understood, are shown in italics the first time that
they appear, and are listed in the glossary.

Comparison of commonly used terms
To better understand the terms used throughout the IBM z/OS Language
Environment and IBM Enterprise COBOL for z/OS information, and to understand
which terms are meant to be equivalent, see the following table.

Language Environment term Enterprise COBOL equivalent

Aggregate Group item

Array A table created using the OCCURS clause

Array element Table element

Enclave Run unit

External data WORKING-STORAGE data defined using the EXTERNAL
clause

Local data Any non-EXTERNAL data item

Pass parameters directly, by value BY VALUE

Pass parameters indirectly, by
reference

BY REFERENCE

Pass parameters indirectly, by value BY CONTENT

Routine Program

Scalar Elementary item

How to read syntax diagrams
Use the following description to read the syntax diagrams in this information.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The >>--- symbol indicates the beginning of a syntax diagram.
The ---> symbol indicates that the syntax diagram is continued on the next line.
The >--- symbol indicates that the syntax diagram is continued from the
previous line.
The --->< symbol indicates the end of a syntax diagram.

xvi Enterprise COBOL for z/OS, V5.2 Programming Guide

Diagrams of syntactical units other than complete statements start with the >---
symbol and end with the ---> symbol.

v Required items appear on the horizontal line (the main path):

►► required_item ►◄

v Optional items appear below the main path:

►► required_item
optional_item

►◄

v If you can choose from two or more items, they appear vertically, in a stack. If
you must choose one of the items, one item of the stack appears on the main
path:

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path:

►► required_item
optional_choice1
optional_choice2

►◄

If one of the items is the default, it appears above the main path and the
remaining choices are shown below:

►► required_item
default_choice

optional_choice
optional_choice

►◄

v An arrow returning to the left, above the main line, indicates an item that can be
repeated:

Preface xvii

►► required_item ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma:

►► required_item ▼

,

repeatable_item ►◄

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in lowercase italics (for example, column-name). They
represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

How examples are shown
This information shows numerous examples of sample COBOL statements,
program fragments, and small programs to illustrate the coding techniques being
described. The examples of program code are written in lowercase, uppercase, or
mixed case to demonstrate that you can write your programs in any of these ways.

To more clearly separate some examples from the explanatory text, they are
presented in a monospace font.

COBOL keywords and compiler options that appear in text are generally shown in
SMALL UPPERCASE. Other terms such as program variable names are sometimes
shown in an italic font for clarity.

Additional documentation and support
IBM Enterprise COBOL for z/OS provides Portable Document Format (PDF)
versions of the entire library for this version and for previous versions on the
product site at www.ibm.com/software/awdtools/cobol/zos/library/.

Support information is also available on the product site at http://www.ibm.com/
support/entry/portal/Overview/Software/Rational/Enterprise_COBOL_for_z~OS
.

Summary of changes
This section lists the major changes that have been made to this document for
Enterprise COBOL Version 5 Release 2 and Version 5 Release 2 with PTFs installed.
The latest technical changes are marked within >| and |< in the HTML version, or
marked by vertical bars (|) in the left margin in the PDF version.

xviii Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|

http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/cobol/zos/support/
http://www.ibm.com/software/awdtools/cobol/zos/support/

Version 5 Release 2 with PTFs installed
New, changed, and removed compiler options
v The following compiler options are new:

– PI40822: ZONECHECK (“ZONECHECK” on page 375)
– PI69197: INITCHECK (“INITCHECK” on page 331)
– PI81006: NUMCHECK (“NUMCHECK” on page 341)
– PI85868: VSAMOPENFS (“VSAMOPENFS” on page 372)

v The following compiler options are modified:
– PI40853: ZONEDATA: New suboption of NOPFD is added to the ZONEDATA compiler

option. ZONEDATA(NOPFD) lets the compiler generate code that performs
comparisons of zoned decimal data in the same manner as COBOL V4 does
when using NUMPROC(NOPFD|PFD) with COBOL V4. (“ZONEDATA” on page
377)

– PI53044: SSRANGE: New suboptions ZLEN and NOZLEN are added to the SSRANGE
compiler option to control how the compiler checks reference modification
lengths. (“SSRANGE” on page 361)

– PI86343: SSRANGE: New suboptions MSG and ABD are added to the SSRANGE
compiler option to control how the compiler checks reference modification
lengths. (“SSRANGE” on page 361)

– PI90458: ZONEDATA: The ZONEDATA option is updated to affect the behaviour of
MOVE statements, comparisons, and computations for USAGE DISPLAY or
PACKED-DECIMAL data items that could contain invalid digits, an invalid sign
code, or invalid zone bits (“ZONEDATA” on page 377).

– PI97835: NUMCHECK(PAC): For packed decimal (COMP-3) data items that have an
even number of digits, the unused bits are checked for zeros. (“NUMCHECK”
on page 341)

– PH01241: NUMCHECK(ZON): New suboptions ALPHNUM | NOALPHNUM are added to
the NUMCHECK(ZON) option to control whether the compiler will generate code
for an implicit numeric class test for zoned decimal data items that are being
compared with an alphanumeric data item, alphanumeric literal or
alphanumeric figurative constant. (“NUMCHECK” on page 341)

v The following compiler option is removed:
– PI81006: ZONECHECK is deprecated but is tolerated for compatibility, and it is

replaced by NUMCHECK(ZON). (“ZONECHECK” on page 375)

Version 5 Release 2
v Several changes are made to compiler options:

– The following compiler options are new:
- COPYRIGHT | NOCOPYRIGHT (“COPYRIGHT” on page 316)
- QUALIFY(COMPAT|EXTEND) (“QUALIFY” on page 351)
- RULES | NORULES (“RULES” on page 354)
- SERVICE | NOSERVICE (“SERVICE” on page 356)
- SQLIMS | NOSQLIMS (“SQLIMS” on page 360)
- VLR(COMPAT | STANDARD) (“VLR” on page 371)
- XMLPARSE(XMLSS | COMPAT) (“XMLPARSE” on page 373)
- ZONEDATA(PFD | MIG) (“ZONEDATA” on page 377)

– The following compiler options are modified:
- ARCH: ARCH(6) is no longer accepted. A new higher level of ARCH(11) is

accepted, and ARCH(7) is the default (“ARCH” on page 307).

Preface xix

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

- MAP: New suboptions of HEX and DEC are added to the MAP compiler option
to control whether hexadecimal or decimal offsets are shown for MAP output
in the compiler listing (“MAP” on page 335).

– The following compiler option is removed:
- SIZE

v XML PARSE COMPAT support is restored. You can specify the
XMLPARSE(XMLSS|COMPAT) compiler option to choose between parsing with the
z/OS XML System Services parser, or with the compatibility-mode COBOL XML
parser from the COBOL library. It can ease your migration to the Enterprise
COBOL V5 compiler.

v A new format of the SORT statement, the table SORT statement, arranges table
elements in a user-specified sequence. It is part of the 2002 COBOL Standard.

v A new section is added to describe accessing VSAM data sets with the extended
addressability attribute (“Extended addressability support” on page 211).

v A new keyword VOLATILE is added to the format 1 data description entry. The
VOLATILE clause indicates that a data item's value can be modified or referenced
in ways that the compiler cannot detect, such as by a Language Environment
(LE) condition handler routine or by some other asynchronous process or thread.
Thus, optimization is restricted for the data item.

v Enhancements are made to the XML GENERATE statement:
– The WHEN phrase of the XML GENERATE statement can be omitted to

allow unconditional suppression of an item when generating XML output. If
the WHEN phrase is omitted, that item can be a group data item.

– A new keyword CONTENT is added to the generic-suppression-phrase to
limit suppression to only TYPE IS CONTENT items.

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this information or any other Enterprise
COBOL documentation, contact us in one of these ways:
v Use the Online Readers' Comments Form at www.ibm.com/software/awdtools/

rcf/.
v Send your comments to the following address: compinfo@cn.ibm.com.

Be sure to include the name of the document, the publication number, the version
of Enterprise COBOL, and, if applicable, the specific location (for example, the
page number or section heading) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way that IBM believes appropriate without
incurring any obligation to you.

Accessibility
Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully. The
accessibility features in z/OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS are:
v Interfaces that are commonly used by screen readers and screen-magnifier

software
v Keyboard-only navigation

xx Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|

|

|

|
|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|

|
|

http://www.ibm.com/software/awdtools/rcf/
http://www.ibm.com/software/awdtools/rcf/

v Ability to customize display attributes such as color, contrast, and font size

Interface information
Assistive technology products work with the user interfaces that are found in
z/OS. For specific guidance information, see the documentation for the assistive
technology product that you use to access z/OS interfaces.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF. For information
about accessing TSO/E or ISPF interfaces, see the following publications:
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS ISPF User's Guide Volume I

These guides describe how to use TSO/E and ISPF, including the use of keyboard
shortcuts or function keys (PF keys). Each guide includes the default settings for
the PF keys and explains how to modify their functions.

Accessibility of this information
The English-language XHTML format of this information that will be provided in
the IBM Knowledge Center at www.ibm.com/support/knowledgecenter/en/
SS6SG3_5.2.0/welcome.html is accessible to visually impaired individuals who use
a screen reader.

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma PICTURE symbols, you must
set the screen reader to speak all punctuation.

IBM and accessibility
See the IBM Human Ability and Accessibility Center at www.ibm.com/able for
more information about the commitment that IBM has to accessibility.

Preface xxi

http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70
https://www.ibm.com/support/knowledgecenter/en/SS6SG3_5.2.0/welcome.html
http://www.ibm.com/able

xxii Enterprise COBOL for z/OS, V5.2 Programming Guide

Part 1. Coding your program

© Copyright IBM Corp. 1991, 2018 1

2 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 1. Structuring your program

COBOL programs consist of four divisions: IDENTIFICATION DIVISION, ENVIRONMENT
DIVISION, DATA DIVISION, and PROCEDURE DIVISION. Each division has a specific
logical function.

To define a program, only the IDENTIFICATION DIVISION is required.

To define a COBOL class or method, you need to define some divisions differently
than you do for a program.

RELATED TASKS

“Identifying a program”
“Describing the computing environment” on page 5
“Describing the data” on page 11
“Processing the data” on page 17
“Defining a class” on page 592
“Defining a class instance method” on page 597
“Structuring OO applications” on page 630

Identifying a program
Use the IDENTIFICATION DIVISION to name a program and optionally provide other
identifying information.

You can use the optional AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED
paragraphs for descriptive information about a program. The data you enter in the
DATE-COMPILED paragraph is replaced with the latest compilation date.
IDENTIFICATION DIVISION.
Program-ID. Helloprog.
Author. A. Programmer.
Installation. Computing Laboratories.
Date-Written. 07/30/2009.
Date-Compiled. 03/30/2013.

Use the PROGRAM-ID paragraph to name your program. The program-name that you
assign is used in these ways:
v Other programs use that name to call your program.
v The name appears in the header on each page, except the first, of the program

listing that is generated when you compile the program.
v If you use the NAME compiler option, the name is placed on the NAME binder

(linkage-editor) control statement to identify the object module that the
compilation creates.

Tip: Do not use program-names that start with prefixes used by IBM products.
If you use program-names that start with any of the following prefixes, your
CALL statements might resolve to IBM library or compiler routines rather than to
your intended program:
– AFB
– AFH
– CBC
– CEE

© Copyright IBM Corp. 1991, 2018 3

– CEH
– CEL
– CEQ
– CEU
– DFH
– DSN
– EDC
– FOR
– IBM
– IFY
– IGY
– IGZ
– ILB

Tip: If a program-name is case sensitive, avoid mismatches with the name that the
compiler is looking for. Verify that the appropriate setting of the PGMNAME compiler
option is in effect.

RELATED TASKS

“Changing the header of a source listing” on page 5
“Identifying a program as recursive”
“Marking a program as callable by containing programs”
“Setting a program to an initial state” on page 5

RELATED REFERENCES

Compiler limits (Enterprise COBOL Language Reference)
Conventions for program-names (Enterprise COBOL Language Reference)

Identifying a program as recursive
Code the RECURSIVE attribute on the PROGRAM-ID clause to specify that a program
can be recursively reentered while a previous invocation is still active.

You can code RECURSIVE only on the outermost program of a compilation unit.
Neither nested subprograms nor programs that contain nested subprograms can be
recursive. You must code RECURSIVE for programs that you compile with the THREAD
option.

RELATED TASKS

“Sharing data in recursive or multithreaded programs” on page 17
“Making recursive calls” on page 487

Marking a program as callable by containing programs
Use the COMMON attribute in the PROGRAM-ID paragraph to specify that a program can
be called by the containing program or by any program in the containing program.
The COMMON program cannot be called by any program contained in itself.

Only contained programs can have the COMMON attribute.

RELATED CONCEPTS

“Nested programs” on page 484

4 Enterprise COBOL for z/OS, V5.2 Programming Guide

Setting a program to an initial state
Use the INITIAL clause in the PROGRAM-ID paragraph to specify that whenever a
program is called, that program and any nested programs that it contains are to be
placed in their initial state.

When a program is set to its initial state:
v Data items that have VALUE clauses are set to the specified values.
v Changed GO TO statements and PERFORM statements are in their initial states.
v Non-EXTERNAL files are closed.

RELATED TASKS

“Ending and reentering main programs or subprograms” on page 474
“Making static calls” on page 476
“Making dynamic calls” on page 477

Changing the header of a source listing
The header on the first page of a source listing contains the identification of the
compiler and the current release level, the date and time of compilation, and the
page number.

The following example shows these five elements:
PP 5655-W32 IBM Enterprise COBOL for z/OS 5.1.0 Date 03/30/2013 Time 15:05:19 Page 1

The header indicates the compilation platform. You can customize the header on
succeeding pages of the listing by using the compiler-directing TITLE statement.

RELATED REFERENCES

TITLE statement (Enterprise COBOL Language Reference)

Describing the computing environment
In the ENVIRONMENT DIVISION of a program, you describe the aspects of the
program that depend on the computing environment.

Use the CONFIGURATION SECTION to specify the following items:
v Computer for compiling the program (in the SOURCE-COMPUTER paragraph)
v Computer for running the program (in the OBJECT-COMPUTER paragraph)
v Special items such as the currency sign and symbolic characters (in the

SPECIAL-NAMES paragraph)
v User-defined classes (in the REPOSITORY paragraph)

Use the FILE-CONTROL and I-O-CONTROL paragraphs of the INPUT-OUTPUT SECTION to:
v Identify and describe the characteristics of the files in the program.
v Associate your files with the external QSAM, VSAM, or z/OS UNIX file system

data sets where they physically reside.
The terms file in COBOL terminology and data set in operating-system
terminology have essentially the same meaning and are used interchangeably in
this information.
For Customer Information Control System (CICS) and online Information
Management System (IMS) message processing programs (MPP), code only the
ENVIRONMENT DIVISION header and, optionally, the CONFIGURATION SECTION. Do

Chapter 1. Structuring your program 5

not code file definitions in your COBOL programs that will run under CICS.
IMS allows COBOL definition of files only for batch programs.

v Provide information to control efficient transmission of the data records between
your program and the external medium.

“Example: FILE-CONTROL entries”

RELATED TASKS

“Specifying the collating sequence”
“Defining symbolic characters” on page 8
“Defining a user-defined class” on page 8
“Defining files to the operating system” on page 8

RELATED REFERENCES

Sections and paragraphs (Enterprise COBOL Language Reference)

Example: FILE-CONTROL entries
The following table shows example FILE-CONTROL entries for a QSAM sequential
file, a VSAM indexed file, and a line-sequential file.

Table 1. FILE-CONTROL entries

QSAM file VSAM file Line-sequential file

SELECT PRINTFILE1

ASSIGN TO UPDPRINT2

ORGANIZATION IS SEQUENTIAL3

ACCESS IS SEQUENTIAL.4

SELECT COMMUTER-FILE1

ASSIGN TO COMMUTER2

ORGANIZATION IS INDEXED3

ACCESS IS RANDOM4

RECORD KEY IS COMMUTER-KEY5

FILE STATUS IS5

COMMUTER-FILE-STATUS
COMMUTER-VSAM-STATUS.

SELECT PRINTFILE1

ASSIGN TO UPDPRINT2

ORGANIZATION IS LINE SEQUENTIAL3

ACCESS IS SEQUENTIAL.4

1. The SELECT clause chooses a file in the COBOL program to be associated with an external data set.

2. The ASSIGN clause associates the program's name for the file with the external name for the actual data file. You
can define the external name with a DD statement or an environment variable.

3. The ORGANIZATION clause describes the file's organization. For QSAM files, the ORGANIZATION clause is optional.

4. The ACCESS MODE clause defines the manner in which the records are made available for processing: sequential,
random, or dynamic. For QSAM and line-sequential files, the ACCESS MODE clause is optional. These files always
have sequential organization.

5. For VSAM files, you might have additional statements in the FILE-CONTROL paragraph depending on the type of
VSAM file you use.

RELATED TASKS

Chapter 9, “Processing QSAM files,” on page 159
Chapter 10, “Processing VSAM files,” on page 185
Chapter 11, “Processing line-sequential files,” on page 213
“Describing the computing environment” on page 5

Specifying the collating sequence
You can use the PROGRAM COLLATING SEQUENCE clause and the ALPHABET clause of the
SPECIAL-NAMES paragraph to establish the collating sequence that is used in several
operations on alphanumeric items.

These clauses specify the collating sequence for the following operations on
alphanumeric items:

6 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Comparisons explicitly specified in relation conditions and condition-name
conditions

v HIGH-VALUE and LOW-VALUE settings
v SEARCH ALL

v SORT and MERGE unless overridden by a COLLATING SEQUENCE phrase in the SORT
or MERGE statement

“Example: specifying the collating sequence”

The sequence that you use can be based on one of these alphabets:
v EBCDIC: references the collating sequence associated with the EBCDIC

character set
v NATIVE: references the same collating sequence as EBCDIC
v STANDARD-1: references the collating sequence associated with the ASCII

character set defined by ANSI INCITS X3.4, Coded Character Sets - 7-bit American
National Standard Code for Information Interchange (7-bit ASCII)

v STANDARD-2: references the collating sequence associated with the character
set defined by ISO/IEC 646 -- Information technology -- ISO 7-bit coded character set
for information interchange, International Reference Version

v An alteration of the EBCDIC sequence that you define in the SPECIAL-NAMES
paragraph

The PROGRAM COLLATING SEQUENCE clause does not affect comparisons that involve
national or DBCS operands.

RELATED TASKS

“Choosing alternate collating sequences” on page 229
“Comparing national (UTF-16) data” on page 147

Example: specifying the collating sequence
The following example shows the ENVIRONMENT DIVISION coding that you can use
to specify a collating sequence in which uppercase and lowercase letters are
similarly handled in comparisons and in sorting and merging.

When you change the EBCDIC sequence in the SPECIAL-NAMES paragraph, the
overall collating sequence is affected, not just the collating sequence of the
characters that are included in the SPECIAL-NAMES paragraph.
IDENTIFICATION DIVISION.
. . .
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
Source-Computer. IBM-390.
Object-Computer. IBM-390

Program Collating Sequence Special-Sequence.
Special-Names.

Alphabet Special-Sequence Is
"A" Also "a"
"B" Also "b"
"C" Also "c"
"D" Also "d"
"E" Also "e"
"F" Also "f"
"G" Also "g"
"H" Also "h"
"I" Also "i"
"J" Also "j"
"K" Also "k"

Chapter 1. Structuring your program 7

"L" Also "l"
"M" Also "m"
"N" Also "n"
"O" Also "o"
"P" Also "p"
"Q" Also "q"
"R" Also "r"
"S" Also "s"
"T" Also "t"
"U" Also "u"
"V" Also "v"
"W" Also "w"
"X" Also "x"
"Y" Also "y"
"Z" Also "z".

RELATED TASKS

“Specifying the collating sequence” on page 6

Defining symbolic characters
Use the SYMBOLIC CHARACTERS clause to give symbolic names to any character of the
specified alphabet. Use ordinal position to identify the character, where position 1
corresponds to character X'00'.

For example, to give a name to the backspace character (X'16' in the EBCDIC
alphabet), code:
SYMBOLIC CHARACTERS BACKSPACE IS 23

Defining a user-defined class
Use the CLASS clause to give a name to a set of characters that you list in the
clause.

For example, name the set of digits by coding the following clause:
CLASS DIGIT IS "0" THROUGH "9"

You can reference the class-name only in a class condition. (This user-defined class
is not the same as an object-oriented class.)

Defining files to the operating system
For all files that you process in your COBOL program, you need to define the files
to the operating system with an appropriate system data definition.

Depending on the operating system, this system data definition can take any of the
following forms:
v DD statement for MVS JCL.
v ALLOCATE command under TSO.
v Environment variable for z/OS or z/OS UNIX. The contents can define either an

MVS data set or a file in the z/OS UNIX file system.

The following examples show the relationship of a FILE-CONTROL entry to the
system data definition and to the FD entry in the FILE SECTION:
v JCL DD statement:

(1)
//OUTFILE DD DSNAME=MY.OUT171,UNIT=SYSDA,SPACE=(TRK,(50,5))
/*

8 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Environment variable (export command):
(1)

export OUTFILE=DSN(MY.OUT171),UNIT(SYSDA),SPACE(TRK,(50,5))

v COBOL code:
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CARPOOL
ASSIGN TO OUTFILE (1)
ORGANIZATION IS SEQUENTIAL.

. . .
DATA DIVISION.
FILE SECTION.
FD CARPOOL (2)

LABEL RECORD STANDARD
BLOCK CONTAINS 0 CHARACTERS
RECORD CONTAINS 80 CHARACTERS

(1) The assignment-name in the ASSIGN clause points to the ddname OUTFILE in
the DD statement or the environment variable OUTFILE in the export
command:
v //OUTFILE DD DSNAME=OUT171 . . ., or
v export OUTFILE= . . .

(2) When you specify a file file-name in a FILE-CONTROL entry, you must
describe the file in an FD entry:
SELECT CARPOOL
. . .
FD CARPOOL

RELATED TASKS

“Optimizing buffer and device space” on page 10

RELATED REFERENCES

“FILE SECTION entries” on page 12
FILE SECTION (Enterprise COBOL Language Reference)

Varying the input or output file at run time
The file-name that you code in a SELECT clause is used as a constant throughout
your COBOL program, but you can associate the name of that file with a different
system file at run time.

Changing a file-name within a COBOL program would require changing the input
statements and output statements and recompiling the program. Alternatively, you
can change the DSNAME value in the DD statement or the DSN or PATH value in the
export command to use a different file at run time.

Environment variable values that are in effect at the time of the OPEN statement are
used for associating COBOL file-names to the system file-names (including any
path specifications).

The name that you use in the assignment-name of the ASSIGN clause must be the
same as the ddname in the DD statement or the environment variable in the export
command.

The file-name that you use in the SELECT clause (such as SELECT MASTER) must be the
same as in the FD file-name entry.

Chapter 1. Structuring your program 9

Two files should not use the same ddname or environment variable name in their
SELECT clauses; otherwise, results could be unpredictable. For example, if DISPLAY
output is directed to SYSOUT, do not use SYSOUT as the ddname or environment
variable name in the SELECT clause for a file.

Example: using different input files:

This example shows that you use the same COBOL program to access different
files by coding a DD statement or an export command before the programs runs.

Consider a COBOL program that contains the following SELECT clause:
SELECT MASTER ASSIGN TO DA-3330-S-MASTERA

Assume the three possible input files are MASTER1, MASTER2, and MASTER3. Before
running the program, code one of the following DD statements in the job step that
calls for program execution, or issue one of the following export commands from
the same shell from which you run the program:
//MASTERA DD DSNAME=MY.MASTER1,. . .
export MASTERA=DSN(MY.MASTER1),. . .

//MASTERA DD DSNAME=MY.MASTER2,. . .
export MASTERA=DSN(MY.MASTER2),. . .

//MASTERA DD DSNAME=MY.MASTER3,. . .
export MASTERA=DSN(MY.MASTER3),. . .

Any reference in the program to MASTER will therefore be a reference to the file that
is currently assigned to the ddname or environment-variable name MASTERA.

Notice that in this example, you cannot use the PATH(path) form of the export
command to reference a line-sequential file in the z/OS UNIX file system, because
you cannot specify an organization field (S- or AS-) with a line-sequential file.

Optimizing buffer and device space
Use the APPLY WRITE-ONLY clause to make optimum use of buffer and device space
when you create a sequential file with blocked variable-length records.

With APPLY WRITE-ONLY specified, a buffer is truncated only when the next record
does not fit in the unused portion of the buffer. Without APPLY WRITE-ONLY
specified, a buffer is truncated when it does not have enough space for a
maximum-size record.

The APPLY WRITE-ONLY clause has meaning only for sequential files that have
variable-length records and are blocked.

The AWO compiler option applies an implicit APPLY WRITE-ONLY clause to all eligible
files. The NOAWO compiler option has no effect on files that have the APPLY
WRITE-ONLY clause specified. The APPLY WRITE-ONLY clause takes precedence over
the NOAWO compiler option.

The APPLY-WRITE ONLY clause can cause input files to use a record area rather than
process the data in the buffer. This use might affect the processing of both input
files and output files.

RELATED REFERENCES

“AWO” on page 310

10 Enterprise COBOL for z/OS, V5.2 Programming Guide

Describing the data
Define the characteristics of your data, and group your data definitions into one or
more of the sections in the DATA DIVISION.

You can use these sections for defining the following types of data:
v Data used in input-output operations: FILE SECTION
v Data developed for internal processing:

– To have storage be statically allocated and exist for the life of the run unit:
WORKING-STORAGE SECTION

– To have storage be allocated each time a program is entered, and deallocated
on return from the program: LOCAL-STORAGE SECTION

v Data from another program: LINKAGE SECTION

The Enterprise COBOL compiler limits the maximum size of DATA DIVISION
elements. For details, see the related reference about compiler limits below.

RELATED CONCEPTS

“Comparison of WORKING-STORAGE and LOCAL-STORAGE” on page 14

RELATED TASKS

“Using data in input and output operations”
“Using data from another program” on page 16

RELATED REFERENCES

Compiler limits (Enterprise COBOL Language Reference)

Using data in input and output operations
Define the data that you use in input and output operations in the FILE SECTION.

Provide the following information about the data:
v Name the input and output files that the program will use. Use the FD entry to

give names to the files that the input-output statements in the PROCEDURE
DIVISION can refer to.
Data items defined in the FILE SECTION are not available to PROCEDURE DIVISION
statements until the file has been successfully opened.

v In the record description that follows the FD entry, describe the fields of the
records in the file:
– You can code a level-01 description of the entire record, and then in the

WORKING-STORAGE SECTION code a working copy that describes the fields of the
record in more detail. Use the READ INTO statement to bring the records into
WORKING-STORAGE. Processing occurs on the copy of data in WORKING-STORAGE.
A WRITE FROM statement writes processed data into the record area defined in
the FILE SECTION.

– The record-name established is the object of WRITE and REWRITE statements.
– For QSAM files only, you can set the record format in the RECORDING MODE

clause. If you omit the RECORDING MODE clause, the compiler determines the
record format based on the RECORD clause and on the level-01 record
descriptions.

– For QSAM files, you can set a blocking factor for the file in the BLOCK
CONTAINS clause. If you omit the BLOCK CONTAINS clause, the file defaults to

Chapter 1. Structuring your program 11

unblocked. However, you can override this with z/OS data management
facilities (including a DD file job-control statement).

– For line-sequential files, you can set a blocking factor for the file in the BLOCK
CONTAINS clause. When you code BLOCK CONTAINS 1 RECORDS, or BLOCK
CONTAINS n CHARACTERS, where n is the length of one logical record in bytes,
WRITE statements result in the record being transferred immediately to the file
rather than being buffered. This technique is useful when you want each
record written immediately, such as to an error log.

Programs in the same run unit can share, or have access to, common files. The
method for doing this depends on whether the programs are part of a nested
(contained) structure or are separately compiled (including programs compiled as
part of a batch sequence).

You can use the EXTERNAL clause for separately compiled programs. A file that is
defined as EXTERNAL can be referenced by any program in the run unit that
describes the file.

You can use the GLOBAL clause for programs in a nested, or contained, structure. If
a program contains another program (directly or indirectly), both programs can
access a common file by referencing a GLOBAL file-name.

RELATED CONCEPTS

“Nested programs” on page 484

RELATED TASKS

“Sharing files between programs (external files)” on page 501

RELATED REFERENCES

“FILE SECTION entries”

FILE SECTION entries
The entries that you can use in the FILE SECTION are summarized in the table
below.

Table 2. FILE SECTION entries

Clause To define Notes

FD The file-name to be
referred to in PROCEDURE
DIVISION input-output
statements (OPEN, CLOSE,
READ, also START and
DELETE for VSAM)

Must match file-name in the SELECT clause.
file-name is associated with a ddname
through the assignment-name.

12 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 2. FILE SECTION entries (continued)

Clause To define Notes

BLOCK CONTAINS Size of physical records If the CHARACTERS phrase is specified, size
indicates the number of bytes in a record
regardless of the USAGE of the data items in
the record.

QSAM: If provided, must match
information on JCL or data-set label. If
specified as BLOCK CONTAINS 0, or not
provided, the system determines the
optimal block size for you.

Line sequential: Can be specified to control
buffering for WRITE statements.

VSAM: Syntax-checked, but has no effect on
execution.

RECORD CONTAINS
n

Size of logical records
(fixed length)

Integer size indicates the number of bytes
in a record regardless of the USAGE of the
data items in the record. If the clause is
provided, it must match information on JCL
or data-set label. If n is equal to 0, LRECL
must be coded on JCL or data-set label.

RECORD IS
VARYING

Size of logical records
(variable length)

Integer size or sizes, if specified, indicate
the number of bytes in a record regardless
of the USAGE of the data items in the record.
If the clause is provided, it must match
information on JCL or data-set label;
compiler checks that record descriptions
match.

RECORD CONTAINS
n TO m

Size of logical records
(variable length)

The integer sizes indicate the number of
bytes in a record regardless of the USAGE of
the data items in the record. If the clause is
provided, it must match information on JCL
or data-set label; compiler checks that
record descriptions match.

LABEL RECORDS Labels for QSAM files VSAM: Handled as comments

STANDARD Labels exist QSAM: Handled as comments

OMITTED Labels do not exist QSAM: Handled as comments

data-name Labels defined by the user QSAM: Allowed for (optional) tape or disk

VALUE OF An item in the label
records associated with
file

Comments only

DATA RECORDS Names of records
associated with file

Comments only

LINAGE Depth of logical page QSAM only

Chapter 1. Structuring your program 13

Table 2. FILE SECTION entries (continued)

Clause To define Notes

CODE-SET ASCII or EBCDIC files QSAM only.

When an ASCII file is identified with the
CODE-SET clause, the corresponding DD
statement might need to have
DCB=(OPTCD=Q. . .) or DCB=(RECFM=D. . .)
coded if the file was not created using VS
COBOL II, COBOL for OS/390® & VM, or
IBM Enterprise COBOL for z/OS.

RECORDING MODE Physical record
description

QSAM only

RELATED REFERENCES

FILE SECTION (Enterprise COBOL Language Reference)

Comparison of WORKING-STORAGE and LOCAL-STORAGE
How data items are allocated and initialized varies depending on whether the
items are in the WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION.

WORKING-STORAGE for programs is allocated when the run unit is started.

Any data items that have VALUE clauses are initialized to the appropriate value at
that time. For the duration of the run unit, WORKING-STORAGE items persist in their
last-used state. Exceptions are:
v A program with INITIAL specified in the PROGRAM-ID paragraph

In this case, WORKING-STORAGE data items are reinitialized each time that the
program is entered.

v A subprogram that is dynamically called and then canceled
In this case, WORKING-STORAGE data items are reinitialized on the first reentry into
the program following the CANCEL.

WORKING-STORAGE is deallocated at the termination of the run unit.

See the related tasks for information about WORKING-STORAGE in COBOL class
definitions.

A separate copy of LOCAL-STORAGE data is allocated for each call of a program or
invocation of a method, and is freed on return from the program or method. If you
specify a VALUE clause for a LOCAL-STORAGE item, the item is initialized to that value
on each call or invocation. If a VALUE clause is not specified, the initial value of the
item is undefined.

Threading: Each invocation of a program that runs simultaneously on multiple
threads shares access to a single copy of WORKING-STORAGE data. Each invocation
has a separate copy of LOCAL-STORAGE data.

“Example: storage sections” on page 15

RELATED TASKS

“Ending and reentering main programs or subprograms” on page 474

14 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 27, “Preparing COBOL programs for multithreading,” on page 517
“WORKING-STORAGE SECTION for defining class instance data” on page 596

RELATED REFERENCES

WORKING-STORAGE SECTION (Enterprise COBOL Language Reference)
LOCAL-STORAGE SECTION (Enterprise COBOL Language Reference)

Example: storage sections
The following example is a recursive program that uses both WORKING-STORAGE and
LOCAL-STORAGE.
CBL pgmn(lu)

* Recursive Program - Factorials

IDENTIFICATION DIVISION.
Program-Id. factorial recursive.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 numb pic 9(4) value 5.
01 fact pic 9(8) value 0.
LOCAL-STORAGE SECTION.
01 num pic 9(4).
PROCEDURE DIVISION.

move numb to num.

if numb = 0
move 1 to fact

else
subtract 1 from numb
call ’factorial’
multiply num by fact

end-if.

display num ’! = ’ fact.
goback.

End Program factorial.

The program produces the following output:
0000! = 00000001
0001! = 00000001
0002! = 00000002
0003! = 00000006
0004! = 00000024
0005! = 00000120

The following tables show the changing values of the data items in LOCAL-STORAGE
and WORKING-STORAGE in the successive recursive calls of the program, and in the
ensuing gobacks. During the gobacks, fact progressively accumulates the value of
5! (five factorial).

Recursive calls
Value for num in
LOCAL-STORAGE

Value for numb in
WORKING-STORAGE

Value for fact in
WORKING-STORAGE

Main 5 5 0

1 4 4 0

2 3 3 0

3 2 2 0

4 1 1 0

5 0 0 0

Chapter 1. Structuring your program 15

Gobacks
Value for num in
LOCAL-STORAGE

Value for numb in
WORKING-STORAGE

Value for fact in
WORKING-STORAGE

5 0 0 1

4 1 0 1

3 2 0 2

2 3 0 6

1 4 0 24

Main 5 0 120

RELATED CONCEPTS

“Comparison of WORKING-STORAGE and LOCAL-STORAGE” on page 14

Using data from another program
How you share data depends on the type of program. You share data differently in
programs that are separately compiled than you do for programs that are nested or
for programs that are recursive or multithreaded.

RELATED TASKS

“Sharing data in separately compiled programs”
“Sharing data in nested programs”
“Sharing data in recursive or multithreaded programs” on page 17
“Passing data” on page 491

Sharing data in separately compiled programs
Many applications consist of separately compiled programs that call and pass data
to one another. Use the LINKAGE SECTION in the called program to describe the data
passed from another program.

In the calling program, code a CALL . . . USING or INVOKE . . . USING statement
to pass the data.

RELATED TASKS

“Passing data” on page 491
“Coding the LINKAGE SECTION” on page 495

Sharing data in nested programs
Some applications consist of nested programs, that is, programs that are contained
in other programs. Level-01 data items can include the GLOBAL attribute. This
attribute allows any nested program that includes the declarations to access these
data items.

A nested program can also access data items in a sibling program (one at the same
nesting level in the same containing program) that is declared with the COMMON
attribute.

RELATED CONCEPTS

“Nested programs” on page 484

16 Enterprise COBOL for z/OS, V5.2 Programming Guide

Sharing data in recursive or multithreaded programs
If your program has the RECURSIVE attribute or is compiled with the THREAD
compiler option, data that is defined in the LINKAGE SECTION is not accessible on
subsequent invocations of the program.

To address a record in the LINKAGE SECTION, use either of these techniques:
v Pass an argument to the program and specify the record in an appropriate

position in the USING phrase in the program.
v Use the format-5 SET statement.

If your program has the RECURSIVE attribute or is compiled with the THREAD
compiler option, the address of the record is valid for a particular instance of the
program invocation. The address of the record in another execution instance of the
same program must be reestablished for that execution instance. Unpredictable
results will occur if you refer to a data item for which the address has not been
established.

RELATED CONCEPTS

“Multithreading” on page 518

RELATED TASKS

“Making recursive calls” on page 487
“Processing files with multithreading” on page 520

RELATED REFERENCES

“THREAD” on page 366
SET statement (Enterprise COBOL Language Reference)

Processing the data
In the PROCEDURE DIVISION of a program, you code the executable statements that
process the data that you defined in the other divisions. The PROCEDURE DIVISION
contains one or two headers and the logic of your program.

The PROCEDURE DIVISION begins with the division header and a procedure-name
header. The division header for a program can simply be:
PROCEDURE DIVISION.

You can code the division header to receive parameters by using the USING phrase,
or to return a value by using the RETURNING phrase.

To receive an argument that was passed by reference (the default) or by content,
code the division header for a program in either of these ways:
PROCEDURE DIVISION USING dataname
PROCEDURE DIVISION USING BY REFERENCE dataname

Be sure to define dataname in the LINKAGE SECTION of the DATA DIVISION.

To receive a parameter that was passed by value, code the division header for a
program as follows:
PROCEDURE DIVISION USING BY VALUE dataname

To return a value as a result, code the division header as follows:
PROCEDURE DIVISION RETURNING dataname2

Chapter 1. Structuring your program 17

You can also combine USING and RETURNING in a PROCEDURE DIVISION header:
PROCEDURE DIVISION USING dataname RETURNING dataname2

Be sure to define dataname and dataname2 in the LINKAGE SECTION.

RELATED CONCEPTS

“How logic is divided in the PROCEDURE DIVISION”

RELATED TASKS

“Coding the LINKAGE SECTION” on page 495
“Coding the PROCEDURE DIVISION for passing arguments” on page 496
“Using PROCEDURE DIVISION RETURNING . . .” on page 500
“Eliminating repetitive coding” on page 675

RELATED REFERENCES

The procedure division header (Enterprise COBOL Language Reference)
The USING phrase (Enterprise COBOL Language Reference)
CALL statement (Enterprise COBOL Language Reference)

How logic is divided in the PROCEDURE DIVISION
The PROCEDURE DIVISION of a program is divided into sections and paragraphs,
which contain sentences, statements, and phrases.

Section
Logical subdivision of your processing logic.

A section has a section header and is optionally followed by one or more
paragraphs.

A section can be the subject of a PERFORM statement. One type of section is
for declaratives.

Paragraph
Subdivision of a section, procedure, or program.

A paragraph has a name followed by a period and zero or more sentences.

A paragraph can be the subject of a statement.

Sentence
Series of one or more COBOL statements that ends with a period.

Statement
Performs a defined step of COBOL processing, such as adding two
numbers.

A statement is a valid combination of words, and begins with a COBOL
verb. Statements are imperative (indicating unconditional action),
conditional, or compiler-directing. Using explicit scope terminators instead
of periods to show the logical end of a statement is preferred.

Phrase
A subdivision of a statement.

RELATED CONCEPTS

“Compiler-directing statements” on page 20
“Scope terminators” on page 20
“Imperative statements” on page 19
“Conditional statements” on page 19
“Declaratives” on page 21

18 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

PROCEDURE DIVISION structure (Enterprise COBOL Language Reference)

Imperative statements
An imperative statement (such as ADD, MOVE, INVOKE, or CLOSE) indicates an
unconditional action to be taken.

You can end an imperative statement with an implicit or explicit scope terminator.

A conditional statement that ends with an explicit scope terminator becomes an
imperative statement called a delimited scope statement. Only imperative statements
(or delimited scope statements) can be nested.

RELATED CONCEPTS

“Conditional statements”
“Scope terminators” on page 20

Conditional statements
A conditional statement is either a simple conditional statement (IF, EVALUATE,
SEARCH) or a conditional statement made up of an imperative statement that
includes a conditional phrase or option.

You can end a conditional statement with an implicit or explicit scope terminator.
If you end a conditional statement explicitly, it becomes a delimited scope
statement (which is an imperative statement).

You can use a delimited scope statement in these ways:
v To delimit the range of operation for a COBOL conditional statement and to

explicitly show the levels of nesting
For example, use an END-IF phrase instead of a period to end the scope of an IF
statement within a nested IF.

v To code a conditional statement where the COBOL syntax calls for an imperative
statement
For example, code a conditional statement as the object of an inline PERFORM:
PERFORM UNTIL TRANSACTION-EOF

PERFORM 200-EDIT-UPDATE-TRANSACTION
IF NO-ERRORS

PERFORM 300-UPDATE-COMMUTER-RECORD
ELSE

PERFORM 400-PRINT-TRANSACTION-ERRORS
END-IF
READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD

AT END
SET TRANSACTION-EOF TO TRUE

END-READ
END-PERFORM

An explicit scope terminator is required for the inline PERFORM statement, but it is
not valid for the out-of-line PERFORM statement.

For additional program control, you can use the NOT phrase with conditional
statements. For example, you can provide instructions to be performed when a
particular exception does not occur, such as NOT ON SIZE ERROR. The NOT phrase
cannot be used with the ON OVERFLOW phrase of the CALL statement, but it can be
used with the ON EXCEPTION phrase.

Chapter 1. Structuring your program 19

Do not nest conditional statements. Nested statements must be imperative
statements (or delimited scope statements) and must follow the rules for
imperative statements.

The following statements are examples of conditional statements if they are coded
without scope terminators:
v Arithmetic statement with ON SIZE ERROR
v Data-manipulation statements with ON OVERFLOW
v CALL statements with ON OVERFLOW
v I/O statements with INVALID KEY, AT END, or AT END-OF-PAGE
v RETURN with AT END

RELATED CONCEPTS

“Imperative statements” on page 19
“Scope terminators”

RELATED TASKS

“Selecting program actions” on page 93

RELATED REFERENCES

Conditional statements (Enterprise COBOL Language Reference)

Compiler-directing statements
A compiler-directing statement causes the compiler to take specific action about the
program structure, COPY processing, listing control, or control flow.

A compiler-directing statement is not part of the program logic.

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 381
Compiler-directing statements (Enterprise COBOL Language Reference)

Scope terminators
A scope terminator ends a verb or statement. Scope terminators can be explicit or
implicit.

Explicit scope terminators end a verb without ending a sentence. They consist of
END followed by a hyphen and the name of the verb being terminated, such as
END-IF. An implicit scope terminator is a period (.) that ends the scope of all
previous statements not yet ended.

Each of the two periods in the following program fragment ends an IF statement,
making the code equivalent to the code after it that instead uses explicit scope
terminators:
IF ITEM = "A"

DISPLAY "THE VALUE OF ITEM IS " ITEM
ADD 1 TO TOTAL
MOVE "C" TO ITEM
DISPLAY "THE VALUE OF ITEM IS NOW " ITEM.

IF ITEM = "B"
ADD 2 TO TOTAL.

IF ITEM = "A"
DISPLAY "THE VALUE OF ITEM IS " ITEM
ADD 1 TO TOTAL
MOVE "C" TO ITEM
DISPLAY "THE VALUE OF ITEM IS NOW " ITEM

20 Enterprise COBOL for z/OS, V5.2 Programming Guide

END-IF
IF ITEM = "B"

ADD 2 TO TOTAL
END-IF

If you use implicit terminators, the end of statements can be unclear. As a result,
you might end statements unintentionally, changing your program's logic. Explicit
scope terminators make a program easier to understand and prevent unintentional
ending of statements. For example, in the program fragment below, changing the
location of the first period in the first implicit scope example changes the meaning
of the code:
IF ITEM = "A"

DISPLAY "VALUE OF ITEM IS " ITEM
ADD 1 TO TOTAL.
MOVE "C" TO ITEM
DISPLAY " VALUE OF ITEM IS NOW " ITEM

IF ITEM = "B"
ADD 2 TO TOTAL.

The MOVE statement and the DISPLAY statement after it are performed regardless of
the value of ITEM, despite what the indentation indicates, because the first period
terminates the IF statement.

For improved program clarity and to avoid unintentional ending of statements, use
explicit scope terminators, especially within paragraphs. Use implicit scope
terminators only at the end of a paragraph or the end of a program.

Be careful when coding an explicit scope terminator for an imperative statement
that is nested within a conditional statement. Ensure that the scope terminator is
paired with the statement for which it was intended. In the following example, the
scope terminator will be paired with the second READ statement, though the
programmer intended it to be paired with the first.
READ FILE1

AT END
MOVE A TO B
READ FILE2

END-READ

To ensure that the explicit scope terminator is paired with the intended statement,
the preceding example can be recoded in this way:
READ FILE1

AT END
MOVE A TO B
READ FILE2
END-READ

END-READ

RELATED CONCEPTS

“Conditional statements” on page 19
“Imperative statements” on page 19

Declaratives
Declaratives provide one or more special-purpose sections that are executed when
an exception condition occurs.

Start each declarative section with a USE statement that identifies the function of
the section. In the procedures, specify the actions to be taken when the condition
occurs.

Chapter 1. Structuring your program 21

RELATED TASKS

“Finding and handling input-output errors” on page 387

RELATED REFERENCES

Declaratives (Enterprise COBOL Language Reference)

22 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 2. Using data

This information is intended to help non-COBOL programmers relate terms for
data used in other programming languages to COBOL terms. It introduces COBOL
fundamentals for variables, structures, literals, and constants; assigning and
displaying values; intrinsic (built-in) functions, and tables (arrays) and pointers.

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

“Using variables, structures, literals, and constants”
“Assigning values to data items” on page 27
“Displaying values on a screen or in a file (DISPLAY)” on page 35
“Using intrinsic functions (built-in functions)” on page 38
“Using tables (arrays) and pointers” on page 39
Chapter 7, “Processing data in an international environment,” on page 125

Using variables, structures, literals, and constants
Most high-level programming languages share the concept of data being
represented as variables, structures (group items), literals, or constants.

The data in a COBOL program can be alphabetic, alphanumeric, double-byte
character set (DBCS), national, or numeric. You can also define index-names and
data items described as USAGE POINTER, USAGE FUNCTION-POINTER, USAGE
PROCEDURE-POINTER, or USAGE OBJECT REFERENCE. You place all data definitions in
the DATA DIVISION of your program.

RELATED TASKS

“Using variables”
“Using data items and group items” on page 24
“Using literals” on page 25
“Using constants” on page 26
“Using figurative constants” on page 26

RELATED REFERENCES

Classes and categories of data (Enterprise COBOL Language Reference)

Using variables
A variable is a data item whose value can change during a program. The value is
restricted, however, to the data type that you define when you specify a name and
a length for the data item.

For example, if a customer name is an alphanumeric data item in your program,
you could define and use the customer name as shown below:
Data Division.
01 Customer-Name Pic X(20).
01 Original-Customer-Name Pic X(20).
. . .
Procedure Division.

Move Customer-Name to Original-Customer-Name
. . .

© Copyright IBM Corp. 1991, 2018 23

You could instead define the customer names above as national data items by
specifying their PICTURE clauses as Pic N(20) and specifying the USAGE NATIONAL
clause for the items. National data items are represented in Unicode UTF-16, in
which most characters are represented in 2 bytes of storage.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 130

RELATED REFERENCES

“NSYMBOL” on page 340
“Storage of character data” on page 137
PICTURE clause (Enterprise COBOL Language Reference)

Using data items and group items
Related data items can be parts of a hierarchical data structure. A data item that
does not have subordinate data items is called an elementary item. A data item that
is composed of one or more subordinate data items is called a group item.

A record can be either an elementary item or a group item. A group item can be
either an alphanumeric group item or a national group item.

For example, Customer-Record below is an alphanumeric group item that is
composed of two subordinate alphanumeric group items (Customer-Name and
Part-Order), each of which contains elementary data items. These groups items
implicitly have USAGE DISPLAY. You can refer to an entire group item or to parts of
a group item in MOVE statements in the PROCEDURE DIVISION as shown below:
Data Division.
File Section.
FD Customer-File

Record Contains 45 Characters.
01 Customer-Record.

05 Customer-Name.
10 Last-Name Pic x(17).
10 Filler Pic x.
10 Initials Pic xx.

05 Part-Order.
10 Part-Name Pic x(15).
10 Part-Color Pic x(10).

Working-Storage Section.
01 Orig-Customer-Name.

05 Surname Pic x(17).
05 Initials Pic x(3).

01 Inventory-Part-Name Pic x(15).
. . .
Procedure Division.

Move Customer-Name to Orig-Customer-Name
Move Part-Name to Inventory-Part-Name
. . .

You could instead define Customer-Record as a national group item that is
composed of two subordinate national group items by changing the declarations in
the DATA DIVISION as shown below. National group items behave in the same way
as elementary category national data items in most operations. The GROUP-USAGE
NATIONAL clause indicates that a group item and any group items subordinate to it
are national groups. Subordinate elementary items in a national group must be
explicitly or implicitly described as USAGE NATIONAL.

24 Enterprise COBOL for z/OS, V5.2 Programming Guide

Data Division.
File Section.
FD Customer-File

Record Contains 90 Characters.
01 Customer-Record Group-Usage National.

05 Customer-Name.
10 Last-Name Pic n(17).
10 Filler Pic n.
10 Initials Pic nn.

05 Part-Order.
10 Part-Name Pic n(15).
10 Part-Color Pic n(10).

Working-Storage Section.
01 Orig-Customer-Name Group-Usage National.

05 Surname Pic n(17).
05 Initials Pic n(3).

01 Inventory-Part-Name Pic n(15) Usage National.
. . .
Procedure Division.

Move Customer-Name to Orig-Customer-Name
Move Part-Name to Inventory-Part-Name
. . .

In the example above, the group items could instead specify the USAGE NATIONAL
clause at the group level. A USAGE clause at the group level applies to each
elementary data item in a group (and thus serves as a convenient shorthand
notation). However, a group that specifies the USAGE NATIONAL clause is not a
national group despite the representation of the elementary items within the group.
Groups that specify the USAGE clause are alphanumeric groups and behave in many
operations, such as moves and compares, like elementary data items of USAGE
DISPLAY (except that no editing or conversion of data occurs).

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129
“National groups” on page 133

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 130
“Using national groups” on page 134

RELATED REFERENCES

“FILE SECTION entries” on page 12
“Storage of character data” on page 137
Classes and categories of group items (Enterprise COBOL Language Reference)
PICTURE clause (Enterprise COBOL Language Reference)
MOVE statement (Enterprise COBOL Language Reference)
USAGE clause (Enterprise COBOL Language Reference)

Using literals
A literal is a character string whose value is given by the characters themselves. If
you know the value you want a data item to have, you can use a literal
representation of the data value in the PROCEDURE DIVISION.

You do not need to define a data item for the value nor refer to it by using a
data-name. For example, you can prepare an error message for an output file by
moving an alphanumeric literal:
Move "Name is not valid" To Customer-Name

Chapter 2. Using data 25

You can compare a data item to a specific integer value by using a numeric literal.
In the example below, "Name is not valid" is an alphanumeric literal, and 03519 is
a numeric literal:
01 Part-number Pic 9(5).
. . .

If Part-number = 03519 then display "Part number was found"

You can use the opening delimiter N" or N’ to designate a national literal if the
NSYMBOL(NATIONAL) compiler option is in effect, or to designate a DBCS literal if the
NSYMBOL(DBCS) compiler option is in effect.

You can use the opening delimiter NX" or NX’ to designate national literals in
hexadecimal notation (regardless of the setting of the NSYMBOL compiler option).
Each group of four hexadecimal digits designates a single national character.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Using national literals” on page 131
“Using DBCS literals” on page 150

RELATED REFERENCES

“NSYMBOL” on page 340
Literals (Enterprise COBOL Language Reference)

Using constants
A constant is a data item that has only one value. COBOL does not define a
construct for constants. However, you can define a data item with an initial value
by coding a VALUE clause in the data description (instead of coding an INITIALIZE
statement).
Data Division.
01 Report-Header pic x(50) value "Company Sales Report".
. . .
01 Interest pic 9v9999 value 1.0265.

The example above initializes an alphanumeric and a numeric data item. You can
likewise use a VALUE clause in defining a national or DBCS constant.

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 130
“Coding for use of DBCS support” on page 150

Using figurative constants
Certain commonly used constants and literals are available as reserved words
called figurative constants: ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE, NULL, and ALL
literal. Because they represent fixed values, figurative constants do not require a
data definition.

For example:
Move Spaces To Report-Header

RELATED TASKS

“Using national-character figurative constants” on page 132
“Coding for use of DBCS support” on page 150

26 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

Figurative constants (Enterprise COBOL Language Reference)

Assigning values to data items
After you have defined a data item, you can assign a value to it at any time.
Assignment takes many forms in COBOL, depending on what you want to do.

Table 3. Assignment to data items in a program

What you want to do How to do it

Assign values to a data item or large data area. Use one of these ways:

v INITIALIZE statement

v MOVE statement

v STRING or UNSTRING statement

v VALUE clause (to set data items to the values you
want them to have when the program is in
initial state)

Assign the results of arithmetic. Use COMPUTE, ADD, SUBTRACT, MULTIPLY, or DIVIDE
statements.

Examine or replace characters or groups of characters in a data
item.

Use the INSPECT statement.

Receive values from a file. Use the READ (or READ INTO) statement.

Receive values from a system input device or a file. Use the ACCEPT statement.

Establish a constant. Use the VALUE clause in the definition of the data
item, and do not use the data item as a receiver.
Such an item is in effect a constant even though the
compiler does not enforce read-only constants.

One of these actions:

v Place a value associated with a table element in an index.

v Set the status of an external switch to ON or OFF.

v Move data to a condition-name to make the condition true.

v Set a POINTER, PROCEDURE-POINTER, or FUNCTION-POINTER data
item to an address.

v Associate an OBJECT REFERENCE data item with an object
instance.

Use the SET statement.

“Examples: initializing data items” on page 28

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 30
“Assigning values to elementary data items (MOVE)” on page 32
“Assigning values to group data items (MOVE)” on page 33
“Assigning input from a screen or file (ACCEPT)” on page 34
“Joining data items (STRING)” on page 105
“Splitting data items (UNSTRING)” on page 107
“Assigning arithmetic results (MOVE or COMPUTE)” on page 34
“Tallying and replacing data items (INSPECT)” on page 115
Chapter 7, “Processing data in an international environment,” on page 125

Chapter 2. Using data 27

Examples: initializing data items
The following examples show how you can initialize many kinds of data items,
including alphanumeric, national-edited, and numeric-edited data items, by using
INITIALIZE statements.

An INITIALIZE statement is functionally equivalent to one or more MOVE statements.
The related tasks about initializing show how you can use an INITIALIZE statement
on a group item to conveniently initialize all the subordinate data items that are in
a given data category.

Initializing a data item to blanks or zeros:
INITIALIZE identifier-1

identifier-1 PICTURE identifier-1 before identifier-1 after

9(5) 12345 00000

X(5) AB123 bbbbb1

N(3) 0041004200312 0020002000203

99XX9 12AB3 bbbbb1

XXBX/XX ABbC/DE bbbb/bb1

**99.9CR 1234.5CR **00.0bb1

A(5) ABCDE bbbbb1

+99.99E+99 +12.34E+02 +00.00E+00

1. The symbol b represents a blank space.

2. Hexadecimal representation of the national (UTF-16) characters 'AB1'. The example
assumes that identifier-1 has Usage National.

3. Hexadecimal representation of the national (UTF-16) characters ' ' (three blank
spaces). Note that if identifier-1 were not defined as Usage National, and if
NSYMBOL(DBCS) were in effect, INITIALIZE would instead store DBCS spaces ('4040') into
identifier-1.

Initializing an alphanumeric data item:
01 ALPHANUMERIC-1 PIC X VALUE "y".
01 ALPHANUMERIC-3 PIC X(1) VALUE "A".
. . .

INITIALIZE ALPHANUMERIC-1
REPLACING ALPHANUMERIC DATA BY ALPHANUMERIC-3

ALPHANUMERIC-3 ALPHANUMERIC-1 before ALPHANUMERIC-1 after

A y A

Initializing an alphanumeric right-justified data item:
01 ANJUST PIC X(8) VALUE SPACES JUSTIFIED RIGHT.
01 ALPHABETIC-1 PIC A(4) VALUE "ABCD".
. . .

INITIALIZE ANJUST
REPLACING ALPHANUMERIC DATA BY ALPHABETIC-1

ALPHABETIC-1 ANJUST before ANJUST after

ABCD bbbbbbbb1 bbbbABCD1

1. The symbol b represents a blank space.

28 Enterprise COBOL for z/OS, V5.2 Programming Guide

Initializing an alphanumeric-edited data item:
01 ALPHANUM-EDIT-1 PIC XXBX/XXX VALUE "ABbC/DEF".
01 ALPHANUM-EDIT-3 PIC X/BB VALUE "M/bb".
. . .

INITIALIZE ALPHANUM-EDIT-1
REPLACING ALPHANUMERIC-EDITED DATA BY ALPHANUM-EDIT-3

ALPHANUM-EDIT-3 ALPHANUM-EDIT-1 before ALPHANUM-EDIT-1 after

M/bb1 ABbC/DEF1 M/bb/bbb1

1. The symbol b represents a blank space.

Initializing a national data item:
01 NATIONAL-1 PIC NN USAGE NATIONAL VALUE N"AB".
01 NATIONAL-3 PIC NN USAGE NATIONAL VALUE N"CD".
. . .

INITIALIZE NATIONAL-1
REPLACING NATIONAL DATA BY NATIONAL-3

NATIONAL-3 NATIONAL-1 before NATIONAL-1 after

004300441 004100422 004300441

1. Hexadecimal representation of the national characters 'CD'

2. Hexadecimal representation of the national characters 'AB'

Initializing a national-edited data item:
01 NATL-EDIT-1 PIC 0NN USAGE NATIONAL VALUE N"123".
01 NATL-3 PIC NNN USAGE NATIONAL VALUE N"456".
. . .

INITIALIZE NATL-EDIT-1
REPLACING NATIONAL-EDITED DATA BY NATL-3

NATL-3 NATL-EDIT-1 before NATL-EDIT-1 after

0034003500361 0031003200332 0030003400353

1. Hexadecimal representation of the national characters '456'

2. Hexadecimal representation of the national characters '123'

3. Hexadecimal representation of the national characters '045'

Initializing a numeric (zoned decimal) data item:
01 NUMERIC-1 PIC 9(8) VALUE 98765432.
01 NUM-INT-CMPT-3 PIC 9(7) COMP VALUE 1234567.
. . .

INITIALIZE NUMERIC-1
REPLACING NUMERIC DATA BY NUM-INT-CMPT-3

NUM-INT-CMPT-3 NUMERIC-1 before NUMERIC-1 after

1234567 98765432 01234567

Initializing a numeric (national decimal) data item:
01 NAT-DEC-1 PIC 9(3) USAGE NATIONAL VALUE 987.
01 NUM-INT-BIN-3 PIC 9(2) BINARY VALUE 12.
. . .

INITIALIZE NAT-DEC-1
REPLACING NUMERIC DATA BY NUM-INT-BIN-3

Chapter 2. Using data 29

NUM-INT-BIN-3 NAT-DEC-1 before NAT-DEC-1 after

12 0039003800371 0030003100322

1. Hexadecimal representation of the national characters '987'

2. Hexadecimal representation of the national characters '012'

Initializing a numeric-edited (USAGE DISPLAY) data item:
01 NUM-EDIT-DISP-1 PIC $ZZ9V VALUE "$127".
01 NUM-DISP-3 PIC 999V VALUE 12.
. . .

INITIALIZE NUM-EDIT-DISP-1
REPLACING NUMERIC-EDITED DATA BY NUM-DISP-3

NUM-DISP-3 NUM-EDIT-DISP-1 before NUM-EDIT-DISP-1 after

012 $127 $ 12

Initializing a numeric-edited (USAGE NATIONAL) data item:
01 NUM-EDIT-NATL-1 PIC $ZZ9V NATIONAL VALUE N"$127".
01 NUM-NATL-3 PIC 999V NATIONAL VALUE 12.
. . .

INITIALIZE NUM-EDIT-NATL-1
REPLACING NUMERIC-EDITED DATA BY NUM-NATL-3

NUM-NATL-3 NUM-EDIT-NATL-1 before NUM-EDIT-NATL-1 after

0030003100321 00240031003200372 00240020003100323

1. Hexadecimal representation of the national characters '012'

2. Hexadecimal representation of the national characters '$127'

3. Hexadecimal representation of the national characters '$ 12'

RELATED TASKS

“Initializing a structure (INITIALIZE)”
“Initializing a table (INITIALIZE)” on page 73
“Defining numeric data” on page 43

RELATED REFERENCES

“NSYMBOL” on page 340

Initializing a structure (INITIALIZE)
You can reset the values of all subordinate data items in a group item by applying
the INITIALIZE statement to that group item. However, it is inefficient to initialize
an entire group unless you really need all the items in the group to be initialized.

The following example shows how you can reset fields to spaces and zeros in
transaction records that a program produces. The values of the fields are not
identical in each record that is produced. (The transaction record is defined as an
alphanumeric group item, TRANSACTION-OUT.)
01 TRANSACTION-OUT.

05 TRANSACTION-CODE PIC X.
05 PART-NUMBER PIC 9(6).
05 TRANSACTION-QUANTITY PIC 9(5).
05 PRICE-FIELDS.

10 UNIT-PRICE PIC 9(5)V9(2).

30 Enterprise COBOL for z/OS, V5.2 Programming Guide

10 DISCOUNT PIC V9(2).
10 SALES-PRICE PIC 9(5)V9(2).

. . .
INITIALIZE TRANSACTION-OUT

Record TRANSACTION-OUT before TRANSACTION-OUT after

1 R001383000240000000000000000 b0000000000000000000000000001

2 R001390000480000000000000000 b0000000000000000000000000001

3 S001410000120000000000000000 b0000000000000000000000000001

4 C001383000000000425000000000 b0000000000000000000000000001

5 C002010000000000000100000000 b0000000000000000000000000001

1. The symbol b represents a blank space.

You can likewise reset the values of all the subordinate data items in a national
group item by applying the INITIALIZE statement to that group item. The
following structure is similar to the preceding structure, but instead uses Unicode
UTF-16 data:
01 TRANSACTION-OUT GROUP-USAGE NATIONAL.

05 TRANSACTION-CODE PIC N.
05 PART-NUMBER PIC 9(6).
05 TRANSACTION-QUANTITY PIC 9(5).
05 PRICE-FIELDS.

10 UNIT-PRICE PIC 9(5)V9(2).
10 DISCOUNT PIC V9(2).
10 SALES-PRICE PIC 9(5)V9(2).

. . .
INITIALIZE TRANSACTION-OUT

Regardless of the previous contents of the transaction record, after the INITIALIZE
statement above is executed:
v TRANSACTION-CODE contains NX"0020" (a national space).
v Each of the remaining 27 national character positions of TRANSACTION-OUT

contains NX"0030" (a national-decimal zero).

When you use an INITIALIZE statement to initialize an alphanumeric or national
group data item, the data item is processed as a group item, that is, with group
semantics. The elementary data items within the group are recognized and
processed, as shown in the examples above. If you do not code the REPLACING
phrase of the INITIALIZE statement:
v SPACE is the implied sending item for alphabetic, alphanumeric,

alphanumeric-edited, DBCS, category national, and national-edited receiving
items.

v ZERO is the implied sending item for numeric and numeric-edited receiving
items.

RELATED CONCEPTS

“National groups” on page 133

RELATED TASKS

“Initializing a table (INITIALIZE)” on page 73
“Using national groups” on page 134

RELATED REFERENCES

INITIALIZE statement (Enterprise COBOL Language Reference)

Chapter 2. Using data 31

Assigning values to elementary data items (MOVE)
Use a MOVE statement to assign a value to an elementary data item.

The following statement assigns the contents of an elementary data item,
Customer-Name, to the elementary data item Orig-Customer-Name:
Move Customer-Name to Orig-Customer-Name

If Customer-Name is longer than Orig-Customer-Name, truncation occurs on the right.
If Customer-Name is shorter, the extra character positions on the right in
Orig-Customer-Name are filled with spaces.

For data items that contain numbers, moves can be more complicated than with
character data items because there are several ways in which numbers can be
represented. In general, the algebraic values of numbers are moved if possible, as
opposed to the digit-by-digit moves that are performed with character data. For
example, after the MOVE statement below, Item-x contains the value 3.0, represented
as 0030:
01 Item-x Pic 999v9.
. . .

Move 3.06 to Item-x

You can move an alphabetic, alphanumeric, alphanumeric-edited, DBCS, integer, or
numeric-edited data item to a category national or national-edited data item; the
sending item is converted. You can move a national data item to a category
national or national-edited data item. If the content of a category national data
item has a numeric value, you can move that item to a numeric, numeric-edited,
external floating-point, or internal floating-point data item. You can move a
national-edited data item only to a category national data item or another
national-edited data item. Padding or truncation might occur.

For complete details about elementary moves, see the related reference below
about the MOVE statement.

The following example shows an alphanumeric data item in the Greek language
that is moved to a national data item:
CBL CODEPAGE(00875)
. . .
01 Data-in-Unicode Pic N(100) usage national.
01 Data-in-Greek Pic X(100).
. . .

Read Greek-file into Data-in-Greek
Move Data-in-Greek to Data-in-Unicode

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Assigning values to group data items (MOVE)” on page 33
“Converting to or from national (Unicode) representation” on page 137

RELATED REFERENCES

“CODEPAGE” on page 313
Classes and categories of data (Enterprise COBOL Language Reference)
MOVE statement (Enterprise COBOL Language Reference)

32 Enterprise COBOL for z/OS, V5.2 Programming Guide

Assigning values to group data items (MOVE)
Use the MOVE statement to assign values to group data items.

You can move a national group item (a data item that is described with the
GROUP-USAGE NATIONAL clause) to another national group item. The compiler
processes the move as though each national group item were an elementary item
of category national, that is, as if each item were described as PIC N(m), where m
is the length of that item in national character positions.

You can move an alphanumeric group item to an alphanumeric group item or to a
national group item. You can also move a national group item to an alphanumeric
group item. The compiler performs such moves as group moves, that is, without
consideration of the individual elementary items in the sending or receiving group,
and without conversion of the sending data item. Be sure that the subordinate data
descriptions in the sending and receiving group items are compatible. The moves
occur even if a destructive overlap could occur at run time.

You can code the CORRESPONDING phrase in a MOVE statement to move subordinate
elementary items from one group item to the identically named corresponding
subordinate elementary items in another group item:
01 Group-X.

02 T-Code Pic X Value "A".
02 Month Pic 99 Value 04.
02 State Pic XX Value "CA".
02 Filler PIC X.

01 Group-N Group-Usage National.
02 State Pic NN.
02 Month Pic 99.
02 Filler Pic N.
02 Total Pic 999.

. . .
MOVE CORR Group-X TO Group-N

In the example above, State and Month within Group-N receive the values in
national representation of State and Month, respectively, from Group-X. The other
data items in Group-N are unchanged. (Filler items in a receiving group item are
unchanged by a MOVE CORRESPONDING statement.)

In a MOVE CORRESPONDING statement, sending and receiving group items are treated
as group items, not as elementary data items; group semantics apply. That is, the
elementary data items within each group are recognized, and the results are the
same as if each pair of corresponding data items were referenced in a separate
MOVE statement. Data conversions are performed according to the rules for the MOVE
statement as specified in the related reference below. For details about which types
of elementary data items correspond, see the related reference about the
CORRESPONDING phrase.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129
“National groups” on page 133

RELATED TASKS

“Assigning values to elementary data items (MOVE)” on page 32
“Using national groups” on page 134
“Converting to or from national (Unicode) representation” on page 137

Chapter 2. Using data 33

RELATED REFERENCES

Classes and categories of group items (Enterprise COBOL Language Reference)
MOVE statement (Enterprise COBOL Language Reference)
CORRESPONDING phrase (Enterprise COBOL Language Reference)

Assigning arithmetic results (MOVE or COMPUTE)
When assigning a number to a data item, consider using the COMPUTE statement
instead of the MOVE statement.
Move w to z
Compute z = w

In the example above, the two statements in most cases have the same effect. The
MOVE statement however carries out the assignment with truncation. You can use
the DIAGTRUNC compiler option to request that the compiler issue a warning for
MOVE statements that might truncate numeric receivers.

When significant left-order digits would be lost in execution, the COMPUTE statement
can detect the condition and allow you to handle it. If you use the ON SIZE ERROR
phrase of the COMPUTE statement, the compiler generates code to detect a
size-overflow condition. If the condition occurs, the code in the ON SIZE ERROR
phrase is performed, and the content of z remains unchanged. If you do not
specify the ON SIZE ERROR phrase, the assignment is carried out with truncation.
There is no ON SIZE ERROR support for the MOVE statement.

You can also use the COMPUTE statement to assign the result of an arithmetic
expression or intrinsic function to a data item. For example:
Compute z = y + (x ** 3)
Compute x = Function Max(x y z)

You can assign the results of date, time, mathematical, and other calculations to
data items by using Language Environment callable services. Language
Environment services are available through a standard COBOL CALL statement, and
the values they return are passed in the parameters of the CALL statement. For
example, you can call the Language Environment service CEESIABS to find the
absolute value of a data item by coding the following statement:
Call ’CEESIABS’ Using Arg, Feedback-code, Result.

As a result of this call, data item Result is assigned the absolute value of the value
in data item Arg; data item Feedback-code contains the return code that indicates
whether the service completed successfully. You have to define all the data items in
the DATA DIVISION using the correct descriptions according to the requirements of
the particular callable service. For the example above, the data items could be
defined as follows:
77 Arg Pic s9(9) Binary.
77 Feedback-code Pic x(12) Display.
77 Result Pic s9(9) Binary.

RELATED REFERENCES

“DIAGTRUNC” on page 320
Intrinsic functions (Enterprise COBOL Language Reference)
Language Environment Programming Reference (Callable services)

Assigning input from a screen or file (ACCEPT)
One way to assign a value to a data item is to read the value from a screen or a
file.

34 Enterprise COBOL for z/OS, V5.2 Programming Guide

To enter data from the screen, first associate the monitor with a mnemonic-name in
the SPECIAL-NAMES paragraph. Then use ACCEPT to assign the line of input entered
at the screen to a data item. For example:
Environment Division.
Configuration Section.
Special-Names.

Console is Names-Input.
. . .

Accept Customer-Name From Names-Input

To read from a file instead of the screen, make the following change:
v Change Console to device, where device is any valid system device (for example,

SYSIN). For example:
SYSIN is Names-Input

device can be a ddname that references a z/OS UNIX file system path. If this
ddname is not defined and your program is running in the z/OS UNIX
environment, stdin is the input source. If this ddname is not defined and your
program is not running in the z/OS UNIX environment, the ACCEPT statement
fails.

When you use the ACCEPT statement, you can assign a value to an alphanumeric or
national group item, or to an elementary data item that has USAGE DISPLAY, USAGE
DISPLAY-1, or USAGE NATIONAL.

When you assign a value to a USAGE NATIONAL data item, input data from the
console is converted from the EBCDIC code page specified in the CODEPAGE
compiler option to national (Unicode UTF-16) representation. This is the only case
where conversion of national data is done when you use the ACCEPT statement.
Conversion is done in this case because the input is known to be coming from a
screen.

To have conversion done when the input data is from any other device, use the
NATIONAL-OF intrinsic function.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Converting alphanumeric or DBCS to national (NATIONAL-OF)” on page 139

RELATED REFERENCES

“CODEPAGE” on page 313
ACCEPT statement (Enterprise COBOL Language Reference)
SPECIAL-NAMES paragraph (Enterprise COBOL Language Reference)

Displaying values on a screen or in a file (DISPLAY)
You can display the value of a data item on a screen or write it to a file by using
the DISPLAY statement.
Display "No entry for surname ’" Customer-Name "’ found in the file.".

In the example above, if the content of data item Customer-Name is JOHNSON,
then the statement displays the following message on the system logical output
device:
No entry for surname ’JOHNSON’ found in the file.

Chapter 2. Using data 35

To write data to a destination other than the system logical output device, use the
UPON phrase with a destination other than SYSOUT. For example, the following
statement writes to the file that is specified in the SYSPUNCH DD statement:
Display "Hello" upon syspunch.

You can specify a file in the z/OS UNIX file system by using the SYSPUNCH DD
statement. For example, the following definition causes DISPLAY output to be
written to the file /u/userid/cobol/demo.lst:
//SYSPUNCH DD PATH=’/u/userid/cobol/demo.lst’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU,
// FILEDATA=TEXT

The following statement writes to the job log or console and to the TSO screen if
you are running under TSO:
Display "Hello" upon console.

When you display the value of a USAGE NATIONAL data item to the console, the data
item is converted from Unicode (UTF-16) representation to EBCDIC based on the
value of the CODEPAGE option. This is the only case in which conversion of national
data is done when you use the DISPLAY statement. Conversion is done in this case
because the output is known to be directed to a screen.

To have a national data item be converted when you direct output to a different
device, use the DISPLAY-OF intrinsic function, as in the following example:
01 Data-in-Unicode pic N(10) usage national.
. . .

Display function Display-of(Data-in-Unicode, 00037)

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Displaying data on the system logical output device”
“Using WITH NO ADVANCING” on page 37
“Converting national to alphanumeric (DISPLAY-OF)” on page 139
“Coding COBOL programs to run under CICS” on page 429

RELATED REFERENCES

“CODEPAGE” on page 313
DISPLAY statement (Enterprise COBOL Language Reference)

Displaying data on the system logical output device
To write data to the system logical output device, either omit the UPON clause or
use the UPON clause with destination SYSOUT.
Display "Hello" upon sysout.

The output is directed to the ddname that you specify in the OUTDD compiler
option. You can specify a file in the z/OS UNIX file system with this ddname.

If the OUTDD ddname is not allocated and you are not running in the z/OS UNIX
environment, a default DD of SYSOUT=* is allocated. If the OUTDD ddname is not
allocated and you are running in the z/OS UNIX environment, the _IGZ_SYSOUT
environment variable is used as follows:

Undefined or set to stdout
Output is routed to stdout (file descriptor 1).

36 Enterprise COBOL for z/OS, V5.2 Programming Guide

Set to stderr
Output is routed to stderr (file descriptor 2).

Otherwise (set to something other than stdout or stderr)
The DISPLAY statement fails; a severity-3 Language Environment condition
is raised.

When DISPLAY output is routed to stdout or stderr, the output is not subdivided
into records. The output is written as a single stream of characters without line
breaks.

If OUTDD and the Language Environment runtime option MSGFILE specify the same
ddname, both DISPLAY output and Language Environment runtime diagnostics are
routed to the Language Environment message file.

RELATED TASKS

“Setting and accessing environment variables” on page 464

RELATED REFERENCES

“OUTDD” on page 348
DISPLAY statement (Enterprise COBOL Language Reference)

Using WITH NO ADVANCING
If you specify the WITH NO ADVANCING phrase, and output is going to a ddname, the
printer control character + (plus) is placed into the first output position from the
next DISPLAY statement. + is the ANSI-defined printer control character that
suppresses line spacing before a record is printed.

If you specify the WITH NO ADVANCING phrase and the output is going to stdout or
stderr, a newline character is not appended to the end of the stream. A subsequent
DISPLAY statement might add additional characters to the end of the stream.

If you do not specify WITH NO ADVANCING, and the output is going to a ddname, the
printer control character ' ' (space) is placed into the first output position from the
next DISPLAY statement, indicating single-spaced output.
DISPLAY "ABC"
DISPLAY "CDEF" WITH NO ADVANCING
DISPLAY "GHIJK" WITH NO ADVANCING
DISPLAY "LMNOPQ"
DISPLAY "RSTUVWX"

If you code the statements above, the result sent to the output device is:
ABC
CDEF
+GHIJK
+LMNOPQ
RSTUVMX

The output that is printed depends on how the output device interprets printer
control characters.

If you do not specify the WITH NO ADVANCING phrase and the output is going to
stdout or stderr, a newline character is appended to the end of the stream.

RELATED REFERENCES

DISPLAY statement (Enterprise COBOL Language Reference)

Chapter 2. Using data 37

Using intrinsic functions (built-in functions)
Some high-level programming languages have built-in functions that you can
reference in your program as if they were variables that have defined attributes
and a predetermined value. In COBOL, these functions are called intrinsic functions.
They provide capabilities for manipulating strings and numbers.

Because the value of an intrinsic function is derived automatically at the time of
reference, you do not need to define functions in the DATA DIVISION. Define only
the nonliteral data items that you use as arguments. Figurative constants are not
allowed as arguments.

A function-identifier is the combination of the COBOL reserved word FUNCTION
followed by a function name (such as Max), followed by any arguments to be used
in the evaluation of the function (such as x, y, z). For example, the groups of
highlighted words below are function-identifiers:
Unstring Function Upper-case(Name) Delimited By Space

Into Fname Lname
Compute A = 1 + Function Log10(x)
Compute M = Function Max(x y z)

A function-identifier represents both the invocation of the function and the data
value returned by the function. Because it actually represents a data item, you can
use a function-identifier in most places in the PROCEDURE DIVISION where a data
item that has the attributes of the returned value can be used.

The COBOL word function is a reserved word, but the function-names are not
reserved. You can use them in other contexts, such as for the name of a data item.
For example, you could use Sqrt to invoke an intrinsic function and to name a
data item in your program:
Working-Storage Section.
01 x Pic 99 value 2.
01 y Pic 99 value 4.
01 z Pic 99 value 0.
01 Sqrt Pic 99 value 0.
. . .

Compute Sqrt = 16 ** .5
Compute z = x + Function Sqrt(y)
. . .

A function-identifier represents a value that is of one of these types: alphanumeric,
national, numeric, or integer. You can include a substring specification (reference
modifier) in a function-identifier for alphanumeric or national functions. Numeric
intrinsic functions are further classified according to the type of numbers they
return.

The functions MAX and MIN can return either type of value depending on the type of
arguments you supply.

Functions can reference other functions as arguments provided that the results of
the nested functions meet the requirements for the arguments of the outer function.
For example, Function Sqrt(5) returns a numeric value. Thus, the three arguments
to the MAX function below are all numeric, which is an allowable argument type for
this function:
Compute x = Function Max((Function Sqrt(5)) 2.5 3.5)

38 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Processing table items using intrinsic functions” on page 89
“Converting data items (intrinsic functions)” on page 116
“Evaluating data items (intrinsic functions)” on page 119

Using tables (arrays) and pointers
In COBOL, arrays are called tables. A table is a set of logically consecutive data
items that you define in the DATA DIVISION by using the OCCURS clause.

Pointers are data items that contain virtual storage addresses. You define them
either explicitly with the USAGE IS POINTER clause in the DATA DIVISION or
implicitly as ADDRESS OF special registers.

You can perform the following operations with pointer data items:
v Pass them between programs by using the CALL . . . BY REFERENCE statement.
v Move them to other pointers by using the SET statement.
v Compare them to other pointers for equality by using a relation condition.
v Initialize them to contain an invalid address by using VALUE IS NULL.

Use pointer data items to:
v Accomplish limited base addressing, particularly if you want to pass and receive

addresses of a record area that is defined with OCCURS DEPENDING ON and is
therefore variably located.

v Handle a chained list.

RELATED TASKS

“Defining a table (OCCURS)” on page 67
“Using procedure and function pointers” on page 487

Storage and its addressability
When you run COBOL programs, the programs and the data that they use reside
in virtual storage. Storage that you use with COBOL can be either below the 16
MB line or above the 16 MB line but below the 2 GB bar. Two modes of addressing
are available to address this storage: 24-bit and 31-bit.

You can address storage below (but not above) the 16 MB line with 24-bit
addressing. You can address storage either above or below the 16 MB line with
31-bit addressing. Unrestricted storage is addressable by 31-bit addressing and
therefore encompasses all the storage available to your program, both above and
below the 16 MB line.

Enterprise COBOL does not directly exploit the 64-bit virtual addressing capability
of z/OS; however, COBOL applications running in 31-bit or 24-bit addressing
mode are fully supported on 64-bit z/OS systems.

Addressing mode (AMODE) is the attribute that tells which hardware addressing mode
is supported by your program: 24-bit addressing, 31-bit addressing, or either 24-bit
or 31-bit addressing. These attributes are AMODE 24, AMODE 31, and AMODE ANY,
respectively. The program object and the executing program each have an AMODE
attribute. Enterprise COBOL V5.1.1 object programs are either AMODE MIN for
cases where AMODE 24 is possible, or AMODE 31 in all other cases. See
“Restrictions for AMODE” on page 40.

Chapter 2. Using data 39

Residency mode (RMODE) is the attribute of a program object that identifies where in
virtual storage the program will reside: below the 16 MB line, or either below or
above. This attribute is RMODE 24 or RMODE ANY.

Enterprise COBOL uses Language Environment services to control the storage used
at run time. Thus COBOL compiler options and Language Environment runtime
options influence the AMODE and RMODE attributes of your program and data, alone
and in combination:

DATA Compiler option that influences the location of storage for WORKING-STORAGE
data, I-O buffers, and parameter lists for programs compiled with RENT.

RMODE Compiler option that influences the residency mode.

RENT Compiler option to generate a reentrant program.

HEAP Runtime option that controls storage for the runtime heap. For example,
COBOL WORKING-STORAGE is allocated from heap storage when the COBOL
program is compiled with the RENT option and is in one of the following
cases:
v Compiled with Enterprise COBOL V4.2 or earlier releases
v Compiled with the DATA(24) compiler option
v Running in CICS
v A COBOL V5.1.1 in a program object that contains only COBOL

programs (V5.1.1, V4.2 or earlier) and assembly programs. There are no
Language Environment interlanguage calls within the program object
and no COBOL V5.1.0 programs.

v A COBOL V5 program in a program object where the main entry point
is COBOL V5. In this case, the program object can contain Language
Environment interlanguage calls, with COBOL statically linking with C,
C++ or PL/I. All COBOL V5 programs within such program objects
(even if they are not the main entry point) have their WORKING-STORAGE
allocated from heap storage.

STACK Runtime option that controls storage for the runtime stack. For example,
COBOL LOCAL-STORAGE is allocated from stack storage.

ALL31 Runtime option that specifies whether an application can run entirely in
AMODE 31.

Restrictions for AMODE
AMODE 24 execution is not supported in the following cases, and the applications
must run in AMODE 31:
v Programs containing XML PARSE statements
v Programs containing XML GENERATE statements
v Program objects containing COBOL bound together with C, C++, or PL/I

programs, and communicating via static CALL
v Programs containing object-oriented language syntax, such as INVOKE statements,

or object-oriented class definitions
v Programs compiled with any of the following compiler options:

– DLL

– PGMNAME(LONGUPPER)

– PGMNAME(LONGMIXED)

v Multithreaded applications

40 Enterprise COBOL for z/OS, V5.2 Programming Guide

Note: A program compiled with the THREAD option can run in AMODE 24, but only
in an application that does not have multiple threads or PL/I tasks.

v Programs run from the z/OS UNIX file system

Note: An AMODE 31 driver program resident in the z/OS UNIX file system can
contain a dynamic call to an AMODE 24 program module resident in an MVS PDS
or PDSE.

v Programs used as COBOL compiler exit modules that are specified on the EXIT
compiler option

v Language Environment enclaves that use XPLINK, including either the enclaves
that contain non-COBOL programs compiled with the XPLINK compiler option, or
run with the XPLINK runtime option

Note: To run COBOL programs with addressing mode 24, you must compile all
COBOL programs with Enterprise COBOL V5.1.1, or later versions; or Enterprise
COBOL V4.2 or earlier versions. If any component of a program object is compiled
with Enterprise COBOL V5.1.0, the program object must run in addressing mode
31. COBOL programs that run with addressing mode 24 must be linked with the
binder option RMODE(24).

Settings for RMODE
The RMODE and RENT options determine the RMODE attribute of your program.

Table 4. Effect of RMODE and RENT compiler options on the RMODE attribute

RMODE compiler option RENT compiler option RMODE attribute

RMODE(AUTO) RENT RMODE ANY

RMODE(AUTO) NORENT RMODE 24

RMODE(24) RENT or NORENT RMODE 24

RMODE(ANY) RENT RMODE ANY

RMODE(ANY) NORENT Compiler option conflict.

If the NORENT option is
specified, the RMODE(24)
or RMODE(AUTO) compiler
option must be specified.

Link-edit considerations: When the object code that COBOL generates has an
attribute of RMODE 24, you must link-edit it with RMODE 24. When the object code
that COBOL generates has an attribute of RMODE ANY, you can link-edit it with
RMODE ANY or RMODE 24.

Storage restrictions for passing data
Do not pass parameters that are allocated in storage above the 16 MB line to AMODE
24 subprograms. Force the WORKING-STORAGE data and parameter lists below the line
for programs that run in 31-bit addressing mode and pass data to programs that
run in AMODE 24:
v Compile with the RENT and DATA(24) compiler options, or if the WORKING-STORAGE

is on the HEAP (see previous description of the HEAP option), run them with the
HEAP(,,BELOW) runtime option.

v Compile with the NORENT compiler option.

Chapter 2. Using data 41

Location of data areas
For reentrant programs, the DATA compiler option, and the HEAP runtime option
control whether storage for data areas such as WORKING-STORAGE SECTION and FD
record areas is obtained from below the 16 MB line or from unrestricted storage.
Compile programs with RENT and RMODE(ANY) or RMODE(AUTO) if they will be run
with 31-bit addressing in virtual storage addresses above the 16 MB line. The DATA
option does not affect programs that are compiled with NORENT.

Storage for LOCAL-STORAGE data
The location of LOCAL-STORAGE data items is controlled by the STACK runtime option
and the AMODE of the program. LOCAL-STORAGE data items are acquired in
unrestricted storage when the STACK(,,ANYWHERE) runtime option is in effect and
the program is running in AMODE 31. Otherwise LOCAL-STORAGE is acquired below
the 16 MB line. The DATA compiler option does not influence the location of
LOCAL-STORAGE data.

Storage for external data
In addition to affecting how storage is obtained for dynamic data areas
(WORKING-STORAGE, FD record areas, and parameter lists), the DATA compiler option
can also influence where storage for EXTERNAL data is obtained. Storage required for
EXTERNAL data is obtained from unrestricted storage if the following conditions are
met:
v The program is compiled with the DATA(31) and RENT compiler options.
v The HEAP(,,ANYWHERE) runtime option is in effect.
v The ALL31(ON) runtime option is in effect.

In all other cases, the storage for EXTERNAL data is obtained from below the 16 MB
line. If you specify the ALL31(ON) runtime option, all the programs in the run unit
must be capable of running in 31-bit addressing mode.

Storage for QSAM input-output buffers
The DATA compiler option can also influence where input-output buffers for QSAM
files are obtained. See the related references below for information about allocation
of buffers for QSAM files and the DATA compiler option.

RELATED CONCEPTS

“AMODE switching” on page 479
Language Environment Programming Guide (AMODE considerations for heap
storage)

RELATED TASKS

Chapter 24, “Using subprograms,” on page 473
Chapter 25, “Sharing data,” on page 491

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 181
“Allocation of record areas for VSAM files” on page 209
“DATA” on page 318
“RENT” on page 352
“RMODE” on page 353
“Performance-related compiler options” on page 669
Language Environment Programming Reference (HEAP, STACK, ALL31)
MVS Program Management: User's Guide and Reference

42 Enterprise COBOL for z/OS, V5.2 Programming Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

Chapter 3. Working with numbers and arithmetic

In general, you can view COBOL numeric data as a series of decimal digit
positions. However, numeric items can also have special properties such as an
arithmetic sign or a currency sign.

To define, display, and store numeric data so that you can perform arithmetic
operations efficiently:
v Use the PICTURE clause and the characters 9, +, -, P, S, and V to define numeric

data.
v Use the PICTURE clause and editing characters (such as Z, comma, and period)

along with MOVE and DISPLAY statements to display numeric data.
v Use the USAGE clause with various formats to control how numeric data is stored.
v Use the numeric class test to validate that data values are appropriate.
v Use ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE statements to perform

arithmetic.
v Use the CURRENCY SIGN clause and appropriate PICTURE characters to designate

the currency you want.

RELATED TASKS

“Defining numeric data”
“Displaying numeric data” on page 45
“Controlling how numeric data is stored” on page 46
“Checking for incompatible data (numeric class test)” on page 54
“Performing arithmetic” on page 56
“Using currency signs” on page 65

Defining numeric data
Define numeric items by using the PICTURE clause with the character 9 in the data
description to represent the decimal digits of the number. Do not use an X, which
is for alphanumeric data items.

For example, Count-y below is a numeric data item, an external decimal item that
has USAGE DISPLAY (a zoned decimal item):
05 Count-y Pic 9(4) Value 25.
05 Customer-name Pic X(20) Value "Johnson".

You can similarly define numeric data items to hold national characters (UTF-16).
For example, Count-n below is an external decimal data item that has USAGE
NATIONAL (a national decimal item):
05 Count-n Pic 9(4) Value 25 Usage National.

You can code up to 18 digits in the PICTURE clause when you compile using the
default compiler option ARITH(COMPAT) (referred to as compatibility mode). When
you compile using ARITH(EXTEND) (referred to as extended mode), you can code up
to 31 digits in the PICTURE clause.

Other characters of special significance that you can code are:

P Indicates leading or trailing zeros

© Copyright IBM Corp. 1991, 2018 43

S Indicates a sign, positive or negative

V Implies a decimal point

The s in the following example means that the value is signed:
05 Price Pic s99v99.

The field can therefore hold a positive or a negative value. The v indicates the
position of an implied decimal point, but does not contribute to the size of the
item because it does not require a storage position. An s usually does not
contribute to the size of a numeric item, because by default s does not require a
storage position.

However, if you plan to port your program or data to a different machine, you
might want to code the sign for a zoned decimal data item as a separate position
in storage. In the following case, the sign takes 1 byte:
05 Price Pic s99V99 Sign Is Leading, Separate.

This coding ensures that the convention your machine uses for storing a
nonseparate sign will not cause unexpected results on a machine that uses a
different convention.

Separate signs are also preferable for zoned decimal data items that will be printed
or displayed.

Separate signs are required for national decimal data items that are signed. The
sign takes 2 bytes of storage, as in the following example:
05 Price Pic s99V99 Usage National Sign Is Leading, Separate.

You cannot use the PICTURE clause with internal floating-point data (COMP-1 or
COMP-2). However, you can use the VALUE clause to provide an initial value for an
internal floating-point literal:
05 Compute-result Usage Comp-2 Value 06.23E-24.

For information about external floating-point data, see the examples referenced
below and the related concept about formats for numeric data.

“Examples: numeric data and internal representation” on page 51

RELATED CONCEPTS

“Formats for numeric data” on page 47
Appendix A, “Intermediate results and arithmetic precision,” on page 685

RELATED TASKS

“Displaying numeric data” on page 45
“Controlling how numeric data is stored” on page 46
“Performing arithmetic” on page 56
“Defining national numeric data items” on page 133

RELATED REFERENCES

“Sign representation of zoned and packed-decimal data” on page 53
“Storage of character data” on page 137
“ARITH” on page 309
“NUMPROC” on page 343
SIGN clause (Enterprise COBOL Language Reference)

44 Enterprise COBOL for z/OS, V5.2 Programming Guide

Displaying numeric data
You can define numeric items with certain editing symbols (such as decimal points,
commas, dollar signs, and debit or credit signs) to make the items easier to read
and understand when you display or print them.

For example, in the code below, Edited-price is a numeric-edited item that has
USAGE DISPLAY. (You can specify the clause USAGE IS DISPLAY for numeric-edited
items; however, it is implied. It means that the items are stored in character
format.)
05 Price Pic 9(5)v99.
05 Edited-price Pic $zz,zz9.99.
. . .
Move Price To Edited-price
Display Edited-price

If the contents of Price are 0150099 (representing the value 1,500.99), $ 1,500.99 is
displayed when you run the code. The z in the PICTURE clause of Edited-price
indicates the suppression of leading zeros.

You can define numeric-edited data items to hold national (UTF-16) characters
instead of alphanumeric characters. To do so, define the numeric-edited items as
USAGE NATIONAL. The effect of the editing symbols is the same for numeric-edited
items that have USAGE NATIONAL as it is for numeric-edited items that have USAGE
DISPLAY, except that the editing is done with national characters. For example, if
Edited-price is declared as USAGE NATIONAL in the code above, the item is edited
and displayed using national characters.

To display numeric or numeric-edited data items that have USAGE NATIONAL in
EBCDIC, direct them to CONSOLE. For example, if Edited-price in the code above
has USAGE NATIONAL, $ 1,500.99 is displayed when you run the program if the last
statement above is:
Display Edited-price Upon Console

You can cause an elementary numeric or numeric-edited item to be filled with
spaces when a value of zero is stored into it by coding the BLANK WHEN ZERO clause
for the item. For example, each of the DISPLAY statements below causes blanks to
be displayed instead of zeros:
05 Price Pic 9(5)v99.
05 Edited-price-D Pic $99,999.99

Blank When Zero.
05 Edited-price-N Pic $99,999.99 Usage National

Blank When Zero.
. . .
Move 0 to Price
Move Price to Edited-price-D
Move Price to Edited-price-N
Display Edited-price-D
Display Edited-price-N upon console

You cannot use numeric-edited items as sending operands in arithmetic
expressions or in ADD, SUBTRACT, MULTIPLY, DIVIDE, or COMPUTE statements. (Numeric
editing takes place when a numeric-edited item is the receiving field for one of
these statements, or when a MOVE statement has a numeric-edited receiving field
and a numeric-edited or numeric sending field.) You use numeric-edited items
primarily for displaying or printing numeric data.

Chapter 3. Working with numbers and arithmetic 45

You can move numeric-edited items to numeric or numeric-edited items. In the
following example, the value of the numeric-edited item (whether it has USAGE
DISPLAY or USAGE NATIONAL) is moved to the numeric item:
Move Edited-price to Price
Display Price

If these two statements immediately followed the statements in the first example
above, then Price would be displayed as 0150099, representing the value 1,500.99.
Price would also be displayed as 0150099 if Edited-price had USAGE NATIONAL.

You can also move numeric-edited items to alphanumeric, alphanumeric-edited,
floating-point, and national data items. For a complete list of the valid receiving
items for numeric-edited data, see the related reference about the MOVE statement.

“Examples: numeric data and internal representation” on page 51

RELATED TASKS

“Displaying values on a screen or in a file (DISPLAY)” on page 35
“Controlling how numeric data is stored”
“Defining numeric data” on page 43
“Performing arithmetic” on page 56
“Defining national numeric data items” on page 133
“Converting to or from national (Unicode) representation” on page 137

RELATED REFERENCES

MOVE statement (Enterprise COBOL Language Reference)
BLANK WHEN ZERO clause (Enterprise COBOL Language Reference)

Controlling how numeric data is stored
You can control how the computer stores numeric data items by coding the USAGE
clause in your data description entries.

You might want to control the format for any of several reasons such as these:
v Arithmetic performed with computational data types is more efficient than with

USAGE DISPLAY or USAGE NATIONAL data types.
v Packed-decimal format requires less storage per digit than USAGE DISPLAY or

USAGE NATIONAL data types.
v Packed-decimal format converts to and from DISPLAY or NATIONAL format more

efficiently than binary format does.
v Floating-point format is well suited for arithmetic operands and results with

widely varying scale, while maintaining the maximal number of significant
digits.

v You might need to preserve data formats when you move data from one
machine to another.

The numeric data you use in your program will have one of the following formats
available with COBOL:
v External decimal (USAGE DISPLAY or USAGE NATIONAL)
v External floating point (USAGE DISPLAY or USAGE NATIONAL)
v Internal decimal (USAGE PACKED-DECIMAL)
v Binary (USAGE BINARY)
v Native binary (USAGE COMP-5)

46 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Internal floating point (USAGE COMP-1 or USAGE COMP-2)

COMP and COMP-4 are synonymous with BINARY, and COMP-3 is synonymous with
PACKED-DECIMAL.

The compiler converts displayable numbers to the internal representation of their
numeric values before using them in arithmetic operations. Therefore it is often
more efficient if you define data items as BINARY or PACKED-DECIMAL than as
DISPLAY or NATIONAL. For example:
05 Initial-count Pic S9(4) Usage Binary Value 1000.

Regardless of which USAGE clause you use to control the internal representation of a
value, you use the same PICTURE clause conventions and decimal value in the
VALUE clause (except for internal floating-point data, for which you cannot use a
PICTURE clause).

“Examples: numeric data and internal representation” on page 51

RELATED CONCEPTS

“Formats for numeric data”
“Data format conversions” on page 52
Appendix A, “Intermediate results and arithmetic precision,” on page 685

RELATED TASKS

“Defining numeric data” on page 43
“Displaying numeric data” on page 45
“Performing arithmetic” on page 56

RELATED REFERENCES

“Conversions and precision” on page 52
“Sign representation of zoned and packed-decimal data” on page 53

Formats for numeric data
Several formats are available for numeric data.

External decimal (DISPLAY and NATIONAL) items
When USAGE DISPLAY is in effect for a category numeric data item (either because
you have coded it, or by default), each position (byte) of storage contains one
decimal digit. The items are stored in displayable form. External decimal items that
have USAGE DISPLAY are referred to as zoned decimal data items.

When USAGE NATIONAL is in effect for a category numeric data item, 2 bytes of
storage are required for each decimal digit. The items are stored in UTF-16 format.
External decimal items that have USAGE NATIONAL must only contain valid
UTF-16 digits. If they do not, the data is illegal and the behaviour of the generated
code is undefined. External decimal items that have USAGE NATIONAL are referred to
as national decimal data items.

National decimal data items, if signed, must have the SIGN SEPARATE clause in
effect. All other rules for zoned decimal items apply to national decimal items. You
can use national decimal items anywhere that other category numeric data items
can be used.

Chapter 3. Working with numbers and arithmetic 47

|
|
|

External decimal (both zoned decimal and national decimal) data items are
primarily intended for receiving and sending numbers between your program and
files, terminals, or printers. You can also use external decimal items as operands
and receivers in arithmetic processing. However, if your program performs a lot of
intensive arithmetic, and efficiency is a high priority, COBOL's computational
numeric types might be a better choice for the data items used in the arithmetic.

External floating-point (DISPLAY and NATIONAL) items
When USAGE DISPLAY is in effect for a floating-point data item (either because you
have coded it, or by default), each PICTURE character position (except for v, an
implied decimal point, if used) takes 1 byte of storage. The items are stored in
displayable form. External floating-point items that have USAGE DISPLAY are
referred to as display floating-point data items in this information when necessary to
distinguish them from external floating-point items that have USAGE NATIONAL.

In the following example, Compute-Result is implicitly defined as a display
floating-point item:
05 Compute-Result Pic -9v9(9)E-99.

The minus signs (-) do not mean that the mantissa and exponent must necessarily
be negative numbers. Instead, they mean that when the number is displayed, the
sign appears as a blank for positive numbers or a minus sign for negative
numbers. If you instead code a plus sign (+), the sign appears as a plus sign for
positive numbers or a minus sign for negative numbers.

When USAGE NATIONAL is in effect for a floating-point data item, each PICTURE
character position (except for v, if used) takes 2 bytes of storage. The items are
stored as national characters (UTF-16). External floating-point items that have
USAGE NATIONAL are referred to as national floating-point data items.

The existing rules for display floating-point items apply to national floating-point
items.

In the following example, Compute-Result-N is a national floating-point item:
05 Compute-Result-N Pic -9v9(9)E-99 Usage National.

If Compute-Result-N is displayed, the signs appear as described above for
Compute-Result, but in national characters. To instead display Compute-Result-N in
EBCDIC characters, direct it to the console:
Display Compute-Result-N Upon Console

You cannot use the VALUE clause for external floating-point items.

As with external decimal numbers, external floating-point numbers have to be
converted (by the compiler) to an internal representation of their numeric value
before they can be used in arithmetic operations. If you compile with the default
option ARITH (COMPAT), external floating-point numbers are converted to long
(64-bit) floating-point format. If you compile with ARITH (EXTEND), they are instead
converted to extended-precision (128-bit) floating-point format.

Binary (COMP) items
BINARY, COMP, and COMP-4 are synonyms. Binary-format numbers occupy 2, 4, or 8
bytes of storage. If the PICTURE clause specifies that an item is signed, the leftmost
bit is used as the operational sign.

48 Enterprise COBOL for z/OS, V5.2 Programming Guide

A binary number with a PICTURE description of four or fewer decimal digits
occupies 2 bytes; five to nine decimal digits, 4 bytes; and 10 to 18 decimal digits, 8
bytes. Binary items with nine or more digits require more handling by the
compiler. Testing them for the SIZE ERROR condition and rounding is more
cumbersome than with other types.

You can use binary items, for example, for indexes, subscripts, switches, and
arithmetic operands or results.

Use the TRUNC(STD|OPT|BIN) compiler option to indicate how binary data (BINARY,
COMP, or COMP-4) is to be truncated.

Native binary (COMP-5) items
Data items that you define as USAGE COMP-5 are represented in storage as binary
data. However, unlike USAGE COMP items, they can contain values of magnitude up
to the capacity of the native binary representation (2, 4, or 8 bytes) rather than
being limited to the value implied by the number of 9s in the PICTURE clause.

When you move or store numeric data into a COMP-5 item, truncation occurs at the
binary field size rather than at the COBOL PICTURE size limit. When you reference
a COMP-5 item, the full binary field size is used in the operation.

COMP-5 is thus particularly useful for binary data items that originate in
non-COBOL programs where the data might not conform to a COBOL PICTURE
clause.

The table below shows the ranges of possible values for COMP-5 data items.

Table 5. Ranges in value of COMP-5 data items

PICTURE Storage representation Numeric values

S9(1) through S9(4) Binary halfword (2 bytes) -32768 through +32767

S9(5) through S9(9) Binary fullword (4 bytes) -2,147,483,648 through +2,147,483,647

S9(10) through
S9(18)

Binary doubleword (8
bytes)

-9,223,372,036,854,775,808 through
+9,223,372,036,854,775,807

9(1) through 9(4) Binary halfword (2 bytes) 0 through 65535

9(5) through 9(9) Binary fullword (4 bytes) 0 through 4,294,967,295

9(10) through 9(18) Binary doubleword (8
bytes)

0 through 18,446,744,073,709,551,615

You can specify scaling (that is, decimal positions or implied integer positions) in
the PICTURE clause of COMP-5 items. If you do so, you must appropriately scale the
maximal capacities listed above. For example, a data item you describe as PICTURE
S99V99 COMP-5 is represented in storage as a binary halfword, and supports a range
of values from -327.68 through +327.67.

Large literals in VALUE clauses: Literals specified in VALUE clauses for COMP-5 items
can, with a few exceptions, contain values of magnitude up to the capacity of the
native binary representation. See Enterprise COBOL Language Reference for the
exceptions.

Regardless of the setting of the TRUNC compiler option, COMP-5 data items behave
like binary data does in programs compiled with TRUNC(BIN).

Chapter 3. Working with numbers and arithmetic 49

Packed-decimal (COMP-3) items
PACKED-DECIMAL and COMP-3 are synonyms. Packed-decimal items occupy 1 byte of
storage for every two decimal digits you code in the PICTURE description, except
that the rightmost byte contains only one digit and the sign. This format is most
efficient when you code an odd number of digits in the PICTURE description, so
that the leftmost byte is fully used. Packed-decimal items are handled as
fixed-point numbers for arithmetic purposes.

Internal floating-point (COMP-1 and COMP-2) items
COMP-1 refers to short floating-point format and COMP-2 refers to long floating-point
format, which occupy 4 and 8 bytes of storage, respectively. The leftmost bit
contains the sign and the next 7 bits contain the exponent; the remaining 3 or 7
bytes contain the mantissa.

COMP-1 and COMP-2 data items are stored in System z® hexadecimal format.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129
Appendix A, “Intermediate results and arithmetic precision,” on page 685

RELATED TASKS

“Defining numeric data” on page 43
“Defining national numeric data items” on page 133

RELATED REFERENCES

“Storage of character data” on page 137
“TRUNC” on page 368
Classes and categories of data (Enterprise COBOL Language Reference)
SIGN clause (Enterprise COBOL Language Reference)
VALUE clause (Enterprise COBOL Language Reference)

50 Enterprise COBOL for z/OS, V5.2 Programming Guide

Examples: numeric data and internal representation
The following table shows the internal representation of numeric items.

Table 6. Internal representation of numeric items

Numeric type
PICTURE and USAGE and
optional SIGN clause Value Internal representation

External decimal PIC S9999 DISPLAY + 1234 F1 F2 F3 C4

- 1234 F1 F2 F3 D4

 1234 F1 F2 F3 C4

PIC 9999 DISPLAY 1234 F1 F2 F3 F4

PIC 9999 NATIONAL 1234 00 31 00 32 00 33 00 34

PIC S9999 DISPLAY
SIGN LEADING

+ 1234 C1 F2 F3 F4

- 1234 D1 F2 F3 F4

PIC S9999 DISPLAY
SIGN LEADING SEPARATE

+ 1234 4E F1 F2 F3 F4

- 1234 60 F1 F2 F3 F4

PIC S9999 DISPLAY
SIGN TRAILING SEPARATE

+ 1234 F1 F2 F3 F4 4E

- 1234 F1 F2 F3 F4 60

PIC S9999 NATIONAL
SIGN LEADING SEPARATE

+ 1234 00 2B 00 31 00 32 00 33 00 34

- 1234 00 2D 00 31 00 32 00 33 00 34

PIC S9999 NATIONAL
SIGN TRAILING SEPARATE

+ 1234 00 31 00 32 00 33 00 34 00 2B

- 1234 00 31 00 32 00 33 00 34 00 2D

Binary PIC S9999 BINARY
PIC S9999 COMP
PIC S9999 COMP-4

+ 1234 04 D2

- 1234 FB 2E

PIC S9999 COMP-5 + 123451 30 39

- 123451 CF C7

PIC 9999 BINARY
PIC 9999 COMP
PIC 9999 COMP-4

1234 04 D2

PIC 9999 COMP-5 600001 EA 60

Internal decimal PIC S9999 PACKED-DECIMAL
PIC S9999 COMP-3

+ 1234 01 23 4C

- 1234 01 23 4D

PIC 9999 PACKED-DECIMAL
PIC 9999 COMP-3

1234 01 23 4F

Internal floating
point

COMP-1 + 1234 43 4D 20 00

- 1234 C3 4D 20 00

COMP-2 + 1234 43 4D 20 00 00 00 00 00

- 1234 C3 4D 20 00 00 00 00 00

External floating
point

PIC +9(2).9(2)E+99 DISPLAY + 12.34E+02 4E F1 F2 4B F3 F4 C5 4E F0 F2

- 12.34E+02 60 F1 F2 4B F3 F4 C5 4E F0 F2

PIC +9(2).9(2)E+99 NATIONAL + 12.34E+02 00 2B 00 31 00 32 00 2E 00 33
00 34 00 45 00 2B 00 30 00 32

- 12.34E+02 00 2D 00 31 00 32 00 2E 00 33
00 34 00 45 00 2B 00 30 00 32

Chapter 3. Working with numbers and arithmetic 51

Table 6. Internal representation of numeric items (continued)

Numeric type
PICTURE and USAGE and
optional SIGN clause Value Internal representation

1. The example demonstrates that COMP-5 data items can contain values of magnitude up to the capacity of the
native binary representation (2, 4, or 8 bytes), rather than being limited to the value implied by the number of 9s
in the PICTURE clause.

Data format conversions
When the code in your program involves the interaction of items that have
different data formats, the compiler converts those items either temporarily, for
comparisons and arithmetic operations, or permanently, for assignment to the
receiver in a MOVE or COMPUTE statement.

A conversion is actually a move of a value from one data item to another. The
compiler performs any conversions that are required during the execution of
arithmetic or comparisons by using the same rules that are used for MOVE and
COMPUTE statements.

When possible, the compiler performs a move to preserve numeric value instead of
a direct digit-for-digit move.

Conversion generally requires additional storage and processing time because data
is moved to an internal work area and converted before the operation is
performed. The results might also have to be moved back into a work area and
converted again.

Conversions between fixed-point data formats (external decimal, packed decimal,
or binary) are without loss of precision provided that the target field can contain
all the digits of the source operand.

A loss of precision is possible in conversions between fixed-point data formats and
floating-point data formats (short floating point, long floating point, or external
floating point). These conversions happen during arithmetic evaluations that have
a mixture of both fixed-point and floating-point operands.

RELATED REFERENCES

“Conversions and precision”
“Sign representation of zoned and packed-decimal data” on page 53

Conversions and precision
In some numeric conversions, a loss of precision is possible; other conversions
preserve precision or result in rounding.

Because both fixed-point and external floating-point items have decimal
characteristics, references to fixed-point items in the following examples include
external floating-point items unless stated otherwise.

When the compiler converts from fixed-point to internal floating-point format,
fixed-point numbers in base 10 are converted to the numbering system used
internally.

When the compiler converts short form to long form for comparisons, zeros are
used for padding the shorter number.

52 Enterprise COBOL for z/OS, V5.2 Programming Guide

Conversions that lose precision
When a USAGE COMP-1 data item is moved to a fixed-point data item that has more
than nine digits, the fixed-point data item will receive only nine significant digits,
and the remaining digits will be zero.

When a USAGE COMP-2 data item is moved to a fixed-point data item that has more
than 18 digits, the fixed-point data item will receive only 18 significant digits, and
the remaining digits will be zero.

Conversions that preserve precision
If a fixed-point data item that has six or fewer digits is moved to a USAGE COMP-1
data item and then returned to the fixed-point data item, the original value is
recovered.

If a USAGE COMP-1 data item is moved to a fixed-point data item of nine or more
digits and then returned to the USAGE COMP-1 data item, the original value is
recovered.

If a fixed-point data item that has 15 or fewer digits is moved to a USAGE COMP-2
data item and then returned to the fixed-point data item, the original value is
recovered.

If a USAGE COMP-2 data item is moved to a fixed-point (not external floating-point)
data item of 18 or more digits and then returned to the USAGE COMP-2 data item,
the original value is recovered.

Conversions that result in rounding
If a USAGE COMP-1 data item, a USAGE COMP-2 data item, an external floating-point
data item, or a floating-point literal is moved to a fixed-point data item, rounding
occurs in the low-order position of the target data item.

If a USAGE COMP-2 data item is moved to a USAGE COMP-1 data item, rounding occurs
in the low-order position of the target data item.

If a fixed-point data item is moved to an external floating-point data item and the
PICTURE of the fixed-point data item contains more digit positions than the PICTURE
of the external floating-point data item, rounding occurs in the low-order position
of the target data item.

RELATED CONCEPTS

Appendix A, “Intermediate results and arithmetic precision,” on page 685

Sign representation of zoned and packed-decimal data
Sign representation affects the processing and interaction of zoned decimal and
internal decimal data.

Given X’sd’, where s is the sign representation and d represents the digit, the valid
sign representations for zoned decimal (USAGE DISPLAY) data without the SIGN IS
SEPARATE clause are:

Positive:
C, A, E, and F

Negative:
D and B

Chapter 3. Working with numbers and arithmetic 53

The COBOL NUMPROC compiler option affects sign processing for zoned decimal and
internal decimal data. NUMPROC has no effect on binary data, national decimal data,
or floating-point data.

NUMPROC(PFD)
Given X’sd’, where s is the sign representation and d represents the digit,
when you use NUMPROC(PFD), the compiler assumes that the sign in your
data is one of three preferred signs:

Signed positive or 0:
X’C’

Signed negative:
X’D’

Unsigned or alphanumeric:
X’F’

Based on this assumption, the compiler uses whatever sign it is given to
process data. The preferred sign is generated only where necessary (for
example, when unsigned data is moved to signed data). Using the
NUMPROC(PFD) option can save processing time, but you must use preferred
signs with your data for correct processing.

NUMPROC(NOPFD)
When the NUMPROC(NOPFD) compiler option is in effect, the compiler accepts
any valid sign configuration. The preferred sign is always generated in the
receiver. NUMPROC(NOPFD) is less efficient than NUMPROC(PFD), but you should
use it whenever data that does not use preferred signs might exist.

If an unsigned, zoned-decimal sender is moved to an alphanumeric
receiver, the sign is unchanged (even with NUMPROC(NOPFD) in effect).

RELATED REFERENCES

“NUMPROC” on page 343
“ZWB” on page 379

Checking for incompatible data (numeric class test)
The compiler assumes that values you supply for a data item are valid for the
PICTURE and USAGE clauses, and does not check their validity. Ensure that the
contents of a data item conform to the PICTURE and USAGE clauses before using the
item in additional processing.

It can happen that values are passed into your program and assigned to items that
have incompatible data descriptions for those values. For example, nonnumeric
data might be moved or passed into a field that is defined as numeric, or a signed
number might be passed into a field that is defined as unsigned. In either case, the
receiving fields contain invalid data. When you give an item a value that is
incompatible with its data description, references to that item in the PROCEDURE
DIVISION are undefined and your results are unpredictable.

You can use the numeric class test to perform data validation. For example:
Linkage Section.
01 Count-x Pic 999.
. . .
Procedure Division Using Count-x.

If Count-x is numeric then display "Data is good"

54 Enterprise COBOL for z/OS, V5.2 Programming Guide

The numeric class test checks the contents of a data item against a set of values
that are valid for the PICTURE and USAGE of the data item. For example, a
packed-decimal item is checked for hexadecimal values X'0' through X'9' in the
digit positions and for a valid sign value in the sign position (whether separate or
nonseparate). An external decimal data item that has USAGE DISPLAY is checked for
hexadecimal values X'0' through X'9' in the digit positions (the lower 4 bits of each
byte), for a valid zone code in the upper 4 bits of each byte and for a valid sign
value in the sign position (whether separate or nonseparate). The sign code is in
the upper 4 bits of the sign byte or in a separate byte if SIGN IS SEPARATE was
specified. If the SIGN IS SEPARATE clause is used, the upper four bits of all bytes
must be x'F'.

Note: Although the ZONEDATA(MIG|NOPFD) compiler option allows toleration of
invalid zone codes in USAGE DISPLAY numeric (zoned decimal) data items in
numeric comparisons, invalid zone codes in zoned decimal data items will be
treated as nonnumeric by the numeric class test.

For zoned decimal and packed-decimal items, the numeric class test is affected by
the NUMPROC compiler option and the NUMCLS option (which is set at installation
time). To determine the NUMCLS setting used at your installation, consult your
system programmer.

If NUMCLS(PRIM) is in effect at your installation, use the following table to find the
values that the compiler considers valid for the sign.

Table 7. NUMCLS(PRIM) and valid signs

NUMPROC(NOPFD) NUMPROC(PFD)

Signed C, D, F C, D, +0 (positive zero)

Unsigned F F

Separate sign +, - +, -, +0 (positive zero)

If NUMCLS(ALT) is in effect at your installation, use the following table to find the
values that the compiler considers valid for the sign.

Table 8. NUMCLS(ALT) and valid signs

NUMPROC(NOPFD) NUMPROC(PFD)

Signed A to F C, D, +0 (positive zero)

Unsigned F F

Separate sign +, - +, -, +0 (positive zero)

You can also use the NUMCHECK(ZON,PAC) option to have the compiler generate
implicit numeric class tests for zoned decimal (numeric USAGE DISPLAY) and packed
decimal (COMP-3) data items that are used as sending data items. This numeric class
test validates data and also validates sign fields against the NUMPROC compiler
option to help you decide whether you can use NUMPROC(PFD) or not. For details,
see “NUMCHECK” on page 341.

RELATED REFERENCES

“NUMCHECK” on page 341
“NUMPROC” on page 343
“ZONECHECK” on page 375
“ZONEDATA” on page 377

Chapter 3. Working with numbers and arithmetic 55

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

Performing arithmetic
You can use any of several COBOL language features (including COMPUTE,
arithmetic expressions, numeric intrinsic functions, and math and date callable
services) to perform arithmetic. Your choice depends on whether a feature meets
your particular needs.

For most common arithmetic evaluations, the COMPUTE statement is appropriate. If
you need to use numeric literals, numeric data, or arithmetic operators, you might
want to use arithmetic expressions. In places where numeric expressions are
allowed, you can save time by using numeric intrinsic functions. Language
Environment callable services for mathematical functions and for date and time
operations also provide a means of assigning arithmetic results to data items.

RELATED TASKS

“Using COMPUTE and other arithmetic statements”
“Using arithmetic expressions” on page 57
“Using numeric intrinsic functions” on page 57
“Using math-oriented callable services” on page 59
“Using date callable services” on page 60

Using COMPUTE and other arithmetic statements
Use the COMPUTE statement for most arithmetic evaluations rather than ADD,
SUBTRACT, MULTIPLY, and DIVIDE statements. Often you can code only one COMPUTE
statement instead of several individual arithmetic statements.

The COMPUTE statement assigns the result of an arithmetic expression to one or
more data items:
Compute z = a + b / c ** d - e
Compute x y z = a + b / c ** d - e

Some arithmetic calculations might be more intuitive using arithmetic statements
other than COMPUTE. For example:

COMPUTE Equivalent arithmetic statements

Compute Increment = Increment + 1 Add 1 to Increment

Compute Balance =
Balance - Overdraft

Subtract Overdraft from Balance

Compute IncrementOne =
IncrementOne + 1

Compute IncrementTwo =
IncrementTwo + 1

Compute IncrementThree =
IncrementThree + 1

Add 1 to IncrementOne,
IncrementTwo,
IncrementThree

You might also prefer to use the DIVIDE statement (with its REMAINDER phrase) for
division in which you want to process a remainder. The REM intrinsic function also
provides the ability to process a remainder.

When you perform arithmetic calculations, you can use national decimal data
items as operands just as you use zoned decimal data items. You can also use
national floating-point data items as operands just as you use display
floating-point operands.

56 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 62
Appendix A, “Intermediate results and arithmetic precision,” on page 685

RELATED TASKS

“Defining numeric data” on page 43

Using arithmetic expressions
You can use arithmetic expressions in many (but not all) places in statements
where numeric data items are allowed.

For example, you can use arithmetic expressions as comparands in relation
conditions:
If (a + b) > (c - d + 5) Then. . .

Arithmetic expressions can consist of a single numeric literal, a single numeric data
item, or a single intrinsic function reference. They can also consist of several of
these items connected by arithmetic operators.

Arithmetic operators are evaluated in the following order of precedence:

Table 9. Order of evaluation of arithmetic operators

Operator Meaning Order of evaluation

Unary + or - Algebraic sign First

** Exponentiation Second

/ or * Division or multiplication Third

Binary + or - Addition or subtraction Last

Operators at the same level of precedence are evaluated from left to right;
however, you can use parentheses to change the order of evaluation. Expressions
in parentheses are evaluated before the individual operators are evaluated.
Parentheses, whether necessary or not, make your program easier to read.

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 62
Appendix A, “Intermediate results and arithmetic precision,” on page 685

Using numeric intrinsic functions
You can use numeric intrinsic functions only in places where numeric expressions
are allowed. These functions can save you time because you don't have to code the
many common types of calculations that they provide.

Numeric intrinsic functions return a signed numeric value, and are treated as
temporary numeric data items.

Numeric functions are classified into the following categories:

Integer
Those that return an integer

Floating point
Those that return a long (64-bit) or extended-precision (128-bit)
floating-point value (depending on whether you compile using the default
option ARITH(COMPAT) or using ARITH(EXTEND))

Chapter 3. Working with numbers and arithmetic 57

Mixed
Those that return an integer, a floating-point value, or a fixed-point
number with decimal places, depending on the arguments

You can use intrinsic functions to perform several different arithmetic operations,
as outlined in the following table.

Table 10. Numeric intrinsic functions

Number
handling Date and time Finance Mathematics Statistics

LENGTH
MAX
MIN
NUMVAL
NUMVAL-C
ORD-MAX
ORD-MIN

CURRENT-DATE
DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DAY-OF-INTEGER
DAY-TO-YYYYDDD
INTEGER-OF-DATE
INTEGER-OF-DAY
WHEN-COMPILED
YEAR-TO-YYYY

ANNUITY
PRESENT-VALUE

ACOS
ASIN
ATAN
COS
FACTORIAL
INTEGER
INTEGER-PART
LOG
LOG10
MOD
REM
SIN
SQRT
SUM
TAN

MEAN
MEDIAN
MIDRANGE
RANDOM
RANGE
STANDARD-DEVIATION
VARIANCE

“Examples: numeric intrinsic functions” on page 60

You can reference one function as the argument of another. A nested function is
evaluated independently of the outer function (except when the compiler
determines whether a mixed function should be evaluated using fixed-point or
floating-point instructions).

You can also nest an arithmetic expression as an argument to a numeric function.
For example, in the statement below, there are three function arguments (a, b, and
the arithmetic expression (c / d)):
Compute x = Function Sum(a b (c / d))

You can reference all the elements of a table (or array) as function arguments by
using the ALL subscript.

You can also use the integer special registers as arguments wherever integer
arguments are allowed.

Many of the capabilities of numeric intrinsic functions are also provided by
Language Environment callable services.

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 62
Appendix A, “Intermediate results and arithmetic precision,” on page 685

RELATED REFERENCES

“ARITH” on page 309

58 Enterprise COBOL for z/OS, V5.2 Programming Guide

Using math-oriented callable services
Most COBOL intrinsic functions have corresponding math-oriented callable
services that you can use to produce the same results.

When you compile with the default option ARITH(COMPAT), COBOL floating-point
intrinsic functions return long (64-bit) results. When you compile with option
ARITH(EXTEND), COBOL floating-point intrinsic functions (with the exception of
RANDOM) return extended-precision (128-bit) results.

For example (considering the first row of the table below), if you compile using
ARITH(COMPAT), CEESDACS returns the same result as ACOS. If you compile using
ARITH(EXTEND), CEESQACS returns the same result as ACOS.

Table 11. Compatibility of math intrinsic functions and callable services

COBOL intrinsic
function

Corresponding
long-precision Language
Environment callable service

Corresponding
extended-precision Language
Environment callable service

Results same for intrinsic
function and callable
service?

ACOS CEESDACS CEESQACS Yes

ASIN CEESDASN CEESQASN Yes

ATAN CEESDATN CEESQATN Yes

COS CEESDCOS CEESQCOS Yes

LOG CEESDLOG CEESQLOG Yes

LOG10 CEESDLG1 CEESQLG1 Yes

RANDOM1 CEERAN0 none No

REM CEESDMOD CEESQMOD Yes

SIN CEESDSIN CEESQSIN Yes

SQRT CEESDSQT CEESQSQT Yes

TAN CEESDTAN CEESQTAN Yes

1. RANDOM returns a long (64-bit) floating-point result even if you pass it a 31-digit argument and compile with
ARITH(EXTEND).

Both the RANDOM intrinsic function and CEERAN0 service generate random
numbers between zero and one. However, because each uses its own algorithm,
RANDOM and CEERAN0 produce different random numbers from the same seed.

Even for functions that produce the same results, how you use intrinsic functions
and Language Environment callable services differs. The rules for the data types
required for intrinsic function arguments are less restrictive. For numeric intrinsic
functions, you can use arguments that are of any numeric data type. When you
invoke a Language Environment callable service with a CALL statement, however,
you must ensure that the parameters match the numeric data types (generally
COMP-1 or COMP-2) required by that service.

The error handling of intrinsic functions and Language Environment callable
services sometimes differs. If you pass an explicit feedback token when calling the
Language Environment math services, you must check the feedback code after
each call and take explicit action to deal with errors. However, if you call with the
feedback token explicitly OMITTED, you do not need to check the token; Language
Environment automatically signals any errors.

Chapter 3. Working with numbers and arithmetic 59

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 62
Appendix A, “Intermediate results and arithmetic precision,” on page 685

RELATED TASKS

“Using Language Environment callable services” on page 677

RELATED REFERENCES

“ARITH” on page 309

Using date callable services
Both the COBOL date intrinsic functions and the Language Environment date
callable services are based on the Gregorian calendar. However, the starting dates
can differ depending on the setting of the INTDATE compiler option.

When INTDATE(LILIAN) is in effect, COBOL uses October 15, 1582 as day 1.
Language Environment always uses October 15, 1582 as day 1. If you use
INTDATE(LILIAN), you get equivalent results from COBOL intrinsic functions and
Language Environment date callable services. The following table compares the
results when INTDATE(LILIAN) is in effect.

Table 12. INTDATE(LILIAN) and compatibility of date intrinsic functions and callable
services

COBOL intrinsic function
Language Environment callable
service Results

DATE-OF-INTEGER CEEDATE with picture string YYYYMMDD Compatible

DAY-OF-INTEGER CEEDATE with picture string YYYYDDD Compatible

INTEGER-OF-DATE CEEDAYS Compatible

INTEGER-OF-DATE CEECBLDY Incompatible

When the default setting of INTDATE(ANSI) is in effect, COBOL uses January 1, 1601
as day 1. The following table compares the results when INTDATE(ANSI) is in effect.

Table 13. INTDATE(ANSI) and compatibility of date intrinsic functions and callable
services

COBOL intrinsic function
Language Environment callable
service Results

INTEGER-OF-DATE CEECBLDY Compatible

DATE-OF-INTEGER CEEDATE with picture string YYYYMMDD Incompatible

DAY-OF-INTEGER CEEDATE with picture string YYYYDDD Incompatible

INTEGER-OF-DATE CEEDAYS Incompatible

RELATED TASKS

“Using Language Environment callable services” on page 677

RELATED REFERENCES

“INTDATE” on page 332

Examples: numeric intrinsic functions
The following examples and accompanying explanations show intrinsic functions
in each of several categories.

60 Enterprise COBOL for z/OS, V5.2 Programming Guide

Where the examples below show zoned decimal data items, national decimal items
could instead be used. (Signed national decimal items, however, require that the
SIGN SEPARATE clause be in effect.)

General number handling
Suppose you want to find the maximum value of two prices (represented below as
alphanumeric items with dollar signs), put this value into a numeric field in an
output record, and determine the length of the output record. You can use
NUMVAL-C (a function that returns the numeric value of an alphanumeric or national
literal, or an alphanumeric or national data item) and the MAX and LENGTH functions
to do so:
01 X Pic 9(2).
01 Price1 Pic x(8) Value "$8000".
01 Price2 Pic x(8) Value "$2000".
01 Output-Record.

05 Product-Name Pic x(20).
05 Product-Number Pic 9(9).
05 Product-Price Pic 9(6).

. . .
Procedure Division.

Compute Product-Price =
Function Max (Function Numval-C(Price1) Function Numval-C(Price2))

Compute X = Function Length(Output-Record)

Additionally, to ensure that the contents in Product-Name are in uppercase letters,
you can use the following statement:
Move Function Upper-case (Product-Name) to Product-Name

Date and time
The following example shows how to calculate a due date that is 90 days from
today. The first eight characters returned by the CURRENT-DATE function represent
the date in a four-digit year, two-digit month, and two-digit day format (YYYYMMDD).
The date is converted to its integer value; then 90 is added to this value and the
integer is converted back to the YYYYMMDD format.
01 YYYYMMDD Pic 9(8).
01 Integer-Form Pic S9(9).
. . .

Move Function Current-Date(1:8) to YYYYMMDD
Compute Integer-Form = Function Integer-of-Date(YYYYMMDD)
Add 90 to Integer-Form
Compute YYYYMMDD = Function Date-of-Integer(Integer-Form)
Display ’Due Date: ’ YYYYMMDD

Finance
Business investment decisions frequently require computing the present value of
expected future cash inflows to evaluate the profitability of a planned investment.
The present value of an amount that you expect to receive at a given time in the
future is that amount, which, if invested today at a given interest rate, would
accumulate to that future amount.

For example, assume that a proposed investment of $1,000 produces a payment
stream of $100, $200, and $300 over the next three years, one payment per year
respectively. The following COBOL statements calculate the present value of those
cash inflows at a 10% interest rate:
01 Series-Amt1 Pic 9(9)V99 Value 100.
01 Series-Amt2 Pic 9(9)V99 Value 200.
01 Series-Amt3 Pic 9(9)V99 Value 300.
01 Discount-Rate Pic S9(2)V9(6) Value .10.
01 Todays-Value Pic 9(9)V99.

Chapter 3. Working with numbers and arithmetic 61

. . .
Compute Todays-Value =

Function
Present-Value(Discount-Rate Series-Amt1 Series-Amt2 Series-Amt3)

You can use the ANNUITY function in business problems that require you to
determine the amount of an installment payment (annuity) necessary to repay the
principal and interest of a loan. The series of payments is characterized by an
equal amount each period, periods of equal length, and an equal interest rate each
period. The following example shows how you can calculate the monthly payment
required to repay a $15,000 loan in three years at a 12% annual interest rate (36
monthly payments, interest per month = .12/12):
01 Loan Pic 9(9)V99.
01 Payment Pic 9(9)V99.
01 Interest Pic 9(9)V99.
01 Number-Periods Pic 99.
. . .

Compute Loan = 15000
Compute Interest = .12
Compute Number-Periods = 36
Compute Payment =

Loan * Function Annuity((Interest / 12) Number-Periods)

Mathematics
The following COBOL statement demonstrates that you can nest intrinsic
functions, use arithmetic expressions as arguments, and perform previously
complex calculations simply:
Compute Z = Function Log(Function Sqrt (2 * X + 1)) + Function Rem(X 2)

Here in the addend the intrinsic function REM (instead of a DIVIDE statement with a
REMAINDER clause) returns the remainder of dividing X by 2.

Statistics
Intrinsic functions make calculating statistical information easier. Assume you are
analyzing various city taxes and want to calculate the mean, median, and range
(the difference between the maximum and minimum taxes):
01 Tax-S Pic 99v999 value .045.
01 Tax-T Pic 99v999 value .02.
01 Tax-W Pic 99v999 value .035.
01 Tax-B Pic 99v999 value .03.
01 Ave-Tax Pic 99v999.
01 Median-Tax Pic 99v999.
01 Tax-Range Pic 99v999.
. . .

Compute Ave-Tax = Function Mean (Tax-S Tax-T Tax-W Tax-B)
Compute Median-Tax = Function Median (Tax-S Tax-T Tax-W Tax-B)
Compute Tax-Range = Function Range (Tax-S Tax-T Tax-W Tax-B)

RELATED TASKS

“Converting to numbers (NUMVAL, NUMVAL-C)” on page 117

Fixed-point contrasted with floating-point arithmetic
How you code arithmetic in a program (whether an arithmetic statement, an
intrinsic function, an expression, or some combination of these nested within each
other) determines whether the evaluation is done with floating-point or fixed-point
arithmetic.

62 Enterprise COBOL for z/OS, V5.2 Programming Guide

Many statements in a program could involve arithmetic. For example, each of the
following types of COBOL statements requires some arithmetic evaluation:
v General arithmetic

compute report-matrix-col = (emp-count ** .5) + 1
add report-matrix-min to report-matrix-max giving report-matrix-tot

v Expressions and functions
compute report-matrix-col = function sqrt(emp-count) + 1
compute whole-hours = function integer-part((average-hours) + 1)

v Arithmetic comparisons
if report-matrix-col < function sqrt(emp-count) + 1
if whole-hours not = function integer-part((average-hours) + 1)

Floating-point evaluations
In general, if your arithmetic coding has either of the characteristics listed below, it
is evaluated in floating-point arithmetic:
v An operand or result field is floating point.

An operand is floating point if you code it as a floating-point literal or if you
code it as a data item that is defined as USAGE COMP-1, USAGE COMP-2, or external
floating point (USAGE DISPLAY or USAGE NATIONAL with a floating-point PICTURE).
An operand that is a nested arithmetic expression or a reference to a numeric
intrinsic function results in floating-point arithmetic when any of the following
conditions is true:
– An argument in an arithmetic expression results in floating point.
– The function is a floating-point function.
– The function is a mixed function with one or more floating-point arguments.

v An exponent contains decimal places.
An exponent contains decimal places if you use a literal that contains decimal
places, give the item a PICTURE that contains decimal places, or use an arithmetic
expression or function whose result has decimal places.

An arithmetic expression or numeric function yields a result that has decimal
places if any operand or argument (excluding divisors and exponents) has decimal
places.

Fixed-point evaluations
In general, if an arithmetic operation contains neither of the characteristics listed
above for floating point, the compiler causes it to be evaluated in fixed-point
arithmetic. In other words, arithmetic evaluations are handled as fixed point only if
all the operands are fixed point, the result field is defined to be fixed point, and
none of the exponents represent values with decimal places. Nested arithmetic
expressions and function references must also represent fixed-point values.

Arithmetic comparisons (relation conditions)
When you compare numeric expressions using a relational operator, the numeric
expressions (whether they are data items, arithmetic expressions, function
references, or some combination of these) are comparands in the context of the
entire evaluation. That is, the attributes of each can influence the evaluation of the
other: both expressions are evaluated in fixed point, or both are evaluated in
floating point. This is also true of abbreviated comparisons even though one
comparand does not explicitly appear in the comparison. For example:
if (a + d) = (b + e) and c

Chapter 3. Working with numbers and arithmetic 63

This statement has two comparisons: (a + d) = (b + e), and (a + d) = c.
Although (a + d) does not explicitly appear in the second comparison, it is a
comparand in that comparison. Therefore, the attributes of c can influence the
evaluation of (a + d).

The compiler handles comparisons (and the evaluation of any arithmetic
expressions nested in comparisons) in floating-point arithmetic if either comparand
is a floating-point value or resolves to a floating-point value.

The compiler handles comparisons (and the evaluation of any arithmetic
expressions nested in comparisons) in fixed-point arithmetic if both comparands
are fixed-point values or resolve to fixed-point values.

Implicit comparisons (no relational operator used) are not handled as a unit,
however; the two comparands are treated separately as to their evaluation in
floating-point or fixed-point arithmetic. In the following example, five arithmetic
expressions are evaluated independently of one another's attributes, and then are
compared to each other.
evaluate (a + d)

when (b + e) thru c
when (f / g) thru (h * i)
. . .

end-evaluate

“Examples: fixed-point and floating-point evaluations”

RELATED REFERENCES

“Arithmetic expressions in nonarithmetic statements” on page 693

Examples: fixed-point and floating-point evaluations
The following example shows statements that are evaluated using fixed-point
arithmetic and using floating-point arithmetic.

Assume that you define the data items for an employee table in the following
manner:
01 employee-table.

05 emp-count pic 9(4).
05 employee-record occurs 1 to 1000 times

depending on emp-count.
10 hours pic +9(5)ve+99.

. . .
01 report-matrix-col pic 9(3).
01 report-matrix-min pic 9(3).
01 report-matrix-max pic 9(3).
01 report-matrix-tot pic 9(3).
01 average-hours pic 9(3)v9.
01 whole-hours pic 9(4).

These statements are evaluated using floating-point arithmetic:
compute report-matrix-col = (emp-count ** .5) + 1
compute report-matrix-col = function sqrt(emp-count) + 1
if report-matrix-tot < function sqrt(emp-count) + 1

These statements are evaluated using fixed-point arithmetic:
add report-matrix-min to report-matrix-max giving report-matrix-tot
compute report-matrix-max =

function max(report-matrix-max report-matrix-tot)
if whole-hours not = function integer-part((average-hours) + 1)

64 Enterprise COBOL for z/OS, V5.2 Programming Guide

Using currency signs
Many programs need to process financial information and present that information
using the appropriate currency signs. With COBOL currency support (and the
appropriate code page for your printer or display unit), you can use several
currency signs in a program.

You can use one or more of the following signs:
v Symbols such as the dollar sign ($)
v Currency signs of more than one character (such as USD or EUR)
v Euro sign, established by the Economic and Monetary Union (EMU)

To specify the symbols for displaying financial information, use the CURRENCY SIGN
clause (in the SPECIAL-NAMES paragraph in the CONFIGURATION SECTION) with the
PICTURE characters that relate to those symbols. In the following example, the
PICTURE character $ indicates that the currency sign $US is to be used:

Currency Sign is "$US" with Picture Symbol "$".
. . .

77 Invoice-Amount Pic $$,$$9.99.
. . .

Display "Invoice amount is " Invoice-Amount.

In this example, if Invoice-Amount contained 1500.00, the display output would be:
Invoice amount is $US1,500.00

By using more than one CURRENCY SIGN clause in your program, you can allow for
multiple currency signs to be displayed.

You can use a hexadecimal literal to indicate the currency sign value. Using a
hexadecimal literal could be useful if the data-entry method for the source
program does not allow the entry of the intended characters easily. The following
example shows the hexadecimal value X’9F’ used as the currency sign:

Currency Sign X’9F’ with Picture Symbol ’U’.
. . .

01 Deposit-Amount Pic UUUUU9.99.

If there is no corresponding character for the euro sign on your keyboard, you
need to specify it as a hexadecimal value in the CURRENCY SIGN clause. The
hexadecimal value for the euro sign is either X’9F’ or X’5A’ depending on the code
page in use, as shown in the following table.

Table 14. Hexadecimal values of the euro sign

Code page
CCSID Applicable countries

Modified
from Euro sign

1140 USA, Canada, Netherlands, Portugal, Australia,
New Zealand

037 X'9F'

1141 Austria, Germany 273 X'9F'

1142 Denmark, Norway 277 X'5A'

1143 Finland, Sweden 278 X'5A'

1144 Italy 280 X'9F'

1145 Spain, Latin America - Spanish 284 X'9F'

1146 UK 285 X'9F'

1147 France 297 X'9F'

Chapter 3. Working with numbers and arithmetic 65

Table 14. Hexadecimal values of the euro sign (continued)

Code page
CCSID Applicable countries

Modified
from Euro sign

1148 Belgium, Canada, Switzerland 500 X'9F'

1149 Iceland 871 X'9F'

RELATED REFERENCES

“CURRENCY” on page 317
CURRENCY SIGN clause (Enterprise COBOL Language Reference)

Example: multiple currency signs
The following example shows how you can display values in both euro currency
(as EUR) and Swiss francs (as CHF).
IDENTIFICATION DIVISION.
PROGRAM-ID. EuroSamp.
Environment Division.
Configuration Section.
Special-Names.

Currency Sign is "CHF " with Picture Symbol "F"
Currency Sign is "EUR " with Picture Symbol "U".

Data Division.
WORKING-STORAGE SECTION.
01 Deposit-in-Euro Pic S9999V99 Value 8000.00.
01 Deposit-in-CHF Pic S99999V99.
01 Deposit-Report.

02 Report-in-Franc Pic -FFFFF9.99.
02 Report-in-Euro Pic -UUUUU9.99.

01 EUR-to-CHF-Conv-Rate Pic 9V99999 Value 1.53893.
. . .
PROCEDURE DIVISION.
Report-Deposit-in-CHF-and-EUR.

Move Deposit-in-Euro to Report-in-Euro
Compute Deposit-in-CHF Rounded

= Deposit-in-Euro * EUR-to-CHF-Conv-Rate
On Size Error
Perform Conversion-Error

Not On Size Error
Move Deposit-in-CHF to Report-in-Franc
Display "Deposit in euro = " Report-in-Euro
Display "Deposit in franc = " Report-in-Franc

End-Compute
Goback.

Conversion-Error.
Display "Conversion error from EUR to CHF"
Display "Euro value: " Report-in-Euro.

The above example produces the following display output:
Deposit in euro = EUR 8000.00
Deposit in franc = CHF 12311.44

The exchange rate used in this example is for illustrative purposes only.

66 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 4. Handling tables

A table is a collection of data items that have the same description, such as account
totals or monthly averages. A table consists of a table name and subordinate items
called table elements. A table is the COBOL equivalent of an array.

In the example above, SAMPLE-TABLE-ONE is the group item that contains the table.
TABLE-COLUMN names the table element of a one-dimensional table that occurs three
times.

Rather than defining repetitious items as separate, consecutive entries in the DATA
DIVISION, you use the OCCURS clause in the DATA DIVISION entry to define a table.
This practice has these advantages:
v The code clearly shows the unity of the items (the table elements).
v You can use subscripts and indexes to refer to the table elements.
v You can easily repeat data items.

Tables are important for increasing the speed of a program, especially a program
that looks up records.

RELATED CONCEPTS

“Complex OCCURS DEPENDING ON” on page 81

RELATED TASKS

“Defining a table (OCCURS)”
“Nesting tables” on page 69
“Referring to an item in a table” on page 70
“Putting values into a table” on page 73
“Creating variable-length tables (DEPENDING ON)” on page 78
“Searching a table” on page 85
“Sorting a table” on page 88
“Processing table items using intrinsic functions” on page 89
“Working with unbounded tables and groups” on page 90
“Handling tables efficiently” on page 664

Defining a table (OCCURS)
To code a table, give the table a group name and define a subordinate item (the
table element) to be repeated n times.
01 table-name.

05 element-name OCCURS n TIMES.
. . . (subordinate items of the table element)

© Copyright IBM Corp. 1991, 2018 67

|
|

In the example above, table-name is the name of an alphanumeric group item. The
table element definition (which includes the OCCURS clause) is subordinate to the
group item that contains the table. The OCCURS clause cannot be used in a level-01
description.

If a table is to contain only Unicode (UTF-16) data, and you want the group item
that contains the table to behave like an elementary category national item in most
operations, code the GROUP-USAGE NATIONAL clause for the group item:
01 table-nameN Group-Usage National.

05 element-nameN OCCURS m TIMES.
10 elementN1 Pic nn.
10 elementN2 Pic S99 Sign Is Leading, Separate.
. . .

Any elementary item that is subordinate to a national group must be explicitly or
implicitly described as USAGE NATIONAL, and any subordinate numeric data item
that is signed must be implicitly or explicitly described with the SIGN IS SEPARATE
clause.

To create tables of two to seven dimensions, use nested OCCURS clauses.

To create a variable-length table, code the DEPENDING ON phrase of the OCCURS
clause.

To specify that table elements will be arranged in ascending or descending order
based on the values in one or more key fields of the table, code the ASCENDING or
DESCENDING KEY phrases of the OCCURS clause, or both. Specify the names of the
keys in decreasing order of significance. Keys can be of class alphabetic,
alphanumeric, DBCS, national, or numeric. (If it has USAGE NATIONAL, a key can be
of category national, or can be a national-edited, numeric-edited, national decimal,
or national floating-point item.)

You must code the ASCENDING or DESCENDING KEY phrase of the OCCURS clause to do
a binary search (SEARCH ALL) of a table. You can use a format 2 SORT statement to
order the table according to its defined keys, thereby making the table searchable
by the SEARCH ALL statement. Note that SEARCH ALL will return unpredictable
results if the table has not been ordered according to the keys.

“Example: binary search” on page 87

RELATED CONCEPTS

“National groups” on page 133

RELATED TASKS

“Nesting tables” on page 69
“Referring to an item in a table” on page 70
“Putting values into a table” on page 73
“Creating variable-length tables (DEPENDING ON)” on page 78
“Using national groups” on page 134
“Doing a binary search (SEARCH ALL)” on page 87
“Defining numeric data” on page 43

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)
SIGN clause (Enterprise COBOL Language Reference)
ASCENDING KEY and DESCENDING KEY phrases

68 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|

(Enterprise COBOL Language Reference)
SORT statement (Enterprise COBOL Language Reference)

Nesting tables
To create a two-dimensional table, define a one-dimensional table in each
occurrence of another one-dimensional table.

For example, in SAMPLE-TABLE-TWO above, TABLE-ROW is an element of a
one-dimensional table that occurs two times. TABLE-COLUMN is an element of a
two-dimensional table that occurs three times in each occurrence of TABLE-ROW.

To create a three-dimensional table, define a one-dimensional table in each
occurrence of another one-dimensional table, which is itself contained in each
occurrence of another one-dimensional table. For example:

In SAMPLE-TABLE-THREE, TABLE-DEPTH is an element of a one-dimensional table that
occurs two times. TABLE-ROW is an element of a two-dimensional table that occurs
two times within each occurrence of TABLE-DEPTH. TABLE-COLUMN is an element of a
three-dimensional table that occurs three times within each occurrence of
TABLE-ROW.

In a two-dimensional table, the two subscripts correspond to the row and column
numbers. In a three-dimensional table, the three subscripts correspond to the
depth, row, and column numbers.

“Example: subscripting” on page 70
“Example: indexing” on page 70

RELATED TASKS

“Defining a table (OCCURS)” on page 67
“Referring to an item in a table” on page 70
“Putting values into a table” on page 73
“Creating variable-length tables (DEPENDING ON)” on page 78
“Searching a table” on page 85
“Processing table items using intrinsic functions” on page 89
“Handling tables efficiently” on page 664

Chapter 4. Handling tables 69

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)

Example: subscripting
The following example shows valid references to SAMPLE-TABLE-THREE that use
literal subscripts. The spaces are required in the second example.
TABLE-COLUMN (2, 2, 1)
TABLE-COLUMN (2 2 1)

In either table reference, the first value (2) refers to the second occurrence within
TABLE-DEPTH, the second value (2) refers to the second occurrence within TABLE-ROW,
and the third value (1) refers to the first occurrence within TABLE-COLUMN.

The following reference to SAMPLE-TABLE-TWO uses variable subscripts. The reference
is valid if SUB1 and SUB2 are data-names that contain positive integer values within
the range of the table.
TABLE-COLUMN (SUB1 SUB2)

RELATED TASKS

“Subscripting” on page 71

Example: indexing
The following example shows how displacements to elements that are referenced
with indexes are calculated.

Consider the following three-dimensional table, SAMPLE-TABLE-FOUR:
01 SAMPLE-TABLE-FOUR

05 TABLE-DEPTH OCCURS 3 TIMES INDEXED BY INX-A.
10 TABLE-ROW OCCURS 4 TIMES INDEXED BY INX-B.

15 TABLE-COLUMN OCCURS 8 TIMES INDEXED BY INX-C PIC X(8).

Suppose you code the following relative indexing reference to SAMPLE-TABLE-FOUR:
TABLE-COLUMN (INX-A + 1, INX-B + 2, INX-C - 1)

This reference causes the following computation of the displacement to the
TABLE-COLUMN element:

(contents of INX-A) + (256 * 1)
+ (contents of INX-B) + (64 * 2)
+ (contents of INX-C) - (8 * 1)

This calculation is based on the following element lengths:
v Each occurrence of TABLE-DEPTH is 256 bytes in length (4 * 8 * 8).
v Each occurrence of TABLE-ROW is 64 bytes in length (8 * 8).
v Each occurrence of TABLE-COLUMN is 8 bytes in length.

RELATED TASKS

“Indexing” on page 72

Referring to an item in a table
A table element has a collective name, but the individual items within it do not
have unique data-names.

To refer to an item, you have a choice of three techniques:

70 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Use the data-name of the table element, along with its occurrence number
(called a subscript) in parentheses. This technique is called subscripting.

v Use the data-name of the table element, along with a value (called an index) that
is added to the address of the table to locate an item (as a displacement from the
beginning of the table). This technique is called indexing, or subscripting using
index-names.

v Use both subscripts and indexes together.

RELATED TASKS

“Subscripting”
“Indexing” on page 72

Subscripting
The lowest possible subscript value is 1, which references the first occurrence of a
table element. In a one-dimensional table, the subscript corresponds to the row
number.

You can use a literal or a data-name as a subscript. If a data item that has a literal
subscript is of fixed length, the compiler resolves the location of the data item.

When you use a data-name as a variable subscript, you must describe the
data-name as an elementary numeric integer. The most efficient format is
COMPUTATIONAL (COMP) with a PICTURE size that is smaller than five digits. You
cannot use a subscript with a data-name that is used as a subscript. The code
generated for the application resolves the location of a variable subscript at run
time.

You can increment or decrement a literal or variable subscript by a specified
integer amount. For example:
TABLE-COLUMN (SUB1 - 1, SUB2 + 3)

You can change part of a table element rather than the whole element. To do so,
refer to the character position and length of the substring to be changed. For
example:
01 ANY-TABLE.

05 TABLE-ELEMENT PIC X(10)
OCCURS 3 TIMES VALUE "ABCDEFGHIJ".

. . .
MOVE "??" TO TABLE-ELEMENT (1) (3 : 2).

The MOVE statement in the example above moves the string '??' into table element
number 1, beginning at character position 3, for a length of 2 characters.

“Example: subscripting” on page 70

RELATED TASKS

“Indexing” on page 72

Chapter 4. Handling tables 71

“Putting values into a table” on page 73
“Searching a table” on page 85
“Handling tables efficiently” on page 664

Indexing
You create an index by using the INDEXED BY phrase of the OCCURS clause to
identify an index-name.

For example, INX-A in the following code is an index-name:
05 TABLE-ITEM PIC X(8)

OCCURS 10 INDEXED BY INX-A.

The compiler calculates the value contained in the index as the occurrence number
(subscript) minus 1, multiplied by the length of the table element. Therefore, for
the fifth occurrence of TABLE-ITEM, the binary value contained in INX-A is (5 - 1) * 8,
or 32.

You can use an index-name to reference another table only if both table
descriptions have the same number of table elements, and the table elements are of
the same length.

You can use the USAGE IS INDEX clause to create an index data item, and can use
an index data item with any table. For example, INX-B in the following code is an
index data item:
77 INX-B USAGE IS INDEX.
. . .

SET INX-A TO 10
SET INX-B TO INX-A.
PERFORM VARYING INX-A FROM 1 BY 1 UNTIL INX-A > INX-B

DISPLAY TABLE-ITEM (INX-A)
. . .

END-PERFORM.

The index-name INX-A is used to traverse table TABLE-ITEM above. The index data
item INX-B is used to hold the index of the last element of the table. The advantage
of this type of coding is that calculation of offsets of table elements is minimized,
and no conversion is necessary for the UNTIL condition.

You can use the SET statement to assign to an index data item the value that you
stored in an index-name, as in the statement SET INX-B TO INX-A above. For
example, when you load records into a variable-length table, you can store the
index value of the last record into a data item defined as USAGE IS INDEX. Then
you can test for the end of the table by comparing the current index value with the
index value of the last record. This technique is useful when you look through or
process a table.

You can increment or decrement an index-name by an elementary integer data
item or a nonzero integer literal, for example:
SET INX-A DOWN BY 3

The integer represents a number of occurrences. It is converted to an index value
before being added to or subtracted from the index.

Initialize the index-name by using a SET, PERFORM VARYING, or SEARCH ALL
statement. You can then use the index-name in SEARCH or relational condition
statements. To change the value, use a PERFORM, SEARCH, or SET statement.

72 Enterprise COBOL for z/OS, V5.2 Programming Guide

Because you are comparing a physical displacement, you can directly use index
data items only in SEARCH and SET statements or in comparisons with indexes or
other index data items. You cannot use index data items as subscripts or indexes.

“Example: indexing” on page 70

RELATED TASKS

“Subscripting” on page 71
“Putting values into a table”
“Searching a table” on page 85
“Processing table items using intrinsic functions” on page 89
“Handling tables efficiently” on page 664

RELATED REFERENCES

INDEXED BY phrase (Enterprise COBOL Language Reference)
INDEX phrase (Enterprise COBOL Language Reference)
SET statement (Enterprise COBOL Language Reference)

Putting values into a table
You can put values into a table by loading the table dynamically, initializing the
table with the INITIALIZE statement, or assigning values with the VALUE clause
when you define the table.

RELATED TASKS

“Loading a table dynamically”
“Loading a variable-length table” on page 80
“Initializing a table (INITIALIZE)”
“Assigning values when you define a table (VALUE)” on page 75
“Assigning values to a variable-length table” on page 81

Loading a table dynamically
If the initial values of a table are different with each execution of your program,
you can define the table without initial values. You can instead read the changed
values into the table dynamically before the program refers to the table.

To load a table, use the PERFORM statement and either subscripting or indexing.

When reading data to load your table, test to make sure that the data does not
exceed the space allocated for the table. Use a named value (rather than a literal)
for the maximum item count. Then, if you make the table bigger, you need to
change only one value instead of all references to a literal.

“Example: PERFORM and subscripting” on page 76
“Example: PERFORM and indexing” on page 77

RELATED REFERENCES

PERFORM statement (Enterprise COBOL Language Reference)

Initializing a table (INITIALIZE)
You can load a table by coding one or more INITIALIZE statements.

For example, to move the value 3 into each of the elementary numeric data items
in a table called TABLE-ONE, shown below, you can code the following statement:
INITIALIZE TABLE-ONE REPLACING NUMERIC DATA BY 3.

Chapter 4. Handling tables 73

To move the character 'X' into each of the elementary alphanumeric data items in
TABLE-ONE, you can code the following statement:
INITIALIZE TABLE-ONE REPLACING ALPHANUMERIC DATA BY "X".

When you use the INITIALIZE statement to initialize a table, the table is processed
as a group item (that is, with group semantics); elementary data items within the
group are recognized and processed. For example, suppose that TABLE-ONE is an
alphanumeric group that is defined like this:
01 TABLE-ONE.

02 Trans-out Occurs 20.
05 Trans-code Pic X Value "R".
05 Part-number Pic XX Value "13".
05 Trans-quan Pic 99 Value 10.
05 Price-fields.

10 Unit-price Pic 99V Value 50.
10 Discount Pic 99V Value 25.
10 Sales-Price Pic 999 Value 375.

. . .
Initialize TABLE-ONE Replacing Numeric Data By 3

Alphanumeric Data By "X"

The table below shows the content that each of the twenty 12-byte elements
Trans-out(n) has before execution and after execution of the INITIALIZE statement
shown above:

Trans-out(n) before Trans-out(n) after

R13105025375 XXb0303030031

1. The symbol b represents a blank space.

You can similarly use an INITIALIZE statement to load a table that is defined as a
national group. For example, if TABLE-ONE shown above specified the GROUP-USAGE
NATIONAL clause, and Trans-code and Part-number had N instead of X in their
PICTURE clauses, the following statement would have the same effect as the
INITIALIZE statement above, except that the data in TABLE-ONE would instead be
encoded in UTF-16:
Initialize TABLE-ONE Replacing Numeric Data By 3

National Data By N"X"

The REPLACING NUMERIC phrase initializes floating-point data items also.

You can use the REPLACING phrase of the INITIALIZE statement similarly to
initialize all of the elementary ALPHABETIC, DBCS, ALPHANUMERIC-EDITED,
NATIONAL-EDITED, and NUMERIC-EDITED data items in a table.

The INITIALIZE statement cannot assign values to a variable-length table (that is, a
table that was defined using the OCCURS DEPENDING ON clause).

“Examples: initializing data items” on page 28

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 30
“Assigning values when you define a table (VALUE)” on page 75
“Assigning values to a variable-length table” on page 81
“Looping through a table” on page 103
“Using data items and group items” on page 24
“Using national groups” on page 134

74 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

INITIALIZE statement (Enterprise COBOL Language Reference)

Assigning values when you define a table (VALUE)
If a table is to contain stable values (such as days and months), you can set the
specific values when you define the table.

Set static values in tables in one of these ways:
v Initialize each table item individually.
v Initialize an entire table at the group level.
v Initialize all occurrences of a given table element to the same value.

RELATED TASKS

“Initializing each table item individually”
“Initializing a table at the group level” on page 76
“Initializing all occurrences of a given table element” on page 76
“Initializing a structure (INITIALIZE)” on page 30

Initializing each table item individually
If a table is small, you can set the value of each item individually by using a VALUE
clause.

Use the following technique, which is shown in the example code below:
1. Define a record (such as Error-Flag-Table below) that contains the items that

are to be in the table.
2. Set the initial value of each item in a VALUE clause.
3. Code a REDEFINES entry to make the record into a table.

*** E R R O R F L A G T A B L E ***

01 Error-Flag-Table Value Spaces.
88 No-Errors Value Spaces.

05 Type-Error Pic X.
05 Shift-Error Pic X.
05 Home-Code-Error Pic X.
05 Work-Code-Error Pic X.
05 Name-Error Pic X.
05 Initials-Error Pic X.
05 Duplicate-Error Pic X.
05 Not-Found-Error Pic X.

01 Filler Redefines Error-Flag-Table.
05 Error-Flag Occurs 8 Times

Indexed By Flag-Index Pic X.

In the example above, the VALUE clause at the 01 level initializes each of the table
items to the same value. Each table item could instead be described with its own
VALUE clause to initialize that item to a distinct value.

To initialize larger tables, use MOVE, PERFORM, or INITIALIZE statements.

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 30
“Assigning values to a variable-length table” on page 81

Chapter 4. Handling tables 75

RELATED REFERENCES

REDEFINES clause (Enterprise COBOL Language Reference)
OCCURS clause (Enterprise COBOL Language Reference)

Initializing a table at the group level
Code an alphanumeric or national group data item and assign to it, through the
VALUE clause, the contents of the whole table. Then, in a subordinate data item, use
an OCCURS clause to define the individual table items.

In the following example, the alphanumeric group data item TABLE-ONE uses a
VALUE clause that initializes each of the four elements of TABLE-TWO:
01 TABLE-ONE VALUE "1234".

05 TABLE-TWO OCCURS 4 TIMES PIC X.

In the following example, the national group data item Table-OneN uses a VALUE
clause that initializes each of the three elements of the subordinate data item
Table-TwoN (each of which is implicitly USAGE NATIONAL). Note that you can
initialize a national group data item with a VALUE clause that uses an alphanumeric
literal, as shown below, or a national literal.
01 Table-OneN Group-Usage National Value "AB12CD34EF56".

05 Table-TwoN Occurs 3 Times Indexed By MyI.
10 ElementOneN Pic nn.
10 ElementTwoN Pic 99.

After Table-OneN is initialized, ElementOneN(1) contains NX"00410042" (the UTF-16
representation of 'AB'), the national decimal item ElementTwoN(1) contains
NX"00310032" (the UTF-16 representation of '12'), and so forth.

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)
GROUP-USAGE clause (Enterprise COBOL Language Reference)

Initializing all occurrences of a given table element
You can use the VALUE clause in the data description of a table element to initialize
all instances of that element to the specified value.
01 T2.

05 T-OBJ PIC 9 VALUE 3.
05 T OCCURS 5 TIMES

DEPENDING ON T-OBJ.
10 X PIC XX VALUE "AA".
10 Y PIC 99 VALUE 19.
10 Z PIC XX VALUE "BB".

For example, the code above causes all the X elements (1 through 5) to be
initialized to AA, all the Y elements (1 through 5) to be initialized to 19, and all the
Z elements (1 through 5) to be initialized to BB. T-OBJ is then set to 3.

RELATED TASKS

“Assigning values to a variable-length table” on page 81

RELATED REFERENCES

OCCURS clause (Enterprise COBOL Language Reference)

Example: PERFORM and subscripting
This example traverses an error-flag table using subscripting until an error code
that has been set is found. If an error code is found, the corresponding error
message is moved to a print report field.

76 Enterprise COBOL for z/OS, V5.2 Programming Guide

*** E R R O R F L A G T A B L E ***

01 Error-Flag-Table Value Spaces.
88 No-Errors Value Spaces.

05 Type-Error Pic X.
05 Shift-Error Pic X.
05 Home-Code-Error Pic X.
05 Work-Code-Error Pic X.
05 Name-Error Pic X.
05 Initials-Error Pic X.
05 Duplicate-Error Pic X.
05 Not-Found-Error Pic X.

01 Filler Redefines Error-Flag-Table.
05 Error-Flag Occurs 8 Times

Indexed By Flag-Index Pic X.
77 Error-on Pic X Value "E".

*** E R R O R M E S S A G E T A B L E ***

01 Error-Message-Table.

05 Filler Pic X(25) Value
"Transaction Type Invalid".

05 Filler Pic X(25) Value
"Shift Code Invalid".

05 Filler Pic X(25) Value
"Home Location Code Inval.".

05 Filler Pic X(25) Value
"Work Location Code Inval.".

05 Filler Pic X(25) Value
"Last Name - Blanks".

05 Filler Pic X(25) Value
"Initials - Blanks".

05 Filler Pic X(25) Value
"Duplicate Record Found".

05 Filler Pic X(25) Value
"Commuter Record Not Found".

01 Filler Redefines Error-Message-Table.
05 Error-Message Occurs 8 Times

Indexed By Message-Index Pic X(25).
. . .
PROCEDURE DIVISION.

. . .
Perform

Varying Sub From 1 By 1
Until No-Errors

If Error-Flag (Sub) = Error-On
Move Space To Error-Flag (Sub)
Move Error-Message (Sub) To Print-Message
Perform 260-Print-Report

End-If
End-Perform
. . .

Example: PERFORM and indexing
This example traverses an error-flag table using indexing until an error code that
has been set is found. If an error code is found, the corresponding error message is
moved to a print report field.

*** E R R O R F L A G T A B L E ***

01 Error-Flag-Table Value Spaces.
88 No-Errors Value Spaces.

05 Type-Error Pic X.
05 Shift-Error Pic X.

Chapter 4. Handling tables 77

05 Home-Code-Error Pic X.
05 Work-Code-Error Pic X.
05 Name-Error Pic X.
05 Initials-Error Pic X.
05 Duplicate-Error Pic X.
05 Not-Found-Error Pic X.

01 Filler Redefines Error-Flag-Table.
05 Error-Flag Occurs 8 Times

Indexed By Flag-Index Pic X.
77 Error-on Pic X Value "E".

*** E R R O R M E S S A G E T A B L E ***

01 Error-Message-Table.

05 Filler Pic X(25) Value
"Transaction Type Invalid".

05 Filler Pic X(25) Value
"Shift Code Invalid".

05 Filler Pic X(25) Value
"Home Location Code Inval.".

05 Filler Pic X(25) Value
"Work Location Code Inval.".

05 Filler Pic X(25) Value
"Last Name - Blanks".

05 Filler Pic X(25) Value
"Initials - Blanks".

05 Filler Pic X(25) Value
"Duplicate Record Found".

05 Filler Pic X(25) Value
"Commuter Record Not Found".

01 Filler Redefines Error-Message-Table.
05 Error-Message Occurs 8 Times

Indexed By Message-Index Pic X(25).
. . .
PROCEDURE DIVISION.

. . .
Set Flag-Index To 1
Perform Until No-Errors

Search Error-Flag
When Error-Flag (Flag-Index) = Error-On
Move Space To Error-Flag (Flag-Index)
Set Message-Index To Flag-Index
Move Error-Message (Message-Index) To
Print-Message

Perform 260-Print-Report
End-Search

End-Perform
. . .

Creating variable-length tables (DEPENDING ON)
If you do not know before run time how many times a table element occurs, define
a variable-length table. To do so, use the OCCURS DEPENDING ON (ODO) clause.
X OCCURS 1 TO 10 TIMES DEPENDING ON Y

In the example above, X is called the ODO subject, and Y is called the ODO object.

You can also specify unbounded tables and groups, see Variable-length tables in
the Enterprise COBOL Language Reference for details.

Two factors affect the successful manipulation of variable-length records:
v Correct calculation of record lengths

78 Enterprise COBOL for z/OS, V5.2 Programming Guide

The length of the variable portions of a group item is the product of the object
of the DEPENDING ON phrase and the length of the subject of the OCCURS clause.

v Conformance of the data in the object of the OCCURS DEPENDING ON clause to its
PICTURE clause
If the content of the ODO object does not match its PICTURE clause, the program
could terminate abnormally. You must ensure that the ODO object correctly
specifies the current number of occurrences of table elements.

The following example shows a group item (REC-1) that contains both the subject
and object of the OCCURS DEPENDING ON clause. The way the length of the group
item is determined depends on whether it is sending or receiving data.
WORKING-STORAGE SECTION.
01 MAIN-AREA.

03 REC-1.
05 FIELD-1 PIC 9.
05 FIELD-2 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-1 PIC X(05).
01 REC-2.

03 REC-2-DATA PIC X(50).

If you want to move REC-1 (the sending item in this case) to REC-2, the length of
REC-1 is determined immediately before the move, using the current value in
FIELD-1. If the content of FIELD-1 conforms to its PICTURE clause (that is, if FIELD-1
contains a zoned decimal item), the move can proceed based on the actual length
of REC-1. Otherwise, the result is unpredictable. You must ensure that the ODO
object has the correct value before you initiate the move.

When you do a move to REC-1 (the receiving item in this case), the length of REC-1
is determined using the maximum number of occurrences. In this example, five
occurrences of FIELD-2, plus FIELD-1, yields a length of 26 bytes. In this case, you
do not need to set the ODO object (FIELD-1) before referencing REC-1 as a receiving
item. However, the sending field's ODO object (not shown) must be set to a valid
numeric value between 1 and 5 for the ODO object of the receiving field to be
validly set by the move.

However, if you do a move to REC-1 (again the receiving item) where REC-1 is
followed by a variably located group (a type of complex ODO), the actual length of
REC-1 is calculated immediately before the move, using the current value of the
ODO object (FIELD-1). In the following example, REC-1 and REC-2 are in the same
record, but REC-2 is not subordinate to REC-1 and is therefore variably located:
01 MAIN-AREA

03 REC-1.
05 FIELD-1 PIC 9.
05 FIELD-3 PIC 9.
05 FIELD-2 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-1 PIC X(05).
03 REC-2.

05 FIELD-4 OCCURS 1 TO 5 TIMES
DEPENDING ON FIELD-3 PIC X(05).

The compiler issues a message that lets you know that the actual length was used.
This case requires that you set the value of the ODO object before using the group
item as a receiving field.

The following example shows how to define a variable-length table when the ODO
object (LOCATION-TABLE-LENGTH below) is outside the group:

Chapter 4. Handling tables 79

DATA DIVISION.
FILE SECTION.
FD LOCATION-FILE

RECORDING MODE F
BLOCK 0 RECORDS
RECORD 80 CHARACTERS
LABEL RECORD STANDARD.

01 LOCATION-RECORD.
05 LOC-CODE PIC XX.
05 LOC-DESCRIPTION PIC X(20).
05 FILLER PIC X(58).

WORKING-STORAGE SECTION.
01 FLAGS.

05 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.
88 LOCATION-EOF VALUE "FALSE".

01 MISC-VALUES.
05 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.
05 LOCATION-TABLE-MAX PIC 9(3) VALUE 100.

*** L O C A T I O N T A B L E ***
*** FILE CONTAINS LOCATION CODES. ***

01 LOCATION-TABLE.

05 LOCATION-CODE OCCURS 1 TO 100 TIMES
DEPENDING ON LOCATION-TABLE-LENGTH PIC X(80).

RELATED CONCEPTS

“Complex OCCURS DEPENDING ON” on page 81

RELATED TASKS

“Assigning values to a variable-length table” on page 81
“Loading a variable-length table”
“Preventing overlay when adding elements to a variable table” on page 84
“Finding the length of data items” on page 122

RELATED REFERENCES

OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)
Variable-length tables (Enterprise COBOL Language Reference)

Loading a variable-length table
You can use a do-until structure (a TEST AFTER loop) to control the loading of a
variable-length table. For example, after the following code runs,
LOCATION-TABLE-LENGTH contains the subscript of the last item in the table.
DATA DIVISION.
FILE SECTION.
FD LOCATION-FILE

RECORDING MODE F
BLOCK 0 RECORDS
RECORD 80 CHARACTERS
LABEL RECORD STANDARD.

01 LOCATION-RECORD.
05 LOC-CODE PIC XX.
05 LOC-DESCRIPTION PIC X(20).
05 FILLER PIC X(58).

. . .
WORKING-STORAGE SECTION.
01 FLAGS.

05 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.
88 LOCATION-EOF VALUE "YES".

01 MISC-VALUES.
05 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.
05 LOCATION-TABLE-MAX PIC 9(3) VALUE 100.

80 Enterprise COBOL for z/OS, V5.2 Programming Guide

*** L O C A T I O N T A B L E ***
*** FILE CONTAINS LOCATION CODES. ***

01 LOCATION-TABLE.

05 LOCATION-CODE OCCURS 1 TO 100 TIMES
DEPENDING ON LOCATION-TABLE-LENGTH PIC X(80).

. . .
PROCEDURE DIVISION.

. . .
Perform Test After

Varying Location-Table-Length From 1 By 1
Until Location-EOF
Or Location-Table-Length = Location-Table-Max

Move Location-Record To
Location-Code (Location-Table-Length)

Read Location-File
At End Set Location-EOF To True

End-Read
End-Perform

Assigning values to a variable-length table
You can code a VALUE clause for an alphanumeric or national group item that has a
subordinate data item that contains the OCCURS clause with the DEPENDING ON
phrase. Each subordinate structure that contains the DEPENDING ON phrase is
initialized using the maximum number of occurrences.

If you define the entire table by using the DEPENDING ON phrase, all the elements
are initialized using the maximum defined value of the ODO (OCCURS DEPENDING
ON) object.

If the ODO object is initialized by a VALUE clause, it is logically initialized after the
ODO subject has been initialized.
01 TABLE-THREE VALUE "3ABCDE".

05 X PIC 9.
05 Y OCCURS 5 TIMES

DEPENDING ON X PIC X.

For example, in the code above, the ODO subject Y(1) is initialized to 'A', Y(2) to
'B', . . ., Y(5) to 'E', and finally the ODO object X is initialized to 3. Any subsequent
reference to TABLE-THREE (such as in a DISPLAY statement) refers to X and the first
three elements, Y(1) through Y(3), of the table.

RELATED TASKS

“Assigning values when you define a table (VALUE)” on page 75

RELATED REFERENCES

OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)

Complex OCCURS DEPENDING ON
Several types of complex OCCURS DEPENDING ON (complex ODO) are possible.
Complex ODO is supported as an extension to the 85 COBOL Standard.

The basic forms of complex ODO permitted by the compiler are as follows:
v Variably located item or group: A data item described by an OCCURS clause with

the DEPENDING ON phrase is followed by a nonsubordinate elementary or group
data item.

Chapter 4. Handling tables 81

v Variably located table: A data item described by an OCCURS clause with the
DEPENDING ON phrase is followed by a nonsubordinate data item described by an
OCCURS clause.

v Table that has variable-length elements: A data item described by an OCCURS
clause contains a subordinate data item described by an OCCURS clause with the
DEPENDING ON phrase.

v Index name for a table that has variable-length elements.
v Element of a table that has variable-length elements.

“Example: complex ODO”

RELATED TASKS

“Preventing index errors when changing ODO object value” on page 83
“Preventing overlay when adding elements to a variable table” on page 84

RELATED REFERENCES

“Effects of change in ODO object value” on page 83
OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)

Example: complex ODO
The following example illustrates the possible types of occurrence of complex
ODO.
01 FIELD-A.

02 COUNTER-1 PIC S99.
02 COUNTER-2 PIC S99.
02 TABLE-1.

03 RECORD-1 OCCURS 1 TO 5 TIMES
DEPENDING ON COUNTER-1 PIC X(3).

02 EMPLOYEE-NUMBER PIC X(5). (1)
02 TABLE-2 OCCURS 5 TIMES (2)(3)

INDEXED BY INDX. (4)
03 TABLE-ITEM PIC 99. (5)
03 RECORD-2 OCCURS 1 TO 3 TIMES

DEPENDING ON COUNTER-2.
04 DATA-NUM PIC S99.

Definition: In the example, COUNTER-1 is an ODO object, that is, it is the object of
the DEPENDING ON clause of RECORD-1. RECORD-1 is said to be an ODO subject.
Similarly, COUNTER-2 is the ODO object of the corresponding ODO subject,
RECORD-2.

The types of complex ODO occurrences shown in the example above are as
follows:

(1) A variably located item: EMPLOYEE-NUMBER is a data item that follows, but is
not subordinate to, a variable-length table in the same level-01 record.

(2) A variably located table: TABLE-2 is a table that follows, but is not
subordinate to, a variable-length table in the same level-01 record.

(3) A table with variable-length elements: TABLE-2 is a table that contains a
subordinate data item, RECORD-2, whose number of occurrences varies
depending on the content of its ODO object.

(4) An index-name, INDX, for a table that has variable-length elements.

(5) An element, TABLE-ITEM, of a table that has variable-length elements.

82 Enterprise COBOL for z/OS, V5.2 Programming Guide

How length is calculated
The length of the variable portion of each record is the product of its ODO object
and the length of its ODO subject. For example, whenever a reference is made to
one of the complex ODO items shown above, the actual length, if used, is
computed as follows:
v The length of TABLE-1 is calculated by multiplying the contents of COUNTER-1 (the

number of occurrences of RECORD-1) by 3 (the length of RECORD-1).
v The length of TABLE-2 is calculated by multiplying the contents of COUNTER-2 (the

number of occurrences of RECORD-2) by 2 (the length of RECORD-2), and adding
the length of TABLE-ITEM.

v The length of FIELD-A is calculated by adding the lengths of COUNTER-1,
COUNTER-2, TABLE-1, EMPLOYEE-NUMBER, and TABLE-2 times 5.

Setting values of ODO objects
You must set every ODO object in a group item before you reference any complex
ODO item in the group. For example, before you refer to EMPLOYEE-NUMBER in the
code above, you must set COUNTER-1 and COUNTER-2 even though EMPLOYEE-NUMBER
does not directly depend on either ODO object for its value.

Restriction: An ODO object cannot be variably located.

Effects of change in ODO object value
If a data item that is described by an OCCURS clause with the DEPENDING ON phrase
is followed in the same group by one or more nonsubordinate data items (a form
of complex ODO), any change in value of the ODO object affects subsequent
references to complex ODO items in the record.

For example:
v The size of any group that contains the relevant ODO clause reflects the new

value of the ODO object.
v A MOVE to a group that contains the ODO subject is made based on the new

value of the ODO object.
v The location of any nonsubordinate items that follow the item described with

the ODO clause is affected by the new value of the ODO object. (To preserve the
contents of the nonsubordinate items, move them to a work area before the
value of the ODO object changes, then move them back.)

The value of an ODO object can change when you move data to the ODO object or
to the group in which it is contained. The value can also change if the ODO object
is contained in a record that is the target of a READ statement.

RELATED TASKS

“Preventing index errors when changing ODO object value”
“Preventing overlay when adding elements to a variable table” on page 84

Preventing index errors when changing ODO object value
Be careful if you reference a complex-ODO index-name, that is, an index-name for
a table that has variable-length elements, after having changed the value of the
ODO object for a subordinate data item in the table.

When you change the value of an ODO object, the byte offset in an associated
complex-ODO index is no longer valid because the table length has changed.
Unless you take precautions, you will have unexpected results if you then code a
reference to the index-name such as:

Chapter 4. Handling tables 83

v A reference to an element of the table
v A SET statement of the form SET integer-data-item TO index-name (format 1)
v A SET statement of the form SET index-name UP|DOWN BY integer (format 2)

To avoid this type of error, do these steps:
1. Save the index in an integer data item. (Doing so causes an implicit conversion:

the integer item receives the table element occurrence number that corresponds
to the offset in the index.)

2. Change the value of the ODO object.
3. Immediately restore the index from the integer data item. (Doing so causes an

implicit conversion: the index-name receives the offset that corresponds to the
table element occurrence number in the integer item. The offset is computed
according to the table length then in effect.)

The following code shows how to save and restore the index-name (shown in
“Example: complex ODO” on page 82) when the ODO object COUNTER-2 changes.
77 INTEGER-DATA-ITEM-1 PIC 99.
. . .

SET INDX TO 5.
* INDX is valid at this point.

SET INTEGER-DATA-ITEM-1 TO INDX.
* INTEGER-DATA-ITEM-1 now has the
* occurrence number that corresponds to INDX.

MOVE NEW-VALUE TO COUNTER-2.
* INDX is not valid at this point.

SET INDX TO INTEGER-DATA-ITEM-1.
* INDX is now valid, containing the offset
* that corresponds to INTEGER-DATA-ITEM-1, and
* can be used with the expected results.

RELATED REFERENCES

SET statement (Enterprise COBOL Language Reference)

Preventing overlay when adding elements to a variable table
Be careful if you increase the number of elements in a variable-occurrence table
that is followed by one or more nonsubordinate data items in the same group.
When you increment the value of the ODO object and add an element to a table,
you can inadvertently overlay the variably located data items that follow the table.

To avoid this type of error, do these steps:
1. Save the variably located data items that follow the table in another data area.
2. Increment the value of the ODO object.
3. Move data into the new table element (if needed).
4. Restore the variably located data items from the data area where you saved

them.

In the following example, suppose you want to add an element to the table
VARY-FIELD-1, whose number of elements depends on the ODO object CONTROL-1.
VARY-FIELD-1 is followed by the nonsubordinate variably located data item
GROUP-ITEM-1, whose elements could potentially be overlaid.
WORKING-STORAGE SECTION.
01 VARIABLE-REC.

05 FIELD-1 PIC X(10).
05 CONTROL-1 PIC S99.
05 CONTROL-2 PIC S99.
05 VARY-FIELD-1 OCCURS 1 TO 10 TIMES

84 Enterprise COBOL for z/OS, V5.2 Programming Guide

DEPENDING ON CONTROL-1 PIC X(5).
05 GROUP-ITEM-1.

10 VARY-FIELD-2
OCCURS 1 TO 10 TIMES
DEPENDING ON CONTROL-2 PIC X(9).

01 STORE-VARY-FIELD-2.
05 GROUP-ITEM-2.

10 VARY-FLD-2
OCCURS 1 TO 10 TIMES
DEPENDING ON CONTROL-2 PIC X(9).

Each element of VARY-FIELD-1 has 5 bytes, and each element of VARY-FIELD-2 has 9
bytes. If CONTROL-1 and CONTROL-2 both contain the value 3, you can picture storage
for VARY-FIELD-1 and VARY-FIELD-2 as follows:

VARY-FIELD-1(1)

VARY-FIELD-1(2)

VARY-FIELD-1(3)

VARY-FIELD-2(1)

VARY-FIELD-2(2)

VARY-FIELD-2(3)

To add a fourth element to VARY-FIELD-1, code as follows to prevent overlaying the
first 5 bytes of VARY-FIELD-2. (GROUP-ITEM-2 serves as temporary storage for the
variably located GROUP-ITEM-1.)
MOVE GROUP-ITEM-1 TO GROUP-ITEM-2.
ADD 1 TO CONTROL-1.
MOVE five-byte-field TO

VARY-FIELD-1 (CONTROL-1).
MOVE GROUP-ITEM-2 TO GROUP-ITEM-1.

You can picture the updated storage for VARY-FIELD-1 and VARY-FIELD-2 as follows:

VARY-FIELD-1(1)

VARY-FIELD-1(2)

VARY-FIELD-1(3)

VARY-FIELD-1(4)

VARY-FIELD-2(1)

VARY-FIELD-2(2)

VARY-FIELD-2(3)

Note that the fourth element of VARY-FIELD-1 did not overlay the first element of
VARY-FIELD-2.

Searching a table
COBOL provides two search techniques for tables: serial and binary.

To do serial searches, use SEARCH and indexing. For variable-length tables, you can
use PERFORM with subscripting or indexing.

To do binary searches, use SEARCH ALL and indexing.

A binary search can be considerably more efficient than a serial search. For a serial
search, the number of comparisons is of the order of n, the number of entries in

Chapter 4. Handling tables 85

the table. For a binary search, the number of comparisons is of the order of only
the logarithm (base 2) of n. A binary search, however, requires that the table items
already be sorted.

RELATED TASKS

“Doing a serial search (SEARCH)”
“Doing a binary search (SEARCH ALL)” on page 87

Doing a serial search (SEARCH)
Use the SEARCH statement to do a serial (sequential) search beginning at the current
index setting. To modify the index setting, use the SET statement.

The conditions in the WHEN phrase are evaluated in the order in which they appear:
v If none of the conditions is satisfied, the index is increased to correspond to the

next table element, and the WHEN conditions are evaluated again.
v If one of the WHEN conditions is satisfied, the search ends. The index remains

pointing to the table element that satisfied the condition.
v If the entire table has been searched and no conditions were met, the AT END

imperative statement is executed if there is one. If you did not code AT END,
control passes to the next statement in the program.

You can reference only one level of a table (a table element) with each SEARCH
statement. To search multiple levels of a table, use nested SEARCH statements.
Delimit each nested SEARCH statement with END-SEARCH.

Performance: If the found condition comes after some intermediate point in the
table, you can speed up the search by using the SET statement to set the index to
begin the search after that point. Arranging the table so that the data used most
often is at the beginning of the table also enables more efficient serial searching. If
the table is large and is presorted, a binary search is more efficient.

“Example: serial search”

RELATED REFERENCES

SEARCH statement (Enterprise COBOL Language Reference)

Example: serial search
The following example shows how you might find a particular string in the
innermost table of a three-dimensional table.

Each dimension of the table has its own index (set to 1, 4, and 1, respectively). The
innermost table (TABLE-ENTRY3) has an ascending key.
01 TABLE-ONE.

05 TABLE-ENTRY1 OCCURS 10 TIMES
INDEXED BY TE1-INDEX.

10 TABLE-ENTRY2 OCCURS 10 TIMES
INDEXED BY TE2-INDEX.

15 TABLE-ENTRY3 OCCURS 5 TIMES
ASCENDING KEY IS KEY1
INDEXED BY TE3-INDEX.

20 KEY1 PIC X(5).
20 KEY2 PIC X(10).

. . .
PROCEDURE DIVISION.

. . .
SET TE1-INDEX TO 1
SET TE2-INDEX TO 4

86 Enterprise COBOL for z/OS, V5.2 Programming Guide

SET TE3-INDEX TO 1
MOVE "A1234" TO KEY1 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)
MOVE "AAAAAAAA00" TO KEY2 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)
. . .
SEARCH TABLE-ENTRY3

AT END
MOVE 4 TO RETURN-CODE

WHEN TABLE-ENTRY3(TE1-INDEX, TE2-INDEX, TE3-INDEX)
= "A1234AAAAAAAA00"

MOVE 0 TO RETURN-CODE
END-SEARCH

Values after execution:
TE1-INDEX = 1
TE2-INDEX = 4
TE3-INDEX points to the TABLE-ENTRY3 item

that equals "A1234AAAAAAAA00"
RETURN-CODE = 0

Doing a binary search (SEARCH ALL)
If you use SEARCH ALL to do a binary search, you do not need to set the index
before you begin. The index is always the one that is associated with the first
index-name in the OCCURS clause. The index varies during execution to maximize
the search efficiency.

To use the SEARCH ALL statement to search a table, the table must specify the
ASCENDING or DESCENDING KEY phrases of the OCCURS clause, or both, and must
already be ordered on the key or keys that are specified in the ASCENDING and
DESCENDING KEY phrases. You can use a format 2 SORT statement to order the table
according to its defined keys, thereby making the table searchable by the SEARCH
ALL statement. Note that SEARCH ALL will return unpredictable results if the table
has not been ordered according to the keys.

In the WHEN phrase of the SEARCH ALL statement, you can test any key that is named
in the ASCENDING or DESCENDING KEY phrases for the table, but you must test all
preceding keys, if any. The test must be an equal-to condition, and the WHEN phrase
must specify either a key (subscripted by the first index-name associated with the
table) or a condition-name that is associated with the key. The WHEN condition can
be a compound condition that is formed from simple conditions that use AND as the
only logical connective.

Each key and its object of comparison must be compatible according to the rules
for comparison of data items. Note though that if a key is compared to a national
literal or identifier, the key must be a national data item.

“Example: binary search”

RELATED TASKS

“Defining a table (OCCURS)” on page 67

RELATED REFERENCES

SEARCH statement (Enterprise COBOL Language Reference)
General relation conditions (Enterprise COBOL Language Reference)

Example: binary search
The following example shows how you can code a binary search of a table.

Chapter 4. Handling tables 87

|
|
|
|

Suppose you define a table that contains 90 elements of 40 bytes each, and three
keys. The primary and secondary keys (KEY-1 and KEY-2) are in ascending order,
but the least significant key (KEY-3) is in descending order:
01 TABLE-A.

05 TABLE-ENTRY OCCURS 90 TIMES
ASCENDING KEY-1, KEY-2
DESCENDING KEY-3
INDEXED BY INDX-1.

10 PART-1 PIC 99.
10 KEY-1 PIC 9(5).
10 PART-2 PIC 9(6).
10 KEY-2 PIC 9(4).
10 PART-3 PIC 9(18).
10 KEY-3 PIC 9(5).

You can search this table by using the following statements:
SEARCH ALL TABLE-ENTRY

AT END
PERFORM NOENTRY

WHEN KEY-1 (INDX-1) = VALUE-1 AND
KEY-2 (INDX-1) = VALUE-2 AND
KEY-3 (INDX-1) = VALUE-3

MOVE PART-1 (INDX-1) TO OUTPUT-AREA
END-SEARCH

If an entry is found in which each of the three keys is equal to the value to which
it is compared (VALUE-1, VALUE-2, and VALUE-3, respectively), PART-1 of that entry is
moved to OUTPUT-AREA. If no matching key is found in the entries in TABLE-A, the
NOENTRY routine is performed.

Sorting a table
You can sort a table by using the format 2 SORT statement. It is part of the 2002
COBOL Standard.

The format 2 SORT statement sorts table elements according to the specified table
keys, and it is especially useful for tables used with SEARCH ALL. You can specify
the keys for sorting as part of the table definition, which can also be used in the
SEARCH ALL statement. Alternatively, you can also specify the keys for sorting as
part of the SORT statement, either if you want to sort the table using different keys
than those specified in the table definition, or if the table has no keys specified.

With the format 2 SORT statement, you don't need to use the input and output
procedures as you do with the format 1 SORT statement.

See the following example in which the table is sorted based on specified keys:
WORKING-STORAGE SECTION.
01 GROUP-ITEM.

05 TABL OCCURS 10 TIMES
10 ELEM-ITEM1 PIC X.
10 ELEM-ITEM2 PIC X.
10 ELEM-ITEM3 PIC X.

...
PROCEDURE DIVISION.

...
SORT TABL DESCENDING ELEM-ITEM2 ELEM-ITEM3.
IF TABL (1)...

88 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

RELATED REFERENCES

SORT statement (Enterprise COBOL Language Reference)
“Using the format 2 SORT statement to sort a table” on page 681

Processing table items using intrinsic functions
You can use intrinsic functions to process alphabetic, alphanumeric, national, or
numeric table items. (You can process DBCS data items only with the NATIONAL-OF
intrinsic function.) The data descriptions of the table items must be compatible
with the requirements for the function arguments.

Use a subscript or index to reference an individual data item as a function
argument. For example, assuming that Table-One is a 3 x 3 array of numeric items,
you can find the square root of the middle element by using this statement:
Compute X = Function Sqrt(Table-One(2,2))

You might often need to iteratively process the data in tables. For intrinsic
functions that accept multiple arguments, you can use the subscript ALL to
reference all the items in the table or in a single dimension of the table. The
iteration is handled automatically, which can make your code shorter and simpler.

You can mix scalars and array arguments for functions that accept multiple
arguments:
Compute Table-Median = Function Median(Arg1 Table-One(ALL))

“Example: processing tables using intrinsic functions”

RELATED TASKS

“Using intrinsic functions (built-in functions)” on page 38
“Converting data items (intrinsic functions)” on page 116
“Evaluating data items (intrinsic functions)” on page 119

RELATED REFERENCES

Intrinsic functions (Enterprise COBOL Language Reference)

Example: processing tables using intrinsic functions
These examples show how you can apply an intrinsic function to some or all of the
elements in a table by using the ALL subscript.

Assuming that Table-Two is a 2 x 3 x 2 array, the following statement adds the
values in elements Table-Two(1,3,1), Table-Two(1,3,2), Table-Two(2,3,1), and
Table-Two(2,3,2):
Compute Table-Sum = FUNCTION SUM (Table-Two(ALL, 3, ALL))

The following example computes various salary values for all the employees
whose salaries are encoded in Employee-Table:
01 Employee-Table.

05 Emp-Count Pic s9(4) usage binary.
05 Emp-Record Occurs 1 to 500 times

depending on Emp-Count.
10 Emp-Name Pic x(20).
10 Emp-Idme Pic 9(9).
10 Emp-Salary Pic 9(7)v99.

. . .
Procedure Division.

Compute Max-Salary = Function Max(Emp-Salary(ALL))

Chapter 4. Handling tables 89

|
|
|

|

Compute I = Function Ord-Max(Emp-Salary(ALL))
Compute Avg-Salary = Function Mean(Emp-Salary(ALL))
Compute Salary-Range = Function Range(Emp-Salary(ALL))
Compute Total-Payroll = Function Sum(Emp-Salary(ALL))

Working with unbounded tables and groups
You can process an unbounded group as the input parameter to a called program.
The memory for the unbounded group is provided by the calling program.
Alternatively, you can define, initialize, and process unbounded groups in a single
program.

To work with unbounded tables and groups in a single program, do these steps:
1. In the LINKAGE SECTION, define an unbounded table (with the syntax of OCCURS

n TO UNBOUNDED), which will be part of an unbounded group.
2. In the WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION, define the OCCURS

DEPENDING ON objects.
3. In the PROCEDURE DIVISION, do these steps to process unbounded groups:

a. Set the OCCURS DEPENDING ON objects.
b. Use the LENGTH special register or the LENGTH intrinsic function to compute

the total size of the group.
c. Use the CALL statement to call a storage allocation service, such as the

Language Environment service CEEGTST. Allocate enough memory for the
total length of the group. You will need a pointer to this memory (the
CEEGTST service returns a pointer).

d. Use the SET statement to establish addressability. For example, SET ADDRESS
OF group TO pointer.

4. Use the unbounded table and its containing unbounded group according to the
following rules:
v You can reference unbounded tables in COBOL syntax anywhere a table can

be referenced.
v You can reference unbounded groups in COBOL syntax anywhere an

alphanumeric or national group can be referenced, with the following
exceptions:
– You cannot specify unbounded groups as a BY CONTENT argument in a CALL

statement.
– You cannot specify unbounded groups as data-name-2 on the PROCEDURE

DIVISION RETURNING phrase.
– You cannot specify unbounded groups as arguments to intrinsic functions,

except as an argument to the LENGTH intrinsic function.

RELATED REFERENCES

“Example: Using unbounded tables for parsing XML documents”
Variable-length tables (Enterprise COBOL Language Reference)
OCCURS DEPENDING ON clause (Enterprise COBOL Language Reference)

Example: Using unbounded tables for parsing XML
documents

Consider using unbounded tables when parsing an XML document with an
unknown number of repetitive elements.

You can use any of the following methods:

90 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Predetermine the number of elements to expect. One method to determine the
number of elements is to parse the XML document twice. During the first parse,
count the number of occurrences of each unbounded element in the
corresponding OCCURS UNBOUNDED DEPENDING ON object. Then, allocate storage for
the data items using these computed values, and parse the XML document a
second time to process its payload.

v Pick initial sizes and allow for expansion of the tables. It might be more efficient
to set arbitrary limits in the OCCURS UNBOUNDED DEPENDING ON objects based on
previous experience, and parse the document directly to process its content. For
each unbounded element, check if the current limit is about to be exceeded. If
so, allocate more storage for the corresponding array, copy the data from the old
array to the expanded array, then free the storage for the old array.

The following examples illustrate the first method. See the XML schema example,
and note that elements B and C have a maxOccurs value of unbounded, and thus can
occur an unlimited number of times in the sequence within element G. In the XML
document example, element B in fact occurs three times, and element C occurs five
times.

In the XML processing program example, the processing procedure for the first XML
PARSE statement simply computes the number of occurrences of elements B and C.
After allocating the required storage, the program executes a second XML PARSE
statement to process the XML payload.

XML schema
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://example.org"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="G">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="A" type="xsd:string" maxOccurs="1" />
<xsd:element name="B" type="xsd:int" maxOccurs="unbounded" />
<xsd:element name="C" type="xsd:int" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

XML document
<?xml version="1.0" encoding="UTF-8"?>
<p:G xmlns:p="http://example.org" >
<A>Hello
1
2
3
<C>1</C>
<C>2</C>
<C>3</C>
<C>4</C>
<C>5</C>
</p:G>

XML processing program
Identification division.
Program-id. XMLProc.
Data division.
Working-storage section.
01 NB pic S9(9) binary value zero.
01 NC pic S9(9) binary value zero.

Chapter 4. Handling tables 91

01 Gptr pointer.
01 Gsize pic 9(9) binary.
01 Heap0 pic 9(9) binary value zero.
Linkage section.
01 XML-Doc pic X(500000).
01 G.

02 A pic x(5).
02 B pic s9(9) occurs 1 to unbounded depending on NB.
02 C pic s9(9) occurs 1 to unbounded depending on NC.

Procedure division using XML-Doc.
XML parse XML-Doc processing procedure CountElements
Move length of G to Gsize
Call "CEEGTST" using Heap0 Gsize Gptr omitted
Set address of G to Gptr
XML parse XML-doc processing procedure acquireContent
...
Goback.
CountElements.
If xml-event = ’START-OF-ELEMENT’
Evaluate xml-text

When ’B’
Add 1 to NB
When ’C’
Add 1 to NC
When other
Continue

End-evaluate
End-if.

End program XMLProc.

RELATED TASKS

“Working with unbounded tables and groups” on page 90

92 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 5. Selecting and repeating program actions

Use COBOL control language to choose program actions based on the outcome of
logical tests, to iterate over selected parts of your program and data, and to
identify statements to be performed as a group.

These controls include the IF, EVALUATE, and PERFORM statements, and the use of
switches and flags.

RELATED TASKS

“Selecting program actions”
“Repeating program actions” on page 101

Selecting program actions
You can provide for different program actions depending on the tested value of
one or more data items.

The IF and EVALUATE statements in COBOL test one or more data items by means
of a conditional expression.

RELATED TASKS

“Coding a choice of actions”
“Coding conditional expressions” on page 98

RELATED REFERENCES

IF statement (Enterprise COBOL Language Reference)
EVALUATE statement (Enterprise COBOL Language Reference)

Coding a choice of actions
Use IF . . . ELSE to code a choice between two processing actions. (The word
THEN is optional.) Use the EVALUATE statement to code a choice among three or
more possible actions.
IF condition-p

statement-1
ELSE

statement-2
END-IF

When one of two processing choices is no action, code the IF statement with or
without ELSE. Because the ELSE clause is optional, you can code the IF statement as
follows:
IF condition-q

statement-1
END-IF

Such coding is suitable for simple cases. For complex logic, you probably need to
use the ELSE clause. For example, suppose you have nested IF statements in which
there is an action for only one of the processing choices. You could use the ELSE
clause and code the null branch of the IF statement with the CONTINUE statement:

© Copyright IBM Corp. 1991, 2018 93

IF condition-q
statement-1

ELSE
CONTINUE

END-IF

The EVALUATE statement is an expanded form of the IF statement that allows you to
avoid nesting IF statements, a common source of logic errors and debugging
problems.

RELATED TASKS

“Using nested IF statements”
“Using the EVALUATE statement” on page 95
“Coding conditional expressions” on page 98

Using nested IF statements
If an IF statement contains an IF statement as one of its possible branches, the IF
statements are said to be nested. Theoretically, there is no limit to the depth of
nested IF statements.

However, use nested IF statements sparingly. The logic can be difficult to follow,
although explicit scope terminators and indentation can help. If a program has to
test a variable for more than two values, EVALUATE is probably a better choice.

The following pseudocode depicts a nested IF statement:
IF condition-p

IF condition-q
statement-1

ELSE
statement-2

END-IF
statement-3

ELSE
statement-4

END-IF

In the pseudocode above, an IF statement and a sequential structure are nested in
one branch of the outer IF. In this structure, the END-IF that closes the nested IF is
very important. Use END-IF instead of a period, because a period would end the
outer IF structure also.

The following figure shows the logic structure of the pseudocode above.

94 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Coding a choice of actions” on page 93

RELATED REFERENCES

Explicit scope terminators (Enterprise COBOL Language Reference)

Using the EVALUATE statement
You can use the EVALUATE statement instead of a series of nested IF statements to
test several conditions and specify a different action for each. Thus you can use the
EVALUATE statement to implement a case structure or decision table.

You can also use the EVALUATE statement to cause multiple conditions to lead to the
same processing, as shown in these examples:

“Example: EVALUATE using THRU phrase” on page 96
“Example: EVALUATE using multiple WHEN phrases” on page 97

In an EVALUATE statement, the operands before the WHEN phrase are referred to as
selection subjects, and the operands in the WHEN phrase are called the selection objects.
Selection subjects can be identifiers, literals, conditional expressions, or the word
TRUE or FALSE. Selection objects can be identifiers, literals, conditional or arithmetic
expressions, or the word TRUE, FALSE, or ANY.

You can separate multiple selection subjects with the ALSO phrase. You can separate
multiple selection objects with the ALSO phrase. The number of selection objects
within each set of selection objects must be equal to the number of selection
subjects, as shown in this example:

“Example: EVALUATE testing several conditions” on page 97

Identifiers, literals, or arithmetic expressions that appear within a selection object
must be valid operands for comparison to the corresponding operand in the set of
selection subjects. Conditions or the word TRUE or FALSE that appear in a selection
object must correspond to a conditional expression or the word TRUE or FALSE in

Chapter 5. Selecting and repeating program actions 95

the set of selection subjects. (You can use the word ANY as a selection object to
correspond to any type of selection subject.)

The execution of the EVALUATE statement ends when one of the following
conditions occurs:
v The statements associated with the selected WHEN phrase are performed.
v The statements associated with the WHEN OTHER phrase are performed.
v No WHEN conditions are satisfied.

WHEN phrases are tested in the order that they appear in the source program.
Therefore, you should order these phrases for the best performance. First code the
WHEN phrase that contains selection objects that are most likely to be satisfied, then
the next most likely, and so on. An exception is the WHEN OTHER phrase, which must
come last.

RELATED TASKS

“Coding a choice of actions” on page 93

RELATED REFERENCES

EVALUATE statement (Enterprise COBOL Language Reference)
General relation conditions (Enterprise COBOL Language Reference)

Example: EVALUATE using THRU phrase:

This example shows how you can code several conditions in a range of values to
lead to the same processing action by coding the THRU phrase. Operands in a THRU
phrase must be of the same class.

In this example, CARPOOL-SIZE is the selection subject; 1, 2, and 3 THRU 6 are the
selection objects:
EVALUATE CARPOOL-SIZE

WHEN 1
MOVE "SINGLE" TO PRINT-CARPOOL-STATUS

WHEN 2
MOVE "COUPLE" TO PRINT-CARPOOL-STATUS

WHEN 3 THRU 6
MOVE "SMALL GROUP" TO PRINT-CARPOOL STATUS

WHEN OTHER
MOVE "BIG GROUP" TO PRINT-CARPOOL STATUS

END-EVALUATE

The following nested IF statements represent the same logic:
IF CARPOOL-SIZE = 1 THEN

MOVE "SINGLE" TO PRINT-CARPOOL-STATUS
ELSE

IF CARPOOL-SIZE = 2 THEN
MOVE "COUPLE" TO PRINT-CARPOOL-STATUS

ELSE
IF CARPOOL-SIZE >= 3 and CARPOOL-SIZE <= 6 THEN

MOVE "SMALL GROUP" TO PRINT-CARPOOL-STATUS
ELSE

MOVE "BIG GROUP" TO PRINT-CARPOOL-STATUS
END-IF

END-IF
END-IF

96 Enterprise COBOL for z/OS, V5.2 Programming Guide

Example: EVALUATE using multiple WHEN phrases:

The following example shows that you can code multiple WHEN phrases if several
conditions should lead to the same action. Doing so gives you more flexibility than
using only the THRU phrase, because the conditions do not have to evaluate to
values in a range nor have the same class.
EVALUATE MARITAL-CODE

WHEN "M"
ADD 2 TO PEOPLE-COUNT

WHEN "S"
WHEN "D"
WHEN "W"
ADD 1 TO PEOPLE-COUNT

END-EVALUATE

The following nested IF statements represent the same logic:
IF MARITAL-CODE = "M" THEN

ADD 2 TO PEOPLE-COUNT
ELSE

IF MARITAL-CODE = "S" OR
MARITAL-CODE = "D" OR
MARITAL-CODE = "W" THEN
ADD 1 TO PEOPLE-COUNT

END-IF
END-IF

Example: EVALUATE testing several conditions:

This example shows the use of the ALSO phrase to separate two selection subjects
(True ALSO True) and to separate the two corresponding selection objects within
each set of selection objects (for example, When A + B < 10 Also C = 10).

Both selection objects in a WHEN phrase must satisfy the TRUE, TRUE condition before
the associated action is performed. If both objects do not evaluate to TRUE, the next
WHEN phrase is processed.
Identification Division.

Program-ID. MiniEval.
Environment Division.

Configuration Section.
Source-Computer. IBM-390.

Data Division.
Working-Storage Section.
01 Age Pic 999.
01 Sex Pic X.
01 Description Pic X(15).
01 A Pic 999.
01 B Pic 9999.
01 C Pic 9999.
01 D Pic 9999.
01 E Pic 99999.
01 F Pic 999999.

Procedure Division.
PN01.
Evaluate True Also True

When Age < 13 Also Sex = "M"
Move "Young Boy" To Description

When Age < 13 Also Sex = "F"
Move "Young Girl" To Description

When Age > 12 And Age < 20 Also Sex = "M"
Move "Teenage Boy" To Description

When Age > 12 And Age < 20 Also Sex = "F"
Move "Teenage Girl" To Description

When Age > 19 Also Sex = "M"

Chapter 5. Selecting and repeating program actions 97

Move "Adult Man" To Description
When Age > 19 Also Sex = "F"
Move "Adult Woman" To Description

When Other
Move "Invalid Data" To Description

End-Evaluate
Evaluate True Also True

When A + B < 10 Also C = 10
Move "Case 1" To Description

When A + B > 50 Also C = (D + E) / F
Move "Case 2" To Description

When Other
Move "Case Other" To Description

End-Evaluate
Stop Run.

Coding conditional expressions
Using the IF and EVALUATE statements, you can code program actions that will be
performed depending on the truth value of a conditional expression.

You can specify the following conditions:
v Relation conditions, such as:

– Numeric comparisons
– Alphanumeric comparisons
– DBCS comparisons
– National comparisons

v Class conditions; for example, to test whether a data item:
– IS NUMERIC

– IS ALPHABETIC

– IS DBCS

– IS KANJI

– IS NOT KANJI

v Condition-name conditions, to test the value of a conditional variable that you
define

v Sign conditions, to test whether a numeric operand IS POSITIVE, NEGATIVE, or
ZERO

v Switch-status conditions, to test the status of UPSI switches that you name in the
SPECIAL-NAMES paragraph

v Complex conditions, such as:
– Negated conditions; for example, NOT (A IS EQUAL TO B)
– Combined conditions (conditions combined with logical operators AND or OR)

RELATED CONCEPTS

“Switches and flags” on page 99

RELATED TASKS

“Defining switches and flags” on page 99
“Resetting switches and flags” on page 100
“Checking for incompatible data (numeric class test)” on page 54
“Comparing national (UTF-16) data” on page 147
“Testing for valid DBCS characters” on page 151

RELATED REFERENCES

General relation conditions (Enterprise COBOL Language Reference)

98 Enterprise COBOL for z/OS, V5.2 Programming Guide

Class condition (Enterprise COBOL Language Reference)
Rules for condition-name entries (Enterprise COBOL Language Reference)
Sign condition (Enterprise COBOL Language Reference)
Combined conditions (Enterprise COBOL Language Reference)

Switches and flags
Some program decisions are based on whether the value of a data item is true or
false, on or off, yes or no. Control these two-way decisions by using level-88 items
with meaningful names (condition-names) to act as switches.

Other program decisions depend on the particular value or range of values of a
data item. When you use condition-names to give more than just on or off values
to a field, the field is generally referred to as a flag.

Flags and switches make your code easier to change. If you need to change the
values for a condition, you have to change only the value of that level-88
condition-name.

For example, suppose a program uses a condition-name to test a field for a given
salary range. If the program must be changed to check for a different salary range,
you need to change only the value of the condition-name in the DATA DIVISION.
You do not need to make changes in the PROCEDURE DIVISION.

RELATED TASKS

“Defining switches and flags”
“Resetting switches and flags” on page 100

Defining switches and flags
In the DATA DIVISION, define level-88 items that will act as switches or flags, and
give them meaningful names.

To test for more than two values with flags, assign more than one condition-name
to a field by using multiple level-88 items.

The reader can easily follow your code if you choose meaningful condition-names
and if the values assigned to them have some association with logical values.

“Example: switches”
“Example: flags” on page 100

Example: switches
The following examples show how you can use level-88 items to test for various
binary-valued (on-off) conditions in your program.

For example, to test for the end-of-file condition for an input file named
Transaction-File, you can use the following data definitions:
WORKING-STORAGE SECTION.
01 Switches.

05 Transaction-EOF-Switch Pic X value space.
88 Transaction-EOF value "y".

The level-88 description says that a condition named Transaction-EOF is turned on
when Transaction-EOF-Switch has value 'y'. Referencing Transaction-EOF in the
PROCEDURE DIVISION expresses the same condition as testing Transaction-EOF-
Switch = "y". For example, the following statement causes a report to be printed
only if Transaction-EOF-Switch has been set to 'y':

Chapter 5. Selecting and repeating program actions 99

If Transaction-EOF Then
Perform Print-Report-Summary-Lines

Example: flags
The following examples show how you can use several level-88 items together
with an EVALUATE statement to determine which of several conditions in a program
is true.

Consider for example a program that updates a master file. The updates are read
from a transaction file. The records in the file contain a field that indicates which
of the three functions is to be performed: add, change, or delete. In the record
description of the input file, code a field for the function code using level-88 items:
01 Transaction-Input Record

05 Transaction-Type Pic X.
88 Add-Transaction Value "A".
88 Change-Transaction Value "C".
88 Delete-Transaction Value "D".

The code in the PROCEDURE DIVISION for testing these condition-names to determine
which function is to be performed might look like this:
Evaluate True

When Add-Transaction
Perform Add-Master-Record-Paragraph

When Change-Transaction
Perform Update-Existing-Record-Paragraph

When Delete-Transaction
Perform Delete-Master-Record-Paragraph

End-Evaluate

Resetting switches and flags
Throughout your program, you might need to reset switches or flags to the
original values they had in their data descriptions. To do so, either use a SET
statement or define a data item to move to the switch or flag.

When you use the SET condition-name TO TRUE statement, the switch or flag is set to
the original value that it was assigned in its data description. For a level-88 item
that has multiple values, SET condition-name TO TRUE assigns the first value (A in the
example below):
88 Record-is-Active Value "A" "O" "S"

Using the SET statement and meaningful condition-names makes it easier for
readers to follow your code.

“Example: set switch on”
“Example: set switch off” on page 101

Example: set switch on
The following examples show how you can set a switch on by coding a SET
statement that moves the value TRUE to a level-88 item.

For example, the SET statement in the following example has the same effect as
coding the statement Move "y" to Transaction-EOF-Switch:
01 Switches

05 Transaction-EOF-Switch Pic X Value space.
88 Transaction-EOF Value "y".

. . .
Procedure Division.
000-Do-Main-Logic.

100 Enterprise COBOL for z/OS, V5.2 Programming Guide

Perform 100-Initialize-Paragraph
Read Update-Transaction-File

At End Set Transaction-EOF to True
End-Read

The following example shows how to assign a value to a field in an output record
based on the transaction code of an input record:
01 Input-Record.

05 Transaction-Type Pic X(9).
01 Data-Record-Out.

05 Data-Record-Type Pic X.
88 Record-Is-Active Value "A".
88 Record-Is-Suspended Value "S".
88 Record-Is-Deleted Value "D".

05 Key-Field Pic X(5).
. . .
Procedure Division.

Evaluate Transaction-Type of Input-Record
When "ACTIVE"
Set Record-Is-Active to TRUE

When "SUSPENDED"
Set Record-Is-Suspended to TRUE

When "DELETED"
Set Record-Is-Deleted to TRUE

End-Evaluate

Example: set switch off
The following example shows how you can set a switch off by coding a MOVE
statement that moves a value to a level-88 item.

For example, you can use a data item called SWITCH-OFF to set an on-off switch to
off, as in the following code, which resets a switch to indicate that end-of-file has
not been reached:
01 Switches

05 Transaction-EOF-Switch Pic X Value space.
88 Transaction-EOF Value "y".

01 SWITCH-OFF Pic X Value "n".
. . .
Procedure Division.

. . .
Move SWITCH-OFF to Transaction-EOF-Switch

Repeating program actions
Use a PERFORM statement to repeat the same code (that is, loop) either a specified
number of times or based on the outcome of a decision.

You can also use a PERFORM statement to execute a paragraph and then implicitly
return control to the next executable statement. In effect, this PERFORM statement is
a way of coding a closed subroutine that you can enter from many different parts
of the program.

PERFORM statements can be inline or out-of-line.

RELATED TASKS

“Choosing inline or out-of-line PERFORM” on page 102
“Coding a loop” on page 103
“Looping through a table” on page 103
“Executing multiple paragraphs or sections” on page 104

Chapter 5. Selecting and repeating program actions 101

RELATED REFERENCES

PERFORM statement (Enterprise COBOL Language Reference)

Choosing inline or out-of-line PERFORM
An inline PERFORM is an imperative statement that is executed in the normal flow of
a program; an out-of-line PERFORM entails a branch to a named paragraph and an
implicit return from that paragraph.

To determine whether to code an inline or out-of-line PERFORM statement, answer
the following questions:
v Is the PERFORM statement used in several places?

Use an out-of-line PERFORM when you want to use the same portion of code in
several places in your program.

v Which placement of the statement will be easier to read?
If the code to be performed is short, an inline PERFORM can be easier to read. But
if the code extends over several screens, the logical flow of the program might
be clearer if you use an out-of-line PERFORM. (Each paragraph in structured
programming should perform one logical function, however.)

v What are the efficiency tradeoffs?
An inline PERFORM avoids the overhead of branching that occurs with an
out-of-line PERFORM. But even out-of-line PERFORM coding can improve code
optimization, so efficiency gains should not be overemphasized.

In the 1974 COBOL standard, the PERFORM statement is out-of-line and thus requires
a branch to a separate paragraph and an implicit return. If the performed
paragraph is in the subsequent sequential flow of your program, it is also executed
in that logic flow. To avoid this additional execution, place the paragraph outside
the normal sequential flow (for example, after the GOBACK) or code a branch around
it.

The subject of an inline PERFORM is an imperative statement. Therefore, you must
code statements (other than imperative statements) within an inline PERFORM with
explicit scope terminators.

“Example: inline PERFORM statement”

Example: inline PERFORM statement
This example shows the structure of an inline PERFORM statement that has the
required scope terminators and the required END-PERFORM phrase.

Perform 100-Initialize-Paragraph
* The following statement is an inline PERFORM:

Perform Until Transaction-EOF
Read Update-Transaction-File Into WS-Transaction-Record

At End
Set Transaction-EOF To True

Not At End
Perform 200-Edit-Update-Transaction
If No-Errors

Perform 300-Update-Commuter-Record
Else

Perform 400-Print-Transaction-Errors
* End-If is a required scope terminator

End-If
Perform 410-Re-Initialize-Fields

* End-Read is a required scope terminator
End-Read

End-Perform

102 Enterprise COBOL for z/OS, V5.2 Programming Guide

Coding a loop
Use the PERFORM . . . TIMES statement to execute a paragraph a specified number
of times.
PERFORM 010-PROCESS-ONE-MONTH 12 TIMES
INSPECT . . .

In the example above, when control reaches the PERFORM statement, the code for the
paragraph 010-PROCESS-ONE-MONTH is executed 12 times before control is transferred
to the INSPECT statement.

Use the PERFORM . . . UNTIL statement to execute a paragraph until a condition
you choose is satisfied. You can use either of the following forms:
PERFORM . . . WITH TEST AFTER UNTIL . . .
PERFORM . . . [WITH TEST BEFORE] . . . UNTIL . . .

Use the PERFORM . . . WITH TEST AFTER . . . UNTIL statement if you want to
execute the paragraph at least once, and test before any subsequent execution. This
statement is equivalent to a do-until structure:

In the following example, the implicit WITH TEST BEFORE phrase provides a
do-while structure:
PERFORM 010-PROCESS-ONE-MONTH

UNTIL MONTH GREATER THAN 12
INSPECT . . .

When control reaches the PERFORM statement, the condition MONTH GREATER THAN 12
is tested. If the condition is satisfied, control is transferred to the INSPECT
statement. If the condition is not satisfied, 010-PROCESS-ONE-MONTH is executed, and
the condition is tested again. This cycle continues until the condition tests as true.
(To make your program easier to read, you might want to code the WITH TEST
BEFORE clause.)

Looping through a table
You can use the PERFORM . . . VARYING statement to initialize a table. In this form
of the PERFORM statement, a variable is increased or decreased and tested until a
condition is satisfied.

Thus you use the PERFORM statement to control looping through a table. You can
use either of these forms:
PERFORM . . . WITH TEST AFTER VARYING . . . UNTIL . . .
PERFORM . . . [WITH TEST BEFORE] . . . VARYING . . . UNTIL . . .

Chapter 5. Selecting and repeating program actions 103

The following section of code shows an example of looping through a table to
check for invalid data:
PERFORM TEST AFTER VARYING WS-DATA-IX

FROM 1 BY 1 UNTIL WS-DATA-IX = 12
IF WS-DATA (WS-DATA-IX) EQUALS SPACES

SET SERIOUS-ERROR TO TRUE
DISPLAY ELEMENT-NUM-MSG5

END-IF
END-PERFORM
INSPECT . . .

When control reaches the PERFORM statement above, WS-DATA-IX is set equal to 1
and the PERFORM statement is executed. Then the condition WS-DATA-IX = 12 is
tested. If the condition is true, control drops through to the INSPECT statement. If
the condition is false, WS-DATA-IX is increased by 1, the PERFORM statement is
executed, and the condition is tested again. This cycle of execution and testing
continues until WS-DATA-IX is equal to 12.

The loop above controls input-checking for the 12 fields of item WS-DATA. Empty
fields are not allowed in the application, so the section of code loops and issues
error messages as appropriate.

Executing multiple paragraphs or sections
In structured programming, you usually execute a single paragraph. However, you
can execute a group of paragraphs, or a single section or group of sections, by
coding the PERFORM . . . THRU statement.

When you use the PERFORM . . . THRU statement, code a paragraph-EXIT statement
to clearly indicate the end point of a series of paragraphs.

RELATED TASKS

“Processing table items using intrinsic functions” on page 89

104 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 6. Handling strings

COBOL provides language constructs for performing many different operations on
string data items.

For example, you can:
v Join or split data items.
v Manipulate null-terminated strings, such as count or move characters.
v Refer to substrings by their ordinal position and, if needed, length.
v Tally and replace data items, such as count the number of times a specific

character occurs in a data item.
v Convert data items, such as change to uppercase or lowercase.
v Evaluate data items, such as determine the length of a data item.

RELATED TASKS

“Joining data items (STRING)”
“Splitting data items (UNSTRING)” on page 107
“Manipulating null-terminated strings” on page 110
“Referring to substrings of data items” on page 111
“Tallying and replacing data items (INSPECT)” on page 115
“Converting data items (intrinsic functions)” on page 116
“Evaluating data items (intrinsic functions)” on page 119
Chapter 7, “Processing data in an international environment,” on page 125

Joining data items (STRING)
Use the STRING statement to join all or parts of several data items or literals into
one data item. One STRING statement can take the place of several MOVE statements.

The STRING statement transfers data into a receiving data item in the order that you
indicate. In the STRING statement you also specify:
v A delimiter for each set of sending fields that, if encountered, causes those

sending fields to stop being transferred (DELIMITED BY phrase)
v (Optional) Action to be taken if the receiving field is filled before all of the

sending data has been processed (ON OVERFLOW phrase)
v (Optional) An integer data item that indicates the leftmost character position

within the receiving field into which data should be transferred (WITH POINTER
phrase)

The receiving data item must not be an edited item, or a display or national
floating-point item. If the receiving data item has:
v USAGE DISPLAY, each identifier in the statement except the POINTER identifier

must have USAGE DISPLAY, and each literal in the statement must be
alphanumeric

v USAGE NATIONAL, each identifier in the statement except the POINTER identifier
must have USAGE NATIONAL, and each literal in the statement must be national

v USAGE DISPLAY-1, each identifier in the statement except the POINTER identifier
must have USAGE DISPLAY-1, and each literal in the statement must be DBCS

© Copyright IBM Corp. 1991, 2018 105

Only that portion of the receiving field into which data is written by the STRING
statement is changed.

“Example: STRING statement”

RELATED TASKS

“Handling errors in joining and splitting strings” on page 240

RELATED REFERENCES

STRING statement (Enterprise COBOL Language Reference)

Example: STRING statement
The following example shows the STRING statement selecting and formatting
information from a record into an output line.

The FILE SECTION defines the following record:
01 RCD-01.

05 CUST-INFO.
10 CUST-NAME PIC X(15).
10 CUST-ADDR PIC X(35).

05 BILL-INFO.
10 INV-NO PIC X(6).
10 INV-AMT PIC $$,$$$.99.
10 AMT-PAID PIC $$,$$$.99.
10 DATE-PAID PIC X(8).
10 BAL-DUE PIC $$,$$$.99.
10 DATE-DUE PIC X(8).

The WORKING-STORAGE SECTION defines the following fields:
77 RPT-LINE PIC X(120).
77 LINE-POS PIC S9(3).
77 LINE-NO PIC 9(5) VALUE 1.
77 DEC-POINT PIC X VALUE ".".

The record RCD-01 contains the following information (the symbol b indicates a
blank space):
J.B.bSMITHbbbbb
444bSPRINGbST.,bCHICAGO,bILL.bbbbbb
A14275
$4,736.85
$2,400.00
09/22/76
$2,336.85
10/22/76

In the PROCEDURE DIVISION, these settings occur before the STRING statement:
v RPT-LINE is set to SPACES.
v LINE-POS, the data item to be used as the POINTER field, is set to 4.

Here is the STRING statement:
STRING

LINE-NO SPACE CUST-INFO INV-NO SPACE DATE-DUE SPACE
DELIMITED BY SIZE

BAL-DUE
DELIMITED BY DEC-POINT

INTO RPT-LINE
WITH POINTER LINE-POS.

106 Enterprise COBOL for z/OS, V5.2 Programming Guide

Because the POINTER field LINE-POS has value 4 before the STRING statement is
performed, data is moved into the receiving field RPT-LINE beginning at character
position 4. Characters in positions 1 through 3 are unchanged.

The sending items that specify DELIMITED BY SIZE are moved in their entirety to
the receiving field. Because BAL-DUE is delimited by DEC-POINT, the moving of
BAL-DUE to the receiving field stops when a decimal point (the value of DEC-POINT)
is encountered.

STRING results
When the STRING statement is performed, items are moved into RPT-LINE as shown
in the table below.

Item Positions

LINE-NO 4 - 8

Space 9

CUST-INFO 10 - 59

INV-NO 60 - 65

Space 66

DATE-DUE 67 - 74

Space 75

Portion of BAL-DUE that precedes the decimal point 76 - 81

After the STRING statement is performed, the value of LINE-POS is 82, and RPT-LINE
has the values shown below.

Splitting data items (UNSTRING)
Use the UNSTRING statement to split a sending field into several receiving fields.
One UNSTRING statement can take the place of several MOVE statements.

In the UNSTRING statement you can specify:
v Delimiters that, when one of them is encountered in the sending field, cause the

current receiving field to stop receiving and the next, if any, to begin receiving
(DELIMITED BY phrase)

v A field for the delimiter that, when encountered in the sending field, causes the
current receiving field to stop receiving (DELIMITER IN phrase)

v An integer data item that stores the number of characters placed in the current
receiving field (COUNT IN phrase)

v An integer data item that indicates the leftmost character position within the
sending field at which UNSTRING processing should begin (WITH POINTER phrase)

v An integer data item that stores a tally of the number of receiving fields that are
acted on (TALLYING IN phrase)

Chapter 6. Handling strings 107

v Action to be taken if all of the receiving fields are filled before the end of the
sending data item is reached (ON OVERFLOW phrase)

The sending data item and the delimiters in the DELIMITED BY phrase must be of
category alphabetic, alphanumeric, alphanumeric-edited, DBCS, national, or
national-edited.

Receiving data items can be of category alphabetic, alphanumeric, numeric, DBCS,
or national. If numeric, a receiving data item must be zoned decimal or national
decimal. If a receiving data item has:
v USAGE DISPLAY, the sending item and each delimiter item in the statement must

have USAGE DISPLAY, and each literal in the statement must be alphanumeric
v USAGE NATIONAL, the sending item and each delimiter item in the statement must

have USAGE NATIONAL, and each literal in the statement must be national
v USAGE DISPLAY-1, the sending item and each delimiter item in the statement

must have USAGE DISPLAY-1, and each literal in the statement must be DBCS

“Example: UNSTRING statement”

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Handling errors in joining and splitting strings” on page 240

RELATED REFERENCES

UNSTRING statement (Enterprise COBOL Language Reference)
Classes and categories of data (Enterprise COBOL Language Reference)

Example: UNSTRING statement
The following example shows the UNSTRING statement transferring selected
information from an input record. Some information is organized for printing and
some for further processing.

The FILE SECTION defines the following records:
* Record to be acted on by the UNSTRING statement:
01 INV-RCD.

05 CONTROL-CHARS PIC XX.
05 ITEM-INDENT PIC X(20).
05 FILLER PIC X.
05 INV-CODE PIC X(10).
05 FILLER PIC X.
05 NO-UNITS PIC 9(6).
05 FILLER PIC X.
05 PRICE-PER-M PIC 99999.
05 FILLER PIC X.
05 RTL-AMT PIC 9(6).99.

*
* UNSTRING receiving field for printed output:
01 DISPLAY-REC.

05 INV-NO PIC X(6).
05 FILLER PIC X VALUE SPACE.
05 ITEM-NAME PIC X(20).
05 FILLER PIC X VALUE SPACE.
05 DISPLAY-DOLS PIC 9(6).

*
* UNSTRING receiving field for further processing:
01 WORK-REC.

108 Enterprise COBOL for z/OS, V5.2 Programming Guide

05 M-UNITS PIC 9(6).
05 FIELD-A PIC 9(6).
05 WK-PRICE REDEFINES FIELD-A PIC 9999V99.
05 INV-CLASS PIC X(3).

*
* UNSTRING statement control fields:
77 DBY-1 PIC X.
77 CTR-1 PIC S9(3).
77 CTR-2 PIC S9(3).
77 CTR-3 PIC S9(3).
77 CTR-4 PIC S9(3).
77 DLTR-1 PIC X.
77 DLTR-2 PIC X.
77 CHAR-CT PIC S9(3).
77 FLDS-FILLED PIC S9(3).

In the PROCEDURE DIVISION, these settings occur before the UNSTRING statement:
v A period (.) is placed in DBY-1 for use as a delimiter.
v CHAR-CT (the POINTER field) is set to 3.
v The value zero (0) is placed in FLDS-FILLED (the TALLYING field).
v Data is read into record INV-RCD, whose format is as shown below.

Here is the UNSTRING statement:
* Move subfields of INV-RCD to the subfields of DISPLAY-REC
* and WORK-REC:

UNSTRING INV-RCD
DELIMITED BY ALL SPACES OR "/" OR DBY-1
INTO ITEM-NAME COUNT IN CTR-1

INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2
INV-CLASS
M-UNITS COUNT IN CTR-3
FIELD-A
DISPLAY-DOLS DELIMITER IN DLTR-2 COUNT IN CTR-4

WITH POINTER CHAR-CT
TALLYING IN FLDS-FILLED
ON OVERFLOW GO TO UNSTRING-COMPLETE.

Because the POINTER field CHAR-CT has value 3 before the UNSTRING statement is
performed, the two character positions of the CONTROL-CHARS field in INV-RCD are
ignored.

UNSTRING results
When the UNSTRING statement is performed, the following steps take place:
1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in ITEM-NAME,

left justified in the area, and the four unused character positions are padded
with spaces. The value 16 is placed in CTR-1.

2. Because ALL SPACES is coded as a delimiter, the five contiguous space characters
in positions 19 through 23 are considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in INV-NO. The delimiter character
slash (/) is placed in DLTR-1, and the value 6 is placed in CTR-2.

Chapter 6. Handling strings 109

4. Positions 31 through 33 (BBA) are placed in INV-CLASS. The delimiter is SPACE,
but because no field has been defined as a receiving area for delimiters, the
space in position 34 is bypassed.

5. Positions 35 through 40 (475120) are placed in M-UNITS. The value 6 is placed in
CTR-3. The delimiter is SPACE, but because no field has been defined as a
receiving area for delimiters, the space in position 41 is bypassed.

6. Positions 42 through 46 (00122) are placed in FIELD-A and right justified in the
area. The high-order digit position is filled with a zero (0). The delimiter is
SPACE, but because no field was defined as a receiving area for delimiters, the
space in position 47 is bypassed.

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period (.)
delimiter in DBY-1 is placed in DLTR-2, and the value 6 is placed in CTR-4.

8. Because all receiving fields have been acted on and two characters in INV-RCD
have not been examined, the ON OVERFLOW statement is executed. Execution of
the UNSTRING statement is completed.

After the UNSTRING statement is performed, the fields contain the values shown
below.

Field Value

DISPLAY-REC 707890 FOUR-PENNY-NAILS 000379

WORK-REC 475120000122BBA

CHAR-CT (the POINTER field) 55

FLDS-FILLED (the TALLYING field) 6

Manipulating null-terminated strings
You can construct and manipulate null-terminated strings (for example, strings that
are passed to or from a C program) by various mechanisms.

For example, you can:
v Use null-terminated literal constants (Z". . . ").
v Use an INSPECT statement to count the number of characters in a null-terminated

string:
MOVE 0 TO char-count
INSPECT source-field TALLYING char-count

FOR CHARACTERS
BEFORE X"00"

v Use an UNSTRING statement to move characters in a null-terminated string to a
target field, and get the character count:
WORKING-STORAGE SECTION.
01 source-field PIC X(1001).
01 char-count COMP-5 PIC 9(4).
01 target-area.

02 individual-char OCCURS 1 TO 1000 TIMES DEPENDING ON char-count
PIC X.

. . .
PROCEDURE DIVISION.

UNSTRING source-field DELIMITED BY X"00"
INTO target-area
COUNT IN char-count

ON OVERFLOW
DISPLAY "source not null terminated or target too short"

END-UNSTRING

110 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Use a SEARCH statement to locate trailing null or space characters. Define the
string being examined as a table of single characters.

v Check each character in a field in a loop (PERFORM). You can examine each
character in a field by using a reference modifier such as source-field (I:1).

“Example: null-terminated strings”

RELATED TASKS

“Handling null-terminated strings” on page 496

RELATED REFERENCES

Alphanumeric literals (Enterprise COBOL Language Reference)

Example: null-terminated strings
The following example shows several ways in which you can process
null-terminated strings.
01 L pic X(20) value z’ab’.
01 M pic X(20) value z’cd’.
01 N pic X(20).
01 N-Length pic 99 value zero.
01 Y pic X(13) value ’Hello, World!’.
. . .
* Display null-terminated string:

Inspect N tallying N-length
for characters before initial x’00’

Display ’N: ’ N(1:N-Length) ’ Length: ’ N-Length
. . .

* Move null-terminated string to alphanumeric, strip null:
Unstring N delimited by X’00’ into X
. . .

* Create null-terminated string:
String Y delimited by size

X’00’ delimited by size
into N.

. . .
* Concatenate two null-terminated strings to produce another:

String L delimited by x’00’
M delimited by x’00’
X’00’ delimited by size
into N.

Referring to substrings of data items
Refer to a substring of a data item that has USAGE DISPLAY, DISPLAY-1, or NATIONAL
by using a reference modifier. You can also refer to a substring of an alphanumeric
or national character string that is returned by an intrinsic function by using a
reference modifier.

Note: To get a substring of a character string argument that is encoded in UTF-8,
use the USUBSTR function as described in “Using intrinsic functions to process
UTF-8 encoded data” on page 142.

The following example shows how to use a reference modifier to refer to a
twenty-character substring of a data item called Customer-Record:
Move Customer-Record(1:20) to Orig-Customer-Name

You code a reference modifier in parentheses immediately after the data item. As
the example shows, a reference modifier can contain two values that are separated
by a colon, in this order:

Chapter 6. Handling strings 111

1. Ordinal position (from the left) of the character that you want the substring to
start with

2. (Optional) Length of the required substring in character positions

The reference-modifier position and length for an item that has USAGE DISPLAY are
expressed in terms of single-byte characters. The reference-modifier position and
length for items that have USAGE DISPLAY-1 or NATIONAL are expressed in terms of
DBCS character positions and national character positions, respectively.

If you omit the length in a reference modifier (coding only the ordinal position of
the first character, followed by a colon), the substring extends to the end of the
item. Omit the length where possible as a simpler and less error-prone coding
technique.

You can refer to substrings of USAGE DISPLAY data items, including alphanumeric
groups, alphanumeric-edited data items, numeric-edited data items, display
floating-point data items, and zoned decimal data items, by using reference
modifiers. When you reference-modify any of these data items, the result is of
category alphanumeric. When you reference-modify an alphabetic data item, the
result is of category alphabetic.

You can refer to substrings of USAGE NATIONAL data items, including national
groups, national-edited data items, numeric-edited data items, national
floating-point data items, and national decimal data items, by using reference
modifiers. When you reference-modify any of these data items, the result is of
category national. For example, suppose that you define a national decimal data
item as follows:
01 NATL-DEC-ITEM Usage National Pic 999 Value 123.

You can use NATL-DEC-ITEM in an arithmetic expression because NATL-DEC-ITEM is of
category numeric. But you cannot use NATL-DEC-ITEM(2:1) (the national character
2, which in hexadecimal notation is NX"0032") in an arithmetic expression, because
it is of category national.

You can refer to substrings of table entries, including variable-length entries, by
using reference modifiers. To refer to a substring of a table entry, code the
subscript expression before the reference modifier. For example, assume that
PRODUCT-TABLE is a properly coded table of character strings. To move D to the
fourth character in the second string in the table, you can code this statement:
MOVE ’D’ to PRODUCT-TABLE (2), (4:1)

You can code either or both of the two values in a reference modifier as a variable
or as an arithmetic expression.

“Example: arithmetic expressions as reference modifiers” on page 114

Because numeric function identifiers can be used anywhere that arithmetic
expressions can be used, you can code a numeric function identifier in a reference
modifier as the leftmost character position or as the length, or both.

“Example: intrinsic functions as reference modifiers” on page 114

Each number in the reference modifier must have a value of at least 1. The sum of
the two numbers must not exceed the total length of the data item by more than 1
character position so that you do not reference beyond the end of the substring.

112 Enterprise COBOL for z/OS, V5.2 Programming Guide

If the leftmost character position or the length value is a fixed-point noninteger,
truncation occurs to create an integer. If either is a floating-point noninteger,
rounding occurs to create an integer.

The SSRANGE compiler option detects out-of-range reference modifiers, and flags
violations with a runtime message.

RELATED CONCEPTS

“Reference modifiers”
“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Referring to an item in a table” on page 70

RELATED REFERENCES

“SSRANGE” on page 361
Reference modification (Enterprise COBOL Language Reference)
Function definitions (Enterprise COBOL Language Reference)

Reference modifiers
Reference modifiers let you easily refer to a substring of a data item.

For example, assume that you want to retrieve the current time from the system
and display its value in an expanded format. You can retrieve the current time
with the ACCEPT statement, which returns the hours, minutes, seconds, and
hundredths of seconds in this format:
HHMMSSss

However, you might prefer to view the current time in this format:
HH:MM:SS

Without reference modifiers, you would have to define data items for both formats.
You would also have to write code to convert from one format to the other.

With reference modifiers, you do not need to provide names for the subfields that
describe the TIME elements. The only data definition you need is for the time as
returned by the system. For example:
01 REFMOD-TIME-ITEM PIC X(8).

The following code retrieves and expands the time value:
ACCEPT REFMOD-TIME-ITEM FROM TIME.
DISPLAY "CURRENT TIME IS: "

* Retrieve the portion of the time value that corresponds to
* the number of hours:

REFMOD-TIME-ITEM (1:2)
":"

* Retrieve the portion of the time value that corresponds to
* the number of minutes:

REFMOD-TIME-ITEM (3:2)
":"

* Retrieve the portion of the time value that corresponds to
* the number of seconds:

REFMOD-TIME-ITEM (5:2)

“Example: arithmetic expressions as reference modifiers” on page 114
“Example: intrinsic functions as reference modifiers” on page 114

Chapter 6. Handling strings 113

RELATED TASKS

“Assigning input from a screen or file (ACCEPT)” on page 34
“Referring to substrings of data items” on page 111
“Using national data (Unicode) in COBOL” on page 130

RELATED REFERENCES

Reference modification (Enterprise COBOL Language Reference)

Example: arithmetic expressions as reference modifiers
Suppose that a field contains some right-justified characters, and you want to
move those characters to another field where they will be left justified. You can do
so by using reference modifiers and an INSPECT statement.

Suppose a program has the following data:
01 LEFTY PIC X(30).
01 RIGHTY PIC X(30) JUSTIFIED RIGHT.
01 I PIC 9(9) USAGE BINARY.

The program counts the number of leading spaces and, using arithmetic
expressions in a reference modifier, moves the right-justified characters into
another field, justified to the left:
MOVE SPACES TO LEFTY
MOVE ZERO TO I
INSPECT RIGHTY

TALLYING I FOR LEADING SPACE.
IF I IS LESS THAN LENGTH OF RIGHTY THEN

MOVE RIGHTY (I + 1 : LENGTH OF RIGHTY - I) TO LEFTY
END-IF

The MOVE statement transfers characters from RIGHTY, beginning at the position
computed as I + 1 for a length that is computed as LENGTH OF RIGHTY - I, into the
field LEFTY.

Example: intrinsic functions as reference modifiers
You can use intrinsic functions in reference modifiers if you do not know the
leftmost position or length of a substring at compile time.

For example, the following code fragment causes a substring of Customer-Record to
be moved into the data item WS-name. The substring is determined at run time.
05 WS-name Pic x(20).
05 Left-posn Pic 99.
05 I Pic 99.
. . .
Move Customer-Record(Function Min(Left-posn I):Function Length(WS-name)) to WS-name

If you want to use a noninteger function in a position that requires an integer
function, you can use the INTEGER or INTEGER-PART function to convert the result to
an integer. For example:
Move Customer-Record(Function Integer(Function Sqrt(I)):) to WS-name

RELATED REFERENCES

INTEGER (Enterprise COBOL Language Reference)
INTEGER-PART (Enterprise COBOL Language Reference)

114 Enterprise COBOL for z/OS, V5.2 Programming Guide

Tallying and replacing data items (INSPECT)
Use the INSPECT statement to inspect characters or groups of characters in a data
item and to optionally replace them.

Use the INSPECT statement to do the following tasks:
v Count the number of times a specific character occurs in a data item (TALLYING

phrase).
v Fill a data item or selected portions of a data item with specified characters such

as spaces, asterisks, or zeros (REPLACING phrase).
v Convert all occurrences of a specific character or string of characters in a data

item to replacement characters that you specify (CONVERTING phrase).

You can specify one of the following data items as the item to be inspected:
v An elementary item described explicitly or implicitly as USAGE DISPLAY, USAGE

DISPLAY-1, or USAGE NATIONAL
v An alphanumeric group item or national group item

If the inspected item has:
v USAGE DISPLAY, each identifier in the statement (except the TALLYING count field)

must have USAGE DISPLAY, and each literal in the statement must be
alphanumeric

v USAGE NATIONAL, each identifier in the statement (except the TALLYING count field)
must have USAGE NATIONAL, and each literal in the statement must be national

v USAGE DISPLAY-1, each identifier in the statement (except the TALLYING count
field) must have USAGE DISPLAY-1, and each literal in the statement must be a
DBCS literal

“Examples: INSPECT statement”

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED REFERENCES

INSPECT statement (Enterprise COBOL Language Reference)

Examples: INSPECT statement
The following examples show some uses of the INSPECT statement to examine and
replace characters.

In the following example, the INSPECT statement examines and replaces characters
in data item DATA-2. The number of times a leading zero (0) occurs in the data item
is accumulated in COUNTR. The first instance of the character A that follows the first
instance of the character C is replaced by the character 2.
77 COUNTR PIC 9 VALUE ZERO.
01 DATA-2 PIC X(11).
. . .

INSPECT DATA-2
TALLYING COUNTR FOR LEADING "0"
REPLACING FIRST "A" BY "2" AFTER INITIAL "C"

DATA-2 before COUNTR after DATA-2 after

00ACADEMY00 2 00AC2DEMY00

Chapter 6. Handling strings 115

DATA-2 before COUNTR after DATA-2 after

0000ALABAMA 4 0000ALABAMA

CHATHAM0000 0 CH2THAM0000

In the following example, the INSPECT statement examines and replaces characters
in data item DATA-3. Each character that precedes the first instance of a quotation
mark (") is replaced by the character 0.
77 COUNTR PIC 9 VALUE ZERO.
01 DATA-3 PIC X(8).
. . .

INSPECT DATA-3
REPLACING CHARACTERS BY ZEROS BEFORE INITIAL QUOTE

DATA-3 before COUNTR after DATA-3 after

456"ABEL 0 000"ABEL

ANDES"12 0 00000"12

"TWAS BR 0 "TWAS BR

The following example shows the use of INSPECT CONVERTING with AFTER and
BEFORE phrases to examine and replace characters in data item DATA-4. All
characters that follow the first instance of the character / but that precede the first
instance of the character ? (if any) are translated from lowercase to uppercase.
01 DATA-4 PIC X(11).
. . .

INSPECT DATA-4
CONVERTING

"abcdefghijklmnopqrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

AFTER INITIAL "/"
BEFORE INITIAL"?"

DATA-4 before DATA-4 after

a/five/?six a/FIVE/?six

r/Rexx/RRRr r/REXX/RRRR

zfour?inspe zfour?inspe

Converting data items (intrinsic functions)
You can use intrinsic functions to convert character-string data items to several
other formats, for example, to uppercase or lowercase, to reverse order, to
numbers, or to one code page from another.

You can use the NATIONAL-OF and DISPLAY-OF intrinsic functions to convert to and
from national (Unicode) strings.

You can also use the INSPECT statement to convert characters.

“Examples: INSPECT statement” on page 115

RELATED TASKS

“Changing case (UPPER-CASE, LOWER-CASE)” on page 117
“Transforming to reverse order (REVERSE)” on page 117

116 Enterprise COBOL for z/OS, V5.2 Programming Guide

“Converting to numbers (NUMVAL, NUMVAL-C)”
“Converting from one code page to another” on page 118

Changing case (UPPER-CASE, LOWER-CASE)
You can use the UPPER-CASE and LOWER-CASE intrinsic functions to easily change the
case of alphanumeric, alphabetic, or national strings.
01 Item-1 Pic x(30) Value "Hello World!".
01 Item-2 Pic x(30).
. . .

Display Item-1
Display Function Upper-case(Item-1)
Display Function Lower-case(Item-1)
Move Function Upper-case(Item-1) to Item-2
Display Item-2

The code above displays the following messages on the system logical output
device:
Hello World!
HELLO WORLD!
hello world!
HELLO WORLD!

The DISPLAY statements do not change the actual contents of Item-1, but affect only
how the letters are displayed. However, the MOVE statement causes uppercase
letters to replace the contents of Item-2.

Note: The UPPER-CASE and LOWER-CASE intrinsic functions do not support
alphanumeric arguments that contain UTF-8 encoded data.

RELATED TASKS

“Assigning input from a screen or file (ACCEPT)” on page 34
“Displaying values on a screen or in a file (DISPLAY)” on page 35

Transforming to reverse order (REVERSE)
You can reverse the order of the characters in a string by using the REVERSE
intrinsic function.
Move Function Reverse(Orig-cust-name) To Orig-cust-name

For example, the statement above reverses the order of the characters in
Orig-cust-name. If the starting value is JOHNSONbbb, the value after the statement is
performed is bbbNOSNHOJ, where b represents a blank space.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

Converting to numbers (NUMVAL, NUMVAL-C)
The NUMVAL and NUMVAL-C functions convert character strings (alphanumeric or
national literals, or class alphanumeric or class national data items) to numbers.
Use these functions to convert free-format character-representation numbers to
numeric form so that you can process them numerically.
01 R Pic x(20) Value "- 1234.5678".
01 S Pic x(20) Value " $12,345.67CR".
01 Total Usage is Comp-1.
. . .

Compute Total = Function Numval(R) + Function Numval-C(S)

Chapter 6. Handling strings 117

Use NUMVAL-C when the argument includes a currency symbol or comma or both,
as shown in the example above. You can also place an algebraic sign before or after
the character string, and the sign will be processed. The arguments must not
exceed 18 digits when you compile with the default option ARITH(COMPAT)
(compatibility mode) nor 31 digits when you compile with ARITH(EXTEND) (extended
mode), not including the editing symbols.

NUMVAL and NUMVAL-C return long (64-bit) floating-point values in compatibility
mode, and return extended-precision (128-bit) floating-point values in extended
mode. A reference to either of these functions represents a reference to a numeric
data item.

At most 15 decimal digits can be converted accurately to long-precision floating
point (as described in the related reference below about conversions and precision).
If the argument to NUMVAL or NUMVAL-C has more than 15 digits, it is recommended
that you specify the ARITH(EXTEND) compiler option so that an extended-precision
function result that can accurately represent the value of the argument is returned.

When you use NUMVAL or NUMVAL-C, you do not need to statically define numeric
data in a fixed format nor input data in a precise manner. For example, suppose
you define numbers to be entered as follows:
01 X Pic S999V99 leading sign is separate.
. . .

Accept X from Console

The user of the application must enter the numbers exactly as defined by the
PICTURE clause. For example:
+001.23
-300.00

However, using the NUMVAL function, you could code:
01 A Pic x(10).
01 B Pic S999V99.
. . .

Accept A from Console
Compute B = Function Numval(A)

The input could then be:
1.23
-300

RELATED CONCEPTS

“Formats for numeric data” on page 47
“Data format conversions” on page 52
“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 137

RELATED REFERENCES

“Conversions and precision” on page 52
“ARITH” on page 309

Converting from one code page to another
You can nest the DISPLAY-OF and NATIONAL-OF intrinsic functions to easily convert
from any code page to any other code page.

118 Enterprise COBOL for z/OS, V5.2 Programming Guide

For example, the following code converts an EBCDIC string to an ASCII string:
77 EBCDIC-CCSID PIC 9(4) BINARY VALUE 1140.
77 ASCII-CCSID PIC 9(4) BINARY VALUE 819.
77 Input-EBCDIC PIC X(80).
77 ASCII-Output PIC X(80).
. . .

* Convert EBCDIC to ASCII
Move Function Display-of

(Function National-of (Input-EBCDIC EBCDIC-CCSID),
ASCII-CCSID)

to ASCII-output

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 137

Evaluating data items (intrinsic functions)
You can use intrinsic functions to determine the ordinal position of a character in
the collating sequence, to find the largest or smallest item in a series, to find the
length of data item, or to determine when a program was compiled.

Use these intrinsic functions:
v CHAR and ORD to evaluate integers and single alphabetic or alphanumeric

characters with respect to the collating sequence used in a program
v MAX, MIN, ORD-MAX, and ORD-MIN to find the largest and smallest items in a series

of data items, including USAGE NATIONAL data items
v LENGTH to find the length of data items, including USAGE NATIONAL data items
v WHEN-COMPILED to find the date and time when a program was compiled

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

RELATED TASKS

“Evaluating single characters for collating sequence”
“Finding the largest or smallest data item” on page 120
“Finding the length of data items” on page 122
“Finding the date of compilation” on page 123

Evaluating single characters for collating sequence
To find out the ordinal position of a given alphabetic or alphanumeric character in
the collating sequence, use the ORD function with the character as the argument. ORD
returns an integer that represents that ordinal position.

You can use a one-character substring of a data item as the argument to ORD:
IF Function Ord(Customer-record(1:1)) IS > 194 THEN . . .

If you know the ordinal position in the collating sequence of a character, and want
to find the character that it corresponds to, use the CHAR function with the integer
ordinal position as the argument. CHAR returns the required character. For example:
INITIALIZE Customer-Name REPLACING ALPHABETIC BY Function Char(65)

Chapter 6. Handling strings 119

RELATED REFERENCES

CHAR (Enterprise COBOL Language Reference)
ORD (Enterprise COBOL Language Reference)

Finding the largest or smallest data item
To determine which of two or more alphanumeric, alphabetic, or national data
items has the largest value, use the MAX or ORD-MAX intrinsic function. To determine
which item has the smallest value, use MIN or ORD-MIN. These functions evaluate
according to the collating sequence.

To compare numeric items, including those that have USAGE NATIONAL, you can use
MAX, ORD-MAX, MIN, or ORD-MIN. With these intrinsic functions, the algebraic values of
the arguments are compared.

The MAX and MIN functions return the content of one of the arguments that you
supply. For example, suppose that your program has the following data
definitions:
05 Arg1 Pic x(10) Value "THOMASSON ".
05 Arg2 Pic x(10) Value "THOMAS ".
05 Arg3 Pic x(10) Value "VALLEJO ".

The following statement assigns VALLEJObbb to the first 10 character positions of
Customer-record, where b represents a blank space:
Move Function Max(Arg1 Arg2 Arg3) To Customer-record(1:10)

If you used MIN instead, then THOMASbbbb would be assigned.

The functions ORD-MAX and ORD-MIN return an integer that represents the ordinal
position (counting from the left) of the argument that has the largest or smallest
value in the list of arguments that you supply. If you used the ORD-MAX function in
the previous example, the compiler would issue an error message because the
reference to a numeric function is not in a valid place. Using the same arguments
as in the previous example, ORD-MAX can be used as follows:
Compute x = Function Ord-max(Arg1 Arg2 Arg3)

The statement above assigns the integer 3 to x if the same arguments are used as
in the previous example. If you used ORD-MIN instead, the integer 2 would be
returned. The examples above might be more realistic if Arg1, Arg2, and Arg3 were
successive elements of an array (table).

If you specify a national item for any argument, you must specify all arguments as
class national.

RELATED TASKS

“Performing arithmetic” on page 56
“Processing table items using intrinsic functions” on page 89
“Returning variable results with alphanumeric or national functions” on page 121

RELATED REFERENCES

MAX (Enterprise COBOL Language Reference)
MIN (Enterprise COBOL Language Reference)
ORD-MAX (Enterprise COBOL Language Reference)
ORD-MIN (Enterprise COBOL Language Reference)

120 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

Returning variable results with alphanumeric or national
functions
The results of alphanumeric or national functions could be of varying lengths and
values depending on the function arguments.

In the following example, the amount of data moved to R3 and the results of the
COMPUTE statement depend on the values and sizes of R1 and R2:
01 R1 Pic x(10) value "e".
01 R2 Pic x(05) value "f".
01 R3 Pic x(20) value spaces.
01 L Pic 99.
. . .

Move Function Max(R1 R2) to R3
Compute L = Function Length(Function Max(R1 R2))

This code has the following results:
v R2 is evaluated to be larger than R1.
v The string 'fbbbb' is moved to R3, where b represents a blank space. (The unfilled

character positions in R3 are padded with spaces.)
v L evaluates to the value 5.

If R1 contained 'g' instead of 'e', the code would have the following results:
v R1 would evaluate as larger than R2.
v The string 'gbbbbbbbbb' would be moved to R3. (The unfilled character positions

in R3 would be padded with spaces.)
v The value 10 would be assigned to L.

If a program uses national data for function arguments, the lengths and values of
the function results could likewise vary. For example, the following code is
identical to the fragment above, but uses national data instead of alphanumeric
data.
01 R1 Pic n(10) national value "e".
01 R2 Pic n(05) national value "f".
01 R3 Pic n(20) national value spaces.
01 L Pic 99 national.
. . .

Move Function Max(R1 R2) to R3
Compute L = Function Length(Function Max(R1 R2))

This code has the following results, which are similar to the first set of results
except that these are for national characters:
v R2 is evaluated to be larger than R1.
v The string NX"0066 0020 0020 0020 0020" (the equivalent in national characters

of 'fbbbb', where b represents a blank space), shown here in hexadecimal notation
with added spaces for readability, is moved to R3. The unfilled character
positions in R3 are padded with national spaces.

v L evaluates to the value 5, the length in national character positions of R2.

You might be dealing with variable-length output from alphanumeric or national
functions. Plan your program accordingly. For example, you might need to think
about using variable-length files when the records that you are writing could be of
different lengths:
File Section.
FD Output-File Recording Mode V.
01 Short-Customer-Record Pic X(50).
01 Long-Customer-Record Pic X(70).

Chapter 6. Handling strings 121

Working-Storage Section.
01 R1 Pic x(50).
01 R2 Pic x(70).
. . .

If R1 > R2
Write Short-Customer-Record from R1

Else
Write Long-Customer-Record from R2

End-if

RELATED TASKS

“Finding the largest or smallest data item” on page 120
“Performing arithmetic” on page 56

RELATED REFERENCES

MAX (Enterprise COBOL Language Reference)

Finding the length of data items
You can use the LENGTH function in many contexts (including tables and numeric
data) to determine the length of an item. For example, you can use the LENGTH
function to determine the length of an alphanumeric or national literal, or a data
item of any type except DBCS.

The LENGTH function returns the length of a national item (a literal, or any item that
has USAGE NATIONAL, including national group items) as an integer equal to the
length of the argument in national character positions. It returns the length of any
other data item as an integer equal to the length of the argument in alphanumeric
character positions.

The following COBOL statement demonstrates moving a data item into the field in
a record that holds customer names:
Move Customer-name To Customer-record(1:Function Length(Customer-name))

You can also use the LENGTH OF special register, which returns the length in bytes
even for national data. Coding either Function Length(Customer-name) or LENGTH
OF Customer-name returns the same result for alphanumeric items: the length of
Customer-name in bytes.

You can use the LENGTH function only where arithmetic expressions are allowed.
However, you can use the LENGTH OF special register in a greater variety of
contexts. For example, you can use the LENGTH OF special register as an argument
to an intrinsic function that accepts integer arguments. (You cannot use an intrinsic
function as an operand to the LENGTH OF special register.) You can also use the
LENGTH OF special register as a parameter in a CALL statement.

RELATED TASKS

“Performing arithmetic” on page 56
“Creating variable-length tables (DEPENDING ON)” on page 78
“Processing table items using intrinsic functions” on page 89

RELATED REFERENCES

LENGTH (Enterprise COBOL Language Reference)
LENGTH OF (Enterprise COBOL Language Reference)

122 Enterprise COBOL for z/OS, V5.2 Programming Guide

Finding the date of compilation
You can use the WHEN-COMPILED intrinsic function to determine when a program
was compiled. The 21-character result indicates the four-digit year, month, day, and
time (in hours, minutes, seconds, and hundredths of seconds) of compilation, and
the difference in hours and minutes from Greenwich mean time.

The first 16 positions are in the following format:
YYYYMMDDhhmmsshh

You can instead use the WHEN-COMPILED special register to determine the date and
time of compilation in the following format:
MM/DD/YYhh.mm.ss

The WHEN-COMPILED special register supports only a two-digit year, and does not
carry fractions of a second. You can use this special register only as the sending
field in a MOVE statement.

RELATED REFERENCES

WHEN-COMPILED (Enterprise COBOL Language Reference)

Chapter 6. Handling strings 123

124 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 7. Processing data in an international environment

Enterprise COBOL supports Unicode UTF-16 as national character data at run
time. UTF-16 provides a consistent and efficient way to encode plain text. Using
UTF-16, you can develop software that will work with various national languages.

Use these COBOL facilities to code and compile programs that process national
data:
v Data types and literals:

– Character data types, defined with the USAGE NATIONAL clause and a PICTURE
clause that defines data of category national, national-edited, or
numeric-edited

– Numeric data types, defined with the USAGE NATIONAL clause and a PICTURE
clause that defines a numeric data item (a national decimal item) or an external
floating-point data item (a national floating-point item)

– National literals, specified with literal prefix N or NX
– Figurative constant ALL national-literal

– Figurative constants QUOTE, SPACE, HIGH-VALUE, LOW-VALUE, or ZERO, which have
national character (UTF-16) values when used in national-character contexts

v The COBOL statements shown in the related reference below about COBOL
statements and national data

v Intrinsic functions:
– NATIONAL-OF to convert an alphanumeric or double-byte character set (DBCS)

character string to USAGE NATIONAL (UTF-16)
– DISPLAY-OF to convert a national character string to USAGE DISPLAY in a

selected code page (EBCDIC, ASCII, EUC, or UTF-8)
– The other intrinsic functions shown in the related reference below about

intrinsic functions and national data
v The GROUP-USAGE NATIONAL clause to define groups that contain only USAGE

NATIONAL data items and that behave like elementary category national items in
most operations

v Compiler options:
– CODEPAGE to specify the code page to use for alphanumeric and DBCS data in

your program
– NSYMBOL to control whether national or DBCS processing is used for the N

symbol in literals and PICTURE clauses

You can also take advantage of implicit conversions of alphanumeric or DBCS data
items to national representation. The compiler performs such conversions (in most
cases) when you move these items to national data items, or compare these items
with national data items.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129
“National groups” on page 133

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 130
“Converting to or from national (Unicode) representation” on page 137

© Copyright IBM Corp. 1991, 2018 125

“Processing UTF-8 data” on page 141
“Processing Chinese GB 18030 data” on page 146
“Comparing national (UTF-16) data” on page 147
“Coding for use of DBCS support” on page 150
Appendix B, “Converting double-byte character set (DBCS) data,” on page 695

RELATED REFERENCES

“COBOL statements and national data”
“Intrinsic functions and national data” on page 128
“CODEPAGE” on page 313
“NSYMBOL” on page 340
Classes and categories of data (Enterprise COBOL Language Reference)
Data categories and PICTURE rules (Enterprise COBOL Language Reference)
MOVE statement (Enterprise COBOL Language Reference)
General relation conditions (Enterprise COBOL Language Reference)

COBOL statements and national data
You can use national data with the PROCEDURE DIVISION and compiler-directing
statements shown in the table below.

Table 15. COBOL statements and national data

COBOL
statement Can be national Comment For more information

ACCEPT identifier-1, identifier-2 identifier-1 is converted
from the native code page
specified in the CODEPAGE
compiler option only if
input is from CONSOLE.

“Assigning input from a screen or file
(ACCEPT)” on page 34

ADD All identifiers can be
numeric items that have
USAGE NATIONAL. identifier-3
(GIVING) can be
numeric-edited with USAGE
NATIONAL.

“Using COMPUTE and other
arithmetic statements” on page 56

CALL identifier-2, identifier-3,
identifier-4, identifier-5;
literal-2, literal-3

“Passing data” on page 491

COMPUTE identifier-1 can be numeric
or numeric-edited with
USAGE NATIONAL.
arithmetic-expression can
contain numeric items that
have USAGE NATIONAL.

“Using COMPUTE and other
arithmetic statements” on page 56

COPY . . .
REPLACING

operand-1, operand-2 of the
REPLACING phrase

Chapter 18, “Compiler-directing
statements,” on page 381

DISPLAY identifier-1 identifier-1 is converted to
EBCDIC only if the CONSOLE
mnemonic-name is
specified directly or
indirectly.

“Displaying values on a screen or in a
file (DISPLAY)” on page 35

126 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 15. COBOL statements and national data (continued)

COBOL
statement Can be national Comment For more information

DIVIDE All identifiers can be
numeric items that have
USAGE NATIONAL. identifier-3
(GIVING) and identifier-4
(REMAINDER) can be
numeric-edited with USAGE
NATIONAL.

“Using COMPUTE and other
arithmetic statements” on page 56

INITIALIZE identifier-1; identifier-2 or
literal-1 of the REPLACING
phrase

If you specify REPLACING
NATIONAL or REPLACING
NATIONAL-EDITED, identifier-2
or literal-1 must be valid as
a sending operand in a
move to identifier-1.

“Examples: initializing data items” on
page 28

INSPECT All identifiers and literals.
(identifier-2, the TALLYING
integer data item, can have
USAGE NATIONAL.)

If any of these (other than
identifier-2, the TALLYING
identifier) have USAGE
NATIONAL, all must be
national.

“Tallying and replacing data items
(INSPECT)” on page 115

INVOKE Method-name as identifier-2
or literal-1; identifier-3 or
literal-2 in the BY VALUE
phrase

“Invoking methods (INVOKE)” on
page 610

MERGE Merge keys The COLLATING SEQUENCE
phrase does not apply.

“Setting sort or merge criteria” on
page 227

MOVE Both the sender and
receiver, or only the
receiver

Implicit conversions are
performed for valid MOVE
operands.

“Assigning values to elementary data
items (MOVE)” on page 32

“Assigning values to group data items
(MOVE)” on page 33

MULTIPLY All identifiers can be
numeric items that have
USAGE NATIONAL. identifier-3
(GIVING) can be
numeric-edited with USAGE
NATIONAL.

“Using COMPUTE and other
arithmetic statements” on page 56

SEARCH ALL
(binary search)

Both the key data item and
its object of comparison

The key data item and its
object of comparison must
be compatible according to
the rules of comparison. If
the object of comparison is
of class national, the key
must be also.

“Doing a binary search (SEARCH
ALL)” on page 87

SORT Sort keys The COLLATING SEQUENCE
phrase does not apply.

“Setting sort or merge criteria” on
page 227

STRING All identifiers and literals.
(identifier-4, the POINTER
integer data item, can have
USAGE NATIONAL.)

If identifier-3, the receiving
data item, is national, all
identifiers and literals
(other than identifier-4, the
POINTER identifier) must be
national.

“Joining data items (STRING)” on
page 105

Chapter 7. Processing data in an international environment 127

Table 15. COBOL statements and national data (continued)

COBOL
statement Can be national Comment For more information

SUBTRACT All identifiers can be
numeric items that have
USAGE NATIONAL. identifier-3
(GIVING) can be
numeric-edited with USAGE
NATIONAL.

“Using COMPUTE and other
arithmetic statements” on page 56

UNSTRING All identifiers and literals.
(identifier-6 and identifier-7,
the COUNT and TALLYING
integer data items,
respectively, can have USAGE
NATIONAL.)

If identifier-4, a receiving
data item, has USAGE
NATIONAL, the sending data
item and each delimiter
must have USAGE NATIONAL,
and each literal must be
national.

“Splitting data items (UNSTRING)” on
page 107

XML GENERATE identifier-1 (the generated
XML document); identifier-2
(the source field or fields);
identifier-4 or literal-4 (the
namespace identifier);
identifier-5 or literal-5 (the
namespace prefix)

Chapter 29, “Producing XML output,”
on page 571

XML PARSE identifier-1 (the XML
document)

The XML-NTEXT special
register contains national
character document
fragments during parsing.
XML-NNAMESPACE and
XML-NNAMESPACE-PREFIX
special registers contain the
associated namespace
identifier and namespace
prefix, if any, in national
characters.

Chapter 28, “Processing XML input,”
on page 527

RELATED TASKS

“Defining numeric data” on page 43
“Displaying numeric data” on page 45
“Using national data (Unicode) in COBOL” on page 130
“Comparing national (UTF-16) data” on page 147

RELATED REFERENCES

“CODEPAGE” on page 313
Classes and categories of data (Enterprise COBOL Language Reference)

Intrinsic functions and national data
You can use arguments of class national with the intrinsic functions shown in the
table below.

Table 16. Intrinsic functions and national character data

Intrinsic function Function type For more information

DISPLAY-OF Alphanumeric “Converting national to alphanumeric (DISPLAY-OF)” on
page 139

LENGTH Integer “Finding the length of data items” on page 122

128 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 16. Intrinsic functions and national character data (continued)

Intrinsic function Function type For more information

LOWER-CASE, UPPER-CASE National “Changing case (UPPER-CASE, LOWER-CASE)” on page 117

NUMVAL, NUMVAL-C Numeric “Converting to numbers (NUMVAL, NUMVAL-C)” on page
117

MAX, MIN National “Finding the largest or smallest data item” on page 120

ORD-MAX, ORD-MIN Integer “Finding the largest or smallest data item” on page 120

REVERSE National “Transforming to reverse order (REVERSE)” on page 117

You can use national decimal arguments wherever zoned decimal arguments are
allowed. You can use national floating-point arguments wherever display
floating-point arguments are allowed. (See the related reference below about
arguments for a complete list of intrinsic functions that can take integer or numeric
arguments.)

RELATED TASKS

“Defining numeric data” on page 43
“Using national data (Unicode) in COBOL” on page 130

RELATED REFERENCES

Arguments (Enterprise COBOL Language Reference)
Classes and categories of data (Enterprise COBOL Language Reference)

Unicode and the encoding of language characters
Enterprise COBOL provides basic runtime support for Unicode, which can handle
tens of thousands of characters that cover all commonly used characters and
symbols in the world.

A character set is a defined set of characters, but is not associated with a coded
representation. A coded character set (also referred to in this documentation as a code
page) is a set of unambiguous rules that relate the characters of the set to their
coded representation. Each code page has a name and is like a table that sets up
the symbols for representing a character set; each symbol is associated with a
unique bit pattern, or code point. Each code page also has a coded character set
identifier (CCSID), which is a value from 1 to 65,536.

Unicode has several encoding schemes, called Unicode Transformation Format (UTF),
such as UTF-8, UTF-16, and UTF-32. Enterprise COBOL uses UTF-16 (CCSID 1200)
in big-endian format as the representation for national literals and data items that
have USAGE NATIONAL.

UTF-8 represents ASCII invariant characters a-z, A-Z, 0-9, and certain special
characters such as ' @ , . + - = / * () the same way that they are represented in
ASCII. UTF-16 represents these characters as NX’00nn’, where X’nn’ is the
representation of the character in ASCII.

For example, the string ’ABC’ is represented in UTF-16 as NX’004100420043’. In
UTF-8, ’ABC’ is represented as X’414243’.

One or more encoding units are used to represent a character from a coded
character set. For UTF-16, an encoding unit takes 2 bytes of storage. Any character

Chapter 7. Processing data in an international environment 129

defined in any EBCDIC, ASCII, or EUC code page is represented in one UTF-16
encoding unit when the character is converted to the national data representation.

Cross-platform considerations: Enterprise COBOL and COBOL for AIX® support
UTF-16 in big-endian format in national data. COBOL for Windows supports
UTF-16 in little-endian format (UTF-16LE) in national data. If you are porting
Unicode data that is encoded in UTF-16LE representation to Enterprise COBOL
from another platform, you must convert that data to UTF-16 in big-endian format
to process the data as national data.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 137

RELATED REFERENCES

“Storage of character data” on page 137
Character sets and code pages (Enterprise COBOL Language Reference)

Using national data (Unicode) in COBOL
In Enterprise COBOL, you can specify national (UTF-16) data in any of several
ways.

These types of national data are available:
v National data items (categories national, national-edited, and numeric-edited)
v National literals
v Figurative constants as national characters
v Numeric data items (national decimal and national floating-point)

In addition, you can define national groups that contain only data items that
explicitly or implicitly have USAGE NATIONAL, and that behave in the same way as
elementary category national data items in most operations.

These declarations affect the amount of storage that is needed.

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129
“National groups” on page 133

RELATED TASKS

“Defining national data items”
“Using national literals” on page 131
“Using national-character figurative constants” on page 132
“Defining national numeric data items” on page 133
“Using national groups” on page 134
“Converting to or from national (Unicode) representation” on page 137
“Comparing national (UTF-16) data” on page 147

RELATED REFERENCES

“Storage of character data” on page 137
Classes and categories of data (Enterprise COBOL Language Reference)

Defining national data items
Define national data items with the USAGE NATIONAL clause to hold national
(UTF-16) character strings.

130 Enterprise COBOL for z/OS, V5.2 Programming Guide

You can define national data items of the following categories:
v National
v National-edited
v Numeric-edited

To define a category national data item, code a PICTURE clause that contains only
one or more PICTURE symbols N.

To define a national-edited data item, code a PICTURE clause that contains at least
one of each of the following symbols:
v Symbol N
v Simple insertion editing symbol B, 0, or /

To define a numeric-edited data item of class national, code a PICTURE clause that
defines a numeric-edited item (for example, -$999.99) and code a USAGE NATIONAL
clause. You can use a numeric-edited data item that has USAGE NATIONAL in the
same way that you use a numeric-edited item that has USAGE DISPLAY.

You can also define a data item as numeric-edited by coding the BLANK WHEN ZERO
clause for an elementary item that is defined as numeric by its PICTURE clause.

If you code a PICTURE clause but do not code a USAGE clause for data items that
contain only one or more PICTURE symbols N, you can use the compiler option
NSYMBOL(NATIONAL) to ensure that such items are treated as national data items
instead of as DBCS items.

RELATED TASKS

“Displaying numeric data” on page 45

RELATED REFERENCES

“NSYMBOL” on page 340
BLANK WHEN ZERO clause (Enterprise COBOL Language Reference)

Using national literals
To specify national literals, use the prefix character N and compile with the option
NSYMBOL(NATIONAL).

You can use either of these notations:
v N"character-data"

v N’character-data’

If you compile with the option NSYMBOL(DBCS), the literal prefix character N
specifies a DBCS literal, not a national literal.

To specify a national literal as a hexadecimal value, use the prefix NX. You can use
either of these notations:
v NX"hexadecimal-digits"

v NX’hexadecimal-digits’

Each of the following MOVE statements sets the national data item Y to the UTF-16
value of the characters 'AB':

Chapter 7. Processing data in an international environment 131

01 Y pic NN usage national.
. . .

Move NX"00410042" to Y
Move N"AB" to Y
Move "AB" to Y

Do not use alphanumeric hexadecimal literals in contexts that call for national
literals, because such usage is easily misunderstood. For example, the following
statement also results in moving the UTF-16 characters 'AB' (not the hexadecimal bit
pattern C1C2) to Y, where Y is defined as USAGE NATIONAL:
Move X"C1C2" to Y

You cannot use national literals in the SPECIAL-NAMES paragraph or as
program-names. You can use a national literal to name an object-oriented method
in the METHOD-ID paragraph or to specify a method-name in an INVOKE statement.

RELATED TASKS

“Using literals” on page 25

RELATED REFERENCES

“NSYMBOL” on page 340
National literals (Enterprise COBOL Language Reference)

Using national-character figurative constants
You can use the figurative constant ALL national-literal in a context that requires
national characters. ALL national-literal represents all or part of the string that is
generated by successive concatenations of the encoding units that make up the
national literal.

You can use the figurative constants QUOTE, SPACE, HIGH-VALUE, LOW-VALUE, or ZERO
in a context that requires national characters, such as a MOVE statement, an implicit
move, or a relation condition that has national operands. In these contexts, the
figurative constant represents a national-character (UTF-16) value.

When you use the figurative constant HIGH-VALUE in a context that requires
national characters, its value is NX’FFFF’. When you use LOW-VALUE in a context
that requires national characters, its value is NX’0000’.

Restrictions: You must not use HIGH-VALUE or the value assigned from HIGH-VALUE
in a way that results in conversion of the value from one data representation to
another (for example, between USAGE DISPLAY and USAGE NATIONAL). X’FF’ (the
value of HIGH-VALUE in an alphanumeric context when the EBCDIC collating
sequence is being used) does not represent a valid EBCDIC character, and NX’FFFF’
does not represent a valid national character. Conversion of such a value to
another representation results in a substitution character being used (not X’FF’ or
NX’FFFF’). Consider the following example:
01 natl-data PIC NN Usage National.
01 alph-data PIC XX.
. . .

MOVE HIGH-VALUE TO natl-data, alph-data
IF natl-data = alph-data. . .

The IF statement above evaluates as false even though each of its operands was set
to HIGH-VALUE. Before an elementary alphanumeric operand is compared to a
national operand, the alphanumeric operand is treated as though it were moved to
a temporary national data item, and the alphanumeric characters are converted to

132 Enterprise COBOL for z/OS, V5.2 Programming Guide

the corresponding national characters. When X’FF’ is converted to UTF-16,
however, the UTF-16 item gets a substitution character value and so does not
compare equally to NX’FFFF’.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 137
“Comparing national (UTF-16) data” on page 147

RELATED REFERENCES

Figurative constants (Enterprise COBOL Language Reference)
DISPLAY-OF (Enterprise COBOL Language Reference)
Support for Unicode: Using Unicode Services

Defining national numeric data items
Define data items with the USAGE NATIONAL clause to hold numeric data that is
represented in national characters (UTF-16). You can define national decimal items
and national floating-point items.

To define a national decimal item, code a PICTURE clause that contains only the
symbols 9, P, S, and V. If the PICTURE clause contains S, the SIGN IS SEPARATE
clause must be in effect for that item.

To define a national floating-point item, code a PICTURE clause that defines a
floating-point item (for example, +99999.9E-99).

You can use national decimal items in the same way that you use zoned decimal
items. You can use national floating-point items in the same way that you use
display floating-point items.

RELATED TASKS

“Defining numeric data” on page 43
“Displaying numeric data” on page 45

RELATED REFERENCES

SIGN clause (Enterprise COBOL Language Reference)

National groups
National groups, which are specified either explicitly or implicitly with the
GROUP-USAGE NATIONAL clause, contain only data items that have USAGE NATIONAL. In
most cases, a national group item is processed as though it were redefined as an
elementary category national item described as PIC N(m), where m is the number
of national (UTF-16) characters in the group.

For some operations on national groups, however (just as for some operations on
alphanumeric groups), group semantics apply. Such operations (for example, MOVE
CORRESPONDING and INITIALIZE) recognize or process the elementary items within
the national group.

Where possible, use national groups instead of alphanumeric groups that contain
USAGE NATIONAL items. National groups provide several advantages for the
processing of national data compared to the processing of national data within
alphanumeric groups:
v When you move a national group to a longer data item that has USAGE NATIONAL,

the receiving item is padded with national characters. By contrast, if you move
an alphanumeric group that contains national characters to a longer

Chapter 7. Processing data in an international environment 133

alphanumeric group that contains national characters, alphanumeric spaces are
used for padding. As a result, mishandling of data items could occur.

v When you move a national group to a shorter data item that has USAGE
NATIONAL, the national group is truncated at national-character boundaries. By
contrast, if you move an alphanumeric group that contains national characters to
a shorter alphanumeric group that contains national characters, truncation might
occur between the 2 bytes of a national character.

v When you move a national group to a national-edited or numeric-edited item,
the content of the group is edited. By contrast, if you move an alphanumeric
group to an edited item, no editing takes place.

v When you use a national group as an operand in a STRING, UNSTRING, or INSPECT
statement:
– The group content is processed as national characters rather than as

single-byte characters.
– TALLYING and POINTER operands operate at the logical level of national

characters.
– The national group operand is supported with a mixture of other national

operand types.
By contrast, if you use an alphanumeric group that contains national characters
in these contexts, the characters are processed byte by byte. As a result, invalid
handling or corruption of data could occur.

USAGE NATIONAL groups: A group item can specify the USAGE NATIONAL clause at the
group level as a convenient shorthand for the USAGE of each of the elementary data
items within the group. Such a group is not a national group, however, but an
alphanumeric group, and behaves in many operations, such as moves and
compares, like an elementary data item of USAGE DISPLAY (except that no editing or
conversion of data occurs).

RELATED TASKS

“Assigning values to group data items (MOVE)” on page 33
“Joining data items (STRING)” on page 105
“Splitting data items (UNSTRING)” on page 107
“Tallying and replacing data items (INSPECT)” on page 115
“Using national groups”

RELATED REFERENCES

GROUP-USAGE clause (Enterprise COBOL Language Reference)

Using national groups
To define a group data item as a national group, code a GROUP-USAGE NATIONAL
clause at the group level for the item. The group can contain only data items that
explicitly or implicitly have USAGE NATIONAL.

The following data description entry specifies that a level-01 group and its
subordinate groups are national group items:
01 Nat-Group-1 GROUP-USAGE NATIONAL.

02 Group-1.
04 Month PIC 99.
04 DayOf PIC 99.
04 Year PIC 9999.

02 Group-2 GROUP-USAGE NATIONAL.
04 Amount PIC 9(4).99 USAGE NATIONAL.

134 Enterprise COBOL for z/OS, V5.2 Programming Guide

In the example above, Nat-Group-1 is a national group, and its subordinate groups
Group-1 and Group-2 are also national groups. A GROUP-USAGE NATIONAL clause is
implied for Group-1, and USAGE NATIONAL is implied for the subordinate items in
Group-1. Month, DayOf, and Year are national decimal items, and Amount is a
numeric-edited item that has USAGE NATIONAL.

You can subordinate national groups within alphanumeric groups as in the
following example:
01 Alpha-Group-1.

02 Group-1.
04 Month PIC 99.
04 DayOf PIC 99.
04 Year PIC 9999.

02 Group-2 GROUP-USAGE NATIONAL.
04 Amount PIC 9(4).99.

In the example above, Alpha-Group-1 and Group-1 are alphanumeric groups; USAGE
DISPLAY is implied for the subordinate items in Group-1. (If Alpha-Group-1 specified
USAGE NATIONAL at the group level, USAGE NATIONAL would be implied for each of
the subordinate items in Group-1. However, Alpha-Group-1 and Group-1 would be
alphanumeric groups, not national groups, and would behave like alphanumeric
groups during operations such as moves and compares.) Group-2 is a national
group, and USAGE NATIONAL is implied for the numeric-edited item Amount.

You cannot subordinate alphanumeric groups within national groups. All
elementary items within a national group must be explicitly or implicitly described
as USAGE NATIONAL, and all group items within a national group must be explicitly
or implicitly described as GROUP-USAGE NATIONAL.

RELATED CONCEPTS

“National groups” on page 133

RELATED TASKS

“Using national groups as elementary items”
“Using national groups as group items” on page 136

RELATED REFERENCES

GROUP-USAGE clause (Enterprise COBOL Language Reference)

Using national groups as elementary items
In most cases, you can use a national group as though it were an elementary data
item.

In the following example, a national group item, Group-1, is moved to a
national-edited item, Edited-date. Because Group-1 is treated as an elementary
data item during the move, editing takes place in the receiving data item. The
value in Edited-date after the move is 06/23/2010 in national characters.
01 Edited-date PIC NN/NN/NNNN USAGE NATIONAL.
01 Group-1 GROUP-USAGE NATIONAL.

02 Month PIC 99 VALUE 06.
02 DayOf PIC 99 VALUE 23.
02 Year PIC 9999 VALUE 2010.
. . .
MOVE Group-1 to Edited-date.

If Group-1 were instead an alphanumeric group in which each of its subordinate
items had USAGE NATIONAL (specified either explicitly with a USAGE NATIONAL clause
on each elementary item, or implicitly with a USAGE NATIONAL clause at the group

Chapter 7. Processing data in an international environment 135

level), a group move, rather than an elementary move, would occur. Neither
editing nor conversion would take place during the move. The value in the first
eight character positions of Edited-date after the move would be 06232010 in
national characters, and the value in the remaining two character positions would
be 4 bytes of alphanumeric spaces.

RELATED TASKS

“Assigning values to group data items (MOVE)” on page 33
“Comparing national data and alphanumeric-group operands” on page 149
“Using national groups as group items”

RELATED REFERENCES

MOVE statement (Enterprise COBOL Language Reference)

Using national groups as group items
In some cases when you use a national group, it is handled with group semantics;
that is, the elementary items in the group are recognized or processed.

In the following example, an INITIALIZE statement that acts upon national group
item Group-OneN causes the value 15 in national characters to be moved to only the
numeric items in the group:
01 Group-OneN Group-Usage National.

05 Trans-codeN Pic N Value "A".
05 Part-numberN Pic NN Value "XX".
05 Trans-quanN Pic 99 Value 10.
. . .
Initialize Group-OneN Replacing Numeric Data By 15

Because only Trans-quanN in Group-OneN above is numeric, only Trans-quanN
receives the value 15. The other subordinate items are unchanged.

The table below summarizes the cases where national groups are processed with
group semantics.

Table 17. National group items that are processed with group semantics

Language feature Uses of national group items Comment

CORRESPONDING phrase
of the ADD, SUBTRACT,
or MOVE statement

Specify a national group item for
processing as a group in
accordance with the rules of the
CORRESPONDING phrase.

Elementary items within the
national group are processed
like elementary items that
have USAGE NATIONAL within
an alphanumeric group.

Host variable in EXEC
SQL statement

Specify a national group item as a
host variable.

The national group item is in
effect shorthand for the set of
host variables that are
subordinate to the group item.

INITIALIZE statement Specify a national group for
processing as a group in
accordance with the rules of the
INITIALIZE statement.

Elementary items within the
national group are initialized
like elementary items that
have USAGE NATIONAL within
an alphanumeric group.

Name qualification Use the name of a national group
item to qualify the names of
elementary data items and of
subordinate group items in the
national group.

Follow the same rules for
qualification as for an
alphanumeric group.

136 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 17. National group items that are processed with group semantics (continued)

Language feature Uses of national group items Comment

THROUGH phrase of the
RENAMES clause

To specify a national group item in
the THROUGH phrase, use the same
rules as for an alphanumeric group
item.

The result is an alphanumeric
group item.

FROM phrase of the
XML GENERATE
statement

Specify a national group item in
the FROM phrase for processing as a
group in accordance with the rules
of the XML GENERATE statement.

Elementary items within the
national group are processed
like elementary items that
have USAGE NATIONAL within
an alphanumeric group.

RELATED TASKS

“Initializing a structure (INITIALIZE)” on page 30
“Initializing a table (INITIALIZE)” on page 73
“Assigning values to elementary data items (MOVE)” on page 32
“Assigning values to group data items (MOVE)” on page 33
“Finding the length of data items” on page 122
“Generating XML output” on page 571
“Using national group items in SQL statements” on page 444

RELATED REFERENCES

Qualification (Enterprise COBOL Language Reference)
RENAMES clause (Enterprise COBOL Language Reference)

Storage of character data
Use the table below to compare alphanumeric (DISPLAY), DBCS (DISPLAY-1), and
Unicode (NATIONAL) encoding and to plan storage usage.

Table 18. Encoding and size of alphanumeric, DBCS, and national data

Characteristic DISPLAY DISPLAY-1 NATIONAL

Character encoding unit 1 byte 2 bytes 2 bytes

Code page EBCDIC EBCDIC DBCS UTF-16BE1

Encoding units per graphic
character

1 1 1 or 22

Bytes per graphic character 1 byte 2 bytes 2 or 4 bytes

1. Use the CODEPAGE compiler option to specify the EBCDIC code page that is applicable to
alphanumeric or DBCS data.

2. Most characters are represented in UTF-16 using one encoding unit. In particular, the
following characters are represented using a single UTF-16 encoding unit per character:

v COBOL characters A-Z, a-z, 0-9, space, + - * / = $, ; . " () > < :'

v All characters that are converted from an EBCDIC or ASCII code page

RELATED CONCEPTS

“Unicode and the encoding of language characters” on page 129

Converting to or from national (Unicode) representation
You can implicitly or explicitly convert data items to national (UTF-16)
representation.

Chapter 7. Processing data in an international environment 137

You can implicitly convert alphabetic, alphanumeric, DBCS, or integer data to
national data by using the MOVE statement. Implicit conversions also take place in
other COBOL statements, such as IF statements that compare an alphanumeric
data item with a data item that has USAGE NATIONAL.

You can explicitly convert to and from national data items by using the intrinsic
functions NATIONAL-OF and DISPLAY-OF, respectively. By using these intrinsic
functions, you can specify a code page for the conversion that is different from the
code page that is in effect with the CODEPAGE compiler option.

RELATED TASKS

“Converting alphanumeric, DBCS, and integer to national (MOVE)”
“Converting alphanumeric or DBCS to national (NATIONAL-OF)” on page 139
“Converting national to alphanumeric (DISPLAY-OF)” on page 139
“Overriding the default code page” on page 140
“Comparing national (UTF-16) data” on page 147

RELATED REFERENCES

“CODEPAGE” on page 313
“Conversion exceptions” on page 140

Converting alphanumeric, DBCS, and integer to national
(MOVE)

You can use a MOVE statement to implicitly convert data to national representation.

You can move the following kinds of data to category national or national-edited
data items, and thus convert the data to national representation:
v Alphabetic
v Alphanumeric
v Alphanumeric-edited
v DBCS
v Integer of USAGE DISPLAY
v Numeric-edited of USAGE DISPLAY

You can likewise move the following kinds of data to numeric-edited data items
that have USAGE NATIONAL:
v Alphanumeric
v Display floating-point (floating-point of USAGE DISPLAY)
v Numeric-edited of USAGE DISPLAY
v Integer of USAGE DISPLAY

For complete rules about moves to national data, see the related reference about
the MOVE statement.

For example, the MOVE statement below moves the alphanumeric literal "AB" to the
national data item UTF16-Data:
01 UTF16-Data Pic N(2) Usage National.

. . .
Move "AB" to UTF16-Data

After the MOVE statement above, UTF16-Data contains NX’00410042’, the national
representation of the alphanumeric characters 'AB'.

138 Enterprise COBOL for z/OS, V5.2 Programming Guide

If padding is required in a receiving data item that has USAGE NATIONAL, the default
UTF-16 space character (NX’0020’) is used. If truncation is required, it occurs at the
boundary of a national-character position.

RELATED TASKS

“Assigning values to elementary data items (MOVE)” on page 32
“Assigning values to group data items (MOVE)” on page 33
“Displaying numeric data” on page 45
“Coding for use of DBCS support” on page 150

RELATED REFERENCES

MOVE statement (Enterprise COBOL Language Reference)

Converting alphanumeric or DBCS to national (NATIONAL-OF)
Use the NATIONAL-OF intrinsic function to convert alphabetic, alphanumeric, or
DBCS data to a national data item. Specify the source code page as the second
argument if the source is encoded in a different code page than is in effect with the
CODEPAGE compiler option.

“Example: converting to and from national data” on page 140

RELATED TASKS

“Processing UTF-8 data” on page 141
“Processing Chinese GB 18030 data” on page 146
“Processing alphanumeric data items that contain DBCS data” on page 152

RELATED REFERENCES

“CODEPAGE” on page 313
NATIONAL-OF (Enterprise COBOL Language Reference)

Converting national to alphanumeric (DISPLAY-OF)
Use the DISPLAY-OF intrinsic function to convert national data to an alphanumeric
(USAGE DISPLAY) character string that is represented in a code page that you specify
as the second argument.

If you omit the second argument, the output code page is the one that was in
effect with the CODEPAGE compiler option when the source was compiled.

If you specify an EBCDIC or ASCII code page that combines single-byte character
set (SBCS) and DBCS characters, the returned string might contain a mixture of
SBCS and DBCS characters. The DBCS substrings are delimited by shift-in and
shift-out characters if the code page in effect for the function is an EBCDIC code
page.

“Example: converting to and from national data” on page 140

RELATED TASKS

“Processing UTF-8 data” on page 141
“Processing Chinese GB 18030 data” on page 146

RELATED REFERENCES

DISPLAY-OF (Enterprise COBOL Language Reference)

Chapter 7. Processing data in an international environment 139

Overriding the default code page
In some cases, you might need to convert data to or from a code page that differs
from the CCSID that is specified as the CODEPAGE option value. To do so, convert
the item by using a conversion function in which you explicitly specify the code
page.

If you specify a code page as an argument to the DISPLAY-OF intrinsic function, and
the code page differs from the code page that is in effect with the CODEPAGE
compiler option, do not use the function result in any operations that involve
implicit conversion (such as an assignment to, or comparison with, a national data
item). Such operations assume the EBCDIC code page that is specified with the
CODEPAGE compiler option.

RELATED REFERENCES

“CODEPAGE” on page 313

Conversion exceptions
Implicit or explicit conversion between national data and alphanumeric data can
fail and generate a severity-3 Language Environment condition.

Failure can occur if the code page that you specified implicitly or explicitly is not a
valid code page.

A character that does not have a counterpart in the target CCSID does not result in
a conversion exception. Such a character is converted to a substitution character in
the target code page.

RELATED REFERENCES

“CODEPAGE” on page 313

Example: converting to and from national data
The following example shows the NATIONAL-OF and DISPLAY-OF intrinsic functions
and the MOVE statement for converting to and from national (UTF-16) data items. It
also demonstrates the need for explicit conversions when you operate on strings
that are encoded in multiple code pages.
CBL CODEPAGE(00037)
* . . .
01 Data-in-Unicode pic N(100) usage national.
01 Data-in-Greek pic X(100).
01 other-data-in-US-English pic X(12) value "PRICE in $ =".
* . . .

Read Greek-file into Data-in-Greek
Move function National-of(Data-in-Greek, 00875)

to Data-in-Unicode
* . . . process Data-in-Unicode here . . .

Move function Display-of(Data-in-Unicode, 00875)
to Data-in-Greek

Write Greek-record from Data-in-Greek

The example above works correctly because the input code page is specified.
Data-in-Greek is converted as data represented in CCSID 00875 (Greek). However,
the following statement results in an incorrect conversion unless all the characters
in the item happen to be among those that have a common representation in both
the Greek and the English code pages:
Move Data-in-Greek to Data-in-Unicode

140 Enterprise COBOL for z/OS, V5.2 Programming Guide

The MOVE statement above converts Data-in-Greek to Unicode representation based
on the CCSID 00037 (U.S. English) to UTF-16 conversion. This conversion does not
produce the expected results because Data-in-Greek is encoded in CCSID 00875.

If you can correctly set the CODEPAGE compiler option to CCSID 00875 (that is, the
rest of your program also handles EBCDIC data in Greek), you can code the same
example correctly as follows:
CBL CODEPAGE(00875)
* . . .
01 Data-in-Unicode pic N(100) usage national.
01 Data-in-Greek pic X(100).
* . . .

Read Greek-file into Data-in-Greek
* . . . process Data-in-Greek here ...
* . . . or do the following (if need to process data in Unicode):

Move Data-in-Greek to Data-in-Unicode
* . . . process Data-in-Unicode

Move function Display-of(Data-in-Unicode) to Data-in-Greek
Write Greek-record from Data-in-Greek

Processing UTF-8 data
To process UTF-8 data, first convert the UTF-8 data to UTF-16 in a national data
item. After processing the national data, convert it back to UTF-8 for output. For
the conversions, use the intrinsic functions NATIONAL-OF and DISPLAY-OF,
respectively. Use code page 1208 for UTF-8 data.

National data is encoded in UTF-16, which uses one encoding unit for almost all
commonly encountered characters. With this property, you can use string
operations such as reference modification on the national data. If it is more
convenient to retain the UTF-8 encoding, use the Unicode intrinsic functions to
assist with processing the data. For details, see “Using intrinsic functions to
process UTF-8 encoded data” on page 142.

Take the following steps to convert ASCII or EBCDIC data to UTF-8:
1. Use the function NATIONAL-OF to convert the ASCII or EBCDIC string to a

national (UTF-16) string.
2. Use the function DISPLAY-OF to convert the national string to UTF-8.

The following example converts Greek EBCDIC data to UTF-8:

Usage note: Use care if you use reference modification to refer to data encoded in
UTF-8. UTF-8 characters are encoded with a varying number of bytes per
character. Avoid operations that might split a multibyte character.

RELATED TASKS

“Referring to substrings of data items” on page 111
“Converting to or from national (Unicode) representation” on page 137
“Parsing XML documents encoded in UTF-8” on page 551
“Using intrinsic functions to process UTF-8 encoded data” on page 142

Chapter 7. Processing data in an international environment 141

Using intrinsic functions to process UTF-8 encoded data
If it is more convenient to keep your data encoded in UTF-8, use the Unicode
intrinsic functions to facilitate testing and processing the UTF-8 data.

You can use the following intrinsic functions:

UVALID To verify that the UTF-8 character data is well-formed

USUPPLEMENTARY
If the data is to be converted to national, and it is important that every
character can be represented by a single 16-bit encoding unit, use the
USUPPLEMENTARY function to determine whether a valid UTF-8 character
string contains a Unicode supplementary code point; that is, a code point
with a Unicode scalar value above U+FFFF, requiring a 4-byte
representation in UTF-8.

USUBSTR
It provides a convenient alternative to reference modification for referring
to substrings of the UTF-8 character string. USUBSTR expects character
position and length arguments versus the computed byte locations and
counts required by reference modification.

Auxiliary functions can provide additional information about a valid UTF-8
character string:

ULENGTH
To determine the total number of Unicode code points in the string

UPOS To determine the byte position in the string of the nth Unicode code point

UWIDTH To determine the width in bytes of the nth Unicode code point in the
string

The following code fragment illustrates UTF-8 validity checking, and the use of the
auxiliary functions:
checkUTF-8-validity.

Compute u = function UVALID(UTF-8-testStr)
If u not = 0
Display ’checkUTF-8-validity failure:’
Display ’ The UTF-8 representation is not valid,’

’starting at byte ’ u ’.’
Compute v = function ULENGTH(UTF-8-testStr(1:u - 1))
Compute u = function UPOS(UTF-8-testStr v)
Compute w = function UWIDTH(UTF-8-testStr v)
Display ’ The ’ v ’th and last valid code point starts ’

’at byte ’ u ’ for ’ w ’ bytes.’
End-if.

In the following string, the sequence that starts with x'F5' is not valid UTF-8
because no byte can have a value in the range x'F5' to x'FF':
x’6162D0B0E4BA8CF5646364’

The output from checkUTF-8-validity for this string is as follows:
checkUTF-8-validity failure:

The UTF-8 representation is not valid, starting at byte 08.
The 04th and last valid code point starts at byte 05 for 03 bytes.

The following code fragment illustrates checking for the presence of a Unicode
supplementary code point, requiring a 4-byte representation in UTF-8:

142 Enterprise COBOL for z/OS, V5.2 Programming Guide

checkUTF-8-supp.
Compute u = function USUPPLEMENTARY(UTF-8-testStr)
If u not = 0

Display ’ checkUTF-8-supp hit:’
Compute v = function ULENGTH(UTF-8-testStr(1:u - 1))
Compute w = function UWIDTH(UTF-8-testStr v + 1)
Display ’ The ’ v ’th code point of the string’

’, starting at byte ’ u ’,’
Display ’ is a Unicode supplementary code point, ’

’width ’ w ’ bytes.’
End-if.

In the following string, the sequence x'F0908C82' is a supplementary character (as
is any valid UTF-8 sequence beginning with a byte in the range x'F0' to x'F4'):
x’6162D0B0E4BA8CF0908C826364’

The output from checkUTF-8-supp for this string is as follows:
checkUTF-8-supp hit:

The 04th code point of the string, starting at byte 08,
is a Unicode supplementary code point, width 04 bytes.

RELATED REFERENCES

“CODEPAGE” on page 313

Example: deriving initials from UTF-8 names
The following program uses the Unicode functions to derive composers’ initials
from a table of names in Czech. It is intended to illustrate these functions, and is
not necessarily the most efficient way of doing the task. Although the program
processes the composer names in UTF-8, the data begins and ends in EBCDIC in
order to permit a meaningful display of the program source and output. The
compiler option CODEPAGE(1153) ensures that the names are interpreted correctly
when translated to and from Unicode.

Chapter 7. Processing data in an international environment 143

Program initials

144 Enterprise COBOL for z/OS, V5.2 Programming Guide

Program initials, continued

Output from program initials
Compute composer initials...

#1: ALD (x’414C44’)
#2: LJ (x’4C4A’)
#3: RJK (x’524A4B’)
#4: PK (x’504B’)
#5: JVHV (x’4A564856’)

Chapter 7. Processing data in an international environment 145

Program toHex
Identification division.

Program-id. toHex.
Data division.
Working-storage section.
1 hexv.
2 pic x(32) value ’000102030405060708090A0B0C0D0E0F’.
2 pic x(32) value ’101112131415161718191A1B1C1D1E1F’.
2 pic x(32) value ’202122232425262728292A2B2C2D2E2F’.
2 pic x(32) value ’303132333435363738393A3B3C3D3E3F’.
2 pic x(32) value ’404142434445464748494A4B4C4D4E4F’.
2 pic x(32) value ’505152535455565758595A5B5C5D5E5F’.
2 pic x(32) value ’606162636465666768696A6B6C6D6E6F’.
2 pic x(32) value ’707172737475767778797A7B7C7D7E7F’.
2 pic x(32) value ’808182838485868788898A8B8C8D8E8F’.
2 pic x(32) value ’909192939495969798999A9B9C9D9E9F’.
2 pic x(32) value ’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’.
2 pic x(32) value ’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’.
2 pic x(32) value ’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’.
2 pic x(32) value ’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’.
2 pic x(32) value ’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’.
2 pic x(32) value ’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’.
1 redefines hexv.
2 hex pic xx occurs 256 times.

Local-storage section.
1 i pic 9(4) binary.
1 j pic 9(4) binary value 0.
1 jx redefines j.
2 pic x.
2 jxd pic x.

Linkage section.
1 ostr.
2 ostrv pic xx occurs 1024 times.
1 istr.
2 istrv pic x occurs 1024 times.
1 len pic 9(9) binary.

Procedure division using ostr istr value len.
If len > 1024
Display ’>> Error: length ’ len ’ greater than toHex ’

’supported maximum of 1024.’
Stop run

End-if
Perform with test before varying i from 1 by 1 until i > len
Move 0 to j
Move istrv(i) to jxd
Add 1 to j
Move hex(j) to ostrv(i)

End-perform
Goback
.

End program toHex.

Processing Chinese GB 18030 data
GB 18030 is a national-character standard specified by the government of the
People's Republic of China.

GB 18030 characters can be encoded in either UTF-16 or in code page CCSID 1392.
Code page 1392 is an ASCII multibyte code page that uses 1, 2, or 4 bytes per
character. A subset of the GB 18030 characters can be encoded in the Chinese ASCII
code page, CCSID 1386, or in the Chinese EBCDIC code page, CCSID 1388.

Enterprise COBOL does not have explicit support for GB 18030, but does support
the processing of GB 18030 characters in several ways. You can:

146 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Use DBCS data items to process GB 18030 characters that are represented in
CCSID 1388.

v Use national data items to define and process GB 18030 characters that are
represented in UTF-16, CCSID 01200.

v Process data in any code page (including CCSID 1388 or 1392) by converting the
data to UTF-16, processing the UTF-16 data, and then converting the data back
to the original code-page representation.

When you need to process Chinese GB 18030 data that requires conversion, first
convert the input data to UTF-16 in a national data item. After you process the
national data item, convert it back to Chinese GB 18030 for output. For the
conversions, use the intrinsic functions NATIONAL-OF and DISPLAY-OF, respectively,
and specify code page 1388 or 1392 as the second argument of each function.

The following example illustrates these conversions:

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 137
“Coding for use of DBCS support” on page 150

RELATED REFERENCES

“Storage of character data” on page 137

Comparing national (UTF-16) data
You can compare national (UTF-16) data, that is, national literals and data items
that have USAGE NATIONAL (whether of class national or class numeric), explicitly or
implicitly with other kinds of data in relation conditions.

You can code conditional expressions that use national data in the following
statements:
v EVALUATE

v IF

v INSPECT

v PERFORM

v SEARCH

v STRING

v UNSTRING

For full details about comparing national data items to other data items, see the
related references.

RELATED TASKS

“Comparing two class national operands” on page 148
“Comparing class national and class numeric operands” on page 148
“Comparing national numeric and other numeric operands” on page 149

Chapter 7. Processing data in an international environment 147

“Comparing national and other character-string operands” on page 149
“Comparing national data and alphanumeric-group operands” on page 149

RELATED REFERENCES

Relation conditions (Enterprise COBOL Language Reference)
General relation conditions (Enterprise COBOL Language Reference)
National comparisons (Enterprise COBOL Language Reference)
Group comparisons (Enterprise COBOL Language Reference)

Comparing two class national operands
You can compare the character values of two operands of class national.

Either operand (or both) can be any of the following types of items:
v A national group
v An elementary category national or national-edited data item
v A numeric-edited data item that has USAGE NATIONAL

One of the operands can instead be a national literal or a national intrinsic
function.

When you compare two class national operands that have the same length, they
are determined to be equal if all pairs of the corresponding characters are equal.
Otherwise, comparison of the binary values of the first pair of unequal characters
determines the operand with the larger binary value.

When you compare operands that have unequal lengths, the shorter operand is
treated as if it were padded on the right with default UTF-16 space characters
(NX’0020’) to the length of the longer operand.

The PROGRAM COLLATING SEQUENCE clause does not affect the comparison of two
class national operands.

RELATED CONCEPTS

“National groups” on page 133

RELATED TASKS

“Using national groups” on page 134

RELATED REFERENCES

National comparisons (Enterprise COBOL Language Reference)

Comparing class national and class numeric operands
You can compare national literals or class national data items to integer literals or
numeric data items that are defined as integer (that is, national decimal items or
zoned decimal items). At most one of the operands can be a literal.

You can also compare national literals or class national data items to floating-point
data items (that is, display floating-point or national floating-point items).

Numeric operands are converted to national (UTF-16) representation if they are not
already in national representation. A comparison is made of the national character
values of the operands.

148 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

General relation conditions (Enterprise COBOL Language Reference)

Comparing national numeric and other numeric operands
National numeric operands (national decimal and national floating-point operands)
are data items of class numeric that have USAGE NATIONAL.

You can compare the algebraic values of numeric operands regardless of their
USAGE. Thus you can compare a national decimal item or a national floating-point
item with a binary item, an internal-decimal item, a zoned decimal item, a display
floating-point item, or any other numeric item.

RELATED TASKS

“Defining national numeric data items” on page 133

RELATED REFERENCES

General relation conditions (Enterprise COBOL Language Reference)

Comparing national and other character-string operands
You can compare the character value of a national literal or class national data item
with the character value of any of the following other character-string operands:
alphabetic, alphanumeric, alphanumeric-edited, DBCS, or numeric-edited of USAGE
DISPLAY.

These operands are treated as if they were moved to an elementary national data
item. The characters are converted to national (UTF-16) representation, and the
comparison proceeds with two national character operands.

RELATED TASKS

“Using national-character figurative constants” on page 132

RELATED REFERENCES

National comparisons (Enterprise COBOL Language Reference)

Comparing national data and alphanumeric-group operands
You can compare a national literal, a national group item, or any elementary data
item that has USAGE NATIONAL to an alphanumeric group.

Neither operand is converted. The national operand is treated as if it were moved
to an alphanumeric group item of the same size in bytes as the national operand,
and the two groups are compared. An alphanumeric comparison is done regardless
of the representation of the subordinate items in the alphanumeric group operand.

For example, Group-XN is an alphanumeric group that consists of two subordinate
items that have USAGE NATIONAL:
01 Group-XN.

02 TransCode PIC NN Value "AB" Usage National.
02 Quantity PIC 999 Value 123 Usage National.
. . .
If N"AB123" = Group-XN Then Display "EQUAL"
Else Display "NOT EQUAL".

When the IF statement above is executed, the 10 bytes of the national literal
N"AB123" are compared byte by byte to the content of Group-XN. The items compare
equally, and "EQUAL" is displayed.

Chapter 7. Processing data in an international environment 149

RELATED REFERENCES

Group comparisons (Enterprise COBOL Language Reference)

Coding for use of DBCS support
IBM Enterprise COBOL for z/OS supports using applications in any of many
national languages, including languages that use double-byte character sets
(DBCS).

The following list summarizes the support for DBCS:
v DBCS characters in user-defined words (DBCS names)
v DBCS characters in comments
v DBCS data items (defined with PICTURE N, G, or G and B)
v DBCS literals
v DBCS compiler option

RELATED TASKS

“Defining DBCS data”
“Using DBCS literals”
“Testing for valid DBCS characters” on page 151
“Processing alphanumeric data items that contain DBCS data” on page 152
Appendix B, “Converting double-byte character set (DBCS) data,” on page 695

RELATED REFERENCES

“DBCS” on page 319

Defining DBCS data
Use the PICTURE and USAGE clauses to define DBCS data items. DBCS data items
can use PICTURE symbols G, G and B, or N. Each DBCS character position is 2 bytes
in length.

You can specify a DBCS data item by using the USAGE DISPLAY-1 clause. When you
use PICTURE symbol G, you must specify USAGE DISPLAY-1. When you use PICTURE
symbol N but omit the USAGE clause, USAGE DISPLAY-1 or USAGE NATIONAL is implied
depending on the setting of the NSYMBOL compiler option.

If you use a VALUE clause with the USAGE clause in the definition of a DBCS item,
you must specify a DBCS literal or the figurative constant SPACE or SPACES.

For the purpose of handling reference modifications, each character in a DBCS data
item is considered to occupy the number of bytes that corresponds to the
code-page width (that is, 2).

RELATED REFERENCES

“NSYMBOL” on page 340

Using DBCS literals
You can use the prefix N or G to represent a DBCS literal.

That is, you can specify a DBCS literal in either of these ways:
v N’dbcs characters’ (provided that the compiler option NSYMBOL(DBCS) is in effect)
v G’dbcs characters’

150 Enterprise COBOL for z/OS, V5.2 Programming Guide

You can use quotation marks (") or single quotation marks (’) as the delimiters of
a DBCS literal irrespective of the setting of the APOST or QUOTE compiler option. You
must code the same opening and closing delimiter for a DBCS literal.

The shift-out (SO) control character X’0E’ must immediately follow the opening
delimiter, and the shift-in (SI) control character X’0F’ must immediately precede
the closing delimiter.

In addition to DBCS literals, you can use alphanumeric literals to specify any
character in one of the supported code pages. However, any string of DBCS
characters that is within an alphanumeric literal must be delimited by the SO and
SI characters, and the DBCS compiler option must be in effect for the SO and SI
characters to be recognized as shift codes.

You cannot continue an alphanumeric literal that contains DBCS characters. The
length of a DBCS literal is likewise limited by the available space in Area B on a
single source line. The maximum length of a DBCS literal is thus 28 double-byte
characters.

An alphanumeric literal that contains DBCS characters is processed byte by byte,
that is, with semantics appropriate for single-byte characters, except when it is
converted explicitly or implicitly to national data representation, as for example in
an assignment to or comparison with a national data item.

RELATED TASKS

“Using figurative constants” on page 26

RELATED REFERENCES

“DBCS” on page 319
“NSYMBOL” on page 340
“QUOTE/APOST” on page 352
DBCS literals (Enterprise COBOL Language Reference)

Testing for valid DBCS characters
The Kanji class test tests for valid Japanese graphic characters. This testing includes
Katakana, Hiragana, Roman, and Kanji character sets.

The Kanji class test is done by checking characters for the range X’41’ through
X’7E’ in the first byte and X’41’ through X’FE’ in the second byte, plus the space
character X’4040’.

The DBCS class test tests for valid graphic characters for the code page.

The DBCS class test is done by checking characters for the range X’41’ through
X’FE’ in both the first and second byte of each character, plus the space character
X’4040’.

RELATED TASKS

“Coding conditional expressions” on page 98

RELATED REFERENCES

Class condition (Enterprise COBOL Language Reference)

Chapter 7. Processing data in an international environment 151

Processing alphanumeric data items that contain DBCS data
If you use byte-oriented operations (for example, STRING, UNSTRING, or reference
modification) on an alphanumeric data item that contains DBCS characters, results
are unpredictable. You should instead convert the item to a national data item
before you process it.

That is, do these steps:
1. Convert the item to UTF-16 in a national data item by using a MOVE statement

or the NATIONAL-OF intrinsic function.
2. Process the national data item as needed.
3. Convert the result back to an alphanumeric data item by using the DISPLAY-OF

intrinsic function.

RELATED TASKS

“Joining data items (STRING)” on page 105
“Splitting data items (UNSTRING)” on page 107
“Referring to substrings of data items” on page 111
“Converting to or from national (Unicode) representation” on page 137

152 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 8. Processing files

Reading and writing data is an essential part of every program. Your program
retrieves information, processes it as you request, and then produces the results.

The source of the information and the target for the results can be one or more of
the following items:
v Another program
v Direct-access storage device
v Magnetic tape
v Printer
v Terminal
v Card reader or punch

The information as it exists on an external device is in a physical record or block, a
collection of information that is handled as a unit by the system during input or
output operations.

Your COBOL program does not directly handle physical records. It processes
logical records. A logical record can correspond to a complete physical record, part
of a physical record, or to parts or all of one or more physical records. Your
COBOL program handles logical records exactly as you have defined them.

In COBOL, a collection of logical records is a file, a sequence of pieces of
information that your program can process.

RELATED CONCEPTS

“File organization and input-output devices”

RELATED TASKS

“Choosing file organization and access mode” on page 155
“Allocating files” on page 157
“Checking for input or output errors” on page 158

File organization and input-output devices
Depending on the input-output devices, your file organization can be sequential,
line sequential, indexed, or relative. Decide on the file types and devices to be used
when you design your program.

You have the following choices of file organization:

Sequential file organization
The chronological order in which records are entered when a file is created
establishes the arrangement of the records. Each record except the first has
a unique predecessor record, and each record except the last has a unique
successor record. Once established, these relationships do not change.

The access (record transmission) mode allowed for sequential files is
sequential only.

© Copyright IBM Corp. 1991, 2018 153

Line-sequential file organization
Line-sequential files are sequential files that reside in the z/OS UNIX file
system and that contain only characters as data. Each record ends with a
newline character.

The only access (record transmission) mode allowed for line-sequential files
is sequential.

Indexed file organization
Each record in the file contains a special field whose contents form the
record key. The position of the key is the same in each record. The index
component of the file establishes the logical arrangement of the file, an
ordering by record key. The actual physical arrangement of the records in
the file is not significant to your COBOL program.

An indexed file can also use alternate indexes in addition to the record key.
These keys let you access the file using a different logical ordering of the
records.

The access (record transmission) modes allowed for indexed files are
sequential, random, or dynamic. When you read or write indexed files
sequentially, the sequence is that of the key values.

Relative file organization
Records in the file are identified by their location relative to the beginning
of the file. The first record in the file has a relative record number of 1, the
tenth record has a relative record number of 10, and so on.

The access (record transmission) modes allowed for relative files are
sequential, random, or dynamic. When relative files are read or written
sequentially, the sequence is that of the relative record number.

With IBM Enterprise COBOL for z/OS, requests to the operating system for the
storage and retrieval of records from input-output devices are handled by the two
access methods QSAM and VSAM, and the z/OS UNIX file system.

The device type upon which you elect to store your data could affect the choices of
file organization available to you. Direct-access storage devices provide greater
flexibility in the file organization options. Sequential-only devices limit
organization options but have other characteristics, such as the portability of tapes,
that might be useful.

Sequential-only devices
Terminals, printers, card readers, and punches are called unit-record devices
because they process one line at a time. Therefore, you must also process
records one at a time sequentially in your program when it reads from or
writes to unit-record devices.

On tape, records are ordered sequentially, so your program must process
them sequentially. Use QSAM physical sequential files when processing
tape files. The records on tape can be fixed length or variable length.

Direct-access storage devices
Direct-access storage devices hold many records. The record arrangement
of files stored on these devices determines the ways that your program can
process the data. When using direct-access devices, you have greater
flexibility within your program, because your can use several types of file
organization:
v Sequential (VSAM or QSAM)
v Line sequential (z/OS UNIX)

154 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Indexed (VSAM)
v Relative (VSAM)

RELATED TASKS

“Allocating files” on page 157
Chapter 9, “Processing QSAM files,” on page 159
Chapter 10, “Processing VSAM files,” on page 185
Chapter 11, “Processing line-sequential files,” on page 213
“Choosing file organization and access mode”

Choosing file organization and access mode
There are several guidelines you can use to determine which file organization and
access mode to use in an application.

Consider the following guidelines when choosing file organization:
v If an application accesses records (whether fixed-length or variable-length) only

sequentially and does not insert records between existing records, a QSAM or
VSAM sequential file is the simplest type.

v If you are developing an application for z/OS UNIX file system that sequentially
accesses records that contain only printable characters and certain control
characters, line-sequential files work best.

v If an application requires both sequential and random access (whether records
are fixed length or variable length), a VSAM indexed file is the most flexible
type.

v If an application inserts and deletes records randomly, a relative file works well.

Consider the following guidelines when choosing access mode:
v If a large percentage of a file is referenced or updated in an application,

sequential access is faster than random or dynamic access.
v If a small percentage of records is processed during each run of an application,

use random or dynamic access.

Table 19. Summary of file organizations, access modes, and record formats of COBOL
files

File organization
Sequential
access

Random
access

Dynamic
access

Fixed
length

Variable
length

QSAM (physical
sequential)

X X X

Line sequential X X1 X

VSAM sequential (ESDS) X X X

VSAM indexed (KSDS) X X X X X

VSAM relative (RRDS) X X X X X

1. The data itself is in variable format but can be read into and written from COBOL
fixed-length records.

RELATED REFERENCES

“Format for coding input and output” on page 156
“Control characters in line-sequential files” on page 214

Chapter 8. Processing files 155

Format for coding input and output
The following example shows the general format of input-output coding.
Explanations of the user-supplied information are shown after the code.
IDENTIFICATION DIVISION.
. . .
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT filename ASSIGN TO assignment-name (1) (2)
ORGANIZATION IS org ACCESS MODE IS access (3) (4)
FILE STATUS IS file-status (5)

. . .
DATA DIVISION.
FILE SECTION.
FD filename
01 recordname (6)

nn . . . fieldlength & type (7) (8)
nn . . . fieldlength & type

. . .
WORKING-STORAGE SECTION
01 file-status PICTURE 99.
. . .
PROCEDURE DIVISION.

. . .
OPEN iomode filename (9)
. . .
READ filename
. . .
WRITE recordname
. . .
CLOSE filename
. . .
STOP RUN.

The user-supplied information in the code above is described below:

(1) filename
Any legal COBOL name. You must use the same file-name in the SELECT
clause and in the FD entry, and in the READ, OPEN, and CLOSE statements. In
addition, the file-name is required if you use the START or DELETE
statements. This name is not necessarily the actual name of the data set as
known to the system. Each file requires its own SELECT clause, FD entry,
and input-output statements.

(2) assignment-name
Any name you choose, provided that it follows COBOL and system
naming rules. The name can be 1 - 30 characters long if it is a user-defined
word, or 1 - 160 characters long if it is a literal. You code the name part of
the assignment-name in a DD statement, in an ALLOCATE command (TSO), or
as an environment variable (for example, in an export command) (z/OS
UNIX).

(3) org The organization can be SEQUENTIAL, LINE SEQUENTIAL, INDEXED, or
RELATIVE. This clause is optional for QSAM files.

(4) access
The access mode can be SEQUENTIAL, RANDOM, or DYNAMIC. For sequential file
processing, including line-sequential, you can omit this clause.

(5) file-status
The COBOL file status key. You can specify the file status key as a

156 Enterprise COBOL for z/OS, V5.2 Programming Guide

two-character category alphanumeric or category national item, or as a
two-digit zoned decimal (USAGE DISPLAY) or national decimal (USAGE
NATIONAL) item.

(6) recordname
The name of the record used in the WRITE or REWRITE statements.

(7) fieldlength
The logical length of the field.

(8) type
The record format of the file. If you break the record entry beyond the
level-01 description, map each element accurately against the fields in the
record.

(9) iomode
The INPUT or OUTPUT mode. If you are only reading from a file, code INPUT.
If you are only writing to a file, code OUTPUT or EXTEND. If you are both
reading and writing, code I-O, except for organization LINE SEQUENTIAL.

RELATED TASKS

Chapter 9, “Processing QSAM files,” on page 159
Chapter 10, “Processing VSAM files,” on page 185
Chapter 11, “Processing line-sequential files,” on page 213

Allocating files
For any type of file (sequential, line sequential, indexed, or relative) in your z/OS
or z/OS UNIX applications, you can define the external name with either a
ddname or an environment-variable name. The external name is the name in the
assignment-name of the ASSIGN clause.

If the file is in the z/OS UNIX file system, you can use either a DD definition or an
environment variable to define the file by specifying its path name with the PATH
keyword.

The environment-variable name must be uppercase. The allowable attributes for its
value depend on the organization of the file being defined.

Because you can define the external name in either of two ways, the COBOL run
time goes through the following steps to find the definition of the file:
1. If the ddname is explicitly allocated, it is used. The definition can be from a DD

statement in JCL, an ALLOCATE command from TSO/E, or a user-initiated
dynamic allocation.

2. If the ddname is not explicitly allocated and an environment variable of the
same name is set, the value of the environment variable is used.
The file is dynamically allocated using the attributes specified by the
environment variable. At a minimum, you must specify either the PATH() or
DSN() option. All options and attributes must be in uppercase, except for the
path-name suboption of the PATH option, which is case sensitive. You cannot
specify a temporary data-set name in the DSN() option.
File status code 98 results from any of the following cases:
v The contents (including a value of null or all blanks) of the environment

variable are not valid.
v The dynamic allocation of the file fails.
v The dynamic deallocation of the file fails.

Chapter 8. Processing files 157

The COBOL run time checks the contents of the environment variable at each
OPEN statement. If a file with the same external name was dynamically allocated
by a previous OPEN statement, and the contents of the environment variable
have changed since that OPEN, the run time dynamically deallocates the
previous allocation and reallocates the file using the options currently set in the
environment variable. If the contents of the environment variable have not
changed, the run time uses the current allocation.

3. If neither a ddname nor an environment variable is defined, the following steps
occur:
a. If the allocation is for a QSAM file and the CBLQDA runtime option is in

effect, CBLQDA dynamic allocation processing takes place for those eligible
files. This type of "implicit" dynamic allocation persists for the life of the
run unit and cannot be reallocated.

b. Otherwise, the allocation fails.

The COBOL run time deallocates all dynamic allocations at run unit termination,
except for implicit CBLQDA allocations.

RELATED TASKS

“Setting and accessing environment variables” on page 464
“Defining and allocating QSAM files” on page 174
“Dynamically creating QSAM files” on page 171
“Allocating VSAM files” on page 206

Checking for input or output errors
After each input or output statement is performed, the file status key is updated
with a value that indicates the success or failure of the operation.

Using a FILE STATUS clause, test the file status key after each input or output
statement, and call an error-handling procedure if a nonzero file status code is
returned. With VSAM files, you can use a second data item in the FILE STATUS
clause to get additional VSAM status code information.

Another way of handling errors in input and output operations is to code ERROR
(synonymous with EXCEPTION) declaratives.

RELATED TASKS

“Handling errors in input and output operations” on page 241
“Coding ERROR declaratives” on page 244
“Using file status keys” on page 245

158 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 9. Processing QSAM files

Queued sequential access method (QSAM) files are unkeyed files in which the
records are placed one after another, according to entry order.

Your program can process these files only sequentially, retrieving (with the READ
statement) records in the same order as they are in the file. Each record is placed
after the preceding record. To process QSAM files in your program, use COBOL
language statements that:
v Identify and describe the QSAM files in the ENVIRONMENT DIVISION and the DATA

DIVISION.
v Process the records in these files in the PROCEDURE DIVISION.

After you have created a record, you cannot change its length or its position in the
file, and you cannot delete it. You can, however, update QSAM files on
direct-access storage devices (using REWRITE), though not in the z/OS UNIX file
system.

QSAM files can be on tape, direct-access storage devices (DASDs), unit-record
devices, and terminals. QSAM processing is best for tables and intermediate
storage.

You can also access byte-stream files in the z/OS UNIX file system using QSAM.
These files are binary byte-oriented sequential files with no record structure. The
record definitions that you code in your COBOL program and the length of the
variables that you read into and write from determine the amount of data
transferred.

RELATED CONCEPTS

z/OS DFSMS: Using Data Sets (Access methods)

RELATED TASKS

“Defining QSAM files and records in COBOL”
“Coding input and output statements for QSAM files” on page 170
“Handling errors in QSAM files” on page 174
“Working with QSAM files” on page 174
“Accessing z/OS UNIX files using QSAM” on page 181
“Processing QSAM ASCII files on tape” on page 182

Defining QSAM files and records in COBOL
Use the FILE-CONTROL entry to define the files in a COBOL program as QSAM files,
and to associate the files with their external file-names.

An external file-name (a ddname or environment variable name) is the name by
which a file is known to the operating system. In the following example,
COMMUTER-FILE-MST is your program's name for the file; COMMUTR is the external
name:
FILE-CONTROL.

SELECT COMMUTER-FILE-MST
ASSIGN TO S-COMMUTR
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

© Copyright IBM Corp. 1991, 2018 159

The ASSIGN clause name can include an S- before the external name to document
that the file is a QSAM file. Both the ORGANIZATION and ACCESS MODE clauses are
optional.

RELATED TASKS

“Establishing record formats”
“Setting block sizes” on page 167

Establishing record formats
In the FD entry in the DATA DIVISION, code the record format and indication of
whether the records are blocked. In the associated record description entry or
entries, specify the record-name and record length.

You can code a record format of F, V, S, or U in the RECORDING MODE clause. COBOL
determines the record format from the RECORD clause or from the record
descriptions associated with the FD entry for the file. If you want the records to be
blocked, code the BLOCK CONTAINS clause in the FD entry.

The following example shows how the FD entry might look for a file that has
fixed-length records:
FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS F
BLOCK CONTAINS 0 RECORDS
RECORD CONTAINS 80 CHARACTERS.

01 COMMUTER-RECORD-MST.
05 COMMUTER-NUMBER PIC X(16).
05 COMMUTER-DESCRIPTION PIC X(64).

A recording mode of S is not supported for files in the z/OS UNIX file system. The
above example is appropriate for such a file.

RELATED CONCEPTS

“Logical records”

RELATED TASKS

“Requesting fixed-length format” on page 161
“Requesting variable-length format” on page 162
“Requesting spanned format” on page 164
“Requesting undefined format” on page 166
“Defining QSAM files and records in COBOL” on page 159

RELATED REFERENCES

“FILE SECTION entries” on page 12

Logical records
COBOL uses the term logical record in a slightly different way than z/OS QSAM.

For format-V and format-S files, a QSAM logical record includes a 4-byte prefix in
front of the user data portion of the record that is not included in the definition of
a COBOL logical record.

For format-F and format-U files, and for byte-stream files in the z/OS UNIX file
system, the definitions of QSAM logical record and COBOL logical record are
identical.

160 Enterprise COBOL for z/OS, V5.2 Programming Guide

In this information, QSAM logical record refers to the QSAM definition, and logical
record refers to the COBOL definition.

RELATED REFERENCES

“Layout of format-F records” on page 162
“Layout of format-V records” on page 163
“Layout of format-S records” on page 166
“Layout of format-U records” on page 167

Requesting fixed-length format
Fixed-length records are in format F. Use RECORDING MODE F to explicitly request
this format.

You can omit the RECORDING MODE clause. The compiler determines the recording
mode to be F if the length of the largest level-01 record associated with the file is
not greater than the block size coded in the BLOCK CONTAINS clause, and you take
one of the following actions:
v Use the RECORD CONTAINS integer clause (format-1 RECORD clause) to indicate the

length of the record in bytes.
When you use this clause, the file is always fixed format with record length
integer even if there are multiple level-01 record description entries with different
lengths associated with the file.

v Omit the RECORD CONTAINS integer clause, but code the same fixed size and no
OCCURS DEPENDING ON clause for all level-01 record description entries associated
with the file. This fixed size is the record length.

In an unblocked format-F file, the logical record is the same as the block.

In a blocked format-F file, the number of logical records in a block (the blocking
factor) is constant for every block in the file except the last block, which might be
shorter.

Files in the z/OS UNIX file system are never blocked.

RELATED CONCEPTS

“Logical records” on page 160

RELATED TASKS

“Requesting variable-length format” on page 162
“Requesting spanned format” on page 164
“Requesting undefined format” on page 166
“Establishing record formats” on page 160

RELATED REFERENCES

“Layout of format-F records” on page 162

Chapter 9. Processing QSAM files 161

Layout of format-F records:

The layout of format-F QSAM records is shown below.

RELATED CONCEPTS

“Logical records” on page 160

RELATED TASKS

“Requesting fixed-length format” on page 161
z/OS DFSMS: Using Data Sets (Fixed-length record formats)

RELATED REFERENCES

“Layout of format-V records” on page 163
“Layout of format-S records” on page 166
“Layout of format-U records” on page 167

Requesting variable-length format
Variable-length records can be in format V or format D. Format-D records are
variable-length records on ASCII tape files. Format-D records are processed in the
same way as format-V records.

Use RECORDING MODE V for both. You can omit the RECORDING MODE clause. The
compiler determines the recording mode to be V if the largest level-01 record
associated with the file is not greater than the block size set in the BLOCK CONTAINS
clause, and you take one of the following actions:
v Use the RECORD IS VARYING clause (format-3 RECORD clause).

If you provide values for integer-1 and integer-2 (RECORD IS VARYING FROM
integer-1 TO integer-2), the maximum record length is the value coded for integer-2
regardless of the lengths coded in the level-01 record description entries
associated with the file. The integer sizes indicate the minimum and maximum
record lengths in numbers of bytes regardless of the USAGE of the data items in
the record.
If you omit integer-1 and integer-2, the maximum record length is determined to
be the size of the largest level-01 record description entry associated with the
file.

v Use the RECORD CONTAINS integer-1 TO integer-2 clause (format-2 RECORD clause).
Make integer-1 and integer-2 match the minimum length and the maximum
length in bytes of the level-01 record description entries associated with the file.
The maximum record length is the integer-2 value.

v Omit the RECORD clause, but code multiple level-01 records (associated with the
file) that are of different sizes or contain an OCCURS DEPENDING ON clause.
The maximum record length is determined to be the size of the largest level-01
record description entry associated with the file.

162 Enterprise COBOL for z/OS, V5.2 Programming Guide

When you specify a READ INTO statement for a format-V file, the record size read
for that file is used in the MOVE statement generated by the compiler. Consequently,
you might not get the result you expect if the record just read does not correspond
to the level-01 record description. All other rules of the MOVE statement apply. For
example, when you specify a MOVE statement for a format-V record read in by the
READ statement, the size of the record moved corresponds to its level-01 record
description.

When you specify a READ statement for a format-V file followed by a MOVE of the
level-01 record, the actual record length is not used. The program will attempt to
move the number of bytes described by the level-01 record description. If this
number exceeds the actual record length and extends outside the area addressable
by the program, results are unpredictable. If the number of bytes described by the
level-01 record description is shorter than the physical record read, truncation of
bytes beyond the level-01 description occurs. To find the actual length of a
variable-length record, specify data-name-1 in format 3 of the RECORD clause of the
File Definition (FD).

RELATED TASKS

“Requesting fixed-length format” on page 161
“Requesting spanned format” on page 164
“Requesting undefined format” on page 166
“Establishing record formats” on page 160

RELATED REFERENCES

“FILE SECTION entries” on page 12
“Layout of format-V records”
Enterprise COBOL Migration Guide (Moving from the

VS COBOL II run time)

Layout of format-V records:

Format-V QSAM records have control fields that precede the data. The QSAM
logical record length is determined by adding 4 bytes (for the control fields) to the
record length defined in your program. However, you must not include these 4
bytes in the description of the record and record length.

LL BB ll bb Data ll bb Data

'CC' 'cc' 'cc'

4
bytes

Variable
bytes

4
bytes

Variable
bytes

4
bytes

Block Size

QSAM Logical Record

Data Record
(Level -01 Record)

CC The first 4 bytes of each block contain control information.

LL Represents 2 bytes designating the length of the block (including the CC
field).

BB Represents 2 bytes reserved for system use.

cc The first 4 bytes of each logical record contain control information.

ll Represents 2 bytes designating the logical record length (including the
cc field).

bb Represents 2 bytes reserved for system use.

Chapter 9. Processing QSAM files 163

The block length is determined as follows:
v Unblocked format-V records: CC + cc + the data portion
v Blocked format-V records: CC + the cc of each record + the data portion of each

record

The operating system provides the control bytes when the file is written; the
control byte fields do not appear in the description of the logical record in the DATA
DIVISION of your program. COBOL allocates input and output buffers that are
large enough to accommodate the control bytes. These control fields in the buffer
are not available for you to use in your program. When variable-length records are
written on unit record devices, control bytes are neither printed nor punched. They
appear however on other external storage devices, as well as in buffer areas of
storage. If you move V-mode records from an input buffer to a WORKING-STORAGE
area, the records will be moved without the control bytes.

Files in the z/OS UNIX file system are never blocked.

RELATED CONCEPTS

“Logical records” on page 160

RELATED TASKS

“Requesting variable-length format” on page 162

RELATED REFERENCES

“Layout of format-F records” on page 162
“Layout of format-S records” on page 166
“Layout of format-U records” on page 167

Requesting spanned format
Spanned records are in format S. A spanned record is a QSAM logical record that
can be contained in one or more physical blocks.

You can code RECORDING MODE S for spanned records in QSAM files that are
assigned to magnetic tape or to direct access devices. Do not request spanned
records for files in the z/OS UNIX file system. You can omit the RECORDING MODE
clause. The compiler determines the recording mode to be S if the maximum
record length (in bytes) plus 4 is greater than the block size set in the BLOCK
CONTAINS clause.

For files with format S in your program, the compiler determines the maximum
record length with the same rules as are used for format V. The length is based on
your usage of the RECORD clause.

When creating files that contain format-S records and a record is larger than the
remaining space in a block, COBOL writes a segment of the record to fill the block.
The rest of the record is stored in the next block or blocks depending on its length.
COBOL supports QSAM spanned records up to 32,760 bytes in length.

When retrieving files that have format-S records, a program can retrieve only
complete records.

Benefits of format-S files: You can efficiently use external storage and still
organize your files with logical record lengths by defining files with format-S
records:

164 Enterprise COBOL for z/OS, V5.2 Programming Guide

v You can set block lengths to efficiently use track capacities on direct access
devices.

v You are not required to adjust the logical record lengths to device-dependent
physical block lengths. One logical record can span two or more physical blocks.

v You have greater flexibility when you want to transfer logical records between
direct access storage types.

You will, however, have additional overhead in processing format-S files.

Format-S files and READ INTO: When you specify a READ INTO statement for a
format-S file, the compiler generates a MOVE statement that uses the size of the
record that it just read for that file. If the record just read does not correspond to
the level-01 record description, you might not get the result that you expect. All
other rules of the MOVE statement apply.

RELATED CONCEPTS

“Logical records” on page 160
“Spanned blocked and unblocked files”

RELATED TASKS

“Requesting fixed-length format” on page 161
“Requesting variable-length format” on page 162
“Requesting undefined format” on page 166
“Establishing record formats” on page 160

RELATED REFERENCES

“FILE SECTION entries” on page 12
“Layout of format-S records” on page 166

Spanned blocked and unblocked files:

A spanned blocked QSAM file is made up of blocks, each containing one or more
logical records or segments of logical records. A spanned unblocked file is made
up of physical blocks, each containing one logical record or one segment of a
logical record.

In a spanned blocked file, a logical record can be either fixed or variable in length,
and its size can be smaller than, equal to, or larger than the physical block size.
There are no required relationships between logical records and physical block
sizes.

In a spanned unblocked file, the logical records can be either fixed or variable in
length. When the physical block contains one logical record, the block length is
determined by the logical record size. When a logical record has to be segmented,
the system always writes the largest physical block possible. The system segments
the logical record when the entire logical record cannot fit on a track.

RELATED CONCEPTS

“Logical records” on page 160

RELATED TASKS

“Requesting spanned format” on page 164

Chapter 9. Processing QSAM files 165

Layout of format-S records:

Spanned records are preceded by control fields, as explained below.

LL BB ll bb Data Record or Segment

BDF SDF

4 bytes Variable bytes4 bytes

Each block is preceded by a 4-byte block descriptor field ('BDF' in the image
above). There is only one block descriptor field at the beginning of each physical
block.

Each segment of a record in a block is preceded by a 4-byte segment descriptor
field ('SDF' in the image) even if the segment is the entire record. There is one
segment descriptor field for each record segment in the block. The segment
descriptor field also indicates whether the segment is the first, the last, or an
intermediate segment.

You do not describe these fields in the DATA DIVISION, and the fields are not
available for you to use in your COBOL program.

RELATED TASKS

“Requesting spanned format” on page 164

RELATED REFERENCES

“Layout of format-F records” on page 162
“Layout of format-V records” on page 163
“Layout of format-U records” on page 167

Requesting undefined format
Format-U records have undefined or unspecified characteristics. With format U,
you can process blocks that do not meet format-F or format-V specifications.

When you use format-U files, each block of storage is one logical record. A read of
a format-U file returns the entire block as a record. A write to a format-U file
writes a record out as a block. The compiler determines the recording mode to be
U only if you code RECORDING MODE U.

It is recommended that you not use format U to update or extend a file that was
written with a different record format. If you use format U to update a file that
was written with a different format, the RECFM value in the data-set label could be
changed or the data set could contain records written in different formats.

The record length is determined in your program based on how you use the
RECORD clause:
v If you use the RECORD CONTAINS integer clause (format-1 RECORD clause), the record

length is the integer value regardless of the lengths of the level-01 record
description entries associated with the file. The integer size indicates the number
of bytes in a record regardless of the USAGE of its data items.

v If you use the RECORD IS VARYING clause (format-3 RECORD clause), the record
length is determined based on whether you code integer-1 and integer-2.
If you code integer-1 and integer-2 (RECORD IS VARYING FROM integer-1 TO
integer-2), the maximum record length is the integer-2 value regardless of the
lengths of the level-01 record description entries associated with the file. The

166 Enterprise COBOL for z/OS, V5.2 Programming Guide

integer sizes indicate the minimum and maximum record lengths in numbers of
bytes regardless of the USAGE of the data items in the record.
If you omit integer-1 and integer-2, the maximum record length is determined to
be the size of the largest level-01 record description entry associated with the
file.

v If you use the RECORD CONTAINS integer-1 TO integer-2 clause (format-2 RECORD
clause), with integer-1 and integer-2 matching the minimum length and the
maximum length in bytes of the level-01 record description entries associated
with the file, the maximum record length is the integer-2 value.

v If you omit the RECORD clause, the maximum record length is determined to be
the size of the largest level-01 record description entry associated with the file.

Format-U files and READ INTO: When you specify a READ INTO statement for a
format-U file, the compiler generates a MOVE statement that uses the size of the
record that it just read for that file. If the record just read does not correspond to
the level-01 record description, you might not get the result that you expect. All
other rules of the MOVE statement apply.

RELATED TASKS

“Requesting fixed-length format” on page 161
“Requesting variable-length format” on page 162
“Requesting spanned format” on page 164
“Establishing record formats” on page 160

RELATED REFERENCES

“FILE SECTION entries” on page 12
“Layout of format-U records”

Layout of format-U records:

With format-U, each block of external storage is handled as a logical record. There
are no record-length or block-length fields.

RELATED CONCEPTS

“Logical records” on page 160

RELATED TASKS

“Requesting undefined format” on page 166

RELATED REFERENCES

“Layout of format-F records” on page 162
“Layout of format-V records” on page 163
“Layout of format-S records” on page 166

Setting block sizes
In COBOL, you establish the size of a physical record by using the BLOCK CONTAINS
clause. If you omit this clause, the compiler assumes that the records are not
blocked.

Chapter 9. Processing QSAM files 167

Blocking QSAM files on tape and disk can enhance processing speed and minimize
storage requirements. You can block files in the z/OS UNIX file system, PDSE
members, and spooled data sets, but doing so has no effect on how the system
stores the data.

If you set the block size explicitly in the BLOCK CONTAINS clause, the size must not
be greater than the maximum block size for the device. If you specify the
CHARACTERS phrase of the BLOCK CONTAINS clause, size must indicate the number of
bytes in a record regardless of the USAGE of the data items in the record. The block
size that is set for a format-F file must be an integral multiple of the record length.

If your program uses QSAM files on tape, use a physical block size of at least 12 to
18 bytes. Otherwise, the block will be skipped over when a parity check occurs
during one of the following actions:
v Reading a block of records of fewer than 12 bytes
v Writing a block of records of fewer than 18 bytes

Larger blocks generally give you better performance. Blocks of only a few kilobytes
are particularly inefficient; you should choose a block size of at least tens of
kilobytes. If you specify record blocking and omit the block size, the system will
pick a block size that is optimal for device utilization and for data transfer speed.

Letting z/OS determine block size: To maximize performance, do not explicitly set
the block size for a blocked file in your COBOL source program. For new blocked
data sets, it is simpler to allow z/OS to supply a system-determined block size. To
use this feature, follow these guidelines:
v Code BLOCK CONTAINS 0 in your source program or compile with the BLOCK0

option. For details about BLOCK0, see “BLOCK0” on page 310.
v Do not code RECORD CONTAINS 0 in your source program.
v Do not code a BLKSIZE value in the JCL DD statement.

Setting block size explicitly: If you prefer to set a block size explicitly, your
program will be most flexible if you follow these guidelines:
v Code BLOCK CONTAINS 0 in your source program.
v Code a BLKSIZE value in the ddname definition (the JCL DD statement).

For extended-format data sets on z/OS, z/OS DFSMS adds a 32-byte block suffix
to the physical record. If you specify a block size explicitly (using JCL or ISPF), do
not include the size of this block suffix in the block size. This block suffix is not
available for you to use in your program. z/OS DFSMS allocates the space used to
read in the block suffix. However, when you calculate how many blocks of an
extended-format data set will fit on a track of a direct-access device, you need to
include the size of the block suffix in the block size.

If you specify a block size that is larger than 32760 directly in the BLOCK CONTAINS
clause or indirectly with the use of BLOCK CONTAINS n RECORDS, the OPEN of the data
set fails with file status code 90 unless you define the data set to be on tape.

For existing blocked data sets, it is simplest to:
v Code BLOCK CONTAINS 0 in your source program.
v Not code a BLKSIZE value in the ddname definition.

When you omit the BLKSIZE from the ddname definition, the block size is
automatically obtained by the system from the data-set label.

168 Enterprise COBOL for z/OS, V5.2 Programming Guide

Taking advantage of LBI: You can improve the performance of tape data sets by
using the large block interface (LBI) for large block sizes. When the LBI is
available, the COBOL run time automatically uses this facility for those tape files
for which you use system-determined block size. LBI is also used for those files for
which you explicitly define a block size in JCL or a BLOCK CONTAINS clause. Use of
the LBI allows block sizes to exceed 32760 if the tape device supports it.

The LBI is not used in all cases. An attempt to use a block size greater than 32760
in the following cases is diagnosed at compile time or results in a failure at OPEN:
v Spanned records
v OPEN I-O

Using a block size that exceeds 32760 might result in your not being able to read
the tape on another system. A tape that you create with a block size greater than
32760 can be read only on a system that has a tape device that supports block sizes
greater than 32760. If you specify a block size that is too large for the file, the
device, or the operating system level, a runtime message is issued.

To limit a system-determined block size to 32760, do not specify BLKSIZE anywhere,
and set one of the following items to 32760:
v The BLKSZLIM keyword on the DD statement for the data set
v BLKSZLIM for the data class by using the BLKSZLIM keyword (must be set by your

systems programmer)
v A block-size limit for the system in the DEVSUPxx member of SYS1.PARMLIB

by using the keyword TAPEBLKSZLIM (must be set by your systems programmer)

The block-size limit is the first nonzero value that the compiler finds by checking
these items.

If no BLKSIZE or BLKSZLIM value is available from any source, the system limits
BLKSIZE to 32760. You can then enable block sizes larger than 32760 in one of two
ways:
v Specify a BLKSZLIM value greater than 32760 in the DD statement for the file and

use BLOCK CONTAINS 0 in your COBOL source.
v Specify a value greater than 32760 for the BLKSIZE in the DD statement or in the

BLOCK CONTAINS clause in your COBOL source.

BLKSZLIM is device-independent.

Block size and the DCB RECFM subparameter: Under z/OS, you can code the S
or T option in the DCB RECFM subparameter:
v Use the S (standard) option in the DCB RECFM subparameter for a format-F record

with only standard blocks (ones that have no truncated blocks or unfilled tracks
in the file, except for the last block of the file). S is also supported for records on
tape. It is ignored if the records are not on DASD or tape.
Using this standard block option might improve input-output performance,
especially for direct-access devices.

v The T (track overflow) option for QSAM files is no longer useful.

RELATED TASKS

“Defining QSAM files and records in COBOL” on page 159
z/OS DFSMS: Using Data Sets

Chapter 9. Processing QSAM files 169

RELATED REFERENCES

“FILE SECTION entries” on page 12
“BLOCK0” on page 310
BLOCK CONTAINS clause (Enterprise COBOL Language Reference)

Coding input and output statements for QSAM files
You can code the following input and output statements to process a QSAM file or
a byte-stream file in the z/OS UNIX file system using QSAM: OPEN, READ, WRITE,
REWRITE, and CLOSE.

OPEN Initiates the processing of files. You can open all QSAM files as INPUT,
OUTPUT, or EXTEND (depending on device capabilities).

You can also open QSAM files on direct access storage devices as I-O. You
cannot open z/OS UNIX files as I-O; a file status of 37 results if you
attempt to do so.

READ Reads a record from the file. With sequential processing, your program
reads one record after another in the same order in which they were
entered when the file was created.

WRITE Creates a record in the file. Your program writes new records to the end of
the file.

REWRITE
Updates a record. You cannot update a file in the z/OS UNIX file system
using REWRITE.

CLOSE Releases the connection between the file and your program.

RELATED TASKS

“Opening QSAM files”
“Dynamically creating QSAM files” on page 171
“Adding records to QSAM files” on page 172
“Updating QSAM files” on page 172
“Writing QSAM files to a printer or spooled data set” on page 172
“Closing QSAM files” on page 173

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)
READ statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)
REWRITE statement (Enterprise COBOL Language Reference)
CLOSE statement (Enterprise COBOL Language Reference)
File status key (Enterprise COBOL Language Reference)

Opening QSAM files
Before a program can use any READ, WRITE, or REWRITE statements to process records
in a file, it must first open the file by using an OPEN statement.

An OPEN statement works if both of the following conditions are true:
v The file is available or has been dynamically allocated.
v The fixed file attributes coded in the ddname definition or the data-set label for

the file match the attributes coded for that file in the SELECT clause and FD entry.
Mismatches in the file-organization attributes, code set, maximum record size, or
record format (fixed or variable) result in file status code 39, and the failure of

170 Enterprise COBOL for z/OS, V5.2 Programming Guide

the OPEN statement. Mismatches in maximum record size and record format are
not errors when opening files in the z/OS UNIX file system.
For fixed-length QSAM files, if you code RECORD CONTAINS 0 in the FD entry, the
record size attributes are not in conflict. The record size is taken from the DD
statement or the data-set label, and the OPEN statement is successful.

Code CLOSE WITH LOCK so that the file cannot be opened again while the program
is running.

Use the REVERSED option of the OPEN statement to process tape files in reverse order.
The file is positioned at the end, and READ statements read the data records in
reverse order, starting with the last record. The REVERSED option is supported only
for files that have fixed-length records.

RELATED TASKS

“Dynamically creating QSAM files”
“Ensuring that file attributes match your program” on page 178

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)

Dynamically creating QSAM files
Sometimes a QSAM file is unavailable on the operating system, but a COBOL
program specifies that the file be created. Under certain circumstances, the file is
created for you dynamically.

A QSAM file is considered to be available on z/OS when it has been identified to
the operating system using a valid DD statement, an export command for an
environment variable, or a TSO ALLOCATE command. Otherwise the file is
unavailable.

Note that a DD statement with a misspelled ddname is equivalent to a missing DD
statement, and an environment variable with a value that is not valid is equivalent
to an unset variable.

The QSAM file is implicitly created if you use the runtime option CBLQDA and one
of the following circumstances exists:
v An optional file is being opened as EXTEND or I-O.

Optional files are files that are not necessarily available each time the program is
run. You define a file that is being opened in INPUT, I-O, or EXTEND mode as
optional by coding the SELECT OPTIONAL clause in the FILE-CONTROL paragraph.

v The file is being opened for OUTPUT, regardless of the OPTIONAL phrase.

The file is allocated with the system default attributes established at your
installation and the attributes coded in the SELECT clause and FD entry in your
program.

Do not confuse this implicit allocation mechanism with the explicit dynamic
allocation of files by means of environment variables. Explicit dynamic allocation
requires that a valid environment variable be set. CBLQDA support is used only
when the QSAM file is unavailable as defined above, which includes no valid
environment variable being set.

Chapter 9. Processing QSAM files 171

Under z/OS, files created using the CBLQDA option are temporary data sets and do
not exist after the program has run.

RELATED TASKS

“Opening QSAM files” on page 170

Adding records to QSAM files
To add to a QSAM file, open the file as EXTEND and use the WRITE statement to add
records immediately after the last record in the file.

To add records to a file opened as I-O, you must first close the file and open it as
EXTEND.

RELATED REFERENCES

READ statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)

Updating QSAM files
You can update QSAM files only if they reside on direct access storage devices.
You cannot update files in the z/OS UNIX file system.

Replace an existing record with another record of the same length by doing these
steps:
1. Open the file as I-O.
2. Use REWRITE to update an existing record. (The last file processing statement

before REWRITE must have been a successful READ statement.)

You cannot open as I-O an extended format data set that you allocate in
compressed format.

RELATED REFERENCES

REWRITE statement (Enterprise COBOL Language Reference)

Writing QSAM files to a printer or spooled data set
COBOL provides language statements to control the size of a printed page and
control the vertical positioning of records.

Controlling the page size: Use the LINAGE clause of the FD entry to control the size
of your printed page: the number of lines in the top and bottom margins and in
the footing area of the page. When you use the LINAGE clause, COBOL handles the
file as if you had also requested the ADV compiler option.

If you use the LINAGE clause in combination with WRITE BEFORE|AFTER ADVANCING
nn LINES, be careful about the values you set. With the ADVANCING nn LINES phrase,
COBOL first calculates the sum of LINAGE-COUNTER plus nn. Subsequent actions
depend on the size of nn. The END-OF-PAGE imperative phrase is performed after
the LINAGE-COUNTER is increased. Consequently, the LINAGE-COUNTER could be
pointing to the next logical page instead of to the current footing area when the
END-OF-PAGE phrase is performed.

AT END-OF-PAGE or NOT AT END-OF-PAGE imperative phrases are performed only if
the write operation completes successfully. If the write operation is unsuccessful,
control is passed to the end of the WRITE statement, and all conditional phrases are
omitted.

172 Enterprise COBOL for z/OS, V5.2 Programming Guide

Controlling the vertical positioning of records: Use the WRITE ADVANCING
statement to control the vertical positioning of each record you write on a printed
page.

BEFORE ADVANCING prints the record before the page is advanced. AFTER ADVANCING
prints the record after the page is advanced.

Specify the number of lines the page is advanced with an integer (or an identifier
with a mnemonic-name) following ADVANCING. If you omit the ADVANCING phrase from
a WRITE statement, the effect is as if you had coded:
AFTER ADVANCING 1 LINE

RELATED REFERENCES

WRITE statement (Enterprise COBOL Language Reference)

Closing QSAM files
Use the CLOSE statement to disconnect your program from a QSAM file. If you try
to close a file that is already closed, you will get a logic error.

If you do not close a QSAM file, the file is automatically closed for you under the
following conditions:
v When the run unit ends normally, the run time closes all open files that are

defined in any COBOL programs in the run unit.
v If the run unit ends abnormally and the TRAP(ON) runtime option is in effect, the

run time closes all open files that are defined in any COBOL programs in the
run unit.

v When Language Environment condition handling has completed and the
application resumes in a routine other than where the condition occurred, the
run time closes all open files that are defined in any COBOL programs in the
run unit that might be called again and reentered.
You can change the location where the program resumes running (after a
condition is handled) by moving the resume cursor with the Language
Environment CEEMRCR callable service or by using language constructs such as
a C longjmp.

v When you use CANCEL for a COBOL subprogram, the run time closes any open
nonexternal files that are defined in that program.

v When a COBOL subprogram with the INITIAL attribute returns control, the run
time closes any open nonexternal files that are defined in that program.

v When a thread of a multithreaded application ends, both external and
nonexternal files that you opened from within that same thread are closed.

File status key data items in the DATA DIVISION are set when these implicit CLOSE
operations are performed, but your EXCEPTION/ERROR declarative is not invoked.

Errors: If you open a QSAM file in a multithreaded application, you must close it
from the same thread of execution from which the file was opened. Attempting to
close the file from a different thread results in a close failure with file-status
condition 90.

RELATED REFERENCES

CLOSE statement (Enterprise COBOL Language Reference)

Chapter 9. Processing QSAM files 173

Handling errors in QSAM files
When an input statement or output statement fails, COBOL does not take
corrective action for you. You choose whether your program should continue
running after a less-than-severe input or output error occurs.

COBOL provides these ways for you to intercept and handle certain QSAM input
and output errors:
v End-of-file phrase (AT END)
v EXCEPTION/ERROR declarative
v FILE STATUS clause
v INVALID KEY phrase

If you do not code a FILE STATUS key or a declarative, serious QSAM processing
errors will cause a message to be issued and a Language Environment condition to
be signaled, which will cause an abend if you specify the runtime option
ABTERMENC(ABEND).

If you use the FILE STATUS clause or the EXCEPTION/ERROR declarative, code
EROPT=ACC in the DCB of the DD statement for that file. Otherwise, your COBOL
program will not be able to continue processing after some error conditions.

If you use the FILE STATUS clause, be sure to check the key and take appropriate
action based on its value. If you do not check the key, your program might
continue, but the results will probably not be what you expected.

RELATED TASKS

“Handling errors in input and output operations” on page 241

Working with QSAM files
To work with QSAM files in a COBOL program, you define and allocate the files,
retrieve them, and ensure that their file attributes match those in the program. You
can also use striped extended-format QSAM data sets to help improve
performance.

RELATED TASKS

“Defining and allocating QSAM files”
“Retrieving QSAM files” on page 177
“Ensuring that file attributes match your program” on page 178
“Using striped extended-format QSAM data sets” on page 180

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 181

Defining and allocating QSAM files
You can define a QSAM file or a byte-stream file in the z/OS UNIX file system by
using either a DD statement or an environment variable. Allocation of these files
follows the general rules for the allocation of COBOL files.

When you use an environment variable, the name must be in uppercase. Specify
the MVS data set in one of these ways:
v DSN(data-set-name)

v DSN(data-set-name(member-name))

174 Enterprise COBOL for z/OS, V5.2 Programming Guide

data-set-name must be fully qualified and cannot be a temporary data set (that is, it
must not start with &).

Restriction: You cannot create a PDS or PDSE by using an environment variable.

You can optionally specify the following attributes in any order after DSN:
v A disposition value, one of: NEW, OLD, SHR, or MOD
v TRACKS or CYL
v SPACE(nnn,mmm)

v VOL(volume-serial)

v UNIT(type)

v KEEP, DELETE, CATALOG, or UNCATALOG
v STORCLAS(storage-class)

v MGMTCLAS(management-class)

v DATACLAS(data-class)

You can use either an environment variable or a DD definition to define a file in the
z/OS UNIX file system. To do so, define one of the following items with a name
that matches the external name in the ASSIGN clause:
v A DD allocation that uses PATH=’absolute-path-name’ and FILEDATA=BINARY
v An environment variable with a value PATH(pathname), where pathname is an

absolute path name (starting with /)

For compatibility with releases of COBOL before COBOL for OS/390 & VM
Version 2 Release 2, you can also specify FILEDATA=TEXT when using a DD allocation
for z/OS UNIX files, but this use is not recommended. To process text files in the
z/OS UNIX file system, use LINE SEQUENTIAL organization. If you do use QSAM to
process text files in the z/OS UNIX file system, you cannot use environment
variables to define the files.

When you define a QSAM file, use the parameters as shown below.

Table 20. QSAM file allocation

What you want to do DD parameter to use EV keyword to use

Name the file. DSNAME (data-set name) DSN

Select the type and quantity of
input-output devices to be
allocated for the file.

UNIT UNIT for type only

Give instructions for the volume in
which the file will reside and for
volume mounting.

VOLUME (or let the system
choose an output volume)

VOL

Allocate the type and amount of
space the file needs. (Only for
direct-access storage devices.)

SPACE SPACE for the amount of
space (primary and
secondary only); TRACKS or
CYL for the type of space

Specify the type and some of the
contents of the label associated
with the file.

LABEL n/a

Indicate whether you want to
catalog, pass, or keep the file after
the job step is completed.

DISP NEW, OLD, SHR, MOD plus
KEEP, DELETE, CATALOG, or
UNCATALOG

Chapter 9. Processing QSAM files 175

Table 20. QSAM file allocation (continued)

What you want to do DD parameter to use EV keyword to use

Complete any data control block
information that you want to add.

DCB subparameters n/a

Some of the information about the QSAM file must always be coded in the
FILE-CONTROL paragraph, the FD entry, and other COBOL clauses. Other
information must be coded in the DD statement or environment variable for output
files. For input files, the system can obtain information from the file label (for
standard label files). If DCB information is provided in the DD statement for input
files, it overrides information on the data-set label. For example, the amount of
space allocated for a new direct-access device file can be set in the DD statement by
the SPACE parameter.

You cannot express certain characteristics of QSAM files in the COBOL language,
but you can code them in the DD statement for the file by using the DCB parameter.
Use the subparameters of the DCB parameter to provide information that the system
needs for completing the data set definition, including the following items:
v Block size (BLKSIZE=), if BLOCK CONTAINS 0 RECORDS was coded at compile time

(recommended)
v Options to be executed if an error occurs in reading or writing a record
v TRACK OVERFLOW or standard blocks
v Mode of operation for a card reader or punch

DCB attributes coded for a DD DUMMY do not override those coded in the FD entry of
your COBOL program.

“Example: setting and accessing environment variables” on page 466

RELATED TASKS

“Setting block sizes” on page 167
“Defining QSAM files and records in COBOL” on page 159
“Allocating files” on page 157

RELATED REFERENCES

“Parameters for creating QSAM files” on page 177
MVS Program Management: User's Guide and Reference

176 Enterprise COBOL for z/OS, V5.2 Programming Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

Parameters for creating QSAM files
The following DD statement parameters are frequently used to create QSAM files.

dataset-name

dataset-name(member-name)

&&name

&&name(member-name)

TRK ,(primary-quantity[,secondary-quantity][,directory-quantity]))

CYL

average-record-length

LABEL=

DISP=

(SPACE=

DSNAME=

(name[,unitcount])UNIT=

([PRIVATE] [,RETAIN] [,vol-sequence-num] [,volume-count] ...VOLUME=

,SER=(volume-serial[,volume-serial]...)

,REF= dsname

*.ddname

*.stepname.ddname

*.stepname.procstep.ddname

(

[Data-set-sequence-number,] NL ,EXPDT= yyddd(
SL

SUL

yyyy/ddd

,RETPD=xxxx

(

NEW ,DELETE ,DELETE)(
MOD ,KEEP

,PASS

,CATLG

,KEEP

,CATLG

(subparameter-list)DCB=

DSN=

VOL=
...

RELATED TASKS

“Defining and allocating QSAM files” on page 174

Retrieving QSAM files
You retrieve QSAM files, cataloged or not, by using job control statements or
environment variables.

Cataloged files
All data set information, such as volume and space, is stored in the catalog
and file label. All you have to code are the data set name and a
disposition. When you use a DD statement, this is the DSNAME parameter and
the DISP parameter. When you use an environment variable, this is the DSN
parameter and one of the parameters OLD, SHR, or MOD.

Noncataloged files
Some information is stored in the file label, but you must code the unit
and volume information, and the dsname and disposition.

If you are using JCL, and you created the file in the current job step or in a
previous job step in the current job, you can refer to the previous DD statement for
most of the data set information. You do, however, need to code DSNAME and DISP.

RELATED REFERENCES

“Parameters for retrieving QSAM files” on page 178

Chapter 9. Processing QSAM files 177

Parameters for retrieving QSAM files
The following DD statement parameters are used to retrieve previously created files.

RELATED TASKS

“Retrieving QSAM files” on page 177

Ensuring that file attributes match your program
When the fixed file attributes in the DD statement or the data-set label and the
attributes that are coded for that file in the SELECT clause and FD entry are not
consistent, an OPEN statement in your program might not work.

Mismatches in the attributes for file organization, record format (fixed or variable),
record length, or the code set result in file status code 39 and the failure of the
OPEN statement. An exception exists for files in the z/OS UNIX file system:
mismatches in record format and record length do not cause an error.

To prevent common file status 39 problems, follow the guidelines for processing
existing or new files.

If you have not made a file available with a DD statement or a TSO ALLOCATE
command, and your COBOL program specifies that the file be created, Enterprise
COBOL dynamically allocates the file. When the file is opened, the file attributes
that are coded in your program are used. You do not have to worry about file
attribute conflicts.

Remember that information in the JCL or environment variable overrides
information in the data-set label.

RELATED TASKS

“Processing existing files” on page 179
“Processing new files” on page 180
“Opening QSAM files” on page 170

178 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

“FILE SECTION entries” on page 12

Processing existing files
When your program processes an existing file, code the description of the file in
your COBOL program to be consistent with the file attributes of the data set. Use
the guidelines below to define the maximum record length.

Table 21. Maximum record length of QSAM files

For this format: Specify this:

V or S Exactly 4 bytes less than the length attribute of the data set

F Same value as the length attribute of the data set

U Same value as the length attribute of the data set

The easiest way to define variable-length (format-V) records in a program is to use
the RECORD IS VARYING FROM integer-1 TO integer-2 clause in the FD entry and set an
appropriate value for integer-2. Express the integer sizes in bytes regardless of the
underlying USAGE of the data items in the record. For example, assume that you
determine that the length attribute of the data set is 104 bytes (LRECL=104).
Remembering that the maximum record length is determined from the RECORD IS
VARYING clause and not from the level-01 record descriptions, you could define a
format-V file in your program with this code:
FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS V
RECORD IS VARYING FROM 4 TO 100 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).
01 COMMUTER-RECORD-B PIC X(75).

Assume that the existing file in the previous example was format-U instead of
format-V. If the 104 bytes are all user data, you could define the file in your
program with this code:
FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS U
RECORD IS VARYING FROM 4 TO 104 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).
01 COMMUTER-RECORD-B PIC X(75).

To define fixed-length records in your program, either code the RECORD CONTAINS
integer clause, or omit this clause and code all level-01 record descriptions to be the
same fixed size. In either case, use a value that equals the value of the length
attribute of the data set. If you intend to use the same program to process different
files at run time, and those files have differing fixed lengths, avoid record-length
conflicts by coding RECORD CONTAINS 0.

If the existing file is an ASCII data set (DCB=(OPTCD=Q)), you must use the CODE-SET
clause in the FD entry for the file.

RELATED TASKS

“Processing new files” on page 180
“Requesting fixed-length format” on page 161
“Requesting variable-length format” on page 162
“Requesting undefined format” on page 166
“Opening QSAM files” on page 170

Chapter 9. Processing QSAM files 179

RELATED REFERENCES

“FILE SECTION entries” on page 12

Processing new files
If your COBOL program writes records to a new file that will be made available
before the program runs, ensure that the file attributes in the DD statement, the
environment variable, or the allocation do not conflict with the attributes in the
program.

Usually you need to code only a minimum of parameters when predefining files.
But if you need to explicitly set a length attribute for the data set (for example, you
are using an ISPF allocation panel, or your DD statement is for a batch job in which
the program uses RECORD CONTAINS 0), follow these guidelines:
v For format-V and format-S files, set a length attribute that is 4 bytes larger than

that defined in the program.
v For format-F and format-U files, set a length attribute that is the same as that

defined in the program.
v If you open the file as OUTPUT and write it to a printer, the compiler might add 1

byte to the record length to account for the carriage-control character, depending
on the ADV compiler option and the language used in your program. In such a
case, take the added byte into account when coding the LRECL value.

For example, if your program contains the following code for a file that has
variable-length records, the LRECL value in the DD statement or allocation should be
54.
FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS V
RECORD CONTAINS 10 TO 50 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(10).
01 COMMUTER-RECORD-B PIC X(50).

RELATED TASKS

“Processing existing files” on page 179
“Requesting fixed-length format” on page 161
“Requesting variable-length format” on page 162
“Requesting undefined format” on page 166
“Opening QSAM files” on page 170
“Dynamically creating QSAM files” on page 171

RELATED REFERENCES

“FILE SECTION entries” on page 12

Using striped extended-format QSAM data sets
Striped extended-format QSAM data sets can benefit applications that process files
that have large amounts of data or in which the time needed for I/O operations
significantly affects overall performance.

A striped extended-format QSAM data set is an extended-format QSAM data set that
is spread over multiple volumes, thus allowing parallel data access.

For you to gain the maximum benefit from using QSAM striped data sets, z/OS
DFSMS needs to be able to allocate the required number of buffers above the 16
MB line. When you develop applications that contain files allocated to QSAM
striped data sets, follow these guidelines:

180 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Avoid using a QSAM striped data set for a file that cannot have buffers
allocated above the 16 MB line.

v Omit the RESERVE clause in the FILE-CONTROL entry for the file. Doing so lets
z/OS DFSMS determine the optimum number of buffers for the data set.

v Compile your program with the DATA(31) and RENT compiler options, and make
the program object AMODE 31.

v Specify the ALL31(ON) runtime option if the file is an EXTERNAL file with format-F,
format-V, or format-U records.

Note that all striped data sets are extended-format data sets, but not all
extended-format data sets are striped.

RELATED TASKS

z/OS DFSMS: Using Data Sets

Allocation of buffers for QSAM files
z/OS DFSMS automatically allocates buffers for storing input and output for a
QSAM file above or below the 16 MB line as appropriate for the file.

Most QSAM files have buffers allocated above the 16 MB line. Exceptions are:
v Programs running in AMODE 24.
v Programs compiled with the DATA(24) and RENT options.
v Programs compiled with the NORENT option.
v EXTERNAL files when the ALL31(OFF) runtime option is specified. To specify the

ALL31(ON) runtime option, all programs in the run unit must be capable of
running in 31-bit addressing mode.

v Files allocated to the TSO terminal.
v A file with format-S (spanned) records, if the file is any of the following ones:

– An EXTERNAL file (even if ALL31(ON) is specified)
– A file specified in a SAME RECORD AREA clause of the I-O-CONTROL paragraph
– A blocked file that is opened I-O and updated using the REWRITE statement

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

“Using striped extended-format QSAM data sets” on page 180

Accessing z/OS UNIX files using QSAM
You can process byte-stream files in the z/OS UNIX file system as ORGANIZATION
SEQUENTIAL files using QSAM. To do this, specify as the assignment-name in the
ASSIGN clause either a ddname or an environment-variable name.

ddname
A DD allocation that identifies the file with the keywords PATH= and
FILEDATA=BINARY

Environment-variable name
An environment variable that holds the runtime value of the z/OS UNIX
file system path for the file

Observe the following restrictions:

Chapter 9. Processing QSAM files 181

v Spanned record format is not supported.
v OPEN I-O and REWRITE are not supported. If you attempt one of these operations,

one of the following file-status conditions results:
– 37 from OPEN I-O
– 47 from REWRITE (because you could not have successfully opened the file as

I-O)

Usage notes

v File status 39 (fixed file attribute conflict) is not enforced for either of the
following types of conflicts:
– Record-length conflict
– Record-type conflict (fixed as opposed to variable)

v A READ returns the number of bytes of the maximum logical record size for the
file except for the last record, which might be shorter.
For example, suppose that a file definition has level-01 record descriptions of 3,
5, and 10 bytes long, and you write the following three records: 'abc', 'defgh',
and 'ijklmnopqr', in that order. The first READ of this file returns 'abcdefghij', the
second READ returns 'klmnopqr ', and the third READ results in the AT END
condition.

For compatibility with releases of IBM COBOL before COBOL for OS/390 & VM
Version 2 Release 2, you can also specify FILEDATA=TEXT when using a DD allocation
for z/OS UNIX files, but this use is not recommended. To process text files in the
z/OS UNIX file system, use LINE SEQUENTIAL organization. If you use QSAM to
process text files in the z/OS UNIX file system, you cannot use environment
variables to define the files.

RELATED TASKS

“Allocating files” on page 157
“Defining and allocating QSAM files” on page 174
z/OS DFSMS: Using Data Sets (Using HFS data sets)

Processing QSAM ASCII files on tape
If your program processes a QSAM ASCII file, you must request the ASCII
alphabet, define the record formats, and define the ddname (with JCL).

In addition, if your program processes signed numeric data items from ASCII files,
define the numeric data as zoned decimal items with separate signs, that is, as
USAGE DISPLAY and with the SEPARATE phrase of the SIGN clause.

The CODEPAGE compiler option has no effect on the code page used for conversions
between ASCII and EBCDIC for ASCII tape support. For information about how
CCSIDs used for the ASCII tape support are selected and what the default CCSIDs
are, see the z/OS DFSMS documentation.

Requesting the ASCII alphabet: In the SPECIAL-NAMES paragraph, code STANDARD-1
for ASCII:
ALPHABET-NAME IS STANDARD-1

In the FD entry for the file, code:
CODE-SET IS ALPHABET-NAME

182 Enterprise COBOL for z/OS, V5.2 Programming Guide

Defining the record formats: Process QSAM ASCII tape files with any of these
record formats:
v Fixed length (format F)
v Undefined (format U)
v Variable length (format V)

If you use variable-length records, you cannot explicitly code format D; instead,
code RECORDING MODE V. The format information is internally converted to D mode.
D-mode records have a 4-byte record descriptor for each record.

Defining the ddname: Under z/OS, processing ASCII files requires special JCL
coding. Code these subparameters of the DCB parameter in the DD statement:

BUFOFF=[L|n]

L A 4-byte block prefix that contains the block length (including the
block prefix)

n The length of the block prefix:
v For input, from 0 through 99
v For output, either 0 or 4

Use this value if you coded BLOCK CONTAINS 0.

BLKSIZE=n

n The size of the block, including the length of the block prefix

LABEL=[AL|AUL|NL]

AL American National Standard (ANS) labels

AUL ANS and user labels

NL No labels

OPTCD=Q

Q This value is required for ASCII files and is the default if the file is
created using Enterprise COBOL.

RELATED REFERENCES

z/OS DFSMS: Using Data Sets (Character data conversion)

Chapter 9. Processing QSAM files 183

184 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 10. Processing VSAM files

Virtual storage access method (VSAM) is an access method for files on
direct-access storage devices. With VSAM you can load files, retrieve records from
files, update files, and add, replace, and delete records in files.

VSAM processing has these advantages over QSAM:
v Protection of data against unauthorized access
v Compatibility across systems
v Independence of devices (no need to be concerned with block size and other

control information)
v Simpler JCL (information needed by the system is provided in integrated

catalogs)
v Ability to use indexed file organization or relative file organization

The following table shows how VSAM terms differ from COBOL terms and other
terms that you might be familiar with.

Table 22. Comparison of VSAM, COBOL, and non-VSAM terminology

VSAM term COBOL term Similar non-VSAM term

Data set File Data set

Entry-sequenced data set (ESDS) Sequential file QSAM data set

Key-sequenced data set (KSDS) Indexed file ISAM data set

Relative-record data set (RRDS) Relative file BDAM data set

Control interval Block

Control interval size (CISZ) Block size

Buffers (BUFNI/BUFND) BUFNO

Access method control block (ACB) Data control block (DCB)

Cluster (CL) Data set

Cluster definition Data-set allocation

AMP parameter of JCL DD statement DCB parameter of JCL DD statement

Record size Record length

The term file in this VSAM documentation refers to either a COBOL file or a
VSAM data set.

If you have complex requirements or frequently use VSAM, se the VSAM
publications for your operating system.

RELATED CONCEPTS

“VSAM files” on page 186

RELATED TASKS

“Defining VSAM file organization and records” on page 187
“Coding input and output statements for VSAM files” on page 193
“Handling errors in VSAM files” on page 201
“Protecting VSAM files with a password” on page 202

© Copyright IBM Corp. 1991, 2018 185

“Working with VSAM data sets under z/OS and z/OS UNIX” on page 202
“Improving VSAM performance” on page 209

RELATED REFERENCES

z/OS DFSMS: Using Data Sets
z/OS DFSMS Macro Instructions for Data Sets
z/OS DFSMS: Access Method Services for Catalogs
“Allocation of record areas for VSAM files” on page 209
“Extended addressability support” on page 211

VSAM files
The physical organization of VSAM data sets differs considerably from the
organizations used by other access methods.

VSAM data sets are held in control intervals (CI) and control areas (CA). The size
of the CI and CA is normally determined by the access method; and the way in
which they are used is not visible to you.

You can use three types of file organization with VSAM:

VSAM sequential file organization
(Also referred to as VSAM ESDS (entry-sequenced data set) organization.) In
VSAM sequential file organization, the records are stored in the order in
which they were entered.

VSAM entry-sequenced data sets are equivalent to QSAM sequential files.
The order of the records is fixed.

VSAM indexed file organization
(Also referred to as VSAM KSDS (key-sequenced data set) organization.) In a
VSAM indexed file (KSDS), the records are ordered according to the
collating sequence of an embedded prime key field, which you define. The
prime key consists of one or more consecutive characters in the records.
The prime key uniquely identifies the record and determines the sequence
in which it is accessed with respect to other records. A prime key for a
record might be, for example, an employee number or an invoice number.

VSAM relative file organization
(Also referred to as VSAM fixed-length or variable-length RRDS
(relative-record data set) organization.) A VSAM relative-record data set
(RRDS) contains records ordered by their relative key. The relative key is the
relative record number, which represents the location of the record relative
to where the file begins. The relative record number identifies the fixed- or
variable-length record.

In a VSAM fixed-length RRDS, records are placed in a series of
fixed-length slots in storage. Each slot is associated with a relative record
number. For example, in a fixed-length RRDS that contains 10 slots, the
first slot has a relative record number of 1, and the tenth slot has a relative
record number of 10.

In a VSAM variable-length RRDS, the records are ordered according to
their relative record number. Records are stored and retrieved according to
the relative record number that you set.

186 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

Throughout this information, the term VSAM relative-record data set (or
RRDS) is used to mean both relative-record data sets with fixed-length
records and with variable-length records, unless they need to be
differentiated.

The following table compares the characteristics of the different types of VSAM
data sets.

Table 23. Comparison of VSAM data-set types

Characteristic
Entry-sequenced data set
(ESDS)

Key-sequenced data set
(KSDS)

Relative-record data set
(RRDS)

Order of records Order in which they are
written

Collating sequence by key
field

Order of relative record
number

Access Sequential By key through an index By relative record number,
which is handled like a key

Alternate indexes Can have one or more
alternate indexes, although
not supported in COBOL

Can have one or more
alternate indexes

Cannot have alternate indexes

Relative byte address
(RBA) and relative
record number (RRN)
of a record

RBA cannot change. RBA can change. RRN cannot change.

Space for adding
records

Uses space at the end of
the data set

Uses distributed free space
for inserting records and
changing their lengths in
place

For fixed-length RRDS, uses
empty slots in the data set

For variable-length RRDS, uses
distributed free space and
changes the lengths of added
records in place

Space from deleting
records

You cannot delete a record,
but you can reuse its space
for a record of the same
length.

Space from a deleted or
shortened record is
automatically reclaimed in a
control interval.

Space from a deleted record
can be reused.

Spanned records Can have spanned records Can have spanned records Cannot have spanned records

Reuse as work file Can be reused unless it has
an alternate index, is
associated with key ranges,
or exceeds 123 extents per
volume

Can be reused unless it has
an alternate index, is
associated with key ranges, or
exceeds 123 extents per
volume

Can be reused

RELATED TASKS

“Specifying sequential organization for VSAM files” on page 188
“Specifying indexed organization for VSAM files” on page 188
“Specifying relative organization for VSAM files” on page 190
“Defining VSAM files” on page 203

Defining VSAM file organization and records
Use an entry in the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION to define
the file organization and access modes for the VSAM files in your COBOL
program.

Chapter 10. Processing VSAM files 187

In the FILE SECTION of the DATA DIVISION, code a file description (FD) entry for the
file. In the associated record description entry or entries, define the record-name and
record length. Code the logical size of the records by using the RECORD clause.

Important: You can process VSAM data sets in Enterprise COBOL programs only
after you define them by using access method services.

Table 24. VSAM file organization, access mode, and record format

File organization
Sequential
access

Random
access

Dynamic
access

Fixed
length

Variable
length

VSAM sequential
(ESDS)

Yes No No Yes Yes

VSAM indexed
(KSDS)

Yes Yes Yes Yes Yes

VSAM relative
(RRDS)

Yes Yes Yes Yes Yes

RELATED TASKS

“Specifying sequential organization for VSAM files”
“Specifying indexed organization for VSAM files”
“Specifying relative organization for VSAM files” on page 190
“Specifying access modes for VSAM files” on page 191
“Defining record lengths for VSAM files” on page 191
“Using file status keys” on page 245
“Using VSAM status codes (VSAM files only)” on page 246
“Defining VSAM files” on page 203

Specifying sequential organization for VSAM files
Identify VSAM ESDS files in a COBOL program with the ORGANIZATION IS
SEQUENTIAL clause. You can access (read or write) records in sequential files only
sequentially.

After you place a record in the file, you cannot shorten, lengthen, or delete it.
However, you can update (REWRITE) a record if the length does not change. New
records are added at the end of the file.

The following example shows typical FILE-CONTROL entries for a VSAM sequential
file (ESDS):
SELECT S-FILE

ASSIGN TO SEQUENTIAL-AS-FILE
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
FILE STATUS IS FSTAT-CODE VSAM-CODE.

RELATED CONCEPTS

“VSAM files” on page 186

Specifying indexed organization for VSAM files
Identify a VSAM KSDS file in a COBOL program by using the ORGANIZATION IS
INDEXED clause. Code a prime key for the record by using the RECORD KEY clause.
You can also use alternate keys and an alternate index.
RECORD KEY IS data-name

188 Enterprise COBOL for z/OS, V5.2 Programming Guide

In the example above, data-name is the name of the prime key field as you define it
in the record description entry in the DATA DIVISION. The prime key data item can
be class alphabetic, alphanumeric, DBCS, numeric, or national. If it has USAGE
NATIONAL, the prime key can be category national, or can be a national-edited,
numeric-edited, national decimal, or national floating-point data item. The collation
of record keys is based on the binary value of the keys regardless of the class or
category of the keys.

The following example shows the statements for a VSAM indexed file (KSDS) that
is accessed dynamically. In addition to the primary key, COMMUTER-NO, an alternate
key, LOCATION-NO, is specified:
SELECT I-FILE

ASSIGN TO INDEXED-FILE
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS IFILE-RECORD-KEY
ALTERNATE RECORD KEY IS IFILE-ALTREC-KEY
FILE STATUS IS FSTAT-CODE VSAM-CODE.

RELATED CONCEPTS

“VSAM files” on page 186

RELATED TASKS

“Using alternate keys”
“Using an alternate index”

RELATED REFERENCES

RECORD KEY clause (Enterprise COBOL Language Reference)
Classes and categories of data (Enterprise COBOL Language Reference)

Using alternate keys
In addition to the primary key, you can code one or more alternate keys for a
VSAM KSDS file. By using alternate keys, you can access an indexed file to read
records in some sequence other than the prime-key sequence.

Alternate keys do not need to be unique. More than one record could be accessed
if alternate keys are coded to allow duplicates. For example, you could access the
file through employee department rather than through employee number.

You define the alternate key in your COBOL program with the ALTERNATE RECORD
KEY clause:
ALTERNATE RECORD KEY IS data-name

In the example above, data-name is the name of the alternate key field as you
define it in the record description entry in the DATA DIVISION. Alternate key data
items, like prime key data items, can be class alphabetic, alphanumeric, DBCS,
numeric, or national. The collation of alternate keys is based on the binary value of
the keys regardless of the class or category of the keys.

Using an alternate index
To use an alternate index for a VSAM KSDS file, you need to define a data set
called the alternate index (AIX) by using access method services.

The AIX contains one record for each value of a given alternate key. The records
are in sequential order by alternate-key value. Each record contains the
corresponding primary keys of all records in the associated indexed files that
contain the alternate-key value.

Chapter 10. Processing VSAM files 189

RELATED TASKS

“Creating alternate indexes” on page 204

Specifying relative organization for VSAM files
Identify VSAM RRDS files in a COBOL program by using the ORGANIZATION IS
RELATIVE clause. Use the RELATIVE KEY IS clause to associate each logical record
with its relative record number.

The following example shows a relative-record data set (RRDS) that is accessed
randomly by the value in the relative key:
SELECT R-FILE

ASSIGN TO RELATIVE-FILE
ORGANIZATION IS RELATIVE
ACCESS IS RANDOM
RELATIVE KEY IS RFILE-RELATIVE-KEY
FILE STATUS IS FSTAT-CODE VSAM-CODE.

You can use a randomizing routine to associate a key value in each record with the
relative record number for that record. Although there are many techniques to
convert a record key to a relative record number, the most commonly used is the
division/remainder technique. With this technique, you divide the key by a value
equal to the number of slots in the data set to produce a quotient and remainder.
When you add one to the remainder, the result is a valid relative record number.

Alternate indexes are not supported for VSAM RRDS.

RELATED CONCEPTS

“VSAM files” on page 186
“Fixed-length and variable-length RRDS”

RELATED TASKS

“Using variable-length RRDS”
“Defining VSAM files” on page 203

Fixed-length and variable-length RRDS
In an RRDS that has fixed-length records, each record occupies one slot. You store
and retrieve records according to the relative record number of the slot. A
variable-length RRDS does not have slots; instead, the free space that you define
allows for more efficient record insertions.

When you load an RRDS that has fixed-length records, you have the option of
skipping over slots and leaving them empty. When you load an RRDS that has
variable-length records, you can skip over relative record numbers.

Using variable-length RRDS
To use relative-record data sets (RRDS) that have variable-length records, you must
use VSAM variable-length RRDS support.

Do these steps:
1. Define the file with the ORGANIZATION IS RELATIVE clause.
2. Use FD entries to describe the records with variable-length sizes.
3. Use the NOSIMVRD runtime option.
4. Define the VSAM file through access-method services as an RRDS.

190 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Defining VSAM files” on page 203

RELATED REFERENCES

z/OS DFSMS: Access Method Services for Catalogs

Specifying access modes for VSAM files
You can access records in VSAM sequential files only sequentially. You can access
records in VSAM indexed and relative files in three ways: sequentially, randomly,
or dynamically.

For sequential access, code ACCESS IS SEQUENTIAL in the FILE-CONTROL entry.
Records in indexed files are then accessed in the order of the key field selected
(either primary or alternate). Records in relative files are accessed in the order of
the relative record numbers.

For random access, code ACCESS IS RANDOM in the FILE-CONTROL entry. Records in
indexed files are then accessed according to the value you place in a key field.
Records in relative files are accessed according to the value you place in the
relative key.

For dynamic access, code ACCESS IS DYNAMIC in the FILE-CONTROL entry. Dynamic
access is a mixed sequential-random access in the same program. Using dynamic
access, you can write one program to perform both sequential and random
processing, accessing some records in sequential order and others by their keys.

“Example: using dynamic access with VSAM files”

RELATED TASKS

“Reading records from a VSAM file” on page 198

Example: using dynamic access with VSAM files
Suppose that you have an indexed file of employee records, and the employee's
hourly wage forms the record key.

If your program processes those employees who earn between $15.00 and $20.00
per hour and those who earn $25.00 per hour and above, using dynamic access of
VSAM files, the program would:
1. Retrieve the first record randomly (with a random-retrieval READ) based on the

key of 1500.
2. Read sequentially (using READ NEXT) until the salary field exceeds 2000.
3. Retrieve the next record randomly, based on a key of 2500.
4. Read sequentially until the end of the file.

RELATED TASKS

“Reading records from a VSAM file” on page 198

Defining record lengths for VSAM files
You can define VSAM records to be fixed or variable in length. COBOL determines
the record format from the RECORD clause and the record descriptions that are
associated with the FD entry for a file.

Chapter 10. Processing VSAM files 191

Because the concept of blocking has no meaning for VSAM files, you can omit the
BLOCK CONTAINS clause. The clause is syntax-checked, but it has no effect on how
the program runs.

RELATED TASKS

“Defining fixed-length records”
“Defining variable-length records”
Enterprise COBOL Migration Guide

RELATED REFERENCES

“FILE SECTION entries” on page 12

Defining fixed-length records
To define VSAM records as fixed length, use one of these coding options.

Table 25. Definition of VSAM fixed-length records

RECORD clause
Clause
format Record length Comments

Code RECORD CONTAINS
integer.

1 Fixed in size with a
length of integer-3 bytes

The lengths of the
level-01 record
description entries
associated with the file
do not matter.

Omit the RECORD clause,
but code all level-01
records that are
associated with the file as
the same size; and code
none with an OCCURS
DEPENDING ON clause.

The fixed size that you
coded

RELATED REFERENCES

RECORD clause (Enterprise COBOL Language Reference)

Defining variable-length records
To define VSAM records as variable length, use one of these coding options.

Table 26. Definition of VSAM variable-length records

RECORD clause
Clause
format Maximum record length Comments

Code RECORD IS VARYING
FROM integer-6 TO integer-7.

3 integer-7 bytes The lengths of the
level-01 record
description entries
associated with the file
do not matter.

Code RECORD IS VARYING. 3 Size of the largest level-01
record description entry
associated with the file

The compiler determines
the maximum record
length.

Code RECORD CONTAINS
integer-4 TO integer-5.

2 integer-5 bytes The minimum record
length is integer-4 bytes.

192 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 26. Definition of VSAM variable-length records (continued)

RECORD clause
Clause
format Maximum record length Comments

Omit the RECORD clause,
but code multiple level-01
records that are
associated with the file
and are of different sizes
or contain an OCCURS
DEPENDING ON clause.

Size of the largest level-01
record description entry
associated with the file

The compiler determines
the maximum record
length.

When you specify a READ INTO statement for a format-V file, the record size that is
read for that file is used in the MOVE statement generated by the compiler.
Consequently, you might not get the result you expect if the record read in does
not correspond to the level-01 record description. All other rules of the MOVE
statement apply. For example, when you specify a MOVE statement for a format-V
record read in by the READ statement, the size of the record corresponds to its
level-01 record description.

RELATED REFERENCES

RECORD clause (Enterprise COBOL Language Reference)

Coding input and output statements for VSAM files
Use the COBOL statements shown below to process VSAM files.

OPEN To connect the VSAM data set to your COBOL program for processing.

WRITE To add records to a file or load a file.

START To establish the current location in the cluster for a READ NEXT statement.

START does not retrieve a record; it only sets the current record pointer.

READ and READ NEXT
To retrieve records from a file.

REWRITE
To update records.

DELETE To logically remove records from indexed and relative files only.

CLOSE To disconnect the VSAM data set from your program.

All of the following factors determine which input and output statements you can
use for a given VSAM data set:
v Access mode (sequential, random, or dynamic)
v File organization (ESDS, KSDS, or RRDS)
v Mode of OPEN statement (INPUT, OUTPUT, I-O, or EXTEND)

The following table shows the possible combinations of statements and open
modes for sequential files (ESDS). The X indicates that you can use a statement
with the open mode shown at the top of the column.

Chapter 10. Processing VSAM files 193

Table 27. I/O statements for VSAM sequential files

Access mode
COBOL
statement OPEN INPUT OPEN OUTPUT OPEN I-O OPEN EXTEND

Sequential OPEN X X X X

WRITE X X

START

READ X X

REWRITE X

DELETE

CLOSE X X X X

The following table shows the possible combinations of statements and open
modes that you can use with indexed (KSDS) files and relative (RRDS) files. The X
indicates that you can use the statement with the open mode shown at the top of
the column.

Table 28. I/O statements for VSAM relative and indexed files

Access mode
COBOL
statement OPEN INPUT OPEN OUTPUT OPEN I-O OPEN EXTEND

Sequential OPEN X X X X

WRITE X X

START X X

READ X X

REWRITE X

DELETE X

CLOSE X X X X

Random OPEN X X X

WRITE X X

START

READ X X

REWRITE X

DELETE X

CLOSE X X X

Dynamic OPEN X X X

WRITE X X

START X X

READ X X

REWRITE X

DELETE X

CLOSE X X X

The fields that you code in the FILE STATUS clause are updated by VSAM after
each input-output statement to indicate the success or failure of the operation.

194 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED CONCEPTS

“File position indicator”

RELATED TASKS

“Opening a file (ESDS, KSDS, or RRDS)”
“Reading records from a VSAM file” on page 198
“Updating records in a VSAM file” on page 199
“Adding records to a VSAM file” on page 199
“Replacing records in a VSAM file” on page 200
“Deleting records from a VSAM file” on page 200
“Closing VSAM files” on page 200

RELATED REFERENCES

File status key (Enterprise COBOL Language Reference)

File position indicator
The file position indicator marks the next record to be accessed for sequential
COBOL requests. You do not set the file position indicator in your program. It is
set by successful OPEN, START, READ, and READ NEXT statements.

Subsequent READ or READ NEXT requests use the established file position indicator
location and update it.

The file position indicator is not used or affected by the output statements WRITE,
REWRITE, or DELETE. The file position indicator has no meaning for random
processing.

RELATED TASKS

“Reading records from a VSAM file” on page 198

Opening a file (ESDS, KSDS, or RRDS)
Before you can use WRITE, START, READ, REWRITE, or DELETE statements to process
records in a file, you must first open the file with an OPEN statement.

Whether a file is available or optional affects OPEN processing, file creation, and the
resulting file status key. For example, if you open in EXTEND, I-O, or INPUT mode a
nonexistent non-OPTIONAL file, the result is an OPEN error, and file status 35 is
returned. If the file is OPTIONAL, however, the same OPEN statement returns file
status 05, and, for open modes EXTEND and I-O, creates the file.

An OPEN operation works successfully only if you set fixed file attributes in the DD
statement or data-set label for a file, and specify consistent attributes for the file in
the SELECT clause and FD entries of your COBOL program. Mismatches in the
following items result in a file status key 39 and the failure of the OPEN statement:
v Attributes for file organization (sequential, relative, or indexed)
v Prime record key
v Alternate record keys
v Maximum record size
v Record type (fixed or variable)

How you code the OPEN statement for a VSAM file depends on whether the file is
empty (a file that has never contained records) or loaded. For either type of file,
your program should check the file status key after each OPEN statement.

Chapter 10. Processing VSAM files 195

RELATED TASKS

“Opening an empty file”
“Opening a loaded file (a file with records)” on page 197

RELATED REFERENCES

“Statements to load records into a VSAM file” on page 197

Opening an empty file
To open a file that has never contained records (an empty file), use a form of the
OPEN statement.

Depending on the type of file that you are opening, use one of the following
statements:
v OPEN OUTPUT for ESDS files.
v OPEN OUTPUT or OPEN EXTEND for KSDS and RRDS files. (Either coding has the

same effect.) If you coded the file for random or dynamic access and the file is
optional, you can use OPEN I-O.

Optional files are files that are not necessarily available each time a program is run.
You can define files opened in INPUT, I-O, or OUTPUT mode as optional by defining
them with the SELECT OPTIONAL clause in the FILE-CONTROL paragraph.

Initially loading a file sequentially: Initially loading a file means writing records
into the file for the first time. Doing so is not the same as writing records into a
file from which all previous records have been deleted. To initially load a VSAM
file:
1. Open the file.
2. Use sequential processing (ACCESS IS SEQUENTIAL). (Sequential processing is

faster than random or dynamic processing.)
3. Use WRITE to add a record to the file.

Using OPEN OUTPUT to load a VSAM file significantly improves the performance of
your program. Using OPEN I-O or OPEN EXTEND has a negative effect on the
performance of your program.

When you load VSAM indexed files sequentially, you optimize both loading
performance and subsequent processing performance, because sequential
processing maintains user-defined free space. Future insertions will be more
efficient.

With ACCESS IS SEQUENTIAL, you must write the records in ascending RECORD KEY
order.

When you load VSAM relative files sequentially, the records are placed in the file
in the ascending order of relative record numbers.

Initially loading a file randomly or dynamically: You can use random or dynamic
processing to load a file, but they are not as efficient as sequential processing.
Because VSAM does not support random or dynamic processing, COBOL has to
perform some extra processing to enable you to use ACCESS IS RANDOM or ACCESS
IS DYNAMIC with OPEN OUTPUT or OPEN I-O. These steps prepare the file for use and
give it the status of a loaded file because it has been used at least once.

196 Enterprise COBOL for z/OS, V5.2 Programming Guide

In addition to extra overhead for preparing files for use, random processing does
not consider any user-defined free space. As a result, any future insertions might
be inefficient. Sequential processing maintains user-defined free space.

When you are loading an extended-format VSAM data set, file status 30 will occur
for the OPEN if z/OS DFSMS system-managed buffering sets the buffering to local
shared resources (LSR). To successfully load the VSAM data set in this case, specify
ACCBIAS=USER in the DD AMP parameter for the VSAM data set to bypass
system-managed buffering.

Loading a VSAM data set with access method services: You can load or update a
VSAM data set by using the access method services REPRO command. Use REPRO
whenever possible.

RELATED TASKS

“Opening a loaded file (a file with records)”

RELATED REFERENCES

“Statements to load records into a VSAM file”
z/OS DFSMS: Access Method Services for Catalogs (REPRO)

Statements to load records into a VSAM file
Use the statements shown below to load records into a VSAM file.

Table 29. Statements to load records into a VSAM file

Division ESDS KSDS RRDS

ENVIRONMENT
DIVISION

SELECT
ASSIGN
FILE STATUS
PASSWORD
ACCESS MODE

SELECT
ASSIGN
ORGANIZATION IS INDEXED
RECORD KEY
ALTERNATE RECORD KEY
FILE STATUS
PASSWORD
ACCESS MODE

SELECT
ASSIGN
ORGANIZATION IS RELATIVE
RELATIVE KEY
FILE STATUS
PASSWORD
ACCESS MODE

DATA DIVISION FD entry FD entry FD entry

PROCEDURE
DIVISION

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

RELATED TASKS

“Opening an empty file” on page 196
“Updating records in a VSAM file” on page 199

Opening a loaded file (a file with records)
To open a file that already contains records, use OPEN INPUT, OPEN I-O, or OPEN
EXTEND.

If you open a VSAM entry-sequenced or relative-record file as EXTEND, the added
records are placed after the last existing records in the file.

If you open a VSAM key-sequenced file as EXTEND, each record you add must have
a record key higher than the highest record in the file.

Chapter 10. Processing VSAM files 197

RELATED TASKS

“Opening an empty file” on page 196
“Working with VSAM data sets under z/OS and z/OS UNIX” on page 202

RELATED REFERENCES

“Statements to load records into a VSAM file” on page 197
z/OS DFSMS: Access Method Services for Catalogs

Reading records from a VSAM file
Use the READ statement to retrieve (READ) records from a file. To read a record, you
must have opened the file INPUT or I-O. Your program should check the file status
key after each READ.

You can retrieve records in VSAM sequential files only in the sequence in which
they were written.

You can retrieve records in VSAM indexed and relative record files in any of the
following ways:

Sequentially
According to the ascending order of the key you are using, the RECORD KEY
or the ALTERNATE RECORD KEY, beginning at the current position of the file
position indicator for indexed files, or according to ascending relative
record locations for relative files

Randomly
In any order, depending on how you set the RECORD KEY or ALTERNATE
RECORD KEY or the RELATIVE KEY before your READ request

Dynamically
Mixed sequential and random

With dynamic access, you can switch between reading a specific record directly
and reading records sequentially, by using READ NEXT for sequential retrieval and
READ for random retrieval (by key).

When you want to read sequentially, beginning at a specific record, use START
before the READ NEXT statement to set the file position indicator to point to a
particular record. When you code START followed by READ NEXT, the next record is
read and the file position indicator is reset to the next record. You can move the
file position indicator randomly by using START, but all reading is done
sequentially from that point.
START file-name KEY IS EQUAL TO ALTERNATE-RECORD-KEY

When a direct READ is performed for a VSAM indexed file, based on an alternate
index for which duplicates exist, only the first record in the data set (base cluster)
with that alternate key value is retrieved. You need a series of READ NEXT
statements to retrieve each of the data set records with the same alternate key. A
file status code of 02 is returned if there are more records with the same alternate
key value to be read; a code of 00 is returned when the last record with that key
value has been read.

RELATED CONCEPTS

“File position indicator” on page 195

RELATED TASKS

“Specifying access modes for VSAM files” on page 191

198 Enterprise COBOL for z/OS, V5.2 Programming Guide

Updating records in a VSAM file
To update a VSAM file, use these PROCEDURE DIVISION statements.

Table 30. Statements to update records in a VSAM file

Access
method ESDS KSDS RRDS

ACCESS IS
SEQUENTIAL

OPEN EXTEND
WRITE
CLOSE

or

OPEN I-O
READ
REWRITE
CLOSE

OPEN EXTEND
WRITE
CLOSE

or

OPEN I-O
READ
REWRITE
DELETE
CLOSE

OPEN EXTEND
WRITE
CLOSE

or

OPEN I-O
READ
REWRITE
DELETE
CLOSE

ACCESS IS
RANDOM

Not applicable OPEN I-O
READ
WRITE
REWRITE
DELETE
CLOSE

OPEN I-O
READ
WRITE
REWRITE
DELETE
CLOSE

ACCESS IS
DYNAMIC
(sequential
processing)

Not applicable OPEN I-O
READ NEXT
WRITE
REWRITE
START
DELETE
CLOSE

OPEN I-O
READ NEXT
WRITE
REWRITE
START
DELETE
CLOSE

ACCESS IS
DYNAMIC
(random
processing)

Not applicable OPEN I-O
READ
WRITE
REWRITE
DELETE
CLOSE

OPEN I-O
READ
WRITE
REWRITE
DELETE
CLOSE

RELATED REFERENCES

“Statements to load records into a VSAM file” on page 197

Adding records to a VSAM file
Use the COBOL WRITE statement to add a record to a file without replacing any
existing records. The record to be added must not be larger than the maximum
record size that you set when you defined the file. Your program should check the
file status key after each WRITE statement.

Adding records sequentially: Use ACCESS IS SEQUENTIAL and code the WRITE
statement to add records sequentially to the end of a VSAM file that has been
opened with either OUTPUT or EXTEND.

Sequential files are always written sequentially.

For indexed files, you must write new records in ascending key sequence. If you
open the file EXTEND, the record keys of the records to be added must be higher
than the highest primary record key on the file when you opened the file.

Chapter 10. Processing VSAM files 199

For relative files, the records must be in sequence. If you include a RELATIVE KEY
data item in the SELECT clause, the relative record number of the record to be
written is placed in that data item.

Adding records randomly or dynamically: When you write records to an indexed
data set and ACCESS IS RANDOM or ACCESS IS DYNAMIC, you can write the records in
any order.

Replacing records in a VSAM file
To replace a record in a VSAM file, use REWRITE on a file that you opened as I-O. If
the file was not opened as I-O, the record is not rewritten and the status key is set
to 49. Check the file status key after each REWRITE statement.

For sequential files, the length of the replacement record must be the same as the
length of the original record. For indexed files or variable-length relative files, you
can change the length of the record you replace.

To replace a record randomly or dynamically, you do not have to first READ the
record. Instead, locate the record you want to replace as follows:
v For indexed files, move the record key to the RECORD KEY data item, and then

issue the REWRITE.
v For relative files, move the relative record number to the RELATIVE KEY data

item, and then issue the REWRITE.

Deleting records from a VSAM file
To remove an existing record from an indexed or relative file, open the file I-O and
use the DELETE statement. You cannot use DELETE on a sequential file.

When you use ACCESS IS SEQUENTIAL or the file contains spanned records, your
program must first read the record to be deleted. The DELETE then removes the
record that was read. If the DELETE is not preceded by a successful READ, the
deletion is not done and the status key value is set to 92.

When you use ACCESS IS RANDOM or ACCESS IS DYNAMIC, your program does not
have to first read the record to be deleted. To delete a record, move the key of the
record to be deleted to the RECORD KEY data item, and then issue the DELETE. Your
program should check the file status key after each DELETE statement.

Closing VSAM files
Use the CLOSE statement to disconnect your program from a VSAM file. If you try
to close a file that is already closed, you will get a logic error. Check the file status
key after each CLOSE statement.

If you do not close a VSAM file, the file is automatically closed for you under the
following conditions:
v When the run unit ends normally, all open files defined in any COBOL

programs in the run unit are closed.
v When the run unit ends abnormally, if the TRAP(ON) runtime option has been set,

all open files defined in any COBOL programs in the run unit are closed.
v When Language Environment condition handling has completed and the

application resumes in a routine other than where the condition occurred, open
files defined in any COBOL programs in the run unit that might be called again
and reentered are closed.

200 Enterprise COBOL for z/OS, V5.2 Programming Guide

You can change the location where a program resumes after a condition is
handled. To make this change, you can, for example, move the resume cursor
with the CEEMRCR callable service or use language constructs such as a C
longjmp statement.

v When you issue CANCEL for a COBOL subprogram, any open nonexternal files
defined in that program are closed.

v When a COBOL subprogram with the INITIAL attribute returns control, any
open nonexternal files defined in that program are closed.

v When a thread of a multithreaded application ends, both external and
nonexternal files that were opened from within that same thread are closed.

File status key data items in the DATA DIVISION are set when these implicit CLOSE
operations are performed, but your EXCEPTION/ERROR declarative is not invoked.

Errors: If you open a VSAM file in a multithreaded application, you must close it
from the same thread of execution. Attempting to close the file from a different
thread results in a close failure with file-status condition 90.

Handling errors in VSAM files
When an input or output statement operation fails, COBOL does not perform
corrective action for you.

All OPEN and CLOSE errors with a VSAM file, whether logical errors in your
program or input/output errors on the external storage media, return control to
your COBOL program even if you coded no DECLARATIVE and no FILE STATUS
clause.

If any other input or output statement operation fails, you choose whether your
program will continue running after a less-than-severe error.

COBOL provides these ways for you to intercept and handle certain VSAM input
and output errors:
v End-of-file phrase (AT END)
v EXCEPTION/ERROR declarative
v FILE STATUS clause (file status key and VSAM status code)
v INVALID KEY phrase

You should define a status key for each VSAM file that you define in your
program. Check the status key value after each input or output request, especially
OPEN and CLOSE.

If you do not code a file status key or a declarative, serious VSAM processing
errors will cause a message to be issued and a Language Environment condition to
be signaled, which will cause an abend if you specify the runtime option
ABTERMENC(ABEND).

RELATED TASKS

“Handling errors in input and output operations” on page 241
“Using VSAM status codes (VSAM files only)” on page 246

RELATED REFERENCES

z/OS DFSMS Macro Instructions for Data Sets (VSAM macro return and
reason codes)

Chapter 10. Processing VSAM files 201

Protecting VSAM files with a password
Although the preferred security mechanism on a z/OS system is RACF®,
Enterprise COBOL also supports using explicit passwords on VSAM files to
prevent unauthorized access and update.

To use explicit passwords, code the PASSWORD clause in the FILE-CONTROL
paragraph. Use this clause only if the catalog entry for the files includes a read or
an update password:
v If the catalog entry includes a read password, you cannot open and access the

file in a COBOL program unless you use the PASSWORD clause in the
FILE-CONTROL paragraph and describe it in the DATA DIVISION. The data-name
referred to must contain a valid password when the file is opened.

v If the catalog entry includes an update password, you can open and access it,
but not update it, unless you code the PASSWORD clause in the FILE-CONTROL
paragraph and describe it in the DATA DIVISION.

v If the catalog entry includes both a read password and an update password,
specify the update password to both read and update the file in your program.

If your program only retrieves records and does not update them, you need only
the read password. If your program loads files or updates them, you need to
specify the update password that was cataloged.

For indexed files, the PASSWORD data item for the RECORD KEY must contain the valid
password before the file can be successfully opened.

If you password-protect a VSAM indexed file, you must also password-protect
each alternate index in order to be fully password protected. Where you place the
PASSWORD clause is important because each alternate index has its own password.
The PASSWORD clause must directly follow the key clause to which it applies.

Example: password protection for a VSAM indexed file
The following example shows the COBOL code used for a VSAM indexed file that
has password protection.
. . .
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LIBFILE
ASSIGN TO PAYMAST
ORGANIZATION IS INDEXED
RECORD KEY IS EMPL-NUM

PASSWORD IS BASE-PASS
ALTERNATE RECORD KEY IS EMPL-PHONE

PASSWORD IS PATH1-PASS
. . .
WORKING-STORAGE SECTION.
01 BASE-PASS PIC X(8) VALUE "25BSREAD".
01 PATH1-PASS PIC X(8) VALUE "25ATREAD".

Working with VSAM data sets under z/OS and z/OS UNIX
Be aware of special coding considerations for VSAM files under z/OS and z/OS
UNIX for access method services (IDCAMS) commands, environment variables,
and JCL.

A VSAM file is available if all of the following conditions are true:

202 Enterprise COBOL for z/OS, V5.2 Programming Guide

v You define it using access method services.
v You define it for your program by providing a DD statement, an environment

variable, or an ALLOCATE command.
v It has previously contained a record.

A VSAM file is unavailable if it has never contained a record, even if you have
defined the file.

You always get a return code of zero on completion of the OPEN statement for a
VSAM sequential file.

Use the access method services REPRO command to empty a file. Deleting records in
this manner resets the high-use relative byte address (RBA) of the file to zero. The
file is effectively empty and appears to COBOL as if it never contained a record.

RELATED TASKS

“Defining files to the operating system” on page 8
“Defining VSAM files”
“Creating alternate indexes” on page 204
“Allocating VSAM files” on page 206
“Sharing VSAM files through RLS” on page 207

Defining VSAM files
You can process VSAM entry-sequenced, key-sequenced, and relative-record data
sets in Enterprise COBOL only after you define them through access method
services (IDCAMS).

A VSAM cluster is a logical definition for a VSAM data set and has one or two
components:
v The data component of a VSAM cluster contains the data records.
v The index component of a VSAM key-sequenced cluster consists of the index

records.

Use the DEFINE CLUSTER access-method services command to define VSAM data
sets (clusters). This process includes creating an entry in an integrated catalog
without any data transfer. Define the following information about the cluster:
v Name of the entry
v Name of the catalog to contain this definition and its password (can use default

name)
v Organization (sequential, indexed, or relative)
v Device and volumes that the data set will occupy
v Space required for the data set
v Record size and control interval sizes (CISIZE)
v Passwords (if any) required for future access

Depending on what kind of data set is in the cluster, also define the following
information for each cluster:
v For VSAM indexed data sets (KSDS), specify length and position of the prime

key in the records.
v For VSAM fixed-length relative-record data sets (RRDS), specify the record size

as greater than or equal to the maximum size COBOL record:

Chapter 10. Processing VSAM files 203

DEFINE CLUSTER NUMBERED
RECORDSIZE(n,n)

If you define a data set in this way, all records are padded to the fixed slot size
n. If you use the RECORD IS VARYING ON data-name form of the RECORD clause, a
WRITE or REWRITE uses the length specified in DEPENDING ON data-name as the
length of the record to be transferred by VSAM. This data is then padded to the
fixed slot size. READ statements always return the fixed slot size in the DEPENDING
ON data-name.

v For VSAM variable-length relative-record data sets (RRDS), specify the average
size COBOL record expected and the maximum size COBOL record expected:
DEFINE CLUSTER NUMBERED
RECORDSIZE(avg,m)

The average size COBOL record expected must be less than the maximum size
COBOL record expected.

RELATED TASKS

“Creating alternate indexes”
“Allocating VSAM files” on page 206
“Specifying relative organization for VSAM files” on page 190

RELATED REFERENCES

z/OS DFSMS: Access Method Services for Catalogs

Creating alternate indexes
An alternate index provides access to the records in a data set that uses more than
one key. It accesses records in the same way as the prime index key of an indexed
data set (KSDS).

When planning to use an alternate index, you must know:
v The type of data set (base cluster) with which the index will be associated
v Whether the keys will be unique or not unique
v Whether the index is to be password protected
v Some of the performance aspects of using alternate indexes

Because an alternate index is, in practice, a VSAM data set that contains pointers to
the keys of a VSAM data set, you must define the alternate index and the alternate
index path (the entity that establishes the relationship between the alternate index
and the prime index). After you define an alternate index, make a catalog entry to
establish the relationship (or path) between the alternate index and its base cluster.
This path allows you to access the records of the base cluster through the alternate
keys.

To use an alternate index, do these steps:
1. Define the alternate index by using the DEFINE ALTERNATEINDEX command. In it,

specify these items:
v Name of the alternate index
v Name of its related VSAM indexed data set
v Location in the record of any alternate indexes and whether they are unique
v Whether alternate indexes are to be updated when the data set is changed
v Name of the catalog to contain this definition and its password (can use

default name)

204 Enterprise COBOL for z/OS, V5.2 Programming Guide

In your COBOL program, the alternate index is identified solely by the
ALTERNATE RECORD KEY clause in the FILE-CONTROL paragraph. The ALTERNATE
RECORD KEY definitions must match the definitions in the catalog entry. Any
password entries that you cataloged should be coded directly after the
ALTERNATE RECORD KEY phrase.

2. Relate the alternate index to the base cluster (the data set to which the alternate
index gives you access) by using the DEFINE PATH command. In it, specify these
items:
v Name of the path
v Alternate index to which the path is related
v Name of the catalog that contains the alternate index
The base cluster and alternate index are described by entries in the same
catalog.

3. Load the VSAM indexed data set.
4. Build the alternate index by using (typically) the BLDINDEX command. Identify

the input file as the indexed data set (base cluster) and the output file as the
alternate index or its path. BLDINDEX reads all the records in the VSAM indexed
data set (or base cluster) and extracts the data needed to build the alternate
index.
Alternatively, you can use the runtime option AIXBLD to build the alternate
index at run time. However, this option might adversely affect performance.

“Example: entries for alternate indexes”

RELATED TASKS

“Using an alternate index” on page 189

RELATED REFERENCES

Language Environment Programming Reference (AIXBLD (COBOL only))

Example: entries for alternate indexes
The following example maps the relationships between the COBOL FILE-CONTROL
entry and the DD statements or environment variables for a VSAM indexed file that
has two alternate indexes.

Using JCL:
//MASTERA DD DSNAME=clustername,DISP=OLD (1)
//MASTERA1 DD DSNAME=path1,DISP=OLD (2)
//MASTERA2 DD DSNAME=path2,DISP=OLD (3)

Using environment variables:
export MASTERA=DSN(clustername),OLD (1)
export MASTERA=DSN(path1),OLD (2)
export MASTERA=DSN(path2),OLD (3)
. . .
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO MASTERA (4)
RECORD KEY IS EM-NAME
PASSWORD IS PW-BASE (5)
ALTERNATE RECORD KEY IS EM-PHONE (6)

PASSWORD IS PW-PATH1
ALTERNATE RECORD KEY IS EM-CITY (7)

PASSWORD IS PW-PATH2.

(1) The base cluster name is clustername.

(2) The name of the first alternate index path is path1.

Chapter 10. Processing VSAM files 205

(3) The name of the second alternate index path is path2.

(4) The ddname or environment variable name for the base cluster is specified
with the ASSIGN clause.

(5) Passwords immediately follow their indexes.

(6) The key EM-PHONE relates to the first alternate index.

(7) The key EM-CITY relates to the second alternate index.

RELATED TASKS

“Creating alternate indexes” on page 204

Allocating VSAM files
You must predefine and catalog all VSAM data sets through the access method
services DEFINE command. Most of the information about a VSAM data set is in the
catalog, so you need to specify only minimal DD or environment variable
information.

Allocation of VSAM files (indexed, relative, and sequential) follows the general
rules for the allocation of COBOL files.

When you use an environment variable to allocate a VSAM file, the variable name
must be in uppercase. Usually the input and data buffers are the only variables
that you are concerned about. You must specify these options in the order shown,
but no others:
1. DSN(dsname), where dsname is the name of the base cluster
2. OLD or SHR

The basic DD statement that you need for VSAM files and the corresponding export
command are these:
//ddname DD DSN=dsname,DISP=SHR,AMP=AMORG
export evname="DSN(dsname),SHR"

In either case, dsname must be the same as the name used in the access method
services DEFINE CLUSTER or DEFINE PATH command. DISP must be OLD or SHR
because the data set is already cataloged. If you specify MOD when using JCL, the
data set is treated as OLD.

AMP is a VSAM JCL parameter that supplements the information that the program
supplies about the data set. AMP takes effect when your program opens the VSAM
file. Any information that you set through the AMP parameter takes precedence over
the information that is in the catalog or that the program supplies. The AMP
parameter is required only under the following circumstances:
v You use a dummy VSAM data set. For example,

//ddname DD DUMMY,AMP=AMORG

v You request additional index or data buffers. For example,
//ddname DD DSN=VSAM.dsname,DISP=SHR,
// AMP=(’BUFNI=4,BUFND=8’)

You cannot specify AMP if you allocate a VSAM data set with an environment
variable.

For a VSAM base cluster, specify the same system-name (ddname or environment
variable name) that you specify in the ASSIGN clause after the SELECT clause.

206 Enterprise COBOL for z/OS, V5.2 Programming Guide

When you use alternate indexes in your COBOL program, you must specify not
only a system-name (using a DD statement or environment variable) for the base
cluster, but also a system-name for each alternate index path. No language
mechanism exists to explicitly declare system-names for alternate index paths
within the program. Therefore, you must adhere to the following guidelines for
forming the system-name (ddname or environment variable name) for each
alternate index path:
v Concatenate the base cluster name with an integer.
v Begin with 1 for the path associated with the first alternate record defined for

the file in your program (ALTERNATE RECORD KEY clause of the FILE-CONTROL
paragraph).

v Increment by 1 for the path associated with each successive alternate record
definition for that file.

For example, if the system-name of a base cluster is ABCD, the system-name for the
first alternate index path defined for the file in your program is ABCD1, the
system-name for the second alternate index path is ABCD2, and so on.

If the length of the base cluster system-name together with the sequence number
exceeds eight characters, the base cluster portion of the system-name is truncated
on the right to reduce the concatenated result to eight characters. For example, if
the system-name of a base cluster is ABCDEFGH, the system name of the first
alternate index path is ABCDEFG1, the tenth is ABCDEF10, and so on.

RELATED TASKS

“Allocating files” on page 157

RELATED REFERENCES

MVS Program Management: User's Guide and Reference

Sharing VSAM files through RLS
By using the VSAM JCL parameter RLS, you can specify record-level sharing with
VSAM. Specifying RLS is the only way to request the RLS mode when running
COBOL programs.

Use RLS=CR when consistent read protocols are required, and RLS=NRI when no read
integrity protocols are required. You cannot specify RLS if you allocate your VSAM
data set with an environment variable

RELATED TASKS

“Preventing update problems with VSAM files in RLS mode”
“Handling errors in VSAM files in RLS mode” on page 208

RELATED REFERENCES

“Restrictions when using RLS” on page 208

Preventing update problems with VSAM files in RLS mode
When you open a VSAM data set in RLS mode for I-O (updates), the first READ
causes an exclusive lock of the record regardless of the value of RLS (RLS=CR or
RLS=NRI) that you specify.

If the COBOL file is defined as ACCESS RANDOM, VSAM releases the exclusive lock
on the record after a WRITE or REWRITE statement is executed or a READ statement is
executed for another record. When a WRITE or REWRITE is done, VSAM writes the
record immediately.

Chapter 10. Processing VSAM files 207

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

However, if the COBOL file is defined as ACCESS DYNAMIC, VSAM does not release
the exclusive lock on the record after a WRITE or REWRITE statement, nor after a READ
statement, unless the I-O statement causes VSAM to move to another control
interval (CI). As a result, if a WRITE or REWRITE was done, VSAM does not write the
record until processing is moved to another CI and the lock is released. When you
use ACCESS DYNAMIC, one way to cause the record to be written immediately, to
release the exclusive lock immediately, or both, is to define the VSAM data set to
allow only one record per CI.

Specifying RLS=CR locks a record and prevents an update to it until another READ is
requested for another record. While a lock on the record being read is in effect,
other users can request a READ for the same record, but they cannot update the
record until the read lock is released. When you specify RLS=NRI, no lock will be in
effect when a READ for input is executed. Another user might update the record.

The locking rules for RLS=CR can cause the application to wait for availability of a
record lock. This wait might slow down the READ for input. You might need to
modify your application logic to use RLS=CR. Do not use the RLS parameter for
batch jobs that update nonrecoverable spheres until you are sure that the
application functions correctly in a multiple-updater environment.

When you open a VSAM data set in RLS mode for INPUT or I-O processing, it is
good to issue an OPEN or START immediately before a READ. If there is a delay
between the OPEN or START and the READ, another user might add records before the
record on which the application is positioned after the OPEN or START. The COBOL
run time points explicitly to the beginning of the VSAM data set at the time when
OPEN was requested, but another user might add records that would alter the true
beginning of the VSAM data set if the READ is delayed.

Restrictions when using RLS
When you use RLS mode, several restrictions apply to VSAM cluster attributes and
to runtime options.

Be aware of these restrictions:
v The VSAM cluster attributes KEYRANGE and IMBED are not supported when you

open a VSAM file.
v The VSAM cluster attribute REPLICATE is not recommended because the benefits

are negated by the system-wide buffer pool and potentially large CF cache
structure in the storage hierarchy.

v The AIXBLD runtime option is not supported when you open a VSAM file
because VSAM does not allow an empty path to be opened. If you need the
AIXBLD runtime option to build the alternate index data set, open the VSAM data
set in non-RLS mode.

v The SIMVRD runtime option is not supported for VSAM files.
v Temporary data sets are not allowed.

Handling errors in VSAM files in RLS mode
If your application accesses a VSAM data set in RLS mode, be sure to check the file
status and VSAM feedback codes after each request.

If your application encounters "SMSVSAM server not available" while processing
input or output, explicitly close the VSAM file before you try to open it again.
VSAM generates return code 16 for such failures, and there is no feedback code.
You can have COBOL programs check the first 2 bytes of the second file status

208 Enterprise COBOL for z/OS, V5.2 Programming Guide

area for VSAM return code 16. The COBOL run time generates message IGZ0205W
and automatically closes the file if the error occurs during OPEN processing.

All other RLS mode errors return a VSAM return code of 4, 8, or 12.

RELATED TASKS

“Using VSAM status codes (VSAM files only)” on page 246

Allocation of record areas for VSAM files
For reentrant COBOL programs, the record areas for VSAM files are allocated
above the 16 MB line by default.

If you specify the DATA(24) compiler option, the VSAM record areas and other
dynamic storage areas are allocated in storage below 16 MB.

Programs that pass data in VSAM file records as CALL...USING parameters to AMODE
24 subprograms are impacted. You can recompile such programs with the DATA(24)
compiler option, or use the Language Environment HEAP runtime option, to ensure
that the records are addressable by the AMODE 24 programs.

Improving VSAM performance
Your system programmer is most likely responsible for tuning the performance of
COBOL and VSAM. As an application programmer, you can control the aspects of
VSAM that are listed in the following table.

Table 31. Methods for improving VSAM performance

Aspect of VSAM What you can do Rationale and comments

Invoking access
methods service

Build your alternate indexes in
advance, using IDCAMS.

Buffering For sequential access, request
more data buffers; for random
access, request more index
buffers. Specify both BUFND
and BUFNI if ACCESS IS
DYNAMIC.

Avoid coding additional
buffers unless your application
will run interactively; then
code buffers only when
response-time problems arise
that might be caused by
delays in input and output.

The default is one index (BUFNI) and
two data buffers (BUFND).

Chapter 10. Processing VSAM files 209

Table 31. Methods for improving VSAM performance (continued)

Aspect of VSAM What you can do Rationale and comments

Loading records,
using access
methods services

Use the access methods service
REPRO command when:

v The target indexed data set
already contains records.

v The input sequential data
set contains records to be
updated or inserted into the
indexed data set.

If you use a COBOL program
to load the file, use OPEN
OUTPUT and ACCESS
SEQUENTIAL.

The REPRO command can update an
indexed data set as fast or faster than
any COBOL program under these
conditions.

File access modes For best performance, access
records sequentially.

Dynamic access is less efficient than
sequential access, but more efficient
than random access. Random access
results in increased EXCPs because
VSAM must access the index for each
request.

Key design Design the key in the records
so that the high-order portion
is relatively constant and the
low-order portion changes
often.

This method compresses the key best.

Multiple
alternate indexes

Avoid using multiple alternate
indexes.

Updates must be applied through the
primary paths and are reflected
through multiple alternate paths,
perhaps slowing performance.

Relative file
organization

Use VSAM fixed-length
relative data sets rather than
VSAM variable-length relative
data sets.

Although not as space efficient, VSAM
fixed-length relative data sets are more
run time efficient than VSAM
variable-length relative data sets.

Control interval
sizes (CISZ)

Provide your system
programmer with information
about the data access and
future growth of your VSAM
data sets. From this
information, your system
programmer can determine
the best control interval size
(CISZ) and FREESPACE size
(FSPC).

Choose proper values for CISZ
and FSPC to minimize control
area (CA) splits. You can
diagnose the current number
of CA splits by issuing the
LISTCAT ALL command on the
cluster, and then compress
(using EXPORT, IMPORT, or
REPRO) the cluster to omit all
CA splits periodically.

VSAM calculates CISZ to best fit the
direct-access storage device (DASD)
usage algorithm, which might not,
however, be efficient for your
application.

An average CISZ of 4K is suitable for
most applications. A smaller CISZ
means faster retrieval for random
processing at the expense of inserts
(that is, more CISZ splits and therefore
more space in the data set). A larger
CISZ results in the transfer of more data
across the channel for each READ. This is
more efficient for sequential processing,
similar to a large OS BLKSIZE.

Many control area (CA) splits are
unfavorable for VSAM performance.
The FREESPACE value can affect CA
splits, depending on how the file is
used.

210 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Specifying access modes for VSAM files” on page 191
z/OS DFSMS: Using Data Sets (Building a resource pool, Selecting the optimal

percentage of free space)

RELATED REFERENCES

z/OS DFSMS: Access Method Services for Catalogs

Extended addressability support
You can access VSAM data sets that are defined with the extended addressability
attribute, use those VSAM data sets in COBOL programs without COBOL source
changes, and maintain compatibility with previous versions of COBOL.

With extended addressability support, you can define larger VSAM data sets
outside of COBOL. The 4 GB VSAM architectural limit for data set size imposed
by using the 4-byte field for the relative byte address (RBA) is eliminated.

To use the extended addressability, the VSAM data set must be Storage
Management Subsystem (SMS)-managed and be defined as extended format. The
size limit for a VSAM data set is determined in either of the following ways:
v Control Interval (CI) size multiplied by 4 GB
v Volume size multiplied by 59

For example, a 4 KB CI size yields a maximum data set size of 16 TB, and a 32 KB
CI size yields a maximum data set size of 128 TB. A 4 KB CI size is preferred by
many applications for performance reasons. For extended-format data sets that
grow beyond 4 GB, the processing time does not increase.

Extended addressability is also supported for programs compiled with earlier
versions: VS COBOL II programs compiled with RES and any later compilers.

Extended addressability and extended format are not the same concept. Extended
format is a prerequisite for extended addressability. Extended format is a technique
that affects the way of storing count key data (CKD) in a 3390/3380 logical track.
Extended format implements data striping and increases the performance and the
reliability of an I/O operation. If a data set is allocated as an extended-format data
set, 32 bytes are added to each physical block.

Restriction: Extended addressability was introduced for KSDS data sets in
DFSMS/MVS V1.3. Since DFSMS/MVS V1.4, extended addressability is supported
in record level sharing (RLS). With DFSMS/MVS V1.5, support for extended
addressability is extended to all other VSAM record organizations.

RELATED TASKS

z/OS DFSMS: Using Data Sets

Chapter 10. Processing VSAM files 211

|

|
|
|

|
|
|

|
|
|

|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|

212 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 11. Processing line-sequential files

Line-sequential files reside in the z/OS UNIX file system and can contain both
printable characters and control characters as data. Each record ends with an
EBCDIC newline character (X’15’), which is not included in the record length.

Because line-sequential files are sequential, records are placed one after another
according to entry order. Your program can process these files only sequentially,
retrieving (with the READ statement) records in the same order as they are in the
file. A new record is placed after the preceding record.

To process line-sequential files in a program, code COBOL language statements
that:
v Identify and describe the files in the ENVIRONMENT DIVISION and the DATA

DIVISION

v Process the records in the files in the PROCEDURE DIVISION

After you have created a record, you cannot change its length or its position in the
file, and you cannot delete it.

RELATED TASKS

“Defining line-sequential files and records in COBOL”
“Allocating line-sequential files” on page 214
“Coding input-output statements for line-sequential files” on page 215
“Handling errors in line-sequential files” on page 218
UNIX System Services User's Guide

Defining line-sequential files and records in COBOL
Use the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION to define the files in
a COBOL program as line-sequential files, and to associate the files with the
corresponding external file-names (ddnames or environment variable names).

An external file-name is the name by which a file is known to the operating
system. In the following example, COMMUTER-FILE is the name that your program
uses for the file; COMMUTR is the external name:
FILE-CONTROL.

SELECT COMMUTER-FILE
ASSIGN TO COMMUTR
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS ECODE.

The ASSIGN assignment-name clause must not include an organization field (S- or
AS-) before the external name. The ACCESS phrase and the FILE STATUS clause are
optional.

RELATED TASKS

“Describing the structure of a line-sequential file” on page 214
“Allocating line-sequential files” on page 214
“Coding input-output statements for line-sequential files” on page 215

© Copyright IBM Corp. 1991, 2018 213

RELATED REFERENCES

“Control characters in line-sequential files”

Describing the structure of a line-sequential file
In the FILE SECTION, code a file description (FD) entry for the file. In the associated
record description entry or entries, define the record-name and record length.

Code the logical size in bytes of the records by using the RECORD clause.
Line-sequential files are stream files. Because of their character-oriented nature, the
physical records are of variable length.

The following examples show how the FD entry might look for a line-sequential
file:

With fixed-length records:
FILE SECTION.
FD COMMUTER-FILE

RECORD CONTAINS 80 CHARACTERS.
01 COMMUTER-RECORD.

05 COMMUTER-NUMBER PIC X(16).
05 COMMUTER-DESCRIPTION PIC X(64).

With variable-length records:
FILE SECTION.
FD COMMUTER-FILE

RECORD VARYING FROM 16 TO 80 CHARACTERS.
01 COMMUTER-RECORD.

05 COMMUTER-NUMBER PIC X(16).
05 COMMUTER-DESCRIPTION PIC X(64).

If you code the same fixed size and no OCCURS DEPENDING ON clause for any level-01
record description entries associated with the file, that fixed size is the logical
record length. However, because blanks at the end of a record are not written to
the file, the physical records might be of varying lengths.

RELATED TASKS

“Allocating line-sequential files”
“Coding input-output statements for line-sequential files” on page 215

RELATED REFERENCES

Data division--file description entries (Enterprise COBOL Language Reference)

Control characters in line-sequential files
A line-sequential file can contain control characters. Be aware though that if a
line-sequential file contains a newline character (X’15’), the newline character will
function as a record delimiter.

Control characters other than newline are treated as data and are part of the
record.

Allocating line-sequential files
You can allocate a line-sequential file in the z/OS UNIX file system by using either
a DD statement or an environment variable. Allocation of line-sequential files
follows the general rules for allocating COBOL files.

214 Enterprise COBOL for z/OS, V5.2 Programming Guide

To allocate a line-sequential file, code a DD allocation or an environment variable
that has a name that matches the external name in the ASSIGN clause:
v A DD allocation:

– A DD statement that specifies PATH=’absolute-path-name’

– A TSO allocation that specifies PATH(’absolute-path-name’)

You can optionally also specify these options:
– PATHOPTS

– PATHMODE

– PATHDISP

v An environment variable that has a value of PATH(absolute-path-name). No other
values can be specified.
For example, to have your program use z/OS UNIX file /u/myfiles/
commuterfile for a COBOL file that has an assignment-name of COMMUTR, you can
use the following command:
export COMMUTR="PATH(/u/myfiles/commuterfile)"

RELATED TASKS

“Allocating files” on page 157
“Defining line-sequential files and records in COBOL” on page 213

RELATED REFERENCES

MVS Program Management: User's Guide and Reference

Coding input-output statements for line-sequential files
Code the input and output statements shown below to process a line-sequential
file.

OPEN To initiate the processing of a file.

You can open a line-sequential file as INPUT, OUTPUT, or EXTEND. You cannot
open a line-sequential file as I-O.

READ To read a record from a file.

With sequential processing, a program reads one record after another in
the same order in which the records were entered when the file was
created.

WRITE To create a record in a file.

A program writes new records to the end of the file.

CLOSE To release the connection between a file and the program.

RELATED TASKS

“Defining line-sequential files and records in COBOL” on page 213
“Describing the structure of a line-sequential file” on page 214
“Opening line-sequential files” on page 216
“Reading records from line-sequential files” on page 216
“Adding records to line-sequential files” on page 217
“Closing line-sequential files” on page 217
“Handling errors in line-sequential files” on page 218

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)
READ statement (Enterprise COBOL Language Reference)

Chapter 11. Processing line-sequential files 215

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

WRITE statement (Enterprise COBOL Language Reference)
CLOSE statement (Enterprise COBOL Language Reference)

Opening line-sequential files
Before your program can use any READ or WRITE statements to process records in a
file, it must first open the file with an OPEN statement. An OPEN statement works if
the file is available or has been dynamically allocated.

Code CLOSE WITH LOCK so that the file cannot be opened again while the program
is running.

RELATED TASKS

“Reading records from line-sequential files”
“Adding records to line-sequential files” on page 217
“Closing line-sequential files” on page 217
“Allocating line-sequential files” on page 214

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)
CLOSE statement (Enterprise COBOL Language Reference)

Reading records from line-sequential files
To read from a line-sequential file, open the file and use the READ statement. Your
program reads one record after another in the same order in which the records
were entered when the file was created.

Characters in the file record are read one at a time into the record area until one of
the following conditions occurs:
v The record delimiter (the EBCDIC newline character) is encountered.

The delimiter is discarded and the remainder of the record area is filled with
spaces. (Record area is longer than the file record.)

v The entire record area is filled with characters.
If the next unread character is the record delimiter, it is discarded. The next READ
reads from the first character of the next record. (Record area is the same length
as the file record.)
Otherwise the next unread character is the first character to be read by the next
READ. (Record area is shorter than the file record.)

v End-of-file is encountered.
The remainder of the record area is filled with spaces. (Record area is longer
than the file record.)

RELATED TASKS

“Opening line-sequential files”
“Adding records to line-sequential files” on page 217
“Closing line-sequential files” on page 217
“Allocating line-sequential files” on page 214

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)

216 Enterprise COBOL for z/OS, V5.2 Programming Guide

Adding records to line-sequential files
To add to a line-sequential file, open the file as EXTEND and use the WRITE statement
to add records immediately after the last record in the file.

Blanks at the end of the record area are removed, and the record delimiter is
added. The characters in the record area from the first character up to and
including the added record delimiter are written to the file as one record.

Records written to line-sequential files must contain only USAGE DISPLAY and
DISPLAY-1 items. Zoned decimal data items must be unsigned or declared with the
SEPARATE phrase of the SIGN clause if signed.

RELATED TASKS

“Opening line-sequential files” on page 216
“Reading records from line-sequential files” on page 216
“Closing line-sequential files”
“Allocating line-sequential files” on page 214

RELATED REFERENCES

OPEN statement (Enterprise COBOL Language Reference)
WRITE statement (Enterprise COBOL Language Reference)

Closing line-sequential files
Use the CLOSE statement to disconnect your program from a line-sequential file. If
you try to close a file that is already closed, you will get a logic error.

If you do not close a line-sequential file, the file is automatically closed for you
under the following conditions:
v When the run unit ends normally.
v When the run unit ends abnormally, if the TRAP(ON) runtime option is set.
v When Language Environment condition handling is completed and the

application resumes in a routine other than where the condition occurred, open
files defined in any COBOL programs in the run unit that might be called again
and reentered are closed.
You can change the location where the program resumes (after a condition is
handled) by moving the resume cursor with the Language Environment
CEEMRCR callable service or using HLL language constructs such as a C
longjmp call.

File status codes are set when these implicit CLOSE operations are performed, but
EXCEPTION/ERROR declaratives are not invoked.

RELATED TASKS

“Opening line-sequential files” on page 216
“Reading records from line-sequential files” on page 216
“Adding records to line-sequential files”
“Allocating line-sequential files” on page 214

RELATED REFERENCES

CLOSE statement (Enterprise COBOL Language Reference)

Chapter 11. Processing line-sequential files 217

Handling errors in line-sequential files
When an input or output statement fails, COBOL does not take corrective action
for you. You choose whether your program should continue running after an input
or output statement fails.

COBOL provides these language elements for intercepting and handling certain
line-sequential input and output errors:
v End-of-file phrase (AT END)
v EXCEPTION/ERROR declarative
v FILE STATUS clause

If you do not use one of these techniques, an error in processing input or output
raises a Language Environment condition.

If you use the FILE STATUS clause, be sure to check the key and take appropriate
action based on its value. If you do not check the key, your program might
continue, but the results will probably not be what you expected.

RELATED TASKS

“Coding input-output statements for line-sequential files” on page 215
“Handling errors in input and output operations” on page 241

218 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 12. Sorting and merging files

You can arrange records in a particular sequence by using a SORT or MERGE
statement. You can mix SORT and MERGE statements in the same COBOL program.

Note: The SORT statement, sort processes, and sort restrictions that are described in
this topic relate to the format 1 SORT statement only. For more information about
sorting a table by using the format 2 SORT statement, see “Sorting a table” on page
88.

SORT statement
Accepts input (from a file or an internal procedure) that is not in sequence,
and produces output (to a file or an internal procedure) in a requested
sequence. You can add, delete, or change records before or after they are
sorted.

MERGE statement
Compares records from two or more sequenced files and combines them in
order. You can add, delete, or change records after they are merged.

A program can contain any number of sort and merge operations. They can be the
same operation performed many times or different operations. However, one
operation must finish before another begins.

With Enterprise COBOL, your IBM licensed program for sorting and merging must
be DFSORT or an equivalent. Where DFSORT is mentioned, you can use any
equivalent sort or merge product.

COBOL programs that contain SORT or MERGE statements can reside above or below
the 16 MB line.

The steps you take to sort or merge are generally as follows:
1. Describe the sort or merge file to be used for sorting or merging.
2. Describe the input to be sorted or merged. If you want to process the records

before you sort them, code an input procedure.
3. Describe the output from sorting or merging. If you want to process the records

after you sort or merge them, code an output procedure.
4. Request the sort or merge.
5. Determine whether the sort or merge operation was successful.

Restrictions:

v You cannot run a COBOL program that contains SORT or MERGE statements under
z/OS UNIX. This restriction includes BPXBATCH.

v You cannot use SORT or MERGE statements in programs compiled with the THREAD
option. This includes programs that use object-oriented syntax and
multithreaded applications, both of which require the THREAD option.

RELATED CONCEPTS

“Sort and merge process” on page 220

RELATED TASKS

“Sorting a table” on page 88

© Copyright IBM Corp. 1991, 2018 219

|
|
|
|

|

“Describing the sort or merge file”
“Describing the input to sorting or merging” on page 221
“Describing the output from sorting or merging” on page 223
“Requesting the sort or merge” on page 226
“Determining whether the sort or merge was successful” on page 230
“Stopping a sort or merge operation prematurely” on page 231
“Improving sort performance with FASTSRT” on page 231
“Controlling sort behavior” on page 234
DFSORT Application Programming Guide

RELATED REFERENCES

“CICS SORT application restrictions” on page 237
SORT statement (Enterprise COBOL Language Reference)
MERGE statement (Enterprise COBOL Language Reference)

Sort and merge process
During the sorting of a file, all of the records in the file are ordered according to
the contents of one or more fields (keys) in each record. You can sort the records in
either ascending or descending order of each key.

If there are multiple keys, the records are first sorted according to the content of
the first (or primary) key, then according to the content of the second key, and so
on.

To sort a file, use the format 1 SORT statement.

During the merging of two or more files (which must already be sorted), the
records are combined and ordered according to the contents of one or more keys in
each record. You can order the records in either ascending or descending order of
each key. As with sorting, the records are first ordered according to the content of
the primary key, then according to the content of the second key, and so on.

Use MERGE . . . USING to name the files that you want to combine into one
sequenced file. The merge operation compares keys in the records of the input
files, and passes the sequenced records one by one to the RETURN statement of an
output procedure or to the file that you name in the GIVING phrase.

RELATED TASKS

“Setting sort or merge criteria” on page 227

RELATED REFERENCES

SORT statement (Enterprise COBOL Language Reference)
MERGE statement (Enterprise COBOL Language Reference)

Describing the sort or merge file
Describe the sort file to be used for sorting or merging. You need SELECT clauses
and SD entries even if you are sorting or merging data items only from
WORKING-STORAGE or LOCAL-STORAGE.

Code as follows:
1. Write one or more SELECT clauses in the FILE-CONTROL paragraph of the

ENVIRONMENT DIVISION to name a sort file. For example:

220 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT Sort-Work-1 ASSIGN TO SortFile.

Sort-Work-1 is the name of the file in your program. Use this name to refer to
the file.

2. Describe the sort file in an SD entry in the FILE SECTION of the DATA DIVISION.
Every SD entry must contain a record description. For example:
DATA DIVISION.
FILE SECTION.
SD Sort-Work-1

RECORD CONTAINS 100 CHARACTERS.
01 SORT-WORK-1-AREA.

05 SORT-KEY-1 PIC X(10).
05 SORT-KEY-2 PIC X(10).
05 FILLER PIC X(80).

The file described in an SD entry is the working file used for a sort or merge
operation. You cannot perform any input or output operations on this file and you
do not need to provide a ddname definition for it.

RELATED REFERENCES

“FILE SECTION entries” on page 12

Describing the input to sorting or merging
Describe the input file or files for sorting or merging by following the procedure
below.
1. Write one or more SELECT clauses in the FILE-CONTROL paragraph of the

ENVIRONMENT DIVISION to name the input files. For example:
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT Input-File ASSIGN TO InFile.

Input-File is the name of the file in your program. Use this name to refer to the
file.

2. Describe the input file (or files when merging) in an FD entry in the FILE
SECTION of the DATA DIVISION. For example:
DATA DIVISION.
FILE SECTION.
FD Input-File

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 CHARACTERS
RECORDING MODE IS F
RECORD CONTAINS 100 CHARACTERS.

01 Input-Record PIC X(100).

RELATED TASKS

“Coding the input procedure” on page 222
“Requesting the sort or merge” on page 226

RELATED REFERENCES

“FILE SECTION entries” on page 12

Example: describing sort and input files for SORT
The following example shows the ENVIRONMENT DIVISION and DATA DIVISION entries
needed to describe sort work files and an input file.

Chapter 12. Sorting and merging files 221

ID Division.
Program-ID. SmplSort.
Environment Division.
Input-Output Section.
File-Control.
*
* Assign name for a working file is treated as documentation.
*

Select Sort-Work-1 Assign To SortFile.
Select Sort-Work-2 Assign To SortFile.
Select Input-File Assign To InFile.

. . .
Data Division.
File Section.
SD Sort-Work-1

Record Contains 100 Characters.
01 Sort-Work-1-Area.

05 Sort-Key-1 Pic X(10).
05 Sort-Key-2 Pic X(10).
05 Filler Pic X(80).

SD Sort-Work-2
Record Contains 30 Characters.

01 Sort-Work-2-Area.
05 Sort-Key Pic X(5).
05 Filler Pic X(25).

FD Input-File
Label Records Are Standard
Block Contains 0 Characters
Recording Mode is F
Record Contains 100 Characters.

01 Input-Record Pic X(100).
. . .
Working-Storage Section.
01 EOS-Sw Pic X.
01 Filler.

05 Table-Entry Occurs 100 Times
Indexed By X1 Pic X(30).

. . .

RELATED TASKS

“Requesting the sort or merge” on page 226

Coding the input procedure
To process the records in an input file before they are released to the sort program,
use the INPUT PROCEDURE phrase of the format 1 SORT statement.

You can use an input procedure to:
v Release data items to the sort file from WORKING-STORAGE or LOCAL-STORAGE.
v Release records that have already been read elsewhere in the program.
v Read records from an input file, select or process them, and release them to the

sort file.

Each input procedure must be contained in either paragraphs or sections. For
example, to release records from a table in WORKING-STORAGE or LOCAL-STORAGE to
the sort file SORT-WORK-2, you could code as follows:

SORT SORT-WORK-2
ON ASCENDING KEY SORT-KEY
INPUT PROCEDURE 600-SORT3-INPUT-PROC

. . .
600-SORT3-INPUT-PROC SECTION.

222 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

PERFORM WITH TEST AFTER
VARYING X1 FROM 1 BY 1 UNTIL X1 = 100
RELEASE SORT-WORK-2-AREA FROM TABLE-ENTRY (X1)

END-PERFORM.

To transfer records to the sort program, all input procedures must contain at least
one RELEASE or RELEASE FROM statement. To release A from X, for example, you can
code:
MOVE X TO A.
RELEASE A.

Alternatively, you can code:
RELEASE A FROM X.

The following table compares the RELEASE and RELEASE FROM statements.

RELEASE RELEASE FROM

MOVE EXT-RECORD
TO SORT-EXT-RECORD

PERFORM RELEASE-SORT-RECORD
. . .
RELEASE-SORT-RECORD.

RELEASE SORT-RECORD

PERFORM RELEASE-SORT-RECORD
. . .
RELEASE-SORT-RECORD.
RELEASE SORT-RECORD

FROM SORT-EXT-RECORD

RELATED REFERENCES

“Restrictions on input and output procedures” on page 225
RELEASE statement (Enterprise COBOL Language Reference)

Describing the output from sorting or merging
If the output from sorting or merging is a file, describe the file by following the
procedure below.
1. Write a SELECT clause in the FILE-CONTROL paragraph of the ENVIRONMENT

DIVISION to name the output file. For example:
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT Output-File ASSIGN TO OutFile.

Output-File is the name of the file in your program. Use this name to refer to
the file.

2. Describe the output file (or files when merging) in an FD entry in the FILE
SECTION of the DATA DIVISION. For example:
DATA DIVISION.
FILE SECTION.
FD Output-File

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 CHARACTERS
RECORDING MODE IS F
RECORD CONTAINS 100 CHARACTERS.

01 Output-Record PIC X(100).

RELATED TASKS

“Coding the output procedure” on page 224
“Requesting the sort or merge” on page 226

Chapter 12. Sorting and merging files 223

RELATED REFERENCES

“FILE SECTION entries” on page 12

Coding the output procedure
To select, edit, or otherwise change sorted records before writing them from the
sort work file into another file, use the OUTPUT PROCEDURE phrase of the format 1
SORT statement.

Each output procedure must be contained in either a section or a paragraph. An
output procedure must include both of the following elements:
v At least one RETURN statement or one RETURN statement with the INTO phrase
v Any statements necessary to process the records that are made available, one at

a time, by the RETURN statement

The RETURN statement makes each sorted record available to the output procedure.
(The RETURN statement for a sort file is similar to a READ statement for an input file.)

You can use the AT END and END-RETURN phrases with the RETURN statement. The
imperative statements in the AT END phrase are performed after all the records have
been returned from the sort file. The END-RETURN explicit scope terminator delimits
the scope of the RETURN statement.

If you use RETURN INTO instead of RETURN, the records will be returned to
WORKING-STORAGE, LOCAL-STORAGE, or to an output area.

DFSORT coding: If you use DFSORT and a RETURN statement does not encounter
an AT END condition before a COBOL program finishes running, the format 1 SORT
statement could end abnormally with DFSORT message IEC025A. To avoid this
situation, be sure to code the RETURN statement with the AT END phrase. In addition,
ensure that the RETURN statement is executed until the AT END condition is
encountered. The AT END condition occurs after the last record is returned to the
program from the sort work file and a subsequent RETURN statement is executed.

“Example: coding the output procedure when using DFSORT”

RELATED REFERENCES

“Restrictions on input and output procedures” on page 225
RETURN statement (Enterprise COBOL Language Reference)

Example: coding the output procedure when using DFSORT
The following example shows a coding technique that ensures that the RETURN
statement encounters the AT END condition before the program finishes running.
The RETURN statement, coded with the AT END phrase, is executed until the AT END
condition occurs.
IDENTIFICATION DIVISION.
DATA DIVISION.
FILE SECTION.
SD OUR-FILE.
01 OUR-SORT-REC.

03 SORT-KEY PIC X(10).
03 FILLER PIC X(70).

. . .
WORKING-STORAGE SECTION.
01 WS-SORT-REC PIC X(80).
01 END-OF-SORT-FILE-INDICATOR PIC X VALUE ’N’.

88 NO-MORE-SORT-RECORDS VALUE ’Y’.

224 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|

. . .
PROCEDURE DIVISION.
A-CONTROL SECTION.

SORT OUR-FILE ON ASCENDING KEY SORT-KEY
INPUT PROCEDURE IS B-INPUT
OUTPUT PROCEDURE IS C-OUTPUT.

. . .
B-INPUT SECTION.

MOVE TO WS-SORT-REC.
RELEASE OUR-SORT-REC FROM WS-SORT-REC.
. . .

C-OUTPUT SECTION.
DISPLAY ’STARTING READS OF SORTED RECORDS: ’.
RETURN OUR-FILE

AT END
SET NO-MORE-SORT-RECORDS TO TRUE.

PERFORM WITH TEST BEFORE UNTIL NO-MORE-SORT-RECORDS
IF SORT-RETURN = 0 THEN
DISPLAY ’OUR-SORT-REC = ’ OUR-SORT-REC
RETURN OUR-FILE

AT END
SET NO-MORE-SORT-RECORDS TO TRUE

END-IF
END-PERFORM.

Restrictions on input and output procedures
Several restrictions apply to each input or output procedure called by SORT and to
each output procedure called by MERGE.

Observe these restrictions:
v The procedure must not contain any SORT or MERGE statements.
v You can use ALTER, GO TO, and PERFORM statements in the procedure to refer to

procedure-names outside the input or output procedure. However, control must
return to the input or output procedure after a GO TO or PERFORM statement.

v The remainder of the PROCEDURE DIVISION must not contain any transfers of
control to points inside the input or output procedure (with the exception of the
return of control from a declarative section).

v In an input or output procedure, you can call a program that follows standard
linkage conventions. However, the called program cannot issue a SORT or MERGE
statement.

v During a SORT or MERGE operation, the SD data item is used. You must not use it
in the output procedure before the first RETURN executes. If you move data into
this record area before the first RETURN statement, the first record to be returned
will be overwritten.

v Language Environment condition handling does not let user-written condition
handlers be established in an input or output procedure.

RELATED TASKS

“Coding the input procedure” on page 222
“Coding the output procedure” on page 224
Language Environment Programming Guide (Preparing to link-edit and run)

Defining sort and merge data sets
To use DFSORT under z/OS, code DD statements in the runtime JCL to describe the
necessary data sets that are listed below.

Chapter 12. Sorting and merging files 225

Sort or merge work
Define a minimum of three data sets: SORTWK01, SORTWK02, SORTWK03, . . .,
SORTWKnn (where nn is 99 or less). These data sets cannot be in the z/OS
UNIX file system.

SYSOUT Define for sort diagnostic messages, unless you change the data-set name.
(Change the name using either the MSGDDN keyword of the OPTION control
statement in the SORT-CONTROL data set, or using the SORT-MESSAGE special
register.)

SORTCKPT
Define if the sort or merge is to take checkpoints.

Input and output
Define input and output data sets, if any.

SORTLIB (DFSORT library)
Define the library that contains the sort modules, for example,
SYS1.SORTLIB.

RELATED TASKS

“Controlling sort behavior” on page 234
“Using checkpoint/restart with DFSORT” on page 236

Sorting variable-length records
Your sort work file will be variable length only if you define it to be variable
length, even if the input file to the sort contains variable-length records.

The compiler determines that the sort work file is variable length if you code one
of the following elements in the SD entry:
v A RECORD IS VARYING clause
v Two or more record descriptions that define records that have different sizes, or

records that contain an OCCURS DEPENDING ON clause

You cannot use RECORDING MODE V for the sort work file because the SD entry does
not allow the RECORDING MODE clause.

Performance consideration: To improve sort performance of variable-length files,
specify the most frequently occurring record length of the input file (the modal
length) on the SMS= control card or in the SORT-MODE-SIZE special register.

RELATED TASKS

“Changing DFSORT defaults with control statements” on page 235
“Controlling sort behavior” on page 234

Requesting the sort or merge
To read records from an input file (files for MERGE) without preliminary processing,
use SORT . . . USING or MERGE . . . USING and the name of the input file (files)
that you declared in a SELECT clause.

To transfer sorted or merged records from the sort or merge program to another
file without any further processing, use SORT . . . GIVING or MERGE . . . GIVING
and the name of the output file that you declared in a SELECT clause. For example:

226 Enterprise COBOL for z/OS, V5.2 Programming Guide

SORT Sort-Work-1
ON ASCENDING KEY Sort-Key-1
USING Input-File
GIVING Output-File.

For SORT . . . USING or MERGE . . . USING, the compiler generates an input
procedure to open the file (files), read the records, release the records to the sort or
merge program, and close the file (files). The file (files) must not be open when the
SORT or MERGE statement begins execution. For SORT . . . GIVING or MERGE . . .
GIVING, the compiler generates an output procedure to open the file, return the
records, write the records, and close the file. The file must not be open when the
SORT or MERGE statement begins execution.

The USING or GIVING files in a SORT or MERGE statement can be sequential files
residing in the z/OS UNIX file system.

“Example: describing sort and input files for SORT” on page 221

If you want an input procedure to be performed on the sort records before they are
sorted, use SORT . . . INPUT PROCEDURE. If you want an output procedure to be
performed on the sorted records, use SORT . . . OUTPUT PROCEDURE. For example:
SORT Sort-Work-1

ON ASCENDING KEY Sort-Key-1
INPUT PROCEDURE EditInputRecords
OUTPUT PROCEDURE FormatData.

“Example: sorting with input and output procedures” on page 228

Restriction: You cannot use an input procedure with the MERGE statement. The
source of input to the merge operation must be a collection of already sorted files.
However, if you want an output procedure to be performed on the merged
records, use MERGE . . . OUTPUT PROCEDURE. For example:
MERGE Merge-Work

ON ASCENDING KEY Merge-Key
USING Input-File-1 Input-File-2 Input-File-3
OUTPUT PROCEDURE ProcessOutput.

In the FILE SECTION, you must define Merge-Work in an SD entry, and the input files
in FD entries.

RELATED TASKS

“Defining sort and merge data sets” on page 225

RELATED REFERENCES

SORT statement (Enterprise COBOL Language Reference)
MERGE statement (Enterprise COBOL Language Reference)

Setting sort or merge criteria
To set sort or merge criteria, define the keys on which the operation is to be
performed.

Note: The process of setting sort criteria that is described in this topic relates to
the format 1 SORT statement only. For more information about sorting a table by
using the format 2 SORT statement, see “Sorting a table” on page 88.

Do these steps:

Chapter 12. Sorting and merging files 227

|
|
|

1. In the record description of the files to be sorted or merged, define the key or
keys.
There is no maximum number of keys, but the keys must be located in the first
4092 bytes of the record description. The total length of the keys cannot exceed
4092 bytes unless the EQUALS keyword is coded in the DFSORT OPTION control
statement, in which case the total length of the keys must not exceed 4088
bytes.
Restriction: A key cannot be variably located.

2. In the SORT or MERGE statement, specify the key fields to be used for sequencing
by coding the ASCENDING or DESCENDING KEY phrase, or both. When you code
more than one key, some can be ascending, and some descending.
Specify the names of the keys in decreasing order of significance. The leftmost
key is the primary key. The next key is the secondary key, and so on.

SORT and MERGE keys can be of class alphabetic, alphanumeric, national, or numeric
(but not numeric of USAGE NATIONAL). If it has USAGE NATIONAL, a key can be of
category national or can be a national-edited or numeric-edited data item. A key
cannot be a national decimal data item or a national floating-point data item.

The collation order for national keys is determined by the binary order of the keys.
If you specify a national data item as a key, any COLLATING SEQUENCE phrase in the
SORT or MERGE statement does not apply to that key.

You can mix SORT and MERGE statements in the same COBOL program. A program
can perform any number of sort or merge operations. However, one operation
must end before another can begin.

RELATED TASKS

“Sorting a table” on page 88

RELATED REFERENCES

DFSORT Application Programming Guide (SORT control statement)
SORT statement (Enterprise COBOL Language Reference)
MERGE statement (Enterprise COBOL Language Reference)

Example: sorting with input and output procedures
The following example shows the use of an input and an output procedure in a
format 1 SORT statement. The example also shows how you can define a primary
key (SORT-GRID-LOCATION) and a secondary key (SORT-SHIFT) before using them in
the format 1 SORT statement.
DATA DIVISION.
. . .
SD SORT-FILE

RECORD CONTAINS 115 CHARACTERS
DATA RECORD SORT-RECORD.

01 SORT-RECORD.
05 SORT-KEY.

10 SORT-SHIFT PIC X(1).
10 SORT-GRID-LOCATION PIC X(2).
10 SORT-REPORT PIC X(3).

05 SORT-EXT-RECORD.
10 SORT-EXT-EMPLOYEE-NUM PIC X(6).
10 SORT-EXT-NAME PIC X(30).
10 FILLER PIC X(73).

. . .
WORKING-STORAGE SECTION.
01 TAB1.

228 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

|

05 TAB-ENTRY OCCURS 10 TIMES
INDEXED BY TAB-INDX.

10 WS-SHIFT PIC X(1).
10 WS-GRID-LOCATION PIC X(2).
10 WS-REPORT PIC X(3).
10 WS-EXT-EMPLOYEE-NUM PIC X(6).
10 WS-EXT-NAME PIC X(30).
10 FILLER PIC X(73).

. . .
PROCEDURE DIVISION.

. . .
SORT SORT-FILE

ON ASCENDING KEY SORT-GRID-LOCATION SORT-SHIFT
INPUT PROCEDURE 600-SORT3-INPUT
OUTPUT PROCEDURE 700-SORT3-OUTPUT.

. . .
600-SORT3-INPUT.

PERFORM VARYING TAB-INDX FROM 1 BY 1 UNTIL TAB-INDX > 10
RELEASE SORT-RECORD FROM TAB-ENTRY(TAB-INDX)

END-PERFORM.
. . .
700-SORT3-OUTPUT.

PERFORM VARYING TAB-INDX FROM 1 BY 1 UNTIL TAB-INDX > 10
RETURN SORT-FILE INTO TAB-ENTRY(TAB-INDX)

AT END DISPLAY ’Out Of Records In SORT File’
END-RETURN

END-PERFORM.

RELATED TASKS

“Requesting the sort or merge” on page 226

Choosing alternate collating sequences
You can sort or merge records on the EBCDIC or ASCII collating sequence, or on
another collating sequence. The default collating sequence is EBCDIC unless you
code the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph.

To override the default sequence, use the COLLATING SEQUENCE phrase of the SORT or
MERGE statement. You can use different collating sequences for each SORT or MERGE
statement in your program.

The PROGRAM COLLATING SEQUENCE clause and the COLLATING SEQUENCE phrase apply
only to keys of class alphabetic or alphanumeric.

When you sort or merge an ASCII file, you have to request the ASCII collating
sequence. To do so, code the COLLATING SEQUENCE phrase of the SORT or MERGE
statement, and define the alphabet-name as STANDARD-1 in the SPECIAL-NAMES
paragraph.

RELATED TASKS

“Specifying the collating sequence” on page 6
“Setting sort or merge criteria” on page 227

RELATED REFERENCES

OBJECT-COMPUTER paragraph (Enterprise COBOL Language Reference)
SORT statement (Enterprise COBOL Language Reference)
Classes and categories of data (Enterprise COBOL Language Reference)

Chapter 12. Sorting and merging files 229

Preserving the original sequence of records with equal keys
You can preserve the order of identical collating records from input to output.

Use one of these techniques:
v Install DFSORT with the EQUALS option as the default.
v Provide, at run time, an OPTION card that has the EQUALS keyword in the

IGZSRTCD data set.
v Use the WITH DUPLICATES IN ORDER phrase in the SORT statement. Doing so adds

the EQUALS keyword to the OPTION card in the IGZSRTCD data set.
Do not use both the NOEQUALS keyword on the OPTION card and the DUPLICATES
phrase, or the run unit will end.

RELATED REFERENCES

DFSORT Application Programming Guide (OPTION control statement)

Determining whether the sort or merge was successful
The DFSORT program returns a completion code of either 0 (successful
completion) or 16 (unsuccessful completion) after each sort or merge has finished.
The completion code is stored in the SORT-RETURN special register.

You should test for successful completion after each SORT or MERGE statement. For
example:

SORT SORT-WORK-2
ON ASCENDING KEY SORT-KEY
INPUT PROCEDURE IS 600-SORT3-INPUT-PROC
OUTPUT PROCEDURE IS 700-SORT3-OUTPUT-PROC.

IF SORT-RETURN NOT=0
DISPLAY "SORT ENDED ABNORMALLY. SORT-RETURN = " SORT-RETURN.

. . .
600-SORT3-INPUT-PROC SECTION.

. . .
700-SORT3-OUTPUT-PROC SECTION.

. . .

If you do not reference SORT-RETURN anywhere in your program, the COBOL run
time tests the completion code. If it is 16, COBOL issues a runtime diagnostic
message.

By default, DFSORT diagnostic messages are sent to the SYSOUT data set. If you
want to change this default, use the MSGDDN parameter of the DFSORT OPTION
control card or use the SORT-MESSAGE special register.

If you test SORT-RETURN for one or more (but not necessarily all) SORT or MERGE
statements, the COBOL run time does not check the completion code.

RELATED TASKS

“Checking for sort errors with NOFASTSRT” on page 233
“Controlling sort behavior” on page 234

RELATED REFERENCES

DFSORT Application Programming Guide (DFSORT messages and return codes)

230 Enterprise COBOL for z/OS, V5.2 Programming Guide

Stopping a sort or merge operation prematurely
To stop a sort or merge operation, move the integer 16 into the SORT-RETURN special
register.

Move 16 into the register in either of the following ways:
v Use MOVE in an input or output procedure.

Sort or merge processing will be stopped immediately after the next RELEASE or
RETURN statement is performed.

v Reset the register in a declarative section entered during processing of a USING or
GIVING file.
Sort or merge processing will be stopped immediately after the next implicit
RELEASE or RETURN is performed, which will occur after a record has been read
from or written to the USING or GIVING file.

Control then returns to the statement following the SORT or MERGE statement.

Improving sort performance with FASTSRT
Using the FASTSRT compiler option improves the performance of most sort
operations. With FASTSRT, the DFSORT product (instead of Enterprise COBOL)
performs the I/O on the input and output files you name in the SORT . . . USING
and SORT . . . GIVING statements.

The compiler issues informational messages to point out statements in which
FASTSRT can improve performance.

Usage notes

v You cannot use the DFSORT options SORTIN or SORTOUT if you use FASTSRT. The
FASTSRT compiler option does not apply to line-sequential files you use as USING
or GIVING files.

v If you specify file status and use FASTSRT, file status is ignored during the sort.

RELATED REFERENCES

“FASTSRT” on page 327
“FASTSRT requirements for JCL”
“FASTSRT requirements for sort input and output files”

FASTSRT requirements for JCL
In the runtime JCL, you must assign the sort work files (SORTWKnn) to a
direct-access device, not to tape data sets.

For the input and output files, the DCB parameter of the DD statement must match
the FD description.

FASTSRT requirements for sort input and output files
If you specify FASTSRT but your code does not meet FASTSRT requirements, the
compiler issues a message and the COBOL run time performs the I/O instead.
Your program will not experience the performance improvements that are
otherwise possible.

Note: The “sort input and output files” that is described in this topic relates to the
format 1 SORT statement only.

Chapter 12. Sorting and merging files 231

|
|

To use FASTSRT, you must describe and process the input files to the sort and the
output files from the sort in these ways:
v You can name only one input file in the USING phrase. You can name only one

output file in the GIVING phrase.
v You cannot use an input procedure on an input file nor an output procedure on

an output file.
Instead of using input or output procedures, you might be able to use these
DFSORT control statements:
– INREC

– OUTFILE

– OUTREC

– INCLUDE

– OMIT

– STOPAFT

– SKIPREC

– SUM

Many DFSORT functions perform the same operations that are common in input
or output procedures. Code the appropriate DFSORT control statements instead,
and place them either in the IGZSRTCD or SORTCNTL data set.

v Do not code the LINAGE clause for the output FD entry.
v Do not code any INPUT declarative (for input files), OUTPUT declarative (for

output files), or file-specific declaratives (for either input or output files) to
apply to any FDs used in the sort.

v Do not use a variable relative file as the input or output file.
v Do not use a line-sequential file as the input or output file.
v For either an input or an output file, the record descriptions of the SD and FD

entry must define the same format (fixed or variable), and the largest records of
the SD and FD entry must define the same record length.

If you code a RELATIVE KEY clause for an output file, it will not be set by the sort.

Performance tip: If you block your input and output records, the sort performance
could be significantly improved.

QSAM requirements
v QSAM files must have a record format of fixed, variable, or spanned.
v A QSAM input file can be empty.
v To use the same QSAM file for both input and output, you must describe the file

using two different DD statements. For example, in the FILE-CONTROL SECTION
you might code this:
SELECT FILE-IN ASSIGN INPUTF.
SELECT FILE-OUT ASSIGN OUTPUTF.

In the DATA DIVISION, you would have an FD entry for both FILE-IN and
FILE-OUT, where FILE-IN and FILE-OUT are identical except for their names.
In the PROCEDURE DIVISION, your SORT statement could look like this:
SORT file-name

ASCENDING KEY data-name-1
USING FILE-IN GIVING FILE-OUT

Then in your JCL, assuming that data set INOUT has been cataloged, you would
code:

232 Enterprise COBOL for z/OS, V5.2 Programming Guide

//INPUTF DD DSN=INOUT,DISP=SHR
//OUTPUTF DD DSN=INOUT,DISP=SHR

On the other hand, if you code the same file-name in the USING and GIVING
phrases, or assign the input and output files the same ddname, then the file can
be accepted for FASTSRT either for input or output, but not both. If no other
conditions disqualify the file from being eligible for FASTSRT on input, then the
file will be accepted for FASTSRT on input, but not on output. If the file was
found to be ineligible for FASTSRT on input, it might be eligible for FASTSRT on
output.

A QSAM file that qualifies for FASTSRT can be accessed by the COBOL program
while the format 1 SORT statement is being performed. For example, if the file is
used for FASTSRT on input, you can access it in an output procedure; if it is used
for FASTSRT on output, you can access it in an input procedure.

VSAM requirements
v A VSAM input file must not be empty.
v VSAM files cannot be password-protected.
v You cannot name the same VSAM file in both the USING and GIVING phrases.
v A VSAM file that qualifies for FASTSRT cannot be accessed by the COBOL

program until the format 1 SORT statement processing is completed. For example,
if the file qualifies for FASTSRT on input, you cannot access it in an output
procedure and vice versa. (If you do so, OPEN fails.)

RELATED TASKS

DFSORT Application Programming Guide

Checking for sort errors with NOFASTSRT
When you compile with the NOFASTSRT option, the sort process does not check for
errors in open, close, or input or output operations for files that you reference in
the USING or GIVING phrase of the format 1 SORT statement. Therefore, you might
need to check whether SORT completed successfully.

Note: This topic relates to the format 1 SORT statement only.

The code required depends on whether you code a FILE STATUS clause or an ERROR
declarative for the files referenced in the USING and GIVING phrases, as shown in
the table below.

Table 32. Methods for checking for sort errors with NOFASTSRT

FILE STATUS
clause?

ERROR
declarative? Then do:

No No No special coding. Any failure during the sort process
causes the program to end abnormally.

Yes No Test the SORT-RETURN special register after the format 1
SORT statement, and test the file status key. (Not
recommended if you want complete file-status checking,
because the file status code is set but COBOL cannot
check it.)

Maybe Yes In the ERROR declarative, set the SORT-RETURN special
register to 16 to stop the sort process and indicate that it
was not successful. Test the SORT-RETURN special register
after the format 1 SORT statement.

Chapter 12. Sorting and merging files 233

|

|

|

|

|
|

|

RELATED TASKS

“Determining whether the sort or merge was successful” on page 230
“Using file status keys” on page 245
“Coding ERROR declaratives” on page 244
“Stopping a sort or merge operation prematurely” on page 231

Controlling sort behavior
You can control several aspects of sort behavior by inserting values in special
registers before the sort or by using compiler options. You might also have a choice
of control statements and keywords.

You can verify sort behavior by examining the contents of special registers after the
sort.

The table below lists those aspects of sort behavior that you can affect by using
special registers or compiler options, and the equivalent sort control statement
keywords if any are available.

Table 33. Methods for controlling sort behavior

To set or test
Use this special register or
compiler option

Or this control statement
(and keyword if
applicable)

Amount of main storage to be
reserved

SORT-CORE-SIZE special register OPTION (keyword RESINV)

Amount of main storage to be
used

SORT-CORE-SIZE special register OPTION (keywords
MAINSIZE or MAINSIZE=MAX)

Modal length of records in a
file with variable-length
records

SORT-MODE-SIZE special register SMS=nnnnn

Name of sort control statement
data set (default IGZSRTCD)

SORT-CONTROL special register None

Name of sort message file
(default SYSOUT)

SORT-MESSAGE special register OPTION (keyword MSGDDN)

Number of sort records SORT-FILE-SIZE special register OPTION (keyword FILSZ)

Sort completion code SORT-RETURN special register None

Sort special registers: SORT-CONTROL is an eight-character COBOL special register
that contains the ddname of the sort control statement file. If you do not want to
use the default ddname IGZSRTCD, assign to SORT-CONTROL the ddname of the
data set that contains your sort control statements.

The SORT-CORE-SIZE, SORT-FILE-SIZE, SORT-MESSAGE, and SORT-MODE-SIZE special
registers are used in the SORT interface if you assign them nondefault values. At
run time, however, any parameters in control statements in the sort control
statement data set override corresponding settings in the special registers, and a
message to that effect is issued.

You can use the SORT-RETURN special register to determine whether the sort or
merge was successful and to stop a sort or merge operation prematurely.

A compiler warning message (W-level) is issued for each sort special register that
you set in a program.

234 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Determining whether the sort or merge was successful” on page 230
“Stopping a sort or merge operation prematurely” on page 231
“Changing DFSORT defaults with control statements”
“Allocating space for sort files” on page 236
DFSORT Application Programming Guide (Using DFSORT program

control statements)

RELATED REFERENCES

“Default characteristics of the IGZSRTCD data set”

Changing DFSORT defaults with control statements
If you want to change DFSORT system defaults to improve sort performance, pass
information to DFSORT through control statements in the runtime data set
IGZSRTCD.

The control statements that you can include in IGZSRTCD (in the order listed) are:
1. SMS=nnnnn, where nnnnn is the length in bytes of the most frequently occurring

record size. (Use only if the SD file is variable length.)
2. OPTION (except keywords SORTIN or SORTOUT).
3. Other DFSORT control statements (except SORT, MERGE, RECORD, or END).

Code control statements between columns 2 and 71. You can continue a control
statement record by ending the line with a comma and starting the next line with a
new keyword. You cannot use labels or comments on a record, and a record itself
cannot be a DFSORT comment statement.

RELATED TASKS

“Controlling sort behavior” on page 234
DFSORT Application Programming Guide (Using DFSORT program

control statements)

RELATED REFERENCES

“Default characteristics of the IGZSRTCD data set”

Default characteristics of the IGZSRTCD data set
The IGZSRTCD data set is optional. Its defaults are LRECL=80, BLKSIZE=400, and
ddname IGZSRTCD.

You can use a different ddname by coding it in the SORT-CONTROL special register. If
you defined a ddname for the SORT-CONTROL data set and you receive the message
IGZ0027W, an OPEN failure occurred that you should investigate.

RELATED TASKS

“Controlling sort behavior” on page 234

Allocating storage for sort or merge operations
Certain parameters set during the installation of DFSORT determine the amount of
storage that DFSORT uses. In general, the more storage DFSORT has available, the
faster the sort or merge operations in your program will be.

DFSORT installation should not allocate all the free space in the region for its
COBOL operation, however. When your program is running, storage must be
available for:

Chapter 12. Sorting and merging files 235

v COBOL programs that are dynamically called from an input or output procedure
v Language Environment runtime library modules
v Data management modules that can be loaded into the region for use by an

input or output procedure
v Any storage obtained by these modules

For a specific sort or merge operation, you can override the DFSORT storage
values set at installation. To do so, code the MAINSIZE and RESINV keywords on the
OPTION control statement in the sort control statement data set, or use the
SORT-CORE-SIZE special register.

Be careful not to override the storage allocation to the extent that all the free space
in the region is used for sort operations for your COBOL program.

RELATED TASKS

“Controlling sort behavior” on page 234
DFSORT Installation and Customization

RELATED REFERENCES

DFSORT Application Programming Guide (OPTION control statement)

Allocating space for sort files
If you use NOFASTSRT or an input procedure, DFSORT does not know the size of
the file that you are sorting. This can lead to an out-of-space condition when you
sort large files or to overallocation of resources when you sort small files.

If this occurs, you can use the SORT-FILE-SIZE special register to help DFSORT
determine the amount of resource (for example, workspace or hiperspace) needed
for the sort. Set SORT-FILE-SIZE to a reasonable estimate of the number of input
records. This value is passed to DFSORT as its FILSZ=En value.

RELATED TASKS

“Controlling sort behavior” on page 234
“Coding the input procedure” on page 222
DFSORT Application Programming Guide

Using checkpoint/restart with DFSORT
You cannot use checkpoints taken while DFSORT is running under z/OS to restart,
unless the checkpoints are taken by DFSORT.

Checkpoints taken by a COBOL program while SORT or MERGE statements execute
are invalid; such restarts are detected and canceled.

To take a checkpoint during a sort or merge operation, do these steps:
1. Add a DD statement for SORTCKPT in the JCL.
2. Code the RERUN clause in the I-O-CONTROL paragraph:

RERUN ON assignment-name

3. Code the CKPT (or CHKPT) keyword on an OPTION control statement in the sort
control statement data set (default ddname IGZSRTCD).

RELATED CONCEPTS

Chapter 32, “Interrupts and checkpoint/restart,” on page 651

236 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Changing DFSORT defaults with control statements” on page 235
“Setting checkpoints” on page 651

Sorting under CICS
There is no IBM sort product that is supported under CICS. However, you can use
the SORT statement with a sort program you write that runs under CICS to sort
small amounts of data.

You must have both an input and an output procedure for the SORT statement. In
the input procedure, use the RELEASE statement to transfer records from the
COBOL program to the sort program before the sort is performed. In the output
procedure, use the RETURN statement to transfer records from the sort program to
the COBOL program after the sort is performed.

RELATED TASKS

“Coding the input procedure” on page 222
“Coding the output procedure” on page 224
“Coding COBOL programs to run under CICS” on page 429

RELATED REFERENCES

“CICS SORT application restrictions”
“CICS reserved-word table” on page 437

CICS SORT application restrictions
Several restrictions apply to COBOL applications that run under CICS and use the
SORT statement.

The restrictions are:
v SORT statements that include the USING or GIVING phrase are not supported.
v Sort control data sets are not supported. Data in the SORT-CONTROL special

register is ignored.
v These CICS commands in the input or output procedures can cause

unpredictable results:
– CICS LINK

– CICS XCTL

– CICS RETURN

– CICS HANDLE

– CICS IGNORE

– CICS PUSH

– CICS POP

You can use CICS commands other than these if you use the NOHANDLE or RESP
option. Unpredictable results can occur if you do not use NOHANDLE or RESP.

RELATED REFERENCES

“CICS reserved-word table” on page 437

Chapter 12. Sorting and merging files 237

238 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 13. Handling errors

Put code in your programs that anticipates possible system or runtime problems. If
you do not include such code, output data or files could be corrupted, and the
user might not even be aware that there is a problem.

The error-handling code can take actions such as handling the situation, issuing a
message, or halting the program. You might for example create error-detection
routines for data-entry errors or for errors as your installation defines them. In any
event, coding a warning message is a good idea.

Enterprise COBOL contains special elements to help you anticipate and correct
error conditions:
v User-requested dumps
v ON OVERFLOW in STRING and UNSTRING operations
v ON SIZE ERROR in arithmetic operations
v Elements for handling input or output errors
v ON EXCEPTION or ON OVERFLOW in CALL statements
v User-written routines for handling errors

RELATED TASKS

“Handling errors in joining and splitting strings” on page 240
“Handling errors in arithmetic operations” on page 240
“Handling errors in input and output operations” on page 241
“Handling errors when calling programs” on page 250
“Writing routines for handling errors” on page 250

Requesting dumps

You can cause a formatted dump of the Language Environment runtime
environment and the member language libraries at any prespecified point in your
program by coding a call to the Language Environment callable service CEE3DMP.
77 Title-1 Pic x(80) Display.
77 Options Pic x(255) Display.
01 Feedback-code Pic x(12) Display.
. . .

Call "CEE3DMP" Using Title-1, Options, Feedback-code

To have symbolic variables included in the formatted dump, compile with the TEST
compiler option and use the VARIABLES subparameter of CEE3DMP. You can also
request, through runtime options, that a dump be produced for error conditions of
your choosing.

You can cause a system dump at any prespecified point in your program. Request
an abend without cleanup by calling the Language Environment service CEE3ABD
with a cleanup value of zero. This callable service stops the run unit immediately,
and a system dump is requested when the abend is issued.

RELATED REFERENCES

“TEST” on page 364

© Copyright IBM Corp. 1991, 2018 239

Language Environment Debugging Guide
Language Environment Programming Reference (CEE3DMP--generate dump)

Handling errors in joining and splitting strings
During the joining or splitting of strings, the pointer used by STRING or UNSTRING
might fall outside the range of the receiving field. A potential overflow condition
exists, but COBOL does not let the overflow happen.

Instead, the STRING or UNSTRING operation is not completed, the receiving field
remains unchanged, and control passes to the next sequential statement. If you do
not code the ON OVERFLOW phrase of the STRING or UNSTRING statement, you are not
notified of the incomplete operation.

Consider the following statement:
String Item-1 space Item-2 delimited by Item-3

into Item-4
with pointer String-ptr
on overflow

Display "A string overflow occurred"
End-String

These are the data values before and after the statement is performed:

Data item PICTURE Value before Value after

Item-1 X(5) AAAAA AAAAA

Item-2 X(5) EEEAA EEEAA

Item-3 X(2) EA EA

Item-4 X(8) bbbbbbbb1 bbbbbbbb1

String-ptr 9(2) 0 0

1. The symbol b represents a blank space.

Because String-ptr has a value (0) that falls short of the receiving field, an
overflow condition occurs and the STRING operation is not completed. (Overflow
would also occur if String-ptr were greater than 9.) If ON OVERFLOW had not been
specified, you would not be notified that the contents of Item-4 remained
unchanged.

Handling errors in arithmetic operations
The results of arithmetic operations might be larger than the fixed-point field that
is to hold them, or you might have tried dividing by zero. In either case, the ON
SIZE ERROR clause after the ADD, SUBTRACT, MULTIPLY, DIVIDE, or COMPUTE statement
can handle the situation.

For ON SIZE ERROR to work correctly for fixed-point overflow and decimal
overflow, you must specify the TRAP(ON) runtime option.

The imperative statement of the ON SIZE ERROR clause will be performed and the
result field will not change in these cases:
v Fixed-point overflow
v Division by zero
v Zero raised to the zero power

240 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Zero raised to a negative number
v Negative number raised to a fractional power

Floating-point exponent overflow occurs when the value of a floating-point
computation cannot be represented in the System z floating-point operand format.
This type of overflow does not cause SIZE ERROR; an abend occurs instead. You
could code a user-written condition handler to intercept the abend and provide
your own error recovery logic.

Example: checking for division by zero
The following example shows how you can code an ON SIZE ERROR imperative
statement so that the program issues an informative message if division by zero
occurs.
DIVIDE-TOTAL-COST.

DIVIDE TOTAL-COST BY NUMBER-PURCHASED
GIVING ANSWER
ON SIZE ERROR

DISPLAY "ERROR IN DIVIDE-TOTAL-COST PARAGRAPH"
DISPLAY "SPENT " TOTAL-COST, " FOR " NUMBER-PURCHASED
PERFORM FINISH

END-DIVIDE
. . .
FINISH.
STOP RUN.

If division by zero occurs, the program writes a message and halts program
execution.

Handling errors in input and output operations
When an input or output operation fails, COBOL does not automatically take
corrective action. You choose whether your program will continue running after a
less-than-severe input or output error.

You can use any of the following techniques for intercepting and handling certain
input or output conditions or errors:
v End-of-file condition (AT END)
v ERROR declaratives
v FILE STATUS clause and file status key
v File system status code
v Imperative-statement phrases in READ or WRITE statements

For VSAM files, if you specify a FILE STATUS clause, you can also test the VSAM
status code to direct your program to error-handling logic.

v INVALID KEY phrase

To have your program continue, you must code the appropriate error-recovery
procedure. You might code, for example, a procedure to check the value of the file
status key. If you do not handle an input or output error in any of these ways, a
severity-3 Language Environment condition is signaled, which causes the run unit
to end if the condition is not handled.

The following figure shows the flow of logic after a VSAM input or output error:

Chapter 13. Handling errors 241

The following figure shows the flow of logic after an input or output error with
QSAM or line-sequential files. The error can be from a READ statement, a WRITE
statement, or a CLOSE statement with a REEL/UNIT clause (QSAM only).

242 Enterprise COBOL for z/OS, V5.2 Programming Guide

Yes

Set status key

(if present)

Yes

Yes

No

No

No

File-status

clause

specified ?

Associated

ERROR

declarative?

Applicable*

imperative

phrase?

Execute

imperative

statement

Execute

ERROR

declarative

Test file**

status key

Return to COBOL

at the end of I/O

statement

***Terminate the run
unit with a message

*Possible phrases for QSAM are AT END, AT END-OF-PAGE, and INVALID KEY; for line
sequential, AT END.

**You need to write the code to test the file status key.

***Execution of your COBOL program continues after the input or output
statement that caused the error.

RELATED TASKS

“Using the end-of-file condition (AT END)”
“Coding ERROR declaratives” on page 244
“Using file status keys” on page 245
“Handling errors in QSAM files” on page 174
“Using VSAM status codes (VSAM files only)” on page 246
“Handling errors in line-sequential files” on page 218
“Coding INVALID KEY phrases” on page 249

RELATED REFERENCES

File status key (Enterprise COBOL Language Reference)

Using the end-of-file condition (AT END)
You code the AT END phrase of the READ statement to handle errors or normal
conditions, according to your program design. At end-of-file, the AT END phrase is
performed. If you do not code an AT END phrase, the associated ERROR declarative is
performed.

Chapter 13. Handling errors 243

In many designs, reading sequentially to the end of a file is done intentionally, and
the AT END condition is expected. For example, suppose you are processing a file
that contains transactions in order to update a master file:
PERFORM UNTIL TRANSACTION-EOF = "TRUE"

READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD
AT END

DISPLAY "END OF TRANSACTION UPDATE FILE REACHED"
MOVE "TRUE" TO TRANSACTION-EOF

END READ
. . .

END-PERFORM

Any NOT AT END phrase is performed only if the READ statement completes
successfully. If the READ operation fails because of a condition other than
end-of-file, neither the AT END nor the NOT AT END phrase is performed. Instead,
control passes to the end of the READ statement after any associated declarative
procedure is performed.

You might choose not to code either an AT END phrase or an EXCEPTION declarative
procedure, but to code a status key clause for the file instead. In that case, control
passes to the next sequential instruction after the input or output statement that
detected the end-of-file condition. At that place, have some code that takes
appropriate action.

RELATED REFERENCES

AT END phrases (Enterprise COBOL Language Reference)

Coding ERROR declaratives
You can code one or more ERROR declarative procedures that will be given control
if an input or output error occurs during the execution of your program. If you do
not code such procedures, your job could be canceled or abnormally terminated
after an input or output error occurs.

Place each such procedure in the declaratives section of the PROCEDURE DIVISION.
You can code:
v A single, common procedure for the entire program
v Procedures for each file open mode (whether INPUT, OUTPUT, I-O, or EXTEND)
v Individual procedures for each file

In an ERROR declarative procedure, you can code corrective action, retry the
operation, continue, or end execution. (If you continue processing a blocked file,
though, you might lose the remaining records in a block after the record that
caused the error.) You can use the ERROR declaratives procedure in combination
with the file status key if you want a further analysis of the error.

Multithreading: Avoid deadlocks when coding I/O declaratives in multithreaded
applications. When an I/O operation results in a transfer of control to an I/O
declarative, the automatic serialization lock associated with the file is held during
the execution of the statements within the declarative. If you code I/O operations
within your declaratives, your logic might result in a deadlock as illustrated by the
following sample:
Declaratives.
D1 section.
Use after standard error procedure on F1

Read F2.
. . .

244 Enterprise COBOL for z/OS, V5.2 Programming Guide

D2 section.
Use after standard error procedure on F2

Read F1.
. . .

End declaratives.
. . .
Rewrite R1.
Rewrite R2.

When this program is running on two threads, the following sequence of events
could occur:
1. Thread 1: Rewrite R1 acquires lock on F1 and encounters I/O error.
2. Thread 1: Enter declarative D1, holding lock on F1.
3. Thread 2: Rewrite R2 acquires lock on F2 and encounters I/O error.
4. Thread 2: Enter declarative D2.
5. Thread 1: Read F2 from declarative D1; wait on F2 lock held by thread 2.
6. Thread 2: Read F1 from declarative D2; wait on F1 lock held by thread 1.
7. Deadlock.

RELATED REFERENCES

EXCEPTION/ERROR declarative (Enterprise COBOL Language Reference)

Using file status keys
After each input or output statement is performed on a file, the system updates
values in the two digit positions of the file status key. In general, a zero in the first
position indicates a successful operation, and a zero in both positions means that
nothing abnormal occurred.

Establish a file status key by coding:
v The FILE STATUS clause in the FILE-CONTROL paragraph:

FILE STATUS IS data-name-1

v Data definitions in the DATA DIVISION (WORKING-STORAGE, LOCAL-STORAGE, or
LINKAGE SECTION), for example:
WORKING-STORAGE SECTION.
01 data-name-1 PIC 9(2) USAGE NATIONAL.

Specify the file status key data-name-1 as a two-character category alphanumeric or
category national item, or as a two-digit zoned decimal or national decimal item.
This data-name-1 cannot be variably located.

Your program can check the file status key to discover whether an error occurred,
and, if so, what type of error occurred. For example, suppose that a FILE STATUS
clause is coded like this:
FILE STATUS IS FS-CODE

FS-CODE is used by COBOL to hold status information like this:

Chapter 13. Handling errors 245

Follow these rules for each file:
v Define a different file status key for each file.

Doing so means that you can determine the cause of a file input or output
exception, such as an application logic error or a disk error.

v Check the file status key after each input or output request.
If the file status key contains a value other than 0, your program can issue an
error message or can take action based on that value.
You do not have to reset the file status key code, because it is set after each
input or output attempt.

For VSAM files, you can additionally code a second identifier in the FILE STATUS
clause to get more detailed information about VSAM input or output requests.

You can use the file status key alone or in conjunction with the INVALID KEY
phrase, or to supplement the EXCEPTION or ERROR declarative. Using the file status
key in this way gives you precise information about the results of each input or
output operation.

“Example: file status key”

RELATED TASKS

“Using VSAM status codes (VSAM files only)”
“Coding INVALID KEY phrases” on page 249
“Finding and handling input-output errors” on page 387

RELATED REFERENCES

FILE STATUS clause (Enterprise COBOL Language Reference)
File status key (Enterprise COBOL Language Reference)

Example: file status key
The following example shows how you can perform a simple check of the file
status key after opening a file.
IDENTIFICATION DIVISION.
PROGRAM-ID. SIMCHK.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTERFILE ASSIGN TO AS-MASTERA
FILE STATUS IS MASTER-CHECK-KEY
. . .

DATA DIVISION.
. . .
WORKING-STORAGE SECTION.
01 MASTER-CHECK-KEY PIC X(2).
. . .
PROCEDURE DIVISION.

OPEN INPUT MASTERFILE
IF MASTER-CHECK-KEY NOT = "00"

DISPLAY "Nonzero file status returned from OPEN " MASTER-CHECK-KEY
. . .

Using VSAM status codes (VSAM files only)
Often the COBOL file status code is too general to pinpoint the disposition of a
request. You can get more detailed information about VSAM input or output
requests by coding a second data item in the FILE STATUS clause.
FILE STATUS IS data-name-1 data-name-8

246 Enterprise COBOL for z/OS, V5.2 Programming Guide

The data item data-name-1 shown above specifies the COBOL file status key, which
you define as a two-character alphanumeric or national data item, or as a two-digit
zoned decimal or national decimal item.

The data item data-name-8 specifies the VSAM status code, which you define as a
6-byte alphanumeric group data item that has three subordinate 2-byte binary
fields. The VSAM status code contains meaningful values when the COBOL file
status key is not 0.

You can define data-name-8 in the WORKING-STORAGE SECTION, as in VSAM-CODE below.
01 RETURN-STATUS.

05 FS-CODE PIC X(2).
05 VSAM-CODE.

10 VSAM-R15-RETURN PIC S9(4) Usage Comp-5.
10 VSAM-FUNCTION PIC S9(4) Usage Comp-5.
10 VSAM-FEEDBACK PIC S9(4) Usage Comp-5.

Enterprise COBOL uses data-name-8 to pass information supplied by VSAM. In the
following example, FS-CODE corresponds to data-name-1 and VSAM-CODE corresponds
to data-name-8:

“Example: checking VSAM status codes”

RELATED REFERENCES

FILE STATUS clause (Enterprise COBOL Language Reference)
File status key (Enterprise COBOL Language Reference)
z/OS DFSMS Macro Instructions for Data Sets (VSAM macro return and

reason codes)

Example: checking VSAM status codes
The following example reads an indexed file (starting at the fifth record), checks
the file status key after each input or output request, and displays the VSAM
status codes when the file status key is not zero.

This example also illustrates how output from this program might look if the file
being processed contained six records.
IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT VSAMFILE ASSIGN TO VSAMFILE
ORGANIZATION IS INDEXED

Chapter 13. Handling errors 247

ACCESS DYNAMIC
RECORD KEY IS VSAMFILE-KEY
FILE STATUS IS FS-CODE VSAM-CODE.

DATA DIVISION.
FILE SECTION.
FD VSAMFILE

RECORD 30.
01 VSAMFILE-REC.

10 VSAMFILE-KEY PIC X(6).
10 FILLER PIC X(24).

WORKING-STORAGE SECTION.
01 RETURN-STATUS.

05 FS-CODE PIC XX.
05 VSAM-CODE.

10 VSAM-RETURN-CODE PIC S9(2) Usage Binary.
10 VSAM-COMPONENT-CODE PIC S9(1) Usage Binary.
10 VSAM-REASON-CODE PIC S9(3) Usage Binary.

PROCEDURE DIVISION.
OPEN INPUT VSAMFILE.
DISPLAY "OPEN INPUT VSAMFILE FS-CODE: " FS-CODE.

IF FS-CODE NOT = "00"
PERFORM VSAM-CODE-DISPLAY
STOP RUN

END-IF.

MOVE "000005" TO VSAMFILE-KEY.
START VSAMFILE KEY IS EQUAL TO VSAMFILE-KEY.
DISPLAY "START VSAMFILE KEY=" VSAMFILE-KEY

" FS-CODE: " FS-CODE.
IF FS-CODE NOT = "00"

PERFORM VSAM-CODE-DISPLAY
END-IF.

IF FS-CODE = "00"
PERFORM READ-NEXT UNTIL FS-CODE NOT = "00"

END-IF.

CLOSE VSAMFILE.
STOP RUN.

READ-NEXT.
READ VSAMFILE NEXT.
DISPLAY "READ NEXT VSAMFILE FS-CODE: " FS-CODE.
IF FS-CODE NOT = "00"

PERFORM VSAM-CODE-DISPLAY
ELSE

DISPLAY VSAMFILE-REC
END-IF.

VSAM-CODE-DISPLAY.
DISPLAY "VSAM-CODE ==>"

" RETURN: " VSAM-RETURN-CODE,
" COMPONENT: " VSAM-COMPONENT-CODE,
" REASON: " VSAM-REASON-CODE.

Below is a sample of the output from the example program that checks VSAM
status-code information:
OPEN INPUT VSAMFILE FS-CODE: 00
START VSAMFILE KEY=000005 FS-CODE: 00
READ NEXT VSAMFILE FS-CODE: 00
000005 THIS IS RECORD NUMBER 5
READ NEXT VSAMFILE FS-CODE: 00
000006 THIS IS RECORD NUMBER 6
READ NEXT VSAMFILE FS-CODE: 10
VSAM-CODE ==> RETURN: 08 COMPONENT: 2 REASON: 004

248 Enterprise COBOL for z/OS, V5.2 Programming Guide

Coding INVALID KEY phrases
You can include an INVALID KEY phrase in READ, START, WRITE, REWRITE, and DELETE
statements for VSAM indexed and relative files. The INVALID KEY phrase is given
control if an input or output error occurs due to a faulty index key.

You can also include the INVALID KEY phrase in WRITE requests for QSAM files, but
the phrase has limited meaning for QSAM files. It is used only if you try to write
to a disk that is full.

Use the FILE STATUS clause with the INVALID KEY phrase to evaluate the status key
and determine the specific INVALID KEY condition.

INVALID KEY phrases differ from ERROR declaratives in several ways. INVALID KEY
phrases:
v Operate for only limited types of errors. ERROR declaratives encompass all forms.
v Are coded directly with the input or output statement. ERROR declaratives are

coded separately.
v Are specific for a single input or output operation. ERROR declaratives are more

general.

If you code INVALID KEY in a statement that causes an INVALID KEY condition,
control is transferred to the INVALID KEY imperative statement. Any ERROR
declaratives that you coded are not performed.

If you code a NOT INVALID KEY phrase, it is performed only if the statement
completes successfully. If the operation fails because of a condition other than
INVALID KEY, neither the INVALID KEY nor the NOT INVALID KEY phrase is
performed. Instead, after the program performs any associated ERROR declaratives,
control passes to the end of the statement.

“Example: FILE STATUS and INVALID KEY”

Example: FILE STATUS and INVALID KEY
The following example shows how you can use the file status code and the
INVALID KEY phrase to determine more specifically why an input or output
statement failed.

Assume that you have a file that contains master customer records and you need
to update some of these records with information from a transaction update file.
The program reads each transaction record, finds the corresponding record in the
master file, and makes the necessary updates. The records in both files contain a
field for a customer number, and each record in the master file has a unique
customer number.

The FILE-CONTROL entry for the master file of customer records includes statements
that define indexed organization, random access, MASTER-CUSTOMER-NUMBER as the
prime record key, and CUSTOMER-FILE-STATUS as the file status key.
.
. (read the update transaction record)
.
MOVE "TRUE" TO TRANSACTION-MATCH
MOVE UPDATE-CUSTOMER-NUMBER TO MASTER-CUSTOMER-NUMBER
READ MASTER-CUSTOMER-FILE INTO WS-CUSTOMER-RECORD

INVALID KEY

Chapter 13. Handling errors 249

DISPLAY "MASTER CUSTOMER RECORD NOT FOUND"
DISPLAY "FILE STATUS CODE IS: " CUSTOMER-FILE-STATUS
MOVE "FALSE" TO TRANSACTION-MATCH

END-READ

Handling errors when calling programs
When a program dynamically calls a separately compiled program, the called
program might be unavailable. For example, the system might be out of storage or
unable to locate the program object. If the CALL statement does not have an ON
EXCEPTION or ON OVERFLOW phrase, your application might abend.

Use the ON EXCEPTION phrase to perform a series of statements and to perform your
own error handling. For example, in the code fragment below, if program REPORTA
is unavailable, control passes to the ON EXCEPTION phrase.
MOVE "REPORTA" TO REPORT-PROG
CALL REPORT-PROG

ON EXCEPTION
DISPLAY "Program REPORTA not available, using REPORTB."
MOVE "REPORTB" TO REPORT-PROG
CALL REPORT-PROG
END-CALL

END-CALL

The ON EXCEPTION phrase applies only to the availability of the called program on
its initial load. If the called program is loaded but fails for any other reason (such
as initialization), the ON EXCEPTION phrase is not performed.

RELATED TASKS

Enterprise COBOL Migration Guide

Writing routines for handling errors
You can handle most error conditions that might occur while your program is
running by using the ON EXCEPTION phrase, ON SIZE ERROR phrase, or other
language constructs. But if an extraordinary condition such as a machine check
occurs, usually your application is abnormally terminated.

Enterprise COBOL and Language Environment provide a way for a user-written
program to gain control when such conditions occur. Using Language Environment
condition handling, you can write your own error-handling routines in COBOL.
They can report, analyze, or even fix up a program and enable it to resume
running.

When you write your own error-handling routines for an application, the COBOL
programs must be compiled with appropriate compiler options. For more
information, see “OPTIMIZE” on page 346.

To have Language Environment pass control to a user-written error program, you
must first identify and register its entry point to Language Environment.
PROCEDURE-POINTER data items enable you to pass the entry address of procedure
entry points to Language Environment services.

RELATED TASKS

“Using procedure and function pointers” on page 487

250 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

“OPTIMIZE” on page 346

Chapter 13. Handling errors 251

252 Enterprise COBOL for z/OS, V5.2 Programming Guide

Part 2. Compiling and debugging your program

© Copyright IBM Corp. 1991, 2018 253

254 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 14. Compiling under z/OS

You can compile Enterprise COBOL programs under z/OS using job control
language (JCL), TSO commands, CLISTs, or ISPF panels.

For compiling with JCL, IBM provides a set of cataloged procedures, which can
reduce the amount of JCL coding that you need to write. If the cataloged
procedures do not meet your needs, you can write your own JCL. Using JCL, you
can compile a single program or compile several programs as part of a batch job.

When compiling under TSO, you can use TSO commands, CLISTs, or ISPF panels.

You can also compile in a z/OS UNIX shell by using the cob2 command.

You might instead want to start the Enterprise COBOL compiler from an assembler
program, for example, if your shop has developed a tool or interface that calls the
Enterprise COBOL compiler.

As part of the compilation step, you need to define the data sets needed for the
compilation and specify any compiler options necessary for your program and the
required output.

The compiler translates your COBOL program into language that the computer can
process (object code). The compiler also lists errors in your source statements and
provides supplementary information to help you debug and tune your program.
Use compiler-directing statements and compiler options to control your
compilation.

After compiling your program, you need to review the results of the compilation
and correct any compiler-detected errors.

RELATED TASKS

“Compiling with JCL”
“Compiling under TSO” on page 262
Chapter 15, “Compiling under z/OS UNIX,” on page 283
“Starting the compiler from an assembler program” on page 265
“Defining compiler input and output” on page 266
“Specifying compiler options under z/OS” on page 272
“Compiling multiple programs (batch compilation)” on page 275
“Correcting errors in your source program” on page 279

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 381
“Data sets used by the compiler under z/OS” on page 267
“Compiler options and compiler output under z/OS” on page 274

Compiling with JCL
Include the following information in the JCL for compilation: job description,
statement to invoke the compiler, and definitions of the needed data sets
(including the directory paths of z/OS UNIX files, if any).

© Copyright IBM Corp. 1991, 2018 255

The simplest way to compile your program under z/OS is to code JCL that uses a
cataloged procedure. A cataloged procedure is a set of job control statements in a
partitioned data set called the procedure library (SYS1.PROCLIB).

The following JCL shows the general format for a cataloged procedure.
//jobname JOB parameters
//stepname EXEC [PROC=]procname[,{PARM=|PARM.stepname=}’options’]
//SYSIN DD data-set parameters
. . . (source program to be compiled)
/*
//

Additional considerations apply when you use cataloged procedures to compile
object-oriented programs.

“Example: sample JCL for a procedural DLL application” on page 510

RELATED TASKS

“Using a cataloged procedure”
“Writing JCL to compile programs” on page 260
“Specifying compiler options under z/OS” on page 272
“Specifying compiler options in a batch compilation” on page 277
“Compiling programs to create DLLs” on page 508

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 267

Using a cataloged procedure
Specify a cataloged procedure in an EXEC statement in your JCL.

For example, the following JCL calls the IBM-supplied cataloged procedure
IGYWC for compiling an Enterprise COBOL program and defining the required
data sets:
//JOB1 JOB1
//STEPA EXEC PROC=IGYWC
//COBOL.SYSIN DD *
000100 IDENTIFICATION DIVISION

* (the source code)
. . .
/*

You can omit /* after the source code. If your source code is stored in a data set,
replace SYSIN DD * with appropriate parameters that describe the data set.

You can use these procedures with any of the job schedulers that are part of z/OS.
When a scheduler encounters parameters that it does not require, the scheduler
either ignores them or substitutes alternative parameters.

If the compiler options are not explicitly supplied with the procedure, default
options established at the installation apply. You can override these default options
by using an EXEC statement that includes the required options.

You can specify data sets to be in the z/OS UNIX file system by overriding the
corresponding DD statement. However, the compiler utility files (SYSUTx) and copy
libraries (SYSLIB) you specify must be MVS data sets.

256 Enterprise COBOL for z/OS, V5.2 Programming Guide

Additional details about invoking cataloged procedures, overriding and adding to
EXEC statements, and overriding and adding to DD statements are in the Language
Environment information.

RELATED TASKS

Language Environment Programming Guide

RELATED REFERENCES

“Compile procedure (IGYWC)”
“Compile and link-edit procedure (IGYWCL)” on page 258
“Compile, link-edit, and run procedure (IGYWCLG)” on page 259
MVS Program Management: User's Guide and Reference

Compile procedure (IGYWC)
IGYWC is a single-step cataloged procedure for compiling a program. It produces an
object module. The compile steps in all other cataloged procedures that invoke the
compiler are similar.

You must supply the following DD statement, indicating the location of the source
program, in the input stream:
//COBOL.SYSIN DD * (or appropriate parameters)

If you use copybooks in the program that you are compiling, you must also supply
a DD statement for SYSLIB or other libraries that you specify in COPY statements. For
example:
//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWC PROC LNGPRFX=’IGY.V5R1M0’,
// LIBPREFIX=’CEE’
//*
//* COMPILE A COBOL PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IGY.V5R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//*
//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .
//*
//* CALLER MUST ALSO SUPPLY //COBOL.SYSLIB DD . . . for COPY statements
//*
//COBOL EXEC PGM=IGYCRCTL,REGION=0M
//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,DISP=SHR (1)
// DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSALLDA,
// DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT8 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT9 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT10 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT11 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT12 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT13 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT14 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT15 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSMDECK DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

(1) STEPLIB can be installation-dependent.

“Example: JCL for compiling in the z/OS UNIX file system” on page 258

Chapter 14. Compiling under z/OS 257

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

Example: JCL for compiling in the z/OS UNIX file system:

The following job uses procedure IGYWC to compile a COBOL program, demo.cbl,
that is located in the z/OS UNIX file system. The job writes the generated
compiler listing demo.lst, object file demo.o, and SYSADATA file demo.adt in the
z/OS UNIX file system.
//UNIXDEMO JOB ,
// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,REGION=50M,
// NOTIFY=&SYSUID,USER=&SYSUID
//COMPILE EXEC IGYWC,
// PARM.COBOL=’LIST,MAP,RENT,FLAG(I,I),XREF,ADATA’
//SYSPRINT DD PATH=’/u/userid/cobol/demo.lst’, (1)
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC), (2)
// PATHMODE=SIRWXU, (3)
// FILEDATA=TEXT (4)
//SYSLIN DD PATH=’/u/userid/cobol/demo.o’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//SYSADATA DD PATH=’/u/userid/cobol/demo.adt’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//SYSIN DD PATH=’/u/userid/cobol/demo.cbl’,
// PATHOPTS=ORDONLY,
// FILEDATA=TEXT,
// RECFM=F

(1) PATH specifies the path name of a file in the z/OS UNIX file system.

(2) PATHOPTS indicates the access for the file (such as read or read-write) and
sets the status for the file (such as append, create, or truncate).

(3) PATHMODE indicates the permissions, or file access attributes, to be set when
a file is created.

(4) FILEDATA specifies whether the data is to be treated as text or as binary.

You can use a mixture of files in the z/OS UNIX file system (PATH=’unix-directory-
path’) and traditional MVS data sets (DSN=mvs-data-set-name) in the compilation DD
statements (shown in this example as overrides). However, the compiler utility files
(DD statements SYSUTx) and COPY libraries (DD statements SYSLIB) must be MVS data
sets.

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 267
UNIX System Services Command Reference
MVS JCL Reference

Compile and link-edit procedure (IGYWCL)
IGYWCL is a two-step cataloged procedure to compile and link-edit a program.

The COBOL job step produces an object module that is input to the binder
(linkage-editor). You can add other object modules. You must supply the following
DD statement, indicating the location of the source program, in the input stream:
//COBOL.SYSIN DD * (or appropriate parameters)

If the program uses copybooks, you must also supply a DD statement for SYSLIB or
other libraries that you specify in COPY statements. For example:
//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWCL PROC LNGPRFX=’IGY.V5R1M0’,
// LIBPRFX=’CEE’,
// PGMLIB=’&&GOSET’,GOPGM=GO

258 Enterprise COBOL for z/OS, V5.2 Programming Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab600/toc.htm?sc=SSLTBW_latest

//*
//* COMPILE AND LINK EDIT A COBOL PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IGY.V5R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* SYSLBLK 3200 BLOCK SIZE FOR OBJECT DATA SET
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* PGMLIB &&GOSET DATA SET NAME FOR LOAD MODULE
//* GOPGM GO MEMBER NAME FOR LOAD MODULE
//*
//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .
//*
//* CALLER MUST ALSO SUPPLY //COBOL.SYSLIB DD . . . for COPY statements
//*
//COBOL EXEC PGM=IGYCRCTL,REGION=0M
//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,DISP=SHR (1)
// DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSALLDA,
// DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT8 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT9 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT10 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT11 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT12 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT13 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT14 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT15 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSMDECK DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//LKED EXEC PGM=IEWBLINK,COND=(8,LT,COBOL),REGION=0M
//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR (2)
// DD DSNAME=&LIBPRFX..SCEELKEX,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),
// SPACE=(CYL,(3,1,1)),
// UNIT=SYSALLDA,DISP=(MOD,PASS),DSNTYPE=LIBRARY
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

(1) STEPLIB can be installation-dependent.

(2) SYSLIB can be installation-dependent.

Compile, link-edit, and run procedure (IGYWCLG)
IGYWCLG is a three-step cataloged procedure to compile, link-edit, and run a
program.

The COBOL job step produces an object module that is input to the binder
(linkage-editor). You can add other object modules. If the COBOL program refers
to any data sets, you must also supply DD statements that define these data sets.
You must supply the following DD statement, indicating the location of the source
program, in the input stream:
//COBOL.SYSIN DD * (or appropriate parameters)

If the program uses copybooks, you must also supply a DD statement for SYSLIB or
other libraries that you specify in COPY statements. For example:

Chapter 14. Compiling under z/OS 259

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB

//IGYWCLG PROC LNGPRFX=’IGY.V5R1M0’,
// LIBPRFX=’CEE’,GOPGM=GO
//*
//* COMPILE, LINK EDIT AND RUN A COBOL PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IGY.V5R1M0 PREFIX FOR LANGUAGE DATA SET NAMES
//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//* GOPGM GO MEMBER NAME FOR LOAD MODULE
//*
//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .
//*
//* CALLER MUST ALSO SUPPLY //COBOL.SYSLIB DD . . . for COPY statements
//*
//COBOL EXEC PGM=IGYCRCTL,REGION=0M
//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,DISP=SHR (1)
// DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSNAME=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSALLDA,
// DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT8 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT9 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT10 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT11 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT12 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT13 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT14 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT15 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSMDECK DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//LKED EXEC PGM=IEWBLINK,COND=(8,LT,COBOL),REGION=0M
//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,DISP=SHR (2)
// DD DSNAME=&LIBPRFX..SCEELKEX,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&&GOSET(&GOPGM),SPACE=(CYL,(1,1,1)),
// UNIT=SYSALLDA,DISP=(MOD,PASS),DSNTYPPE=LIBRARY
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,COBOL),(4,LT,LKED)),
// REGION=0M
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,DISP=SHR (1)
// DD DSNAME=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

(1) STEPLIB can be installation-dependent.

(2) SYSLIB can be installation-dependent.

Writing JCL to compile programs
If the cataloged procedures do not provide you with the flexibility that you need
for more complex programs, write your own job control statements. The following
example shows the general format of JCL used to compile a program.

260 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

//jobname JOB acctno,name,MSGCLASS=1 (1)
//stepname EXEC PGM=IGYCRCTL,PARM=(options) (2)
//STEPLIB DD DSNAME=IGY.V5R1M0.SIGYCOMP,DISP=SHR (3)
// DD DSNAME=SYS1.SCEERUN,DISP=SHR
// DD DSNAME=SYS1.SCEERUN2,DISP=SHR
//SYSUT1 DD UNIT=SYSALLDA,SPACE=(subparms) (4)
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT5 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT6 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT7 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT8 DD UNIT=SYSALLDA,SPACE)=(subparms)
//SYSUT9 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT10 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT11 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT12 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT13 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT14 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSUT15 DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSMDECK DD UNIT=SYSALLDA,SPACE=(subparms)
//SYSPRINT DD SYSOUT=A (5)
//SYSLIN DD DSNAME=MYPROG,UNIT=SYSALLDA, (6)
// DISP=(MOD,PASS),SPACE=(subparms)
//SYSIN DD DSNAME=dsname,UNIT=device, (7)

VOLUME=(subparms),DISP=SHR

(1) The JOB statement indicates the beginning of a job.

(2) The EXEC statement specifies that the Enterprise COBOL compiler
(IGYCRCTL) is to be invoked.

(3) This DD statement defines the data set where the Enterprise COBOL
compiler resides.

The Language Environment SCEERUN and SCEERUN2 data sets must be
included in the concatenation (together with the compiler SIGYCOMP data
set), unless the Language Environment data sets are available in the
LNKLST.

(4) The SYSUT DD statements define the utility data sets that the compiler will
use to process the source program. All SYSUT files must be on direct-access
storage devices.

(5) The SYSPRINT DD statement defines the data set that receives output from
compiler options such as LIST and MAP. SYSOUT=A is the standard
designation for data sets whose destination is the system output device.

(6) The SYSLIN DD statement defines the data set (the object module) that
receives output from the OBJECT compiler option.

(7) The SYSIN DD statement defines the data set (source code) to be used as
input to the job step.

You can use a mixture of files in the z/OS UNIX file system (PATH=’unix-directory-
path’) and traditional MVS data sets (DSN=mvs-data-set-name) in the compilation DD
statements for the following data sets:
v Sources files
v Object files
v Listings
v ADATA files
v Debug files
v Executable modules

Chapter 14. Compiling under z/OS 261

However, the compiler utility files (DD statements SYSUTx) and COPY libraries (DD
statement SYSLIB) must be MVS data sets.

For more examples about the cataloged procedures in JCL, refer to “Using a
cataloged procedure” on page 256 and its child topics.

“Example: user-written JCL for compiling”
“Example: sample JCL for a procedural DLL application” on page 510

RELATED REFERENCES

MVS JCL Reference
MVS Program Management: User's Guide and Reference

Example: user-written JCL for compiling
The following example shows a few possibilities for adapting the basic JCL.
//JOB1 JOB (1)
//STEP1 EXEC PGM=IGYCRCTL,PARM=’OBJECT’ (2)
//STEPLIB DD DSNAME=IGY.V5R1M0.SIGYCOMP,DISP=SHR
// DD DSNAME=SYS1.SCEERUN,DISP=SHR
// DD DSNAME=SYS1.SCEERUN2,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT8 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT9 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT10 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT11 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT12 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT13 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT14 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT15 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSMDECK DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSNAME=MYPROG,UNIT=SYSDA,
// DISP=(MOD,PASS),SPACE=(TRK,(3,3))
//SYSIN DD * (3)
000100 IDENTIFICATION DIVISION.
. . .
/* (4)

(1) JOB1 is the name of the job.

(2) STEP1 is the name of the sole job step in the job. The EXEC statement also
specifies that the generated object code should be placed on disk or tape
(to be used as input to the link step).

(3) The asterisk indicates that the input data set follows in the input stream.

(4) The delimiter statement /* separates data from subsequent control
statements in the input stream.

Compiling under TSO
Under TSO, you can use TSO commands, command lists (CLISTs), REXX execs, or
ISPF to compile programs using traditional MVS data sets. You can use TSO
commands or REXX execs to compile programs using z/OS UNIX files.

With each method, you need to allocate the data sets and request the compilation:

262 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab600/toc.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

1. Use the ALLOCATE command to allocate data sets.
For any compilation, allocate the work data sets (SYSUTn) and the SYSIN and
SYSPRINT data sets.
If you specify certain compiler options, you must allocate other data sets. For
example, if you specify the TERMINAL compiler option, you must allocate the
SYSTERM data set to receive compiler messages at your terminal.
You can allocate data sets in any order. However, you must allocate all needed
data sets before you start to compile.

2. Use the CALL command at the READY prompt to request compilation:
CALL ’IGY.V5R1M0.SIGYCOMP(IGYCRCTL)’

You can specify the ALLOCATE and CALL commands on the TSO command line, or, if
you are not using z/OS UNIX files, you can include them in a CLIST.

You can allocate z/OS UNIX files for all the compiler data sets except the SYSUTx
utility data sets and the SYSLIB libraries. ALLOCATE statements have the following
form:
Allocate File(SYSIN) Path(’/u/myu/myap/std/prog2.cbl’)
Pathopts(ORDONLY) Filedata(TEXT)

“Example: ALLOCATE and CALL for compiling under TSO”
“Example: CLIST for compiling under TSO” on page 264

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 267

Example: ALLOCATE and CALL for compiling under TSO
The following example shows how to specify ALLOCATE and CALL commands when
you are compiling under TSO.
[READY]
ALLOCATE FILE(SYSUT1) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT2) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT3) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT4) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT5) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT6) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT7) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT8) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT9) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT10) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT11) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT12) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT13) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT14) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSUT15) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSMDECK) CYLINDERS SPACE(1 1)
[READY]
ALLOCATE FILE(SYSPRINT) SYSOUT
[READY]
ALLOCATE FILE(SYSTERM) DATASET(*)

Chapter 14. Compiling under z/OS 263

[READY]
ALLOCATE FILE(SYSLIN) DATASET(PROG2.OBJ) NEW TRACKS SPACE(3,3)
[READY]
ALLOCATE FILE(SYSIN) DATASET(PROG2.COBOL) SHR
[READY]
CALL ’IGY.V5R1M0.SIGYCOMP(IGYCRCTL)’ ’LIST,NOCOMPILE(S),OBJECT,FLAG(E,E),TERMINAL’
.
(COBOL listings and messages)
.

[READY]
FREE FILE(SYSUT1,SYSUT2,SYSUT3,SYSUT4,SYSUT5,SYSUT6,SYSUT7,SYSUT8,SYSUT9,SYSUT10,SYSUT11,SYSUT12,
SYSUT13,SYSUT14,SYSUT15,SYSMDECK,SYSPRINT,SYSTERM,+
SYSIN,SYSLIN)
[READY]

Example: CLIST for compiling under TSO
The following example shows a CLIST for compiling under TSO. The FREE
commands are not required. However, good programming practice dictates that
you free files before you allocate them.
PROC 1 MEM
CONTROL LIST
FREE F(SYSUT1)
FREE F(SYSUT2)
FREE F(SYSUT3)
FREE F(SYSUT4)
FREE F(SYSUT5)
FREE F(SYSUT6)
FREE F(SYSUT7)
FREE F(SYSUT8)
FREE F(SYSUT9)
FREE F(SYSUT10)
FREE F(SYSUT11)
FREE F(SYSUT12)
FREE F(SYSUT13)
FREE F(SYSUT14)
FREE F(SYSUT15)
FREE F(SYSMDECK)
FREE F(SYSPRINT)
FREE F(SYSIN)
FREE F(SYSLIN)
ALLOC F(SYSPRINT) SYSOUT
ALLOC F(SYSIN) DA(COBOL.SOURCE(&MEM)) SHR REUSE
ALLOC F(SYSLIN) DA(COBOL.OBJECT(&MEM)) OLD REUSE
ALLOC F(SYSUT1) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT2) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT3) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT4) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT5) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT6) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT7) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT8) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT9) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT10) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT11) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT12) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT13) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT14) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSUT15) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
ALLOC F(SYSMDECK) NEW SPACE(1,1) CYL UNIT(SYSALLDA)
CALL ’IGY.V5R1M0.SIGYCOMP(IGYCRCTL)’

RELATED REFERENCES

TSO/E Command Reference

264 Enterprise COBOL for z/OS, V5.2 Programming Guide

Starting the compiler from an assembler program
You can start the Enterprise COBOL compiler from within an assembler program
by using the ATTACH or the LINK macro by dynamic invocation. You must identify
the compiler options and the ddnames of the data sets to be used during
processing.

For example:
symbol {LINK|ATTACH} EP=IGYCRCTL,PARAM=(optionlist[,ddnamelist]),VL=1

EP Specifies the symbolic name of the compiler. The control program (from
the library directory entry) determines the entry point at which the
program should begin running.

PARAM Specifies, as a sublist, address parameters to be passed from the assembler
program to the compiler.

The first fullword in the address parameter list contains the address of the
COBOL optionlist. The second fullword contains the address of the
ddnamelist.

optionlist
Specifies the address of a variable-length list that contains the COBOL
options specified for compilation. This address must be written even if no
list is provided.

The optionlist must begin on a halfword boundary. The 2 high-order bytes
contain a count of the number of bytes in the remainder of the list. If no
options are specified, the count must be zero. The optionlist is freeform,
with each field separated from the next by a comma. No blanks or zeros
should appear. The compiler recognizes only the first 100 characters.

ddnamelist
Specifies the address of a variable-length list that contains alternative
ddnames for the data sets used during compiler processing. If standard
ddnames are used, the ddnamelist can be omitted.

The ddnamelist must begin on a halfword boundary. The 2 high-order bytes
contain a count of the number of bytes in the remainder of the list. Each
name of less than 8 bytes must be left justified and padded with blanks. If
an alternate ddname is omitted from the list, the standard name is
assumed. If the name is omitted, the 8-byte entry must contain binary
zeros. You can omit names from the end by shortening the list.

All SYSUTn data sets specified must be on direct-access storage devices
and have physical sequential organization. They must not reside in the
z/OS UNIX file system.

The following table shows the sequence of the 8-byte entries in the
ddnamelist.

Alternative ddname 8-byte entry Name for which alternative ddname is substituted

1 SYSLIN

2 Not applicable

3 Not applicable

4 SYSLIB

5 SYSIN

6 SYSPRINT

Chapter 14. Compiling under z/OS 265

Alternative ddname 8-byte entry Name for which alternative ddname is substituted

7 SYSPUNCH

8 SYSUT1

9 SYSUT2

10 SYSUT3

11 SYSUT4

12 SYSTERM

13 SYSUT5

14 SYSUT6

15 SYSUT7

16 SYSADATA

17 SYSJAVA

18 Not applicable

19 SYSMDECK

20 DBRMLIB

21 SYSOPTF

22 SYSUT8

23 SYSUT9

24 SYSUT10

25 SYSUT11

26 SYSUT12

27 SYSUT13

28 SYSUT14

29 SYSUT15

VL Specifies that the sign bit is to be set to 1 in the last fullword of the
address parameter list.

When the compiler completes processing, it puts a return code in register 15.

RELATED TASKS

“Defining compiler input and output”

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 267
“Compiler options and compiler output under z/OS” on page 274

Defining compiler input and output
You need to define several kinds of data sets that the compiler uses to do its work.
The compiler takes input data sets and libraries and produces various types of
output, including object code, listings, and messages. The compiler also uses utility
data sets during compilation.

RELATED TASKS

“Defining the source code data set (SYSIN)” on page 269
“Defining a compiler-option data set (SYSOPTF)” on page 269
“Specifying source libraries (SYSLIB)” on page 270

266 Enterprise COBOL for z/OS, V5.2 Programming Guide

“Defining the output data set (SYSPRINT)” on page 270
“Directing compiler messages to your terminal (SYSTERM)” on page 271
“Creating object code (SYSLIN or SYSPUNCH)” on page 271
“Defining an associated-data file (SYSADATA)” on page 271
“Defining the Java-source output file (SYSJAVA)” on page 272
“Defining the library-processing output file (SYSMDECK)” on page 272

RELATED REFERENCES

“Data sets used by the compiler under z/OS”
“Compiler options and compiler output under z/OS” on page 274

Data sets used by the compiler under z/OS
The following table lists the function, device requirements, and allowable device
classes for each data set that the compiler uses.

Table 34. Compiler data sets

Type ddname Function Required?
Device
requirements

Allowable
device
classes

Can be in
z/OS UNIX
file
system?

Input SYSIN1 Reading source
program

Yes Card reader;
intermediate
storage

Any Yes

SYSOPTF Reading compiler
options

If OPTFILE is in effect Card reader;
intermediate
storage; direct
access

Any Yes

SYSLIB or
other copy
libraries1

Reading user source
libraries (PDSs or
PDSEs)

If program has COPY or
BASIS statements

Direct access SYSDA No

Utility3 SYSUT1,
SYSUT2,
SYSUT3,
SYSUT4,
SYSUT62

Work data set used
by compiler during
compilation

Yes Direct access SYSALLDA No

SYSUT52 Work data set used
by compiler during
compilation

If program has COPY,
REPLACE, or BASIS
statements

Direct access SYSALLDA No

SYSUT72 Work data set used
by compiler to create
listing

Yes Direct access SYSALLDA No

SYSUT8,
SYSUT9,
SYSUT10,
SYSUT11,
SYSUT12,
SYSUT13,
SYSUT14,
SYSUT15, 2

Work data set used
by compiler during
compilation

Yes Direct access SYSALLDA No

Chapter 14. Compiling under z/OS 267

|

Table 34. Compiler data sets (continued)

Type ddname Function Required?
Device
requirements

Allowable
device
classes

Can be in
z/OS UNIX
file
system?

Output SYSPRINT1 Writing storage map,
listings, and
messages

Yes Printer;
intermediate
storage

SYSSQ, SYSDA,
standard
output class
A

Yes

SYSTERM Writing progress and
diagnostic messages

If TERM is in effect Output
device; TSO
terminal

Yes

SYSPUNCH Creating object code If DECK is in effect Card punch;
direct access

SYSSQ, SYSDA Yes

SYSLIN Creating object
module data set as
output from compiler
and input to binder
(linkage-editor)

If OBJECT is in effect Direct access SYSSQ, SYSDA Yes

SYSADATA1 Writing associated
data file records

If ADATA is in effect Output
device

Yes

SYSJAVA Creating generated
Java™ source file for
a class definition

If compiling a class
definition

(Must be a
z/OS UNIX
file)

Yes

SYSUDUMP,
SYSABEND, or
SYSMDUMP

Writing dump If DUMP is in effect
(should be rarely used)

Direct access SYSDA Yes

SYSMDECK Processing for the
MDECK option, or a
work data set if
NOMDECK is specified.

Yes Direct access SYSALLDA Yes

1. You can use the EXIT option to provide user exits from these data sets.

2. These data sets must be single volume.

3. Do not use DSNTYPE=LARGE for utility data sets (SYSUT1 - SYSUT15).

RELATED REFERENCES

“Logical record length and block size”
“EXIT” on page 324

Logical record length and block size
For compiler data sets other than the work data sets (SYSUTn) and z/OS UNIX
files, you can set the block size by using the BLKSIZE subparameter of the DCB
parameter. The value must be permissible for the device on which the data set
resides. The values you set depend on whether the data sets are fixed length or
variable length.

For fixed-length records (RECFM=F or RECFM=FB), LRECL is the logical record length;
and BLKSIZE equals LRECL multiplied by n where n is equal to the blocking factor.

The following table shows the defined values for the fixed-length data sets. In
general, you should not change these values, but you can change the value for
theSYSPRINT data set. You can specify BLKSIZE=0, which results in a
system-determined block size.

268 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

Table 35. Block size of fixed-length compiler data sets

Data set RECFM LRECL (bytes) BLKSIZE1

SYSIN F or FB 80 80 x n

SYSLIB or other copy libraries F or FB 80 80 x n

SYSLIN F or FB 80 80 x n

SYSMDECK F or FB 80 80 x n

SYSOPTF F or FB 80 80 x n

SYSPRINT2 F or FB 133 133 x n

SYSPUNCH F or FB 80 80 x n

SYSTERM F or FB 80 80 x n

1. n = blocking factor

2. If you specify BLKSIZE=0, the system determines the block size.

For variable-length records (RECFM=V), LRECL is the logical record length, and
BLKSIZE equals LRECL plus 4.

Table 36. Block size of variable-length compiler data sets

Data set RECFM
LRECL
(bytes)

BLKSIZE (bytes) minimum
acceptable value

SYSADATA VB 1020 1024

Defining the source code data set (SYSIN)
Define the data set that contains your source code by using the SYSIN DD statement
as shown below.
//SYSIN DD DSNAME=dsname,UNIT=SYSSQ,VOLUME=(subparms),DISP=SHR

You can place your source code or BASIS statement directly in the input stream. To
do so, use this SYSIN DD statement:
//SYSIN DD *

The source code or BASIS statement must follow theDD * statement. If another job
step follows the compilation, the EXEC statement for that step must follow the /*
statement or the last source statement.

Defining a compiler-option data set (SYSOPTF)
Define a data set that contains the compiler options for your COBOL program by
coding the SYSOPTF DD statement as shown below.
//SYSOPTF DD DSNAME=dsname,UNIT=SYSDA,VOLUME=(subparms),DISP=SHR

To use a compiler-option data set, specify OPTFILE either as a compiler invocation
option or in a PROCESS or CBL statement in your source program.

Within the SYSOPTF data set:
v Specify compiler options in free form between columns 2 and 72, using the same

syntax as you use for invocation options or for compiler options in a PROCESS or
CBL statement.

v Code an asterisk (*) in column 1 to cause a line to be treated as a comment.

Chapter 14. Compiling under z/OS 269

v Optionally code sequence numbers in columns 73 through 80; those columns are
ignored.

You can optionally place the compiler options directly in the input stream after the
SYSOPTF DD statement if you compile using the OPTFILE option:
//COB EXEC PGM=IGYCRCTL,PARM=’OPTFILE’
//SYSOPTF DD DATA,DLM=@@
SSRANGE ARITH(COMPAT)
OPTIMIZE
. . .
@@
//SYSIN DD . . .

You can concatenate multiple SYSOPTF DD statements if you have multiple
compiler-option data sets:
//SYSOPTF DD DSNAME=dsname1, . . .
// DD DSNAME=dsname2, . . .

Compiler options that are in later data sets in the concatenation take precedence
over options in earlier data sets in the concatenation.

RELATED REFERENCES

“Logical record length and block size” on page 268
“OPTFILE” on page 345

Specifying source libraries (SYSLIB)
Use SYSLIB DD statements if your program contains COPY or BASIS statements.
These DD statements define the libraries (partitioned data sets) that contain the data
requested by COPY statements in the source code or by BASIS statements in the
input stream.
//SYSLIB DD DSNAME=copylibname,DISP=SHR

Concatenate multiple DD statements if you have multiple copy or basis libraries:
//SYSLIB DD DSNAME=PROJECT.USERLIB,DISP=SHR
// DD DSNAME=SYSTEM.COPYX,DISP=SHR

Libraries are on direct-access storage devices. They cannot be in the z/OS UNIX
file system when you compile with JCL or under TSO.

You do not need the SYSLIB DD statement if the NOLIB option is in effect.

Defining the output data set (SYSPRINT)
You can use ddname SYSPRINT to produce a listing. The listing includes the results
of the default or requested options of the PARM parameter (that is, diagnostic
messages and the object-code listing).

You can direct the output to a SYSOUT data set, a printer, a direct-access storage
device, or a magnetic-tape device. For example:
//SYSPRINT DD SYSOUT=A

The SYSPRINT data set can be a sequential data set, a PDS or PDSE member, or a
z/OS UNIX file. For details about how to specify the record format, record length,
and block size of the SYSPRINT data set, see the related reference below.

270 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

“Logical record length and block size” on page 268

Directing compiler messages to your terminal (SYSTERM)
If you are compiling under TSO, you can define the SYSTERM data set to send
compiler messages to your terminal.
ALLOC F(SYSTERM) DA(*)

You can define SYSTERM in various other ways, for example to a SYSOUT data set,
a data set on disk, a file in the z/OS UNIX file system, or to another print class.

Creating object code (SYSLIN or SYSPUNCH)
When using the OBJECT compiler option, you can store the object code on disk as a
traditional MVS data set or a z/OS UNIX file, or on tape. The compiler uses the
file that you define in the SYSLIN or SYSPUNCH DD statement.
//SYSLIN DD DSNAME=dsname,UNIT=SYSDA,
// SPACE=(subparms),DISP=(MOD,PASS)

Use the DISP parameter of the SYSLIN DD statement to indicate whether the object
code data set is to be:
v Passed to the binder (linkage-editor)
v Cataloged
v Kept
v Added to an existing cataloged library

In the example above, the data is created and passed to another job step, the
binder (linkage-editor) job step.

Your installation might use the DECK option and the SYSPUNCH DD statement. B is the
standard output class for punch data sets:
//SYSPUNCH DD SYSOUT=B

You do not need the SYSLIN DD statement if the NOOBJECT option is in effect. You do
not need the SYSPUNCH DD statement if the NODECK option is in effect.

RELATED REFERENCES

“OBJECT” on page 344
“DECK” on page 319

Defining an associated-data file (SYSADATA)
Define a SYSADATA file if you use the ADATA compiler option.
//SYSADATA DD DSNAME=dsname,UNIT=SYSDA

The SYSADATA file will be a sequential file that contains specific record types that
have information about the program that is collected during compilation. The file
can be a traditional MVS data set or a z/OS UNIX file.

RELATED REFERENCES

“ADATA” on page 305

Chapter 14. Compiling under z/OS 271

Defining the Java-source output file (SYSJAVA)
Add the SYSJAVA DD statement if you are compiling an OO program. The generated
Java source file is written to the SYSJAVA ddname.
//SYSJAVA DD PATH=’/u/userid/java/Classname.java’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU,
// FILEDATA=TEXT

The SYSJAVA file must be in the z/OS UNIX file system.

RELATED TASKS

“Compiling OO applications in JCL or TSO/E” on page 295

Defining the library-processing output file (SYSMDECK)
The SYSMDECK data set is required for all compilations. If you specify the MDECK
compiler option, the SYSMDECK DD allocation must specify a permanent data set.
However, if you use the NOMDECK option, SYSMDECK can be specified as a utility
(temporary) data set.
//SYSMDECK DD DSNAME=dsname,UNIT=SYSDA

The SYSMDECK file will contain a copy of the updated input source after library
processing, that is, the result of COPY, BASIS, REPLACE, EXEC SQL INCLUDE, and EXEC
SQLIMS INCLUDE statements. The file can be a traditional MVS data set or a z/OS
UNIX file.

RELATED REFERENCES

“MDECK” on page 337

Specifying compiler options under z/OS
The compiler is installed with default compiler options. While installing the
compiler, the system programmer can fix compiler option settings to, for example,
ensure better performance or maintain certain standards. You cannot override any
compiler options that are fixed.

For options that are not fixed, you can override the default settings by specifying
compiler options in any of these ways:
v Code them on the PROCESS or CBL statement in COBOL source.
v Include them when you start the compiler, either on the PARM parameter on the

EXEC statement in the JCL or on the command line under TSO.
v Include them in a SYSOPTF data set, and specify the OPTFILE compiler option in

either of the above ways.

The compiler recognizes the options in the following order of precedence from
highest to lowest:
1. Installation defaults that are fixed by your site
2. Values of the BUFSIZE, OUTDD, SQL, and SQLIMS compiler options in effect for the

first program in a batch
3. Options specified on PROCESS (or CBL) statements, preceding the IDENTIFICATION

DIVISION

4. Options specified on the compiler invocation (JCL PARM parameter or the TSO
CALL command)

5. Installation defaults that are not fixed

272 Enterprise COBOL for z/OS, V5.2 Programming Guide

This order of precedence also determines which options are in effect when
conflicting or mutually exclusive options are specified.

The precedence of options in a SYSOPTF data set depends on where you specify the
OPTFILE compiler option. For example, if you specify OPTFILE in a PROCESS
statement, the SYSOPTF options supersede the options that you specify in the
compiler invocation. For further details, see the related reference below about the
OPTFILE option.

Most of the options come in pairs; you select one or the other. For example, the
option pair for a cross-reference listing is XREF|NOXREF. If you want a
cross-reference listing, specify XREF; if you do not, specify NOXREF.

Some options have subparameters. For example, if you want 44 lines per page on
your listings, specify LINECOUNT(44).

“Example: specifying compiler options using JCL” on page 274
“Example: specifying compiler options under TSO” on page 274

RELATED TASKS

“Defining a compiler-option data set (SYSOPTF)” on page 269
“Specifying compiler options in the PROCESS (CBL) statement”
“Specifying compiler options in a batch compilation” on page 277

RELATED REFERENCES

“Compiler options and compiler output under z/OS” on page 274
Chapter 17, “Compiler options,” on page 301
“Conflicting compiler options” on page 304
“OPTFILE” on page 345

Specifying compiler options in the PROCESS (CBL) statement
Within a COBOL program, you can code most compiler options in PROCESS (CBL)
statements. Code the statements before the IDENTIFICATION DIVISION header and
before any comment lines or compiler-directing statements.

CBL/PROCESS statement syntax

►► CBL
PROCESS options-list

►◄

If you do not use a sequence field, you can start a PROCESS statement in column 1
or after. If you use a sequence field, the sequence number must start in column 1
and must contain six characters; the first character must be numeric. If used with a
sequence field, PROCESS can start in column 8 or after.

You can use CBL as a synonym for PROCESS. CBL can likewise start in column 1 or
after if you do not use a sequence field. If used with a sequence field, CBL can start
in column 8 or after.

You must end PROCESS and CBL statements at or before column 72.

Chapter 14. Compiling under z/OS 273

Use one or more blanks to separate a PROCESS or CBL statement from the first
option in options-list. Separate options with a comma or a blank. Do not insert
spaces between individual options and their suboptions.

You can code more than one PROCESS or CBL statement. If you do so, the statements
must follow one another with no intervening statements. You cannot continue
options across multiple PROCESS or CBL statements.

Your programming organization can inhibit the use of PROCESS (CBL) statements by
using the default options module of the COBOL compiler. If PROCESS or CBL
statements that are not allowed by the organization are found in a COBOL
program, the COBOL compiler generates error diagnostics.

RELATED REFERENCES

Reference format (Enterprise COBOL Language Reference)
CBL (PROCESS) statement (Enterprise COBOL Language Reference)

Example: specifying compiler options using JCL
The following example shows how to specify compiler options under z/OS using
JCL.
. . .
//STEP1 EXEC PGM=IGYCRCTL,
// PARM=’LIST,NOCOMPILE(S),OBJECT,FLAG(E,E)’

Example: specifying compiler options under TSO
The following example shows how to specify compiler options under TSO.
. . .
[READY]
CALL ’SYS1.LINKLIB(IGYCRCTL)’ ’LIST,NOCOMPILE(S),OBJECT,FLAG(E,E)’

Compiler options and compiler output under z/OS
When the compiler finishes processing your source program, it will have produced
one or more outputs, depending on the compiler options that were in effect.

Table 37. Types of compiler output under z/OS

Compiler option Compiler output Type of output

ADATA Information about the program being compiled Associated-data file

DLL Object module that is enabled for DLL support Object

DUMP System dump, if compilation ended with abnormal
termination (requires SYSUDUMP, SYSABEND, or SYSMDUMP
DD statement); should be used rarely

Listing

EXPORTALL Exported symbols for a DLL Object

FLAG List of errors that the compiler found in your program Listing

LIST Listing of object code in machine and assembler
language

Listing

MAP(HEX) or MAP(DEC) Map of the data items in your program Listing

MDECK Expansion of library-processing statements in your
program

Library-processing side file

NUMBER User-supplied line numbers shown in listing Listing

OBJECT or DECK with COMPILE Your object code Object

OFFSET Map of the relative addresses in your object code Listing

274 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

Table 37. Types of compiler output under z/OS (continued)

Compiler option Compiler output Type of output

OPTIMIZE(1) or OPTIMIZE(2) Optimized object code Object

RENT Reentrant object code Object

SOURCE Listing of your source program Listing

SQL SQL statements and host variable information for DB2®

bind process
Database request module
(DBRM)

SSRANGE Extra code for checking references within tables In object

TERMINAL Progress and diagnostic messages sent to terminal Terminal

TEST DWARF format debugging information in the object
module, to enable interactive debugging

Object

NOTEST(DWARF) Basic DWARF format diagnostic information, to enable
application failure analysis tools

Object

VBREF Cross-reference listing of verbs in your source program Listing

XREF Sorted cross-reference listing of names of procedures,
programs, and data

Listing

Listing output from compilation will be in the data set defined by SYSPRINT; object
output will be in SYSLIN or SYSPUNCH. Progress and diagnostic messages can be
directed to the SYSTERM data set and included in the SYSPRINT data set. The
database request module (DBRM) is the data set defined in DBRMLIB.

Save the listings you produced during compilation. You can use them during the
testing of your work if you need to debug or tune. You might also use the listings
for diagnosis and debugging after the application is in production.

After compilation, fix any errors that the compiler found in your program. If no
errors were detected, you can go to the next step in the process: binding
(link-editing) your program. (If you used compiler options to suppress object code
generation, you must recompile to obtain object code.)

RELATED TASKS

Language Environment Programming Guide (Preparing to link-edit and run)

RELATED REFERENCES

“Messages and listings for compiler-detected errors” on page 280
Chapter 17, “Compiler options,” on page 301

Compiling multiple programs (batch compilation)
You can compile a sequence of separate COBOL programs by using a single
invocation of the compiler. You can link the object program produced from this
compilation into one program object or separate program objects, controlled by the
NAME compiler option.

When you compile several programs as part of a batch job, you need to:
v Determine whether you want to create one or more program objects.
v Terminate each program in the sequence.
v Specify compiler options, with an awareness of the effect of compiler options

specified in programs within the batch job.

Chapter 14. Compiling under z/OS 275

To create separate program objects, precede each set of objects with the NAME
compiler option. When the compiler encounters the NAME option, the first program
in the sequence and all subsequent programs until the next NAME compiler option is
encountered are link-edited into a single program object. Then each successive
program that is compiled with the NAME option is included in a separate program
object.

Use the END PROGRAM marker to terminate each program in the sequence except the
last program in the batch (for which the END PROGRAM marker is optional).
Alternatively, you can precede each program in the sequence with a CBL or PROCESS
statement.

If you omit the END PROGRAM marker from a program (other than the last program
in a sequence of separate programs), the next program in the sequence will be
nested in the preceding program. An error can occur in either of the following
situations:
v A PROCESS statement is in a program that is now nested.
v A CBL statement is not coded entirely in the sequence number area (columns 1

through 6).
If a CBL statement is coded entirely in the sequence number area (columns 1
through 6), no error message is issued for the CBL statement because it is
considered a label for the source statement line.

“Example: batch compilation”

RELATED TASKS

“Specifying compiler options in a batch compilation” on page 277

RELATED REFERENCES

“NAME” on page 339

Example: batch compilation
The following example shows a batch compilation for three programs (PROG1,
PROG2, and PROG3) and the creation of two program objects using one invocation of
the IGYWCL cataloged procedure.

The following steps occur:
v PROG1 and PROG2 are link-edited together to form one program object that has the

name PROG2. The entry point of this program object defaults to the first program
in the program object, PROG1.

v PROG3 is link-edited by itself into a program object that has the name PROG3.
Because it is the only program in the program object, the entry point is also
PROG3.

//jobname JOB acctno,name,MSGLEVEL=1
//stepname EXEC IGYWCL
//COBOL.SYSIN DD *
010100 IDENTIFICATION DIVISION.
010200 PROGRAM-ID PROG1.

. . .
019000 END PROGRAM PROG1.
020100 IDENTIFICATION DIVISION.
020200 PROGRAM-ID PROG2.

. . .
029000 END PROGRAM PROG2.
CBL NAME
030100 IDENTIFICATION DIVISION.

276 Enterprise COBOL for z/OS, V5.2 Programming Guide

030200 PROGRAM-ID PROG3.
. . .

039000 END PROGRAM PROG3.
/*
//LKED.SYSLMOD DD DSN=&&GOSET (1)
/*
//P2 EXEC PGM=PROG2
//STEPLIB DD DSN=&&GOSET,DISP=(SHR,PASS) (2)
. . . (3)
/*
//P3 EXEC PGM=PROG3
//STEPLIB DD DSN=&&GOSET,DISP=(SHR,PASS) (2)
. . . (4)
/*
//

(1) The data-set name for the LKED step SYSLMOD is changed to the temporary
name &&GOSET, without any member name.

(2) The temporary data set &&GOSET is used as the STEPLIB for steps P2 and P3
to run the compiled programs. If the Language Environment library does
not reside in shared storage, you must also add the library data set as a DD
statement for STEPLIB.

(3) Other DD statements and input that are required to run PROG1 and PROG2
must be added.

(4) Other DD statements and input that are required to run PROG3 must be
added.

RELATED REFERENCES

Language Environment Programming Guide (IBM-supplied cataloged procedures)

Specifying compiler options in a batch compilation
You can specify compiler options for each program in the batch sequence either
with a CBL or PROCESS statement that precedes the program, or upon invocation of
the compiler.

If a CBL or PROCESS statement is specified in the current program, the compiler
resolves the CBL or PROCESS statements together with the options in effect before
the first program. If the current program does not contain CBL or PROCESS
statements, the compiler uses the settings of options in effect for the previous
program.

You should be aware of the effect of certain compiler options on the precedence of
compiler option settings for each program in the batch sequence. Compiler options
are recognized in the following order of precedence, from highest to lowest:
1. Installation defaults that are fixed at your site
2. Values of the BUFSIZE, OUTDD, SIZE, SQL, and SQLIMS compiler options in effect

for the first program in the batch
3. Options on CBL or PROCESS statements, if any, for the current program
4. Options specified in the compiler invocation (JCL PARM or TSO CALL)
5. Installation defaults that are not fixed

If any program in the batch sequence requires the BUF, OUTDD, SIZE, SQL or SQLIMS
option, that option must be in effect for the first program in the batch sequence.
(When processing BASIS, COPY, or REPLACE statements, the compiler handles all
programs in the batch as a single input file.)

Chapter 14. Compiling under z/OS 277

If you specify the option for the batch, you cannot change the NUMBER and SEQUENCE
options during the batch compilation. The compiler treats all programs in the batch
as a single input file during NUMBER and SEQUENCE processing under the option;
therefore, the sequence numbers of the entire input file must be in ascending order.

If the compiler diagnoses the LANGUAGE option on the CBL or PROCESS statement as
an error, the language selection reverts to what was in effect before the compiler
encountered the first CBL or PROCESS statement. The language in effect during a
batch compilation conforms to the rules of processing CBL or PROCESS statements in
that environment.

“Example: precedence of options in a batch compilation”
“Example: LANGUAGE option in a batch compilation”

Example: precedence of options in a batch compilation
The following example listing shows the precedence of compiler options for batch
compilation.
PP 5655-W32 IBM Enterprise COBOL for z/OS 5.1.0 Date 03/30/2013. . .
Invocation parameters:
NOTERM
PROCESS(CBL) statements:
CBL CURRENCY,FLAG(I,I)
Options in effect: All options are installation defaults unless otherwise noted:

NOADATA
ADV
QUOTE
ARITH(COMPAT)

NOAWO
NOBLOCK0
BUFSIZE(4096)

. . .
CURRENCY Process option PROGRAM 1

. . .
FLAG(I,I) Process option PROGRAM 1

. . .
NOTERM INVOCATION option
. . .

End of compilation for program 1
. . .

PP 5655-W32 IBM Enterprise COBOL for z/OS 5.1.0 Date 03/30/2013. . .
PROCESS(CBL) statements:
CBL APOST
Options in effect:

NOADATA
ADV

APOST Process option PROGRAM 2
ARITH(COMPAT)

NOAWO
NOBLOCK0
BUFSIZE(4096)

. . .
NOCURRENCY Installation default option for PROGRAM 2
. . .
FLAG(I) Installation default option

. . .
NOTERM INVOCATION option remains in effect
. . .

End of compilation for program 2

Example: LANGUAGE option in a batch compilation
The following example shows the behavior of the LANGUAGE compiler option in a
batch environment. The default installation option is ENGLISH (abbreviated EN), and
the invocation option is XX, a nonexistent language.

278 Enterprise COBOL for z/OS, V5.2 Programming Guide

CBL LANG(JP),FLAG(I,I),APOST (1)
IDENTIFICATION DIVISION. (2)
PROGRAM-ID. COMPILE1.
. . .
END PROGRAM COMPILE1.

CBL LANGUAGE(YY) (3)
CBL LANGUAGE(JP),LANG(!!) (4)

IDENTIFICATION DIVISION. (2)
PROGRAM-ID. COMPILE2.
. . .
END PROGRAM COMPILE2.
IDENTIFICATION DIVISION.
PROGRAM-ID. COMPILE3.
. . .
END PROGRAM COMPILE3.

CBL LANGUAGE(JP),LANGUAGE(YY) (5)
. . .

(1) The installation default is EN. The invocation option was XX, a nonexistent
language. EN is the language in effect.

(2) After the CBL statement is scanned, JP is the language in effect.

(3) CBL resets the language to EN. YY is ignored because it is superseded by JP.

(4) !! is not alphanumeric and is discarded.

(5) CBL resets the language to EN. YY supersedes JP but is nonexistent.

For the program COMPILE1, the default language English (EN) is in effect when the
compiler scans the invocation options. A diagnostic message is issued in
mixed-case English because XX is a nonexistent language identifier. The default EN
remains in effect when the compiler scans the CBL statement. The unrecognized
option APOST in the CBL statement is diagnosed in mixed-case English because the
CBL statement has not completed processing and EN was the last valid language
option. After the compiler processes the CBL options, the language in effect
becomes Japanese (JP).

In the program COMPILE2, the compiler diagnoses CBL statement errors in
mixed-case English because English is the language in effect before the first
program is used. If more than one LANGUAGE option is specified, only the last valid
language specified is used. In this example, the last valid language is Japanese (JP).
Therefore Japanese becomes the language in effect when the compiler finishes
processing the CBL options. If you want diagnostics in Japanese for the options in
the CBL and PROCESS statements, the language in effect before COMPILE1 must be
Japanese.

The program COMPILE3 has no CBL statement. It inherits the language in effect,
Japanese (JP), from the previous compilation.

After compiling COMPILE3, the compiler resets the language in effect to English (EN)
because of the CBL statement. The language option in the CBL statement resolves
the last-specified two-character alphanumeric language identifier, YY. Because YY is
nonexistent, the language in effect remains English.

Correcting errors in your source program
Messages about source-code errors indicate where the error occurred (LINEID). The
text of a message tells you what the problem is. With this information, you can
correct the source program.

Chapter 14. Compiling under z/OS 279

Although you should try to correct errors, it is not always necessary to correct
source code for every diagnostic message. You can leave a warning-level or
informational-level message in a program without much risk, and you might
decide that the recoding and compilation that are needed to remove the message
are not worth the effort. Severe-level and error-level errors, however, indicate
probable program failure and should be corrected.

In contrast with the four lower levels of severities, an unrecoverable (U-level) error
might not result from a mistake in your source program. It could come from a flaw
in the compiler itself or in the operating system. In such cases, the problem must
be resolved, because the compiler is forced to end early and does not produce
complete object code or a complete listing. If the message occurs for a program
that has many S-level syntax errors, correct those errors and compile the program
again. You can also resolve job set-up problems (such as missing data-set
definitions or insufficient storage for compiler processing) by making changes to
the compile job. If your compile job setup is correct and you have corrected the
S-level syntax errors, you need to contact IBM to investigate other U-level errors.

After correcting the errors in your source program, recompile the program. If this
second compilation is successful, proceed to the link-editing step. If the compiler
still finds problems, repeat the above procedure until only informational messages
are returned.

RELATED TASKS

“Generating a list of compiler messages”

RELATED REFERENCES

“Messages and listings for compiler-detected errors”

Generating a list of compiler messages
You can generate a complete listing of compiler diagnostic messages with their
message numbers, severities, and text by compiling a program that has
program-name ERRMSG.

You can code just the PROGRAM-ID paragraph, as shown below, and omit the rest of
the program.
Identification Division.
Program-ID. ErrMsg.

RELATED TASKS

“Customizing compiler-message severities” on page 720

RELATED REFERENCES

“Messages and listings for compiler-detected errors”
“Format of compiler diagnostic messages” on page 281

Messages and listings for compiler-detected errors
As the compiler processes your source program, it checks for COBOL language
errors, and issues diagnostic messages. These messages are collated in the compiler
listing (subject to the FLAG option).

Each message in the listing provides information about the nature of the problem,
its severity, and the compiler phase that detected it. Wherever possible, the
message provides specific instructions for correcting an error.

280 Enterprise COBOL for z/OS, V5.2 Programming Guide

The messages for errors found during processing of compiler options, CBL and
PROCESS statements, and BASIS, COPY, or REPLACE statements are displayed near the
top of the listing.

The messages for compilation errors (ordered by line number) are displayed near
the end of the listing for each program.

A summary of all problems found during compilation is displayed near the bottom
of the listing.

RELATED TASKS

“Correcting errors in your source program” on page 279
“Generating a list of compiler messages” on page 280

RELATED REFERENCES

“Format of compiler diagnostic messages”
“Severity codes for compiler diagnostic messages” on page 282
“FLAG” on page 328

Format of compiler diagnostic messages
Each message issued by the compiler has a source line number, a message
identifier, and message text.

Each message has the following form:
nnnnnn IGYppxxxx-l message-text

nnnnnn
The number of the source statement of the last line that the compiler was
processing. Source statement numbers are listed on the source printout of
your program. If you specified the NUMBER option at compile time, the
numbers are the original source program numbers. If you specified
NONUMBER, the numbers are those generated by the compiler.

IGY A prefix that identifies that the message was issued by the COBOL
compiler.

pp Two characters that identify which phase or subphase of the compiler
detected the condition that resulted in a message. As an application
programmer, you can ignore this information. If you are diagnosing a
suspected compiler error, contact IBM for support.

xxxx A four-digit number that identifies the message.

l A character that indicates the severity level of the message: I, W, E, S, or U.

message-text
The message text; for an error message, a short explanation of the
condition that caused the error.

Tip: If you used the FLAG option to suppress messages, there might be additional
errors in your program.

RELATED REFERENCES

“Severity codes for compiler diagnostic messages” on page 282
“FLAG” on page 328

Chapter 14. Compiling under z/OS 281

Severity codes for compiler diagnostic messages
Conditions that the compiler can detect fall into five levels or categories of severity.

Table 38. Severity codes for compiler diagnostic messages

Level or category
of message

Return
code Purpose

Informational (I) 0 To inform you. No action is required, and the program
runs correctly.

Warning (W) 4 To indicate a possible error. The program probably runs
correctly as written.

Error (E) 8 To indicate a condition that is definitely an error. The
compiler attempted to correct the error, but the results of
program execution might not be what you expect. You
should correct the error.

Severe (S) 12 To indicate a condition that is a serious error. The
compiler was unable to correct the error. The program
does not run correctly, and execution should not be
attempted. Object code might not be created.

Unrecoverable (U) 16 To indicate an error condition of such magnitude that the
compilation was terminated.

The final return code at the end of compilation is generally the highest return code
that occurred for any message during the compilation.

You can suppress compiler diagnostic messages or change their severities, however,
which can have an effect upon the final compilation return code. For details, see
the related information.

RELATED TASKS

“Customizing compiler-message severities” on page 720

RELATED REFERENCES

“Processing of MSGEXIT” on page 719

282 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 15. Compiling under z/OS UNIX

Compile Enterprise COBOL programs under z/OS UNIX by using the cob2
command. Under z/OS UNIX, you can compile any COBOL program that you can
compile under z/OS. The object code generated by the COBOL compiler can run
under z/OS.

As part of the compilation step, you define the files needed for the compilation,
and specify any compiler options or compiler-directing statements that are
necessary for your program and for the output that you want.

The main job of the compiler is to translate COBOL programs into language that
the computer can process (object code). The compiler also lists errors in source
statements and provides supplementary information to help you debug and tune
programs.

RELATED TASKS

“Setting environment variables under z/OS UNIX”
“Specifying compiler options under z/OS UNIX” on page 284
“Compiling and linking with the cob2 command” on page 285
“Compiling using scripts” on page 289
“Compiling, linking, and running OO applications under z/OS UNIX” on page 291

RELATED REFERENCES

“Data sets used by the compiler under z/OS” on page 267
“Compiler options and compiler output under z/OS” on page 274

Setting environment variables under z/OS UNIX
An environment variable is a name that is associated with a string of characters and
that defines some variable aspect of the program environment. You use
environment variables to set values that programs, including the compiler, need.

Set the environment variables for the compiler by using the export command. For
example, to set the SYSLIB variable, issue the export command from the shell or
from a script file:
export SYSLIB=/u/mystuff/copybooks

The value that you assign to an environment variable can include other
environment variables or the variable itself. The values of these variables apply
only when you compile from the shell where you issue the export command. If
you do not set an environment variable, either a default value is applied or the
variable is not defined. The environment-variable names must be uppercase.

The environment variables that you can set for use by the compiler are as follows:

COBOPT
Specify compiler options separated by blanks or commas. Separate
suboptions with commas. Blanks at the beginning or the end of the
variable value are ignored. Delimit the list of options with quotation marks
if it contains blanks or characters that are significant to the z/OS UNIX
shell. For example:
export COBOPT="TRUNC(OPT) XREF"

© Copyright IBM Corp. 1991, 2018 283

SYSLIB
Specify paths to directories to be used in searching for COBOL copybooks
if you do not specify an explicit library-name in the COPY statement.
Separate multiple paths with a colon. Paths are evaluated in order from the
first path to the last in the export command. If you set the variable with
multiple files of the same name, the first located copy of the file is used.

For COPY statements in which you have not coded an explicit library-name,
the compiler searches for copybooks in this order:
1. In the current directory
2. In the paths you specify with the -I cob2 option
3. In the paths you specify in the SYSLIB environment variable

library-name
Specify the directory path from which to copy when you specify an explicit
library-name in the COPY statement. The environment-variable name is
identical to the library-name in your program. You must set an environment
variable for each library; an error will occur otherwise. The
environment-variable name library-name must be uppercase.

text-name
Specify the name of the file from which to copy text. The
environment-variable name is identical to the text-name in your program.
The environment-variable name text-name must be uppercase.

RELATED TASKS

“Specifying compiler options under z/OS UNIX”
“Compiling and linking with the cob2 command” on page 285
“Setting and accessing environment variables” on page 464

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 381
Chapter 17, “Compiler options,” on page 301
COPY statement (Enterprise COBOL Language Reference)

Specifying compiler options under z/OS UNIX
The compiler is installed and set up with default compiler options. While installing
the compiler, a system programmer can fix compiler option settings to ensure
better performance or maintain certain standards. You cannot override any
compiler options that your site has fixed.

For options that are not fixed, you can override the default settings by specifying
compiler options in any of three ways:
v Code them on the PROCESS or CBL statement in your COBOL source.
v Specify the -q option of the cob2 command.
v Set the COBOPT environment variable.

The compiler recognizes the options in the above order of precedence, from highest
to lowest. The order of precedence also determines which options are in effect
when conflicting or mutually exclusive options are specified. When you compile
using the cob2 command, compiler options are recognized in the following order
of precedence, from highest to lowest:
1. Installation defaults fixed as nonoverridable

284 Enterprise COBOL for z/OS, V5.2 Programming Guide

2. The values of BUFSIZE, SQL, SQLIMS, and OUTDD options in effect for the first
program in a batch compilation

3. The values that you specify on PROCESS or CBL statements in COBOL source
programs

4. The values that you specify in the cob2 command's -q option string
5. The values that you specify in the COBOPT environment variable
6. Installation defaults that are not fixed

Restrictions:

v Do not use the SQL compiler option under z/OS UNIX.
Neither the separate SQL precompiler nor the integrated SQL coprocessor runs
under z/OS UNIX.

v Do not use the SQLIMS compiler option under z/OS UNIX.
v The OPTFILE option is ignored when you compile using the cob2 command

under z/OS UNIX.
You can use the COBOPT environment variable, which provides a capability that
is comparable to OPTFILE, instead.

RELATED TASKS

“Specifying compiler options in the PROCESS (CBL) statement” on page 273
“Setting environment variables under z/OS UNIX” on page 283
“Compiling and linking with the cob2 command”

RELATED REFERENCES

“Conflicting compiler options” on page 304
Chapter 17, “Compiler options,” on page 301

Compiling and linking with the cob2 command
Use the cob2 command to compile and link COBOL programs from the z/OS
UNIX shell. You can specify the options and input file-names in any order, using
spaces to separate options and names. Any options that you specify apply to all
files on the command line.

To compile multiple files (batch compilation), specify multiple source-file names.

When you compile COBOL programs for z/OS UNIX, the RENT option is required.
The cob2 command automatically includes the COBOL compiler options RENT and
TERM.

The cob2 command invokes the COBOL compiler that is found through the
standard MVS search order. If the COBOL compiler is not installed in the LNKLST,
or if more than one level of IBM COBOL compiler is installed on your system, you
can specify in the STEPLIB environment variable the compiler PDS that you want
to use. For example, the following statement specifies IGY.V5R1M0 as the compiler
PDS:
export STEPLIB=IGY.V5R1M0.SIGYCOMP

The cob2 command implicitly uses the z/OS UNIX shell command c89 for the link
step. c89 is the shell interface to the linker (the z/OS program management
binder).

The default location for compiler input and output is the current directory.

Chapter 15. Compiling under z/OS UNIX 285

Only files with the suffix .cbl are passed to the compiler; cob2 passes all other files
to the linker.

The listing output that you request from the compilation of a COBOL source
program file.cbl is written to file.lst. The listing output that you request from the
linker is written to stdout.

The linker causes execution to begin at the first main program.

RELATED TASKS

“Creating a DLL under z/OS UNIX”
“Preparing OO applications under z/OS UNIX” on page 292
UNIX System Services User's Guide

RELATED REFERENCES

“cob2 syntax and options” on page 287
“cob2 input and output files” on page 288
UNIX System Services Command Reference

Creating a DLL under z/OS UNIX
To create a DLL from the z/OS UNIX shell, you must specify the cob2 option
-bdll.
cob2 -o mydll -bdll mysub.cbl

When you specify cob2 -bdll:
v The COBOL compiler uses the compiler options DLL, EXPORTALL, and RENT, which

are required for DLLs.
v The link step produces a DLL definition side file that contains IMPORT control

statements for each of the names exported by the DLL.

The name of the DLL definition side file is based on the output file-name. If the
output name has a suffix, that suffix is replaced with x to form the side-file name.
For example, if the output file-name is foo.dll, the side-file name is foo.x.

To use the DLL definition side file later when you create a module that calls that
DLL, specify the side file with any other object files (file.o) that you need to link.
For example, the following command compiles myappl.cbl, uses the DLL option to
enable myappl.o to reference DLLs, and links to produce the module myappl:
cob2 -o myappl -qdll myappl.cbl mydll.x

“Example: using cob2 to compile and link under z/OS UNIX”

RELATED TASKS

Chapter 26, “Creating a DLL or a DLL application,” on page 507
“Compiling programs to create DLLs” on page 508

RELATED REFERENCES

“cob2 syntax and options” on page 287
“cob2 input and output files” on page 288

Example: using cob2 to compile and link under z/OS UNIX
The following examples illustrate the use of cob2.
v To compile one file called alpha.cbl, enter:

cob2 -c alpha.cbl

286 Enterprise COBOL for z/OS, V5.2 Programming Guide

The compiled file is named alpha.o.
v To compile two files called alpha.cbl and beta.cbl, enter:

cob2 -c alpha.cbl beta.cbl

The compiled files are named alpha.o and beta.o.
v To link two files, compile them without the -c option. For example, to compile

and link alpha.cbl and beta.cbl and generate gamma, enter:
cob2 alpha.cbl beta.cbl -o gamma

This command creates alpha.o and beta.o, then links alpha.o, beta.o, and the
COBOL libraries. If the link step is successful, it produces an executable program
named gamma.

v To compile alpha.cbl with the LIST and NODATA options, enter:
cob2 -qlist,noadata alpha.cbl

cob2 syntax and options
You can use the options listed below with the cob2 command. (Do not capitalize
cob2.)

cob2 command syntax

►► cob2 filenames
options

►◄

-bxxx Passes the string xxx to the linker as parameters. xxx is a list of linker
options in name=value format, separated by commas. You must spell out
both the name and the value in full (except for the special cases noted
below). The name and value are case insensitive. Do not use any spaces
between -b and xxx.

If you do not specify a value for an option, a default value of YES is used
except for the following options, which have the indicated default values:
v LIST=NOIMPORT

v ALIASES=ALL

v COMPAT=CURRENT

v DYNAM=DLL

One special value for xxx is dll, which specifies that the executable
module is to be a DLL. This string is not passed to the linker.

-c Compiles programs but does not link them.

-comprc_ok=n
Controls cob2 behavior on the return code from the compiler. If the return
code is less than or equal to n, cob2 continues to the link step or, in the
compile-only case, exits with a zero return code. If the return code
returned by the compiler is greater than n, cob2 exits with the same return
code. When the c89 command is implicitly invoked by cob2 for the link
step, the exit value from the c89 command is used as the return code from
the cob2 command.

The default is -comprc_ok=4.

-e xxx Specifies the name of the program to be used as the entry point of the

Chapter 15. Compiling under z/OS UNIX 287

module. The program must be one of the programs that will be included in
the module. If you do not specify -e, the default entry point is the first
program (file.cbl) or object file (file.o) that you specify as a file name on the
cob2 command invocation.

-g Prepares the program for debugging. Equivalent to specifying the TEST
option with no suboptions.

-Ixxx Adds a path xxx to the directories to be searched for copybooks for which
you do not specify a library-name.

To specify multiple paths, either use multiple -I options, or use a colon to
separate multiple path names within a single -I option value.

For COPY statements in which you have not coded an explicit library-name,
the compiler searches for copybooks in the following order:
1. In the current directory
2. In the paths you specify with the -I cob2 option
3. In the paths you specify in the SYSLIB environment variable

-L xxx Specifies the directory paths to be used to search for archive libraries
specified by the -l operand.

-l xxx Specifies the name of an archive library for the linker. The cob2 command
searches for the name libxxx.a in the directories specified in the -L option,
then in the usual search order. (This option is lowercase l, not uppercase I.)

-o xxx Names the object module xxx. If the -o option is not used, the name of the
object module is a.out.

-qxxx Passes xxx to the compiler, where xxx is a list of compiler options
separated by blanks or commas.

Enclose xxx in quotation marks if a parenthesis is part of the option or
suboption, or if you use blanks to separate options. Do not insert spaces
between -q and xxx.

-v Displays the generated commands that are issued by cob2 for the compile
and link steps, including the options being passed, and executes them.
Here is sample output:
cob2 -v -o mini -qssrange mini.cbl
compiler: ATTCRCTL PARM=RENT,TERM,SSRANGE /u/userid/cobol/mini.cbl
PP 5655-W32 IBM Enterprise COBOL for z/OS 5.1.0 in progress ...
End of compilation 1, program mini, no statements flagged.
linker: /bin/c89 -o mini -e // mini.o

-# Displays compile and link steps, but does not execute them.

RELATED TASKS

“Compiling and linking with the cob2 command” on page 285
“Creating a DLL under z/OS UNIX” on page 286
“Setting environment variables under z/OS UNIX” on page 283

cob2 input and output files
You can specify the following files as input file-names when you use the cob2
command.

288 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 39. Input files to the cob2 command

File name Description Comments

file.cbl COBOL source file to be compiled
and linked

Will not be linked if you specify the
cob2 option -c

file.a Archive file Produced by the ar command, to be
used during the link-edit phase

file.o Object file to be link-edited Can be produced by the COBOL
compiler, the C/C++ compiler, or the
assembler

file.x DLL definition side file Used during the link-edit phase of an
application that references the dynamic
link library (DLL)

If you use the cob2 command, the following files are created in the current
directory.

Table 40. Output files from the cob2 command

File name Description Comments

file Executable module or DLL Created by the linker if you specify the
cob2 option -o file

a.out Executable module or DLL Created by the linker if you do not
specify the cob2 option -o

file.adt Associated data (ADATA) file
corresponding to input COBOL
source program file.cbl

Created by the compiler if you specify
compiler option ADATA

file.dek Extended COBOL source output
from library processing

Created by the compiler if you specify
compiler option MDECK

file.lst Listing file corresponding to input
COBOL source program file.cbl

Created by the compiler

file.o Object file corresponding to input
COBOL source program file.cbl

Created by the compiler

file.x DLL definition side file Created during the cob2 linking phase
when creating file.dll

class.java Java class definition (source) Created when you compile a class
definition

RELATED TASKS

“Compiling and linking with the cob2 command” on page 285

RELATED REFERENCES

“ADATA” on page 305
“MDECK” on page 337
“TEST” on page 364
UNIX System Services Command Reference

Compiling using scripts
If you use a shell script to automate cob2 tasks, you must code option syntax
carefully to prevent the shell from passing invalid strings to cob2.

Code option strings in scripts as follows:

Chapter 15. Compiling under z/OS UNIX 289

v Use an equal sign and colon rather than a left and right parenthesis, respectively,
to specify compiler suboptions. For example, code -qOPTIMIZE=1:,XREF instead
of -qOPTIMIZE(1),XREF.

v Use an underscore rather than a single quotation mark where a compiler option
requires single quotation marks for delimiting a suboption.

v Do not use blanks in the option string.

290 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

Chapter 16. Compiling, linking, and running OO applications

It is recommended that you compile, link, and run object-oriented (OO)
applications in the z/OS UNIX environment. However, with certain limitations
explained in the related tasks, it is possible to compile, link, and run OO COBOL
applications by using standard batch JCL or TSO/E commands.

RELATED TASKS

“Compiling, linking, and running OO applications under z/OS UNIX”
“Compiling, linking, and running OO applications in JCL or TSO/E” on page 295
“Using Java SDKs for z/OS” on page 299

Compiling, linking, and running OO applications under z/OS UNIX
When you compile, link, and run object-oriented applications in a z/OS UNIX
environment, application components reside in the z/OS UNIX file system. You
compile and link them by using shell commands, and run them at a shell
command prompt or with the BPXBATCH utility from JCL or TSO/E.

RELATED TASKS

“Compiling OO applications under z/OS UNIX”
“Preparing OO applications under z/OS UNIX” on page 292
“Running OO applications under z/OS UNIX” on page 293

Compiling OO applications under z/OS UNIX
When you compile OO applications in a z/OS UNIX shell, use the cob2 command
to compile COBOL client programs and class definitions, and the javac command
to compile Java class definitions to produce bytecode (suffix .class).

To compile COBOL source code that contains OO syntax such as INVOKE statements
or class definitions, or that uses Java services, you must use these compiler
options: RENT, DLL, THREAD, and DBCS. (The RENT and DBCS options are defaults.)

A COBOL source file that contains a class definition must not contain any other
class or program definitions.

When you compile a COBOL class definition, two output files are generated:
v The object file (.o) for the class definition.
v A Java source program (.java) that contains a class definition that corresponds to

the COBOL class definition. Do not edit this generated Java class definition in
any way. If you change the COBOL class definition, you must regenerate both
the object file and the Java class definition by recompiling the updated COBOL
class definition.

If a COBOL client program or class definition includes the file JNI.cpy by using a
COPY statement, specify the include subdirectory of the COBOL install directory
(typically /usr/lpp/cobol/include) in the search order for copybooks. You can
specify the include subdirectory by using the -I option of the cob2 command or
by setting the SYSLIB environment variable.

RELATED TASKS

Chapter 15, “Compiling under z/OS UNIX,” on page 283

© Copyright IBM Corp. 1991, 2018 291

“Preparing OO applications under z/OS UNIX”
“Running OO applications under z/OS UNIX” on page 293
“Setting and accessing environment variables” on page 464
“Accessing JNI services” on page 633

RELATED REFERENCES

“cob2 syntax and options” on page 287
“DBCS” on page 319
“DLL” on page 321
“RENT” on page 352
“THREAD” on page 366

Preparing OO applications under z/OS UNIX
Use the cob2 command to link OO COBOL applications.

To prepare an OO COBOL client program for execution, link the object file with
the following two DLL side files to create an executable module:
v libjvm.x, which is provided with your IBM Java Software Development Kit.
v igzcjava.x, which is provided in the lib subdirectory of the cobol directory in

the z/OS UNIX file system. The typical complete path is /usr/lpp/cobol/lib/
igzcjava.x. This DLL side file is also available as the member IGZCJAVA in the
SCEELIB PDS (part of Language Environment).

To prepare a COBOL class definition for execution:
1. Link the object file using the two DLL side files mentioned above to create an

executable DLL module.
You must name the resulting DLL module libClassname.so, where Classname is
the external class-name. If the class is part of a package and thus there are
periods in the external class-name, you must change the periods to underscores
in the DLL module name. For example, if class Account is part of the com.acme
package, the external class-name (as defined in the REPOSITORY paragraph entry
for the class) must be com.acme.Account, and the DLL module for the class
must be libcom_acme_Account.so.

2. Compile the generated Java source with the Java compiler to create a class file
(.class).

For a COBOL source file Classname.cbl that contains the class definition for
Classname, you would use the following commands to compile and link the
components of the application:

Table 41. Commands for compiling and linking a class definition

Command Input Output

cob2 -c -qdll,thread Classname.cbl Classname.cbl Classname.o,
Classname.java

cob2 -bdll -o libClassname.so Classname.o
/usr/lpp/java/J5.0/bin/j9vm/libjvm.x
/usr/lpp/cobol/lib/igzcjava.x

Classname.o libClassname.so

javac Classname.java Classname.java Classname.class

After you issue the cob2 and javac commands successfully, you have the
executable components for the program: the executable DLL module
libClassname.so and the class file Classname.class. All files from these commands
are generated in the current working directory.

292 Enterprise COBOL for z/OS, V5.2 Programming Guide

“Example: compiling and linking a COBOL class definition under z/OS UNIX”

RELATED TASKS

Chapter 15, “Compiling under z/OS UNIX,” on page 283
“REPOSITORY paragraph for defining a class” on page 594

RELATED REFERENCES

“cob2 syntax and options” on page 287
“Object-oriented syntax, and Java 6, Java 7, or Java 8” on page 300

Example: compiling and linking a COBOL class definition
under z/OS UNIX

This example illustrates the commands that you use and the files that are produced
when you compile and link a COBOL class definition, Manager.cbl, using z/OS
UNIX shell commands.

Identification division.

Class-id Manager inherits Employee.

Environment division.

Configuration section.

Repository.

Class Manager is "Manager"

End class Manager.

...

Manager.java

Manager.class

Manager.o

libManager.so

cob2 -c -qdll,thread Manager.cbl

javac Manager.java cob2 -bdll -o libManager.so Manager.o

/usr/lpp/java/J5.0/bin/j9vm/libjvm.x

/usr/lpp/cobol/lib/igzcjava.x

Manager.cbl

The class file Manager.class and the DLL module libManager.so are the executable
components of the application, and are generated in the current working directory.

Running OO applications under z/OS UNIX
It is recommended that you run object-oriented COBOL applications as z/OS
UNIX applications. You must do so if an application begins with a Java program or
the main factory method of a COBOL class.

Specify the directory that contains the DLLs for the COBOL classes in the LIBPATH
environment variable. Specify the directory paths for the Java class files that are
associated with the COBOL classes in the CLASSPATH environment variable as
follows:
v For classes that are not part of a package, end the class path with the directory

that contains the .class files.

Chapter 16. Compiling, linking, and running OO applications 293

|

v For classes that are part of a package, end the class path with the directory that
contains the "root" package (the first package in the full package name).

v For a .jar file that contains .class files, end the class path with the name of the
.jar file.

Separate multiple path entries with colons.

RELATED TASKS

“Running OO applications that start with a main method”
“Running OO applications that start with a COBOL program”
“Running J2EE COBOL clients” on page 295
Chapter 23, “Running COBOL programs under z/OS UNIX,” on page 463
“Setting and accessing environment variables” on page 464
Chapter 30, “Writing object-oriented programs,” on page 589
“Structuring OO applications” on page 630

Running OO applications that start with a main method
If the first routine of a mixed COBOL and Java application is the main method of a
Java class or the main factory method of a COBOL class, run the application by
using the java command and by specifying the name of the class that contains the
main method.

The java command initializes the Java virtual machine (JVM). To customize the
initialization of the JVM, specify options on the java command as in the following
examples:

Table 42. java command options for customizing the JVM

Purpose Option

To set a system property -Dname=value

To request that the JVM generate verbose messages about
garbage collection

-verbose:gc

To request that the JVM generate verbose messages about class
loading

-verbose:class

To request that the JVM generate verbose messages about
native methods and other Java Native Interface activity

-verbose:jni

To set the initial Java heap size to value bytes -Xmsvalue

To set the maximum Java heap size to value bytes -Xmxvalue

For details about the options that the JVM supports, see the output from the java
-h command, or see the related references.

RELATED REFERENCES

IBM SDK, Java Technology Edition
WebSphere for z/OS: Applications (Java Naming and Directory Interface (JNDI))

Running OO applications that start with a COBOL program
If the first routine of a mixed COBOL and Java application is a COBOL program,
run the application by specifying the program name at the command prompt. If a
JVM is not already running in the process of the COBOL program, the COBOL run
time automatically initializes a JVM.

294 Enterprise COBOL for z/OS, V5.2 Programming Guide

https://developer.ibm.com/javasdk/documentation/
http://publib.boulder.ibm.com/epubs/pdf/bbo5c102.pdf

To customize the initialization of the JVM, specify options by setting the
COBJVMINITOPTIONS environment variable. Use blanks to separate options. For
example:
export COBJVMINITOPTIONS="-Xms10000000 -Xmx20000000 -verbose:gc"

RELATED TASKS

“Using Java SDKs for z/OS” on page 299
Chapter 23, “Running COBOL programs under z/OS UNIX,” on page 463
“Setting and accessing environment variables” on page 464

RELATED REFERENCES

IBM SDK, Java Technology Edition
WebSphere for z/OS: Applications (Java Naming and Directory Interface (JNDI))

Running J2EE COBOL clients:

You can use OO syntax in a COBOL program to implement a Java 2 Platform,
Enterprise Edition (J2EE) client. You can, for example, invoke methods on
enterprise beans that run in the WebSphere® for z/OS environment.

Before you run a COBOL J2EE client, you must set the Java system property
java.naming.factory.initial to access WebSphere naming services. For example:
export COBJVMINITOPTIONS
="-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory"

“Example: J2EE client written in COBOL” on page 644

Compiling, linking, and running OO applications in JCL or TSO/E
It is recommended that you compile, link, and run applications that use OO syntax
in the z/OS UNIX environment.

However, in limited circumstances it is possible to compile, prepare, and run OO
applications by using standard batch JCL or TSO/E commands. To do so, you
must follow the guidelines that are in the related tasks. For example, you might
follow this approach for applications that consist of a COBOL main program and
subprograms that:
v Access objects that are all implemented in Java
v Access enterprise beans that run in a WebSphere server

RELATED TASKS

“Compiling OO applications in JCL or TSO/E”
“Preparing and running OO applications in JCL or TSO/E” on page 296
“Compiling, linking, and running OO applications under z/OS UNIX” on page 291

Compiling OO applications in JCL or TSO/E
If you use batch JCL or TSO/E to compile an OO COBOL program or class
definition, the generated object file is written, as usual, to the data set that has
ddname SYSLIN or SYSPUNCH. You must use compiler options RENT, DLL, THREAD, and
DBCS. (RENT and DBCS are defaults.)

If the COBOL program or class definition uses the JNI environment structure to
access JNI callable services, copy the file JNI.cpy from the z/OS UNIX file system
to a PDS or PDSE member called JNI, identify that library with a SYSLIB DD
statement, and use a COPY statement of the form COPY JNI in the COBOL source.

Chapter 16. Compiling, linking, and running OO applications 295

https://developer.ibm.com/javasdk/documentation/
http://publib.boulder.ibm.com/epubs/pdf/bbo5c102.pdf

A COBOL source file that contains a class definition must not contain any other
class or program definitions.

When you compile a COBOL class definition, a Java source program that contains
a class definition that corresponds to the COBOL class definition is generated in
addition to the object file. Use the SYSJAVA ddname to write the generated Java
source file to a file in the z/OS UNIX file system. For example:
//SYSJAVA DD PATH=’/u/userid/java/Classname.java’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU,
// FILEDATA=TEXT

Do not edit this generated Java class definition in any way. If you change the
COBOL class definition, you must regenerate both the object file and the Java class
definition by recompiling the updated COBOL class definition.

Compile Java class definitions by using the javac command from a z/OS UNIX
shell command prompt, or by using the BPXBATCH utility.

“Example: compiling, linking, and running an OO application using JCL” on page
298

RELATED TASKS

“Compiling with JCL” on page 255
“Compiling under TSO” on page 262
“Specifying source libraries (SYSLIB)” on page 270
“Defining the Java-source output file (SYSJAVA)” on page 272
“Accessing JNI services” on page 633
“Compiling OO applications under z/OS UNIX” on page 291
“Preparing OO applications under z/OS UNIX” on page 292

RELATED REFERENCES

“DBCS” on page 319
“DLL” on page 321
“RENT” on page 352
“THREAD” on page 366
Appendix E, “JNI.cpy copybook,” on page 731
UNIX System Services User's Guide (The BPXBATCH utility)

Preparing and running OO applications in JCL or TSO/E
It is recommended that you run OO applications in a z/OS UNIX environment. To
run OO applications from batch JCL or TSO/E, you should therefore use the
BPXBATCH utility.

In limited circumstances, however, you can run an OO application by using
standard batch JCL (EXEC PGM=COBPROG) or the TSO/E CALL command. To do so,
follow these requirements when preparing the application:
v Structure the application to start with a COBOL program. (If an application

starts with a Java program or with the main factory method of a COBOL class,
you must run the application under z/OS UNIX, and the application
components must reside in the z/OS UNIX file system.)

v Link-edit considerations: Link the program object for the COBOL program into
a PDSE. COBOL programs that contain object-oriented syntax must be
link-edited with AMODE 31.

296 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Ensure that the class files and DLLs associated with the COBOL or Java classes
that are used by the application reside in the z/OS UNIX file system. You must
name the class files and DLLs as described in the related task about preparing
OO applications.

v Specify INCLUDE control statements for the DLL side files libjvm.x and
igzcjava.x when you bind the object deck for the main program. For example:
INCLUDE ’/usr/lpp/java/J5.0/bin/j9vm/libjvm.x’
INCLUDE ’/usr/lpp/cobol/lib/igzcjava.x’

v Create a file that contains the environment variable settings that are required for
Java. For example, a file /u/userid/javaenv might contain the three lines shown
below to set the PATH, LIBPATH, and CLASSPATH environment variables.
PATH=/bin:/usr/lpp/java/IBM/J7.1/bin
LIBPATH=/lib:/usr/lib:/usr/lpp/java/J5.0/bin:/usr/lpp/java/IBM/J7.1/bin/j9vm
CLASSPATH=.:/u/userid/applications

To customize the initialization of the JVM that will be used by the application,
you can set the COBJVMINITOPTIONS environment variable in the same file.
For example, to access enterprise beans that run in a WebSphere server, you
must set the Java system property java.naming.factory.initial. For details, see the
related task about running OO applications.

When you run an OO application that starts with a COBOL program by using
standard batch JCL or the TSO/E CALL command, follow these guidelines:
v Use the _CEE_ENVFILE environment variable to indicate the location of the file

that contains the environment variable settings required by Java. Set
_CEE_ENVFILE by using the ENVAR runtime option.

v Specify the POSIX(ON) and XPLINK(ON) runtime option.
v Use DD statements to specify files in the z/OS UNIX file system for the standard

input, output, and error streams for Java:
– JAVAIN DD for the input from statements such as c=System.in.read();
– JAVAOUT DD for the output from statements such as

System.out.println(string);

– JAVAERR DD for the output from statements such as
System.err.println(string);

v Ensure that the SCEERUN2 and SCEERUN load libraries are available in the
system library search order, for example, by using a STEPLIB DD statement.

“Example: compiling, linking, and running an OO application using JCL” on page
298

RELATED TASKS

“Preparing OO applications under z/OS UNIX” on page 292
“Running OO applications under z/OS UNIX” on page 293
“Structuring OO applications” on page 630
UNIX System Services User's Guide (The BPXBATCH utility)
Language Environment Programming Guide (Running an application under batch)

RELATED REFERENCES

XL C/C++ Programming Guide (_CEE_ENVFILE)
Language Environment Programming Reference (ENVAR)

Chapter 16. Compiling, linking, and running OO applications 297

|
|
|

Example: compiling, linking, and running an OO application
using JCL

This example shows sample JCL that you could use to compile, link, and run a
COBOL client that invokes a Java method.

The example shows:
v JCL to compile, link, and run an OO COBOL program, TSTHELLO
v A Java class definition, HelloJ, that contains a method that the COBOL program

invokes
v A z/OS UNIX file, ENV, that contains the environment variable settings that

Java requires

JCL for program TSTHELLO
//TSTHELLO JOB ,
// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,REGION=200M,
// NOTIFY=&SYSUID,USER=&SYSUID
//*
// SET COBPRFX=’IGY.V5R1M0’
// SET LIBPRFX=’CEE’
//*
//COMPILE EXEC PGM=IGYCRCTL,
//SYSLIN DD DSNAME=&&OBJECT(TSTHELLO),UNIT=VIO,DISP=(NEW,PASS),
// SPACE=(CYL,(1,1,1))
//SYSPRINT DD SYSOUT=*
//STEPLIB DD DSN=&COBPRFX..SIGYCOMP,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT8 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT9 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT10 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT11 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT12 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT13 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT14 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSUT15 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSMDECK DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))
//SYSIN DD *

cbl dll,thread
Identification division.
Program-id. "TSTHELLO" recursive.
Environment division.
Configuration section.
Repository.

Class HelloJ is "HelloJ".
Data Division.
Procedure division.

Display "COBOL program TSTHELLO entered"
Invoke HelloJ "sayHello"
Display "Returned from java sayHello to TSTHELLO"
Goback.

End program "TSTHELLO".
/*
//LKED EXEC PGM=IEWL,PARM=’RENT,LIST,LET,DYNAM(DLL),CASE(MIXED)’
//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
// DD DSN=&LIBPRFX..SCEELKEX,DISP=SHR
//SYSPRINT DD SYSOUT=*

298 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//SYSTERM DD SYSOUT=*
//SYSLMOD DD DSN=&&GOSET(TSTHELLO),DISP=(MOD,PASS),UNIT=VIO,
// SPACE=(CYL,(1,1,1)),DSNTYPE=LIBRARY
//SYSDEFSD DD DUMMY
//OBJMOD DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSLIN DD *

INCLUDE OBJMOD(TSTHELLO)
INCLUDE ’/usr/lpp/java/J5.0/bin/j9vm/libjvm.x’
INCLUDE ’/usr/lpp/cobol/lib/igzcjava.x’

/*
//GO EXEC PGM=TSTHELLO,COND=(4,LT,LKED),
// PARM=’/ENVAR("_CEE_ENVFILE=/u/userid/ootest/tsthello/ENV")
// POSIX(ON) XPLINK(ON)’
//STEPLIB DD DSN=*.LKED.SYSLMOD,DISP=PASS
// DD DSN=&LIBPRFX..SCEERUN2,DISP=SHR
// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD DUMMY
//JAVAOUT DD PATH=’/u/userid/ootest/tsthello/javaout’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP)
//JAVAERR DD PATH=’/u/userid/ootest/tsthello/javaerr’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP)

Definition of class HelloJ
class HelloJ {

public static void sayHello() {
System.out.println("Hello World, from Java!");

}
}

HelloJ.java is compiled with the javac command. The resulting .class file resides in
the z/OS UNIX file system directory u/userid/ootest/tsthello, which is specified
in the CLASSPATH environment variable in the environment variable settings file.

Environment variable settings file, ENV
PATH=/bin:/usr/lpp/java/IBM/J7.1/bin.
LIBPATH=/lib:/usr/lib:/usr/lpp/java/J5.0/bin:/usr/lpp/java/IBM/J7.1/bin/j9vm
CLASSPATH=.:/u/userid/ootest/tsthello

The environment variable settings file also resides in directory
u/userid/ootest/tsthello, as specified in the _CEE_ENVFILE environment variable
in the JCL.

Using Java SDKs for z/OS
The Java SDKs for z/OS are based on the XPLINK linkage convention defined by
Language Environment.

If the application starts with a Java program or the main factory method of a
COBOL class, the XPLINK environment is automatically started by the java
command that starts the JVM and runs the application.

If an application starts with a COBOL program that invokes methods on COBOL
or Java classes, you must specify the XPLINK(ON) runtime option so that the
XPLINK environment is initialized. XPLINK(ON) is not recommended as a default
setting, however; you should use XPLINK(ON) only for applications that specifically
require it.

Chapter 16. Compiling, linking, and running OO applications 299

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

When you are running an application under z/OS UNIX, you can set the
XPLINK(ON) option by using the _CEE_RUNOPTS environment variable as follows:
_CEE_RUNOPTS="XPLINK(ON)"

Exporting _CEE_RUNOPTS="XPLINK(ON)" so that it is in effect for the entire z/OS
UNIX shell session is not recommended, however. Suppose for example that an
OO COBOL application starts with a COBOL program called App1Driver. One way
to limit the effect of the XPLINK option to the execution of the App1Driver
application is to set the _CEE_RUNOPTS variable on the command-line invocation
of App1Driver as follows:
_CEE_RUNOPTS="XPLINK(ON)" App1Driver

RELATED TASKS

“Running OO applications under z/OS UNIX” on page 293
“Setting and accessing environment variables” on page 464

RELATED REFERENCES

“Object-oriented syntax, and Java 6, Java 7, or Java 8”
“Runtime environment variables” on page 465
Language Environment Programming Reference (XPLINK)
XL C/C++ Programming Guide (_CEE_RUNOPTS)

Object-oriented syntax, and Java 6, Java 7, or Java 8
Enterprise COBOL Version 5.2 applications that use object-oriented syntax for Java
interoperability are supported with Java 6 or Java 7.

Earlier versions of Enterprise COBOL applications that use object-oriented syntax
for Java interoperability were supported with Java SDK 1.4.2 and Java 5. To run
these applications with Java 6, Java 7, or Java 8, , do these steps:
1. Recompile and relink the applications using Enterprise COBOL V5.2.
2. Recompile the generated Java class that is associated with each object-oriented

COBOL class using the javac command from Java 6, Java 7, or Java 8.

RELATED TASKS

“Preparing OO applications under z/OS UNIX” on page 292

300 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

|
|

|
|
|

|

|

Chapter 17. Compiler options

You can direct and control your compilation by using compiler options or by using
compiler-directing statements (compiler directives).

Compiler options affect the aspects of your program that are listed in the table
below. The linked-to information for each option provides the syntax for specifying
the option and describes the option, its parameters, and its interaction with other
parameters.

Table 43. Compiler options

Aspect of your
program Compiler option Default Option abbreviations

Source language “ARITH” on page 309 ARITH(COMPAT) AR(C|E)

“CICS” on page 312 NOCICS None

“CODEPAGE” on page 313 CODEPAGE(1140) CP(ccsid)

“CURRENCY” on page 317 NOCURRENCY CURR|NOCURR

“DBCS” on page 319 DBCS None

“NSYMBOL” on page 340 NSYMBOL(NATIONAL) NS(DBCS|NAT)

“NUMBER” on page 340 NONUMBER NUM|NONUM

“QUALIFY” on page 351 QUALIFY(COMPAT) QUA(C|E)

“QUOTE/APOST” on page 352 QUOTE Q|APOST

“SEQUENCE” on page 356 SEQUENCE SEQ|NOSEQ

“SQL” on page 358 NOSQL None

“SQLCCSID” on page 359 SQLCCSID SQLC|NOSQLC

“SQLIMS” on page 360 NOSQLIMS None

“WORD” on page 372 NOWORD WD|NOWD

“XMLPARSE” on page 373 XMLPARSE(XMLSS) XP(X)|XP(C)

Date processing “INTDATE” on page 332 INTDATE(ANSI) None

Maps and listings “LANGUAGE” on page 333 LANGUAGE(ENGLISH) LANG(EN|UE|JA|JP)

“LINECOUNT” on page 334 LINECOUNT(60) LC

“LIST” on page 334 NOLIST None

“MAP” on page 335 NOMAP None

“OFFSET” on page 345 NOOFFSET OFF|NOOFF

“SOURCE” on page 357 SOURCE S|NOS

“SPACE” on page 357 SPACE(1) None

“TERMINAL” on page 363 NOTERMINAL TERM|NOTERM

“VBREF” on page 370 NOVBREF None

“XREF” on page 374 XREF(FULL) X|NOX

© Copyright IBM Corp. 1991, 2018 301

|||

|||

Table 43. Compiler options (continued)

Aspect of your
program Compiler option Default Option abbreviations

Object deck
generation

“COMPILE” on page 316 NOCOMPILE(S) C|NOC

“COPYRIGHT” on page 316 NOCOPYRIGHT CPYR|NOCPYR

“DECK” on page 319 NODECK D|NOD

“NAME” on page 339 NONAME, or NAME(NOALIAS)
if only NAME is specified

None

“OBJECT” on page 344 OBJECT OBJ|NOOBJ

“PGMNAME” on page 348 PGMNAME(COMPAT) PGMN(CO|LU|LM)

“SERVICE” on page 356 NOSERVICE SERV|NOSERV

Object code control “ADV” on page 306 ADV None

“AFP” on page 307 AFP(VOLATILE) None

“ARCH” on page 307 ARCH(7) None

“AWO” on page 310 NOAWO None

“BLOCK0” on page 310 NOBLOCK0 None

“DISPSIGN” on page 320 DISPSIGN(COMPAT) DS(S|C)

“DLL” on page 321 NODLL None

“EXPORTALL” on page 326 NOEXPORTALL EXP|NOEXP

“FASTSRT” on page 327 NOFASTSRT FSRT|NOFSRT

“HGPR” on page 331 HGPR(PRESERVE) None

“MAXPCF” on page 336 MAXPCF(60000) None

“NUMCHECK” on page 341 NONUMCHECK NONC|NC

“NUMPROC” on page 343 NUMPROC(NOPFD) None

“OPTIMIZE” on page 346 OPTIMIZE(0) OPT(n)

“OUTDD” on page 348 OUTDD(SYSOUT) OUT

“TRUNC” on page 368 TRUNC(STD) None

“VLR” on page 371 VLR(STD) VLR(C|S)

“ZONECHECK” on page 375 NOZONECHECK NOZC|ZC(MSG)|ZC(ABD)

“ZONEDATA” on page 377 ZONEDATA(PFD) ZD(PFD)|ZD(MIG)

“ZWB” on page 379 ZWB None

Virtual storage
usage

“BUFSIZE” on page 312 4096 BUF

“DATA” on page 318 DATA(31) None

“DYNAM” on page 323 NODYNAM DYN|NODYN

“RENT” on page 352 RENT None

“RMODE” on page 353 AUTO None

“STGOPT” on page 362 NOSTGOPT SO|NOSO

302 Enterprise COBOL for z/OS, V5.2 Programming Guide

|||

|||

|

|||

|||

|||

|||

Table 43. Compiler options (continued)

Aspect of your
program Compiler option Default Option abbreviations

Debugging and
diagnostics

“DIAGTRUNC” on page 320 NODIAGTRUNC DTR|NODTR

“DUMP” on page 322 NODUMP DU|NODU

“FLAG” on page 328 FLAG(I,I) F|NOF

“FLAGSTD” on page 329 NOFLAGSTD None

“INITCHECK” on page 331 NOINITCHECK IC|NOIC

“RULES” on page 354 NORULES RULES(ENDP, EVENP, LXPRF,
SLCKB)|RULES(NOENDP,
NOEVENP, NOLXPRF, NOSLCKB)

“SSRANGE” on page 361 NOSSRANGE SSR(ZLEN|NOZLEN,
MSG|ABD)|NOSSR

“TEST” on page 364 NOTEST None

Other “ADATA” on page 305 NOADATA None

“EXIT” on page 324 NOEXIT NOEX|EX(INX|NOINX,
LIBX|NOLIBX, PRTX|NOPRTX,
ADX|NOADX, MSGX|NOMSGX)

“MDECK” on page 337 NOMDECK NOMD|MD|MD(C|NOC)

“OPTFILE” on page 345 None None

“THREAD” on page 366 NOTHREAD None

“VSAMOPENFS” on page 372 VSAMOPENFS(COMPAT) VS(C | S)

Installation defaults: The default compiler options that were set up when your
compiler was installed are in effect for your program unless you override those
options. (In some installations, certain compiler options are fixed so that you
cannot override them. If you have problems with the default options, contact your
system administrator.) To determine which are the default options, run a test
compilation without specifying any compiler options. The output listing lists the
default options in effect at your site.

Nonoverridable options: In some installations, certain compiler options are fixed
so that you cannot override them. If you have problems with those options, contact
your system administrator.

Option specification: Compiler options and suboptions are not case sensitive.

Performance considerations: The AFP, ARCH, ARITH, AWO, BLOCK0, DYNAM, FASTSRT,
HGPR, MAXPCF, NUMCHECK, NUMPROC, OPTIMIZE, RENT, SQLCCSID, SSRANGE, STGOPT, TEST,
THREAD, TRUNC, ZONECHECK, and ZONEDATA compiler options can affect runtime
performance.

RELATED TASKS

Chapter 14, “Compiling under z/OS,” on page 255
“Compiling under TSO” on page 262
Chapter 15, “Compiling under z/OS UNIX,” on page 283
Chapter 33, “Tuning your program,” on page 661

RELATED REFERENCES

“Conflicting compiler options” on page 304

Chapter 17. Compiler options 303

|||

|||
|
|

|
|

|||

|
|

Chapter 18, “Compiler-directing statements,” on page 381
“Option settings for 85 COBOL Standard conformance”
“Performance-related compiler options” on page 669

Option settings for 85 COBOL Standard conformance
Compiler options and runtime options are required for conformance with the 85
COBOL Standard.

The following compiler options are required:
v ADV

v DYNAM

v NAME(ALIAS) or NAME(NOALIAS)
v NOBLOCK0

v NOCICS

v NODLL

v NOEXPORTALL

v NOFASTSRT

v NOTHREAD

v NOWORD

v NUMPROC(NOPFD)

v PGMNAME(COMPAT) or PGMNAME(LONGUPPER)
v QUALIFY(COMPAT)

v QUOTE

v TRUNC(STD)

v VLR(STANDARD)

v VSAMOPENFS(SUCC)

v ZONEDATA(PFD)

v ZWB

You can use the FLAGSTD compiler option to flag nonconforming elements such as
IBM extensions.

The following runtime options are required:
v AIXBLD

v CBLQDA(ON)

v TRAP(ON)

RELATED REFERENCES

Language Environment Programming Reference

Conflicting compiler options
The Enterprise COBOL compiler can encounter conflicting compiler options in
either of two ways: both the positive and negative form of an option are specified
at the same level in the hierarchy of precedence, or mutually exclusive options are
specified at the same level in the hierarchy.

304 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

|

|

When conflicting options are specified at the same level in the hierarchy (such as
specifying both DECK and NODECK in a PROCESS or CBL statement), the option
specified last takes effect.

If you specify mutually exclusive compiler options at the same level, the compiler
generates an error message and forces one of the options to a nonconflicting value.
For example, if you specify both OFFSET and LIST in a PROCESS statement in any
order, OFFSET takes effect and LIST is ignored.

However, options coded at a higher level of precedence override any options
specified at a lower level of precedence. For example, if you code OFFSET in a JCL
statement but LIST in a PROCESS statement, LIST takes effect because the options
coded in the PROCESS statement and any options forced on by an option coded in
the PROCESS statement have higher precedence.

Table 44. Mutually exclusive compiler options

Specified Ignored1 Forced on1

CICS DYNAM NODYNAM

NORENT RENT

DLL DYNAM NODYNAM

NORENT RENT

EXPORTALL NODLL DLL

DYNAM NODYNAM

NORENT RENT

NORENT RMODE(ANY) RMODE(24)

NSYMBOL(NATIONAL) NODBCS DBCS

OBJECT DECK NODECK

OFFSET LIST NOLIST

OPTIMIZE(0) INITCHECK NOINITCHECK

PGMNAME(LM|LU) NAME NONAME

TEST NOOBJECT and NODECK OBJECT and NODECK

THREAD NORENT RENT

WORD FLAGSTD NOFLAGSTD

1. Unless in conflict with a fixed installation default option.

RELATED TASKS

“Specifying compiler options under z/OS” on page 272
“Specifying compiler options in a batch compilation” on page 277
“Specifying compiler options under z/OS UNIX” on page 284

RELATED REFERENCES

“OPTFILE” on page 345

ADATA
Use ADATA when you want the compiler to create a SYSADATA file that contains
records of additional compilation information.

Chapter 17. Compiler options 305

|||

ADATA option syntax

►►
NOADATA

ADATA
►◄

Default is: NOADATA

Abbreviations are: None

ADATA is required for remote compilation using an IBM Windows COBOL compiler.
On z/OS, the SYSADATA file is written to ddname SYSADATA.

The size of the SYSADATA file generally grows with the size of the associated
program.

Option specification: You cannot specify the ADATA option in a PROCESS (or CBL)
statement. You can specify it only in one of the following ways:
v In the PARM parameter of JCL
v As a cob2 command option
v As an installation default
v In the COBOPT environment variable

RELATED REFERENCES

“Setting environment variables under z/OS UNIX” on page 283
“cob2 syntax and options” on page 287
Appendix F, “COBOL SYSADATA file contents,” on page 737

ADV
ADV has meaning only if you use WRITE . . . ADVANCING in your source code. With
ADV in effect, the compiler adds 1 byte to the record length to account for the
printer control character.

ADV option syntax

►►
ADV

NOADV
►◄

Default is: ADV

Abbreviations are: None

Use NOADV if you already adjusted record length to include 1 byte for the printer
control character.

306 Enterprise COBOL for z/OS, V5.2 Programming Guide

AFP
The AFP option controls the compiler usage of the Additional Floating Point (AFP)
registers that are provided by z/Architecture® processors.

AFP option syntax

►►
VOLATILE

AFP(NOVOLATILE) ►◄

Default is: AFP(VOLATILE)

Abbreviations are: None

The Enterprise COBOL compiler generates code that uses the full complement of
16 floating point registers (FPR) provided by a z/Architecture processor. These
FPRs are as follows:
v Original FPRs, which are numbered 0, 2, 4, and 6
v AFP registers, which are numbered 1, 3, 5, 7, and 8-15

Note: If your code runs on a version of CICS Transaction Server that is earlier than
V4.1, you must specify AFP(VOLATILE).

AFP(VOLATILE)
If you specify AFP(VOLATILE), the AFP registers 8-15 are considered volatile,
which means that they might be changed by a called subprogram.
Therefore, the COBOL compiler generates extra code to protect the values
in these registers.

AFP(NOVOLATILE)
If you specify AFP(NOVOLATILE), the AFP registers 8-15 are considered
nonvolatile, which means that they are known to be unchanged or
preserved by every called subprogram. Therefore, the compiler can
generate more efficient code sequences for programs with floating point
operations. It is the normal z/OS architecture convention.

ARCH
The ARCH option specifies the machine architecture for which the executable
program instructions are to be generated.

Chapter 17. Compiler options 307

ARCH option syntax

►►
7

ARCH(8)
9
10
11

►◄

Default is: ARCH(7)

Abbreviations are: None

If you specify a higher ARCH level, the compiler generates code that uses newer and
faster instructions. Your application might abend if it runs on a processor with an
architecture level lower than what you specified with the ARCH option. Use the ARCH
level that matches the lowest machine architecture where your application runs.

Current supported architecture levels and groups of models are as follows:

7 Produces code that uses instructions available on the 2096-xxx (IBM System
z9® BC) and 2094-xxx (IBM System z9 EC) models in z/Architecture mode.

Specifically, these ARCH(7) machines and their follow-ons add instructions
supported by the following facilities:
v Extended-immediate facility
v Decimal floating point facility. These instructions might be generated if

decimal data is used in numeric operations.

8 Produces code that uses instructions available on the 2097-xxx (IBM System
z10® EC) models in z/Architecture mode.

Specifically, these ARCH(8) machines and their follow-ons add instructions
supported by the general instruction extensions facility.

9 Produces code that uses instructions available on 2817-xxx (IBM
zEnterprise® 196) and 2818-xxx (IBM zEnterprise 114) models in
z/Architecture mode.

Specifically, these ARCH(9) machines and their follow-ons add instructions
supported by the following facilities:
v High-word facility
v Interlocked access facility
v Load/store-on-condition facility
v Distinct-operands facility
v Population-count facility

10 Produces code that uses instructions available on the 2827-xxxx (IBM
zEnterprise EC12) models in z/Architecture mode.

Specifically, these ARCH(10) machines and their follow-ons add instructions
supported by the following facilities:
v Execution-hint facility
v Load-and-trap facility
v Miscellaneous-instructions-extension facility
v Transactional-execution facility

308 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

v Enhanced decimal floating point facility that enables more efficient
conversions between zoned decimal data items and decimal floating
point data items. Instead of converting zoned decimal data items to
packed decimal data items to perform arithmetic, the compiler converts
zoned decimal data items directly to decimal floating point data items,
and then back again to zoned decimal data items after the computations
are complete.

11 Produces code that uses instructions available on the 2964-xxxx (IBM z13®)
models in z/Architecture mode.

Specifically, these ARCH(11) machines and their follow-ons add instructions
with support of the following facilities:
v Enhanced decimal floating point facility that enables more efficient

conversions between packed-decimal data items and decimal floating
point intermediate result data items

v Exploitation of the new vector extension facility (SIMD) instructions for
some INSPECT REPLACING and INSPECT TALLYING statements

Note: A higher ARCH level includes the facilities of the lower ARCH level. For
example, ARCH(11) includes all the facilities of the lower ARCH levels.

For more information about these facilities, see z/Architecture Principles of Operation.

ARITH
ARITH affects the maximum number of digits that you can code for integers, and
the number of digits used in fixed-point intermediate results.

ARITH option syntax

►►
COMPAT

ARITH(EXTEND) ►◄

Default is: ARITH(COMPAT)

Abbreviations are: AR(C|E)

When you specify ARITH(EXTEND):
v The maximum number of digit positions that you can specify in the PICTURE

clause for packed-decimal, external-decimal, and numeric-edited data items is
raised from 18 to 31.

v The maximum number of digits that you can specify in a fixed-point numeric
literal is raised from 18 to 31. You can use numeric literals with large precision
anywhere that numeric literals are currently allowed, including:
– Operands of PROCEDURE DIVISION statements
– VALUE clauses (for numeric data items with large-precision PICTURE)
– Condition-name values (on numeric data items with large-precision PICTURE)

v The maximum number of digits that you can specify in the arguments to NUMVAL
and NUMVAL-C is raised from 18 to 31.

Chapter 17. Compiler options 309

|
|
|
|
|
|
|

||
|

|
|

|
|
|

|
|

|

v The maximum value of the integer argument to the FACTORIAL function is 29.
v Intermediate results in arithmetic statements use extended mode.

When you specify ARITH(COMPAT):
v The maximum number of digit positions in the PICTURE clause for

packed-decimal, external-decimal, and numeric-edited data items is 18.
v The maximum number of digits in a fixed-point numeric literal is 18.
v The maximum number of digits in the arguments to NUMVAL and NUMVAL-C is 18.
v The maximum value of the integer argument to the FACTORIAL function is 28.
v Intermediate results in arithmetic statements use compatibility mode.

RELATED CONCEPTS

Appendix A, “Intermediate results and arithmetic precision,” on page 685

AWO
If you specify AWO, an implicit APPLY WRITE-ONLY clause is activated for all QSAM
files in the program that have blocked variable-length records.

AWO option syntax

►►
NOAWO

AWO
►◄

Default is: NOAWO

Abbreviations are: None

RELATED TASKS

“Optimizing buffer and device space” on page 10

RELATED REFERENCES

“BLOCK0”
APPLY WRITE-ONLY clause (Enterprise COBOL Language Reference)

BLOCK0
Use BLOCK0 to change the compiler default for QSAM files from unblocked to
blocked (as if BLOCK CONTAINS 0 were specified) and thus gain the benefit of
system-determined blocking for output files.

310 Enterprise COBOL for z/OS, V5.2 Programming Guide

BLOCK0 option syntax

►►
NOBLOCK0

BLOCK0
►◄

Default is: NOBLOCK0

Abbreviations are: None

Specifying BLOCK0 activates an implicit BLOCK CONTAINS 0 clause for each file in the
program that meets the following three criteria:
v The FILE-CONTROL paragraph either specifies ORGANIZATION SEQUENTIAL or omits

the ORGANIZATION clause.
v The FD entry does not specify RECORDING MODE U.
v The FD entry does not specify a BLOCK CONTAINS clause.

Files for which the resulting BLOCK CONTAINS 0 clause is in effect have a blocking
factor that is determined at run time from the data definition or from the data-set
characteristics.

Interaction of the APPLY WRITE-ONLY clause and the AWO compiler option with
BLOCK0:

v If NOBLOCK0 is in effect, and the file description of a file that meets the three
criteria listed above specifies APPLY WRITE-ONLY, the compiler issues an error
message because APPLY WRITE-ONLY applies only to blocked files. But if BLOCK0 is
in effect, the result is that the file is blocked, and the APPLY WRITE-ONLY clause is
therefore accepted.

v AWO applies to any QSAM files that have blocked variable-length records. If
BLOCK0 is in effect, the result is that more files might be blocked than if NOBLOCK0
were in effect; thus AWO might apply to more files than it otherwise would.

Specifying BLOCK0 for existing programs might result in a change of behavior, and
in some cases produce undesirable results for files opened as INPUT. For example:
v The OPEN INPUT statement fails for files for which no block size can be

determined.
v Programs that continue after handling nonzero FILE STATUS codes for files

opened as INPUT might abnormally terminate when executing subsequent I/O
statements on those files.

For these reasons, after compiling with BLOCK0 you should investigate and test the
effects on your program.

For recommendations about blocking, see the related reference from the Enterprise
COBOL Migration Guide (in the information about migrating from CMPR2 to
NOCMPR2).

RELATED TASKS

“Optimizing buffer and device space” on page 10
“Setting block sizes” on page 167

Chapter 17. Compiler options 311

RELATED REFERENCES

“AWO” on page 310
APPLY WRITE-ONLY clause (Enterprise COBOL Language Reference)
BLOCK CONTAINS clause (Enterprise COBOL Language Reference)
Enterprise COBOL Migration Guide
(Recommendation for DCB= parameters of JCL)

BUFSIZE
Use BUFSIZE to allocate an amount of main storage to the buffer for each compiler
work data set. Usually, a large buffer size improves the performance of the
compiler.

BUFSIZE option syntax

►►
nnnnn

BUFSIZE(nnnK) ►◄

Default is: 4096

Abbreviations are: BUF

nnnnn specifies a decimal number that must be at least 256.

nnnK specifies a decimal number in 1 KB increments, where 1 KB = 1024 bytes.

BUFSIZE cannot exceed the track capacity for the device used, nor can it exceed the
maximum allowed by data management services.

CICS
The CICS compiler option enables the integrated CICS translator and lets you
specify CICS suboptions. You must use the CICS option if your COBOL source
program contains EXEC CICS or EXEC DLI statements and the program has not been
processed by the separate CICS translator.

CICS option syntax

►►
NOCICS

CICS
("CICS-suboption-string")

►◄

Default is: NOCICS

Abbreviations are: None

312 Enterprise COBOL for z/OS, V5.2 Programming Guide

Use the CICS option only to compile CICS programs. Programs compiled with the
CICS option will not run in a non-CICS environment.

If you specify the NOCICS option, any CICS statements found in the source program
are diagnosed and discarded.

Use either quotation marks or single quotation marks to delimit the string of CICS
suboptions.

You can partition a long CICS suboption string into multiple suboption strings in
multiple CBL or PROCESS statements. The CICS suboptions are concatenated in the
order of their appearance. For example:
//STEP1 EXEC IGYWC, . . .
// PARM.COBOL=’CICS("string1")’
//COBOL.SYSIN DD *

CBL CICS(’string2’)
CBL CICS("string3")
IDENTIFICATION DIVISION.
PROGRAM-ID. DRIVER1.
. . .

The compiler passes the following suboption string to the integrated CICS
translator:
"string1 string2 string3"

The concatenated strings are delimited with single spaces as shown. If multiple
instances of the same CICS suboption are found, the last specification of that
suboption in the concatenated string prevails. The compiler limits the size of the
concatenated suboption string to 4 KB.

RELATED CONCEPTS

“Integrated CICS translator” on page 435

RELATED TASKS

“Compiling with the CICS option” on page 433
“Separating CICS suboptions” on page 435
CICS Application Programming Guide (Specifying CICS translator options)

RELATED REFERENCES

“Conflicting compiler options” on page 304

CODEPAGE
Use CODEPAGE to specify the coded character set identifier (CCSID) for an EBCDIC
code page for processing compile-time and runtime COBOL operations that are
sensitive to character encoding.

CODEPAGE option syntax

►► CODEPAGE(ccsid) ►◄

Default is: CODEPAGE(1140)

Chapter 17. Compiler options 313

http://publibfp.dhe.ibm.com/epubs/pdf/dfhp3f02.pdf

Abbreviations are: CP(ccsid)

ccsid must be an integer that represents a valid CCSID for an EBCDIC code page.

The default CCSID 1140 is the equivalent of CCSID 37 (COM EUROPE EBCDIC),
but additionally includes the euro symbol.

ccsid specifies these encodings:
v The encoding for alphanumeric, national, and DBCS literals in a COBOL source

program
v The default encoding of the content of alphanumeric and DBCS data items at

run time
v The encoding for DBCS user-defined words when processed by an XML GENERATE

statement to create XML element and attribute names
v The default encoding of an XML document created by an XML GENERATE

statement if the receiving data item for the document is alphanumeric
v The default encoding assumed for an XML document in an alphanumeric data

item when the document is processed by an XML PARSE statement

The CODEPAGE ccsid is used when code-page-sensitive operations are performed at
compile time or run time, and an explicit CCSID that overrides the default code
page is not specified. Such operations include:
v Conversion of literal values to Unicode
v Conversion of alphanumeric data to and from national (Unicode) data as part of

move operations, comparison, or the intrinsic functions DISPLAY-OF and
NATIONAL-OF

v Object-oriented language such as INVOKE statements or class definitions and
method definitions

v XML parsing
v XML generation
v Processing of DBCS names as part of XML generation at run time
v Processing of SQL string host variables if the SQLCCSID option is in effect
v Processing of source code for EXEC SQL statements
v Processing of source code for EXEC SQLIMS statements

However, the encoding of the following items in a COBOL source program is not
affected by the CODEPAGE compiler option:
v Data items that have USAGE NATIONAL

These items are always encoded in UTF-16 in big-endian format, CCSID 1200.
v Characters from the basic COBOL character set (see the table of these characters

in the related reference below about characters)
Though the encoding of the basic COBOL characters default currency sign ($),
quotation mark ("), and the lowercase Latin letters varies in different EBCDIC
code pages, the compiler always interprets these characters using the EBCDIC
code page 1140 encoding. In particular, the default currency sign is always the
character with value X’5B’ (unless changed by the CURRENCY compiler option or
the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph), and the quotation
mark is always the character with value X’7F’.

Some COBOL operations can override the CODEPAGE ccsid by using an explicit
encoding specification, for example:

314 Enterprise COBOL for z/OS, V5.2 Programming Guide

v DISPLAY-OF and NATIONAL-OF intrinsic functions that specify a code page as the
second argument

v XML PARSE statements that specify the WITH ENCODING phrase
v XML GENERATE statements that specify the WITH ENCODING phrase

Additionally, you can use the CURRENCY compiler option or the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph to override:
v The default currency symbol used in the PICTURE character-strings for

numeric-edited data items in your source program
v The currency sign value used in the content of numeric-edited data items at run

time

DBCS code pages:

Compile your COBOL program using the CODEPAGE option with the ccsid set to one
of the EBCDIC multibyte character set (MBCS) CCSIDs shown in the table below if
the program contains any of the following items:
v User-defined words formed with DBCS characters
v DBCS (USAGE DISPLAY-1) data items
v DBCS literals

All of the CCSIDs in the table below identify mixed code pages that refer to a
combination of SBCS and DBCS coded character sets. These are also the CCSIDs
that are supported for mixed data by DB2.

Table 45. EBCDIC multibyte coded character set identifiers

National language MBCS CCSID
SBCS CCSID
component

DBCS CCSID
component

Japanese (Katakana-Kanji) 930 290 300

Japanese (Katakana-Kanji with euro) 1390 8482 16684

Japanese (Katakana-Kanji) 5026 290 4396

Japanese (Latin-Kanji) 939 1027 300

Japanese (Latin-Kanji with euro) 1399 5123 16684

Japanese (Latin-Kanji) 5035 1027 4396

Korean 933 833 834

Korean 1364 13121 4930

Simplified Chinese 935 836 837

Simplified Chinese 1388 13124 4933

Traditional Chinese 937 28709 835

Note: If you specify the TEST option, you must set the CODEPAGE option to the
CCSID that is used for the COBOL source program. In particular, programs that
use Japanese characters in DBCS literals or DBCS user-defined words must be
compiled with the CODEPAGE option set to a Japanese codepage CCSID.

RELATED CONCEPTS

“COBOL and DB2 CCSID determination” on page 447

RELATED TASKS

“Using currency signs” on page 65

Chapter 17. Compiler options 315

Chapter 28, “Processing XML input,” on page 527
Chapter 29, “Producing XML output,” on page 571

RELATED REFERENCES

“CURRENCY” on page 317
“SQLCCSID” on page 359
“TEST” on page 364
“The encoding of XML documents” on page 546
Characters (Enterprise COBOL Language Reference)

COMPILE
Use the COMPILE option only if you want to force full compilation even in the
presence of serious errors. All diagnostics and object code will be generated. Do
not try to run the object code if the compilation resulted in serious errors: the
results could be unpredictable or an abnormal termination could occur.

COMPILE option syntax

►►

S
NOCOMPILE(E)

W

COMPILE
NOCOMPILE

►◄

Default is: NOCOMPILE(S)

Abbreviations are: C|NOC

Use NOCOMPILE without any suboption to request a syntax check (only diagnostics
produced, no object code). If you use NOCOMPILE without any suboption, several
compiler options will have no effect because no object code will be produced, for
example: DECK, LIST, OBJECT, OFFSET, OPTIMIZE, SSRANGE, and TEST.

Use NOCOMPILE with suboption W, E, or S for conditional full compilation. Full
compilation (diagnosis and object code) will stop when the compiler finds an error
of the level you specify (or higher), and only syntax checking will continue.

RELATED TASKS

“Finding coding errors” on page 390

RELATED REFERENCES

“Messages and listings for compiler-detected errors” on page 280

COPYRIGHT
Use COPYRIGHT to place a string in the object module if the object module is
generated. If the object is linked into a program object, the string is loaded into
memory with that program object.

316 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|
|
|

|

COPYRIGHT option syntax

►►
NOCOPYRIGHT

COPYRIGHT('copyright string')
►◄

Default is: NOCOPYRIGHT

Abbreviations are: CPYR|NOCPYR

The copyright string is limited to 64 characters in length.

CURRENCY
You can use the CURRENCY option to provide an alternate default currency symbol
to be used for a COBOL program. (The default currency symbol is the dollar sign
($).)

CURRENCY option syntax

►►
NOCURRENCY

CURRENCY(literal)
►◄

Default is: NOCURRENCY

Abbreviations are: CURR|NOCURR

NOCURRENCY specifies that no alternate default currency symbol will be used.

To change the default currency symbol, specify CURRENCY(literal), where literal is a
valid COBOL alphanumeric literal (optionally a hexadecimal literal) that represents
a single character. The literal must not be from the following list:
v Digits zero (0) through nine (9)
v Uppercase alphabetic characters A B C D E G N P R S V X Z or their lowercase

equivalents
v The space
v Special characters * + - / , . ; () " =
v A figurative constant
v A null-terminated literal
v A DBCS literal
v A national literal

If your program processes only one currency type, you can use the CURRENCY
option as an alternative to the CURRENCY SIGN clause for indicating the currency
symbol you will use in the PICTURE clause of your program. If your program

Chapter 17. Compiler options 317

|

|||||||||||||||

|
||

|

|

|

processes more than one currency type, you should use the CURRENCY SIGN clause
with the WITH PICTURE SYMBOL phrase to specify the different currency sign types.

If you use both the CURRENCY option and the CURRENCY SIGN clause in a program,
the CURRENCY option is ignored. Currency symbols specified in the CURRENCY SIGN
clause or clauses can be used in PICTURE clauses.

When the NOCURRENCY option is in effect and you omit the CURRENCY SIGN clause,
the dollar sign ($) is used as the PICTURE symbol for the currency sign.

Delimiter: You can delimit the CURRENCY option literal with either quotation marks
or single quotation marks, regardless of the QUOTE|APOST compiler option setting.

RELATED TASKS

“Using currency signs” on page 65

DATA
The DATA option affects whether storage for dynamic data areas and other dynamic
runtime storage is obtained from above or below the 16 MB line.

DATA option syntax

►►
31

DATA(24) ►◄

Default is: DATA(31)

Abbreviations are: None

For reentrant programs, the DATA compiler option and the HEAP runtime option
control whether storage for dynamic data areas (such as WORKING-STORAGE and FD
record areas) is obtained from below the 16 MB line (DATA(24)) or from
unrestricted storage (DATA(31)). (DATA does not affect the location of LOCAL-STORAGE
data; the STACK runtime option controls that location instead, along with the AMODE
of the program.)

Specify DATA(24) for programs that run in 31-bit addressing mode and that pass
data arguments to programs in 24-bit addressing mode. Doing so ensures that the
data will be addressable by the called program.

External data and QSAM buffers: The DATA option interacts with other compiler
options and runtime options that affect storage and its addressability. See the
related information for details.

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

Language Environment Programming Guide (Using runtime options)

318 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 181

DBCS
Using DBCS causes the compiler to recognize X’0E’ (SO) and X’0F’ (SI) as shift
codes for the double-byte portion of an alphanumeric literal.

DBCS option syntax

►►
DBCS

NODBCS
►◄

Default is: DBCS

Abbreviations are: None

With DBCS in effect, the double-byte portion of the literal is syntax-checked and the
literal remains category alphanumeric.

RELATED REFERENCES

“Conflicting compiler options” on page 304

DECK
Use DECK to produce object code in the form of 80-column records. If you use the
DECK option, be certain that SYSPUNCH is defined in your JCL for compilation.

DECK option syntax

►►
NODECK

DECK
►◄

Default is: NODECK

Abbreviations are: D|NOD

RELATED TASKS

“Creating object code (SYSLIN or SYSPUNCH)” on page 271

Chapter 17. Compiler options 319

DIAGTRUNC
DIAGTRUNC causes the compiler to issue a severity-4 (Warning) diagnostic message
for MOVE statements that have numeric receivers when the receiving data item has
fewer integer positions than the sending data item or literal. In statements that
have multiple receivers, the message is issued separately for each receiver that
could be truncated.

DIAGTRUNC option syntax

►►
NODIAGTRUNC

DIAGTRUNC
►◄

Default is: NODIAGTRUNC

Abbreviations are: DTR|NODTR

The diagnostic message is also issued for implicit moves associated with
statements such as these:
v INITIALIZE

v READ . . . INTO

v RELEASE . . . FROM

v RETURN . . . INTO

v REWRITE . . . FROM

v WRITE . . . FROM

The diagnostic message is also issued for moves to numeric receivers from
alphanumeric data-names or literal senders, except when the sending field is
reference modified.

There is no diagnostic message for COMP-5 receivers, nor for binary receivers when
you specify the TRUNC(BIN) option.

RELATED CONCEPTS

“Formats for numeric data” on page 47
“Reference modifiers” on page 113

RELATED REFERENCES

“TRUNC” on page 368

DISPSIGN
The DISPSIGN option controls output formatting for DISPLAY of signed numeric
items.

320 Enterprise COBOL for z/OS, V5.2 Programming Guide

DISPSIGN option syntax

►►
COMPAT

DISPSIGN(SEP) ►◄

Default is: DISPSIGN(COMPAT)

Abbreviations are: DS(C | S)

DISPSIGN(COMPAT)
If you specify DISPSIGN(COMPAT), formatting for displayed values of signed
numeric items is compatible with prior versions of Enterprise COBOL.
Overpunch signs are generated in some cases.

DISPSIGN(SEP)
If you specify DISPSIGN(SEP), the displayed values for signed binary,
signed packed-decimal, or overpunch signed zoned-decimal items are
always formatted with a leading separate sign.

The following example shows the DISPLAY output with the DISPSIGN(COMPAT)
option or the DISPSIGN(SEP) option specified:

Table 46. DISPLAY output with the DISPSIGN(COMPAT) option or the DISPSIGN(SEP) option
specified:

Data items

DISPLAY output with the
DISPSIGN(COMPAT) option
specified

DISPLAY output with the
DISPSIGN(SEP) option
specified

Unsigned binary 111 111

Positive binary 111 +111

Negative binary 11J -111

Unsigned packed-decimal 222 222

Positive packed-decimal 222 +222

Negative packed-decimal 22K -222

Zoned-decimal unsigned 333 333

Zoned-decimal trailing
positive

33C +333

Zoned-decimal trailing
negative

33L -333

Zoned-decimal leading
positive

C33 +333

Zoned-decimal leading
negative

L33 -333

DLL
Use DLL to instruct the compiler to generate an object module that is enabled for
dynamic link library (DLL) support. DLL enablement is required if the program
will be part of a DLL, will reference DLLs, or if the program contains
object-oriented COBOL syntax such as INVOKE statements or class definitions.

Chapter 17. Compiler options 321

Note: The DLL option can be overridden for particular CALL statements by using
the CALLINTERFACE directive.

DLL option syntax

►►
NODLL
DLL ►◄

Default is: NODLL

Abbreviations are: None

Link-edit considerations: COBOL programs that are compiled with the DLL option
must be link-edited with the RENT and AMODE 31 link-edit options.

NODLL instructs the compiler to generate an object module that is not enabled for
DLL usage.

RELATED TASKS

“Making dynamic calls” on page 477

RELATED REFERENCES

“Conflicting compiler options” on page 304
CALLINTERFACE (Enterprise COBOL Language Reference)

DUMP
Use DUMP to produce a system dump at compile time for an internal compiler error.

DUMP option syntax

►►
NODUMP

DUMP
►◄

Default is: NODUMP

Abbreviations are: DU|NODU

Not for general use: The DUMP option should be used only at the request of an IBM
representative.

The dump, which consists of a listing of the compiler's registers and a storage
dump, is intended primarily for diagnostic personnel for determining errors in the
compiler.

If you use the DUMP option, include a DD statement at compile time to define
SYSABEND, SYSUDUMP, or SYSMDUMP.

322 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|

With DUMP, the compiler will not issue a diagnostic message before abnormal
termination processing. Instead, a user abend will be issued with an IGYppnnnn
message. In general, a message IGYppnnnn corresponds to a compile-time user
abend nnnn. However, both IGYpp5nnn and IGYpp1nnn messages produce a user
abend of 1nnn. You can usually distinguish whether the message is really a 5nnn or
a 1nnn by recompiling with the NODUMP option.

Use NODUMP if you want normal termination processing, including:
v Diagnostic messages produced so far in compilation.
v A description of the error.
v The name of the compiler phase currently executing.
v The line number of the COBOL statement being processed when the error was

found. (If you compiled with OPTIMIZE(1|2), the line number might not always
be correct; for some errors, it will be the last line in the program.)

v The contents of the general purpose registers.

Using the DUMP and OPTIMIZE(1|2) compiler options together could cause the
compiler to produce a system dump instead of the following optimizer message:
"IGYOP3124-W This statement may cause a program exception at

execution time."

This situation does not represent a compiler error. Using the NODUMP option will
allow the compiler to issue message IGYOP3124-W and continue processing.

RELATED TASKS

Language Environment Debugging Guide (Understanding abend codes)

RELATED REFERENCES

“Conflicting compiler options” on page 304

DYNAM
Use DYNAM to cause nonnested, separately compiled programs invoked through the
CALL literal statement to be loaded for CALL, and deleted for CANCEL, dynamically at
run time.

Note: The DYNAM option can be overridden for particular CALL statements by using
the CALLINTERFACE directive.

CALL identifier statements always result in a runtime load of the target program and
are not affected by this option.

DYNAM option syntax

►►
NODYNAM
DYNAM ►◄

Default is: NODYNAM

Abbreviations are: DYN|NODYN

Chapter 17. Compiler options 323

|
|

Restriction: The DYNAM compiler option must not be used in the following cases:
v COBOL programs that are processed by the CICS translator or the CICS compiler

option
v COBOL programs that have EXEC SQL statements and are run under CICS or

DB2 call attach facility (CAF)

If your COBOL program calls programs that have been linked as dynamic link
libraries (DLLs), you must not use the DYNAM option. You must instead compile the
program with the NODYNAM and DLL options.

RELATED TASKS

“Making both static and dynamic calls” on page 481
“Choosing the DYNAM or NODYNAM compiler option” on page 451

RELATED REFERENCES

“Conflicting compiler options” on page 304
CALLINTERFACE (Enterprise COBOL Language Reference)

EXIT
Use the EXIT option to provide user-supplied modules in place of various compiler
functions.

For compiler input, use the INEXIT and LIBEXIT suboptions to provide modules in
place of SYSIN and SYSLIB (or copy library), respectively. For compiler output, use
the PRTEXIT suboption to provide a module in place of SYSPRINT.

To provide a module that will be called for each SYSADATA record immediately
after the record has been written out to the file, use the ADEXIT suboption.

To customize compiler messages (change their severity or suppress them, including
converting FIPS (FLAGSTD) messages to diagnostic messages to which you assign a
severity), use the MSGEXIT suboption. The module that you provide to customize
the messages will be called each time the compiler issues a diagnostic message or a
FIPS message.

324 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

EXIT option syntax

►►

▼

NOEXIT

EXIT()
INEXIT(mod1)

str1,
NOINEXIT
LIBEXIT(mod2)

str2,
NOLIBEXIT
PRTEXIT(mod3)

str3,
NOPRTEXIT
ADEXIT(mod4)

str4,
NOADEXIT
MSGEXIT(mod5)

str5,
NOMSGEXIT

►◄

Default is: NOEXIT

Abbreviations are: NOEX|EX(INX|NOINX, LIBX|NOLIBX, PRTX|NOPRTX, ADX|NOADX,
MSGX|NOMSGX)

You can specify the suboptions in any order, and can separate them by either
commas or spaces. If you specify both the positive and negative form of a
suboption, the form specified last takes effect. If you specify the same suboption
more than once, the last one specified takes effect.

If you specify the EXIT option without specifying at least one suboption, NOEXIT
will be in effect.

You can specify the EXIT option only at invocation in the JCL PARM field (under
TSO/E, in a command argument) or at installation time. Do not specify the EXIT
option in a PROCESS (CBL) statement.

INEXIT([’str1’,]mod1)
The compiler reads source code from a user-supplied program object
(where mod1 is the module name) instead of SYSIN.

LIBEXIT([’str2’,]mod2)
The compiler obtains copybooks from a user-supplied program object
(where mod2 is the module name) instead of library-name or SYSLIB. For
use with either COPY or BASIS statements.

PRTEXIT([’str3’,]mod3)
The compiler passes printer-destined output to the user-supplied program
object (where mod3 is the module name) instead of SYSPRINT.

ADEXIT([’str4’,]mod4)
The compiler passes the SYSADATA output to the user-supplied program
object (where mod4 is the module name).

Chapter 17. Compiler options 325

MSGEXIT([’str5’,]mod5)
The compiler passes the message number, and passes the default severity
of a compiler diagnostic message, or the category (as a numeric code) of a
FIPS compiler message, to the user-supplied program object (where mod5 is
the module name).

The names mod1, mod2, mod3, mod4, and mod5 can refer to the same module.

The suboptions str1, str2, str3, str4, and str5 are character strings that are passed to
the program object. These strings are optional. They can be up to 64 characters in
length, and you must enclose them in single quotation marks. You can use any
character in the strings, but any included single quotation marks must be doubled.
Lowercase characters are folded to uppercase.

If one of str1, str2, str3, str4, or str5 is specified, that string is passed to the
appropriate user-exit module in the following format, where LL is a halfword (on a
halfword boundary) that contains the length of the string.

LL string

“Example: MSGEXIT user exit” on page 723

Compiler exit modules that are specified on the EXIT option can be implemented
either in an assembler language or in a high-level programming language such as
COBOL. However, when exits are written in a Language Environment conforming
programming language or Language Environment conforming assembler language,
the exit must be reentrant.

The Enterprise COBOL compiler automatically manages a preinitialized Language
Environment at compile time, and calls compiler exits within this environment.
Therefore, the following rules apply:
v Compiler exits are run as subprograms instead of main programs.
v Compiler exits must not include logic for explicitly initializing or terminating

Language Environment. In particular, exits must not use the RTEREUS runtime
option, the IGZERRE callable service, or the CEEPIPI callable service for
environment management.

v Compiler exits must not use the STOP RUN statement.

RELATED REFERENCES

“Conflicting compiler options” on page 304
“FLAGSTD” on page 329
Appendix D, “EXIT compiler option,” on page 711

EXPORTALL
Use EXPORTALL to instruct the compiler to automatically export the PROGRAM-ID
name and each alternate entry-point name from each program definition when the
object deck is link-edited to form a DLL.

326 Enterprise COBOL for z/OS, V5.2 Programming Guide

EXPORTALL option syntax

►►
NOEXPORTALL

EXPORTALL
►◄

Default is: NOEXPORTALL

Abbreviations are: EXP|NOEXP

With these symbols exported from the DLL, the exported program and entry-point
names can be called from programs in the root program object, in other DLL
program objects in the application, and from programs that are linked into that
DLL.

Specification of the EXPORTALL option requires that the RENT linker option also be
used.

NOEXPORTALL instructs the compiler to not export any symbols. In this case the
programs are accessible only from other routines that are link-edited into the same
program object as the COBOL program definition.

RELATED REFERENCES

“Conflicting compiler options” on page 304

FASTSRT
Use FASTSRT to let IBM DFSORT, or an equivalent product, perform sort input and
output instead of Enterprise COBOL. It applies only to sorting files by using the
format 1 SORT (that is, file SORT) statement.

FASTSRT option syntax

►►
NOFASTSRT

FASTSRT
►◄

Default is: NOFASTSRT

Abbreviations are: FSRT|NOFSRT

RELATED TASKS

“Improving sort performance with FASTSRT” on page 231

Chapter 17. Compiler options 327

|
|

FLAG
Use FLAG(x) to produce diagnostic messages at the end of the source listing for
errors of a severity level x or above.

FLAG option syntax

►►

FLAG(x)
,y

NOFLAG
►◄

Default is: FLAG(I,I)

Abbreviations are: F|NOF

x and y can be either I, W, E, S, or U.

Use FLAG(x,y) to produce diagnostic messages for errors of severity level x or
above at the end of the source listing, with error messages of severity y and above
to be embedded directly in the source listing. The severity coded for y must not be
lower than the severity coded for x. To use FLAG(x,y), you must also specify the
SOURCE compiler option.

Error messages in the source listing are set off by the embedding of the statement
number in an arrow that points to the message code. The message code is followed
by the message text. For example:

000413 MOVE CORR WS-DATE TO HEADER-DATE

==000413==> IGYPS2121-S " WS-DATE " was not defined as a data-name. . . .

When FLAG(x,y) is in effect, messages of severity y and above are embedded in the
listing after the line that caused the message. (See the related reference below for
information about messages for exceptions.)

Use NOFLAG to suppress error flagging. NOFLAG does not suppress error messages for
compiler options.

Embedded messages

v Embedding level-U messages is not recommended. The specification of
embedded level-U messages is accepted, but does not produce any messages in
the source.

v The FLAG option does not affect diagnostic messages that are produced before
the compiler options are processed.

v Diagnostic messages that are produced during processing of compiler options,
CBL or PROCESS statements, or BASIS, COPY, or REPLACE statements are not
embedded in the source listing. All such messages appear at the beginning of
the compiler output.

328 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Messages that are produced during processing of the *CONTROL or *CBL statement
are not embedded in the source listing.

RELATED REFERENCES

“Messages and listings for compiler-detected errors” on page 280

FLAGSTD
Use FLAGSTD to specify the level or subset of the 85 COBOL Standard to be
regarded as conforming, and to get informational messages about the 85 COBOL
Standard elements that are included in your program.

You can specify any of the following items for flagging:
v A selected Federal Information Processing Standard (FIPS) COBOL subset
v Any of the optional modules
v Obsolete language elements
v Any combination of subset and optional modules
v Any combination of subset and obsolete elements
v IBM extensions (these are flagged any time that FLAGSTD is specified, and

identified as "nonconforming nonstandard")

FLAGSTD option syntax

►►
NOFLAGSTD

FLAGSTD(x)
yy ,O

►◄

Default is: NOFLAGSTD

Abbreviations are: None

x specifies the subset of the 85 COBOL Standard to be regarded as conforming:

M Language elements that are not from the minimum subset are to be
flagged as "nonconforming standard."

I Language elements that are not from the minimum or the intermediate
subset are to be flagged as "nonconforming standard."

H The high subset is being used and elements will not be flagged by subset.
Elements that are IBM extensions will be flagged as "nonconforming
Standard, IBM extension."

yy specifies, by a single character or combination of any two, the optional modules
to be included in the subset:

D Elements from debug module level 1 are not flagged as "nonconforming
standard."

N Elements from segmentation module level 1 are not flagged as
"nonconforming standard."

Chapter 17. Compiler options 329

S Elements from segmentation module level 2 are not flagged as
"nonconforming standard."

If S is specified, N is included (N is a subset of S).

O (the letter) specifies that obsolete language elements are flagged as "obsolete."

The informational messages appear in the source program listing, and identify:
v The element as "obsolete," "nonconforming standard," or "nonconforming

nonstandard" (a language element that is both obsolete and nonconforming is
flagged as obsolete only)

v The clause, statement, or header that contains the element
v The source program line and beginning location of the clause, statement, or

header that contains the element
v The subset or optional module to which the element belongs

FLAGSTD requires the standard set of reserved words.

In the following example, the line number and column where a flagged clause,
statement, or header occurred are shown with the associated message code and
text. After that is a summary of the total number of flagged items and their type.

LINE.COL CODE FIPS MESSAGE TEXT

IGYDS8211 Comment lines before "IDENTIFICATION DIVISION":
nonconforming nonstandard, IBM extension to
ANS/ISO 1985.

11.14 IGYDS8111 "GLOBAL clause": nonconforming standard, ANS/ISO
1985 high subset.

59.12 IGYPS8169 "USE FOR DEBUGGING statement": obsolete element
in ANS/ISO 1985.

FIPS MESSAGES TOTAL STANDARD NONSTANDARD OBSOLETE

3 1 1 1

You can convert FIPS informational messages into diagnostic messages, and can
suppress FIPS messages, by using the MSGEXIT suboption of the EXIT compiler
option. For details, see the related reference about the processing of MSGEXIT, and
see the related task.

RELATED TASKS

“Customizing compiler-message severities” on page 720

RELATED REFERENCES

“Conflicting compiler options” on page 304
“Processing of MSGEXIT” on page 719

330 Enterprise COBOL for z/OS, V5.2 Programming Guide

HGPR
The HGPR option controls the compiler usage of the 64-bit registers provided by
z/Architecture processors.

HGPR option syntax

►►
PRESERVE

HGPR(NOPRESERVE) ►◄

Default is: HGPR(PRESERVE)

Abbreviations are: None

The Enterprise COBOL compiler uses the 64-bit width of the z/Architecture
General Purpose Registers (GPRs). HGPR stands for "High-halves of 64-bit GPRs",
which means the use of native 64-bit instructions.

HGPR(PRESERVE)
If you specify HGPR(PRESERVE), the compiler preserves the high halves of
the 64-bit GPRs that a program is using, by saving them in the prolog for
the function and restoring them in the epilog. The PRESERVE suboption is
necessary only if the caller of the program is not Enterprise COBOL,
Enterprise PL/I, or z/OS XL C/C++ compiler-generated code.

HGPR(NOPRESERVE)
If you specify HGPR(NOPRESERVE), the compiler omits preserving the
high-halves of the 64-bit GPRs that a program is using, which improves
performance.

INITCHECK
Use the INITCHECK option to have the compiler check for uninitialized data items
and issue warning messages when they are used without being initialized.

INITCHECK option syntax

►►
NOINITCHECK

INITCHECK
►◄

Default is: NOINITCHECK

Abbreviations are: IC|NOIC

NOINITCHECK

If NOINITCHECK is in effect, the compiler will not issue any warning
messages for uninitialized data items.

Chapter 17. Compiler options 331

|

|
|

|

|

|||||||||||||||

|
||

|

|

|

|
|

INITCHECK
If INITCHECK is in effect, the compiler will check for uninitialized data items
and issue a warning message when a data item is used without being
initialized. However, if a data item is possibly initialized when it is used in
a statement, no warning message will be issued.

Restrictions:

v The INITCHECK option analyzes data items in the WORKING-STORAGE
SECTION and LOCAL-STORAGE SECTION only. In particular, it does not
analyze data items in the LINKAGE SECTION or FILE SECTION.

v The INITCHECK option does not track external or global data items.
v The INITCHECK option does not track individual elements in tables

independently. Instead, if one element of a table is initialized, all
corresponding elements of the table are considered to be initialized. This
applies to both fixed-length and variable-length tables.

v The INITCHECK analysis does not track the initialization of items if it
happens through a pointer. For example, if a pointer to an uninitialized
data item is created by using ADDRESS-OF, and that data item is
initialized through that pointer, the INITCHECK analysis might also issue a
warning message.

v For uninitialized data items being passed BY REFERENCE, no warning
messages will be issued. However, the INITCHECK analysis will warn
about uninitialized data items being passed BY CONTENT and BY VALUE.

v The INITCHECK option does not track individual bytes of
reference-modified data items accurately. Instead, if a data item is
accessed by using a reference modification, this data item is considered
to be initialized.

v The INITCHECK option is forced off when OPTIMIZE(0) is used.

Note:

v All of the INITCHECK analyses occur at compile time only.
v The INITCHECK option has no effect on the behavior or performance of

the program after it has been compiled.
v Use of the INITCHECK option might increase compile time and memory

consumption.

INTDATE
INTDATE(ANSI) instructs the compiler to use the 85 COBOL Standard starting date
for integer dates used with date intrinsic functions. Day 1 is Jan 1, 1601.
INTDATE(LILIAN) instructs the compiler to use the Language Environment Lilian
starting date for integer dates used with date intrinsic functions. Day 1 is Oct 15,
1582.

INTDATE option syntax

►►
ANSI

INTDATE(LILIAN) ►◄

332 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|

|

|
|

|
|

|

Default is: INTDATE(ANSI)

Abbreviations are: None

With INTDATE(LILIAN), the date intrinsic functions return results that are
compatible with the Language Environment date callable services.

Usage note: When INTDATE(LILIAN) is in effect, CEECBLDY is not usable because
you have no way to turn an ANSI integer into a meaningful date by using either
intrinsic functions or callable services. If you code a CALL literal statement with
CEECBLDY as the target of the call when INTDATE(LILIAN) in effect, the compiler
diagnoses this and converts the call target to CEEDAYS.

RELATED TASKS

“Using date callable services” on page 60

LANGUAGE
Use the LANGUAGE option to select the language in which compiler output will be
printed. The information that will be printed in the selected language includes
diagnostic messages, source listing page and scale headers, FIPS message headers,
message summary headers, compilation summary, and headers and notations that
result from the selection of certain compiler options (MAP, XREF, VBREF, and
FLAGSTD).

LANGUAGE option syntax

►► LANGUAGE(name) ►◄

Default is: LANGUAGE(ENGLISH)

Abbreviations are: LANG(EN|UE|JA|JP)

name specifies the language for compiler output messages. Possible values for the
LANGUAGE option are shown in the table below.

Table 47. Values of the LANGUAGE compiler option

Name Abbreviation1 Output language

ENGLISH EN Mixed-case English (the default)

JAPANESE JA, JP Japanese, using the Japanese character set

UENGLISH2 UE Uppercase English

1. If your installation's system programmer has provided a language other than those
described, you must specify at least the first two characters of this other language's
name.

2. To specify a language other than UENGLISH, the appropriate language feature must be
installed.

Chapter 17. Compiler options 333

If the LANGUAGE option is changed at compile time (using CBL or PROCESS
statements), some initial text will be printed using the language that was in effect
at the time the compiler was started.

NATLANG: The NATLANG runtime option allows you to control the national language
to be used for the runtime environment, including error messages, month names,
and day-of-the-week names. The LANGUAGE compiler option and the NATLANG
runtime option act independently of each other. You can use them together with
neither taking precedence over the other.

LINECOUNT
Use LINECOUNT(nnn) to specify the number of lines to be printed on each page of
the compilation listing, or use LINECOUNT(0) to suppress pagination.

LINECOUNT option syntax

►► LINECOUNT(nnn) ►◄

Default is: LINECOUNT(60)

Abbreviations are: LC

nnn must be an integer between 10 and 255, or 0.

If you specify LINECOUNT(0), no page ejects are generated in the compilation listing.

The compiler uses three lines of nnn for titles. For example, if you specify
LINECOUNT(60), 57 lines of source code are printed on each page of the output
listing.

LIST
Use the LIST compiler option to produce a listing of the assembler-language
expansion of your source code.

LIST option syntax

►►
NOLIST

LIST
►◄

Default is: NOLIST

Abbreviations are: None

These items will also be written to the output listing:

334 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Constant area
v Program prolog areas (PPA1, PPA2, PPA3, PPA4)
v Time stamp and compiler version information
v Compiler options and program information
v Base locator table
v External symbols dictionary
v Static maps
v Automatic maps

The output is generated if:
v You specify the COMPILE option, or the NOCOMPILE(x) option is in effect and an

error of level x or higher does not occur.
v You do not specify the OFFSET option.

If you want to limit the assembler listing output, use *CONTROL (or *CBL) LIST or
NOLIST statements in the PROCEDURE DIVISION. Source statements that follow a
*CONTROL NOLIST statement are not included in the listing until a subsequent
*CONTROL LIST statement switches the output back to normal LIST format.

RELATED TASKS

“Getting listings” on page 395

RELATED REFERENCES

“Conflicting compiler options” on page 304
*CONTROL (*CBL) statement (Enterprise COBOL Language Reference)

MAP
Use the MAP option to create a listing of the DATA DIVISION items and all implicitly
declared items. You can also specify whether hexadecimal or decimal offsets are
shown for MAP output in the listing.

MAP option syntax

►►
NOMAP

MAP
HEX

(DEC)

►◄

Default is: NOMAP

Suboption default is: MAP(HEX) if MAP is specified with no suboption

Abbreviations are: None

HEX If you specify MAP(HEX), data item offsets within groups will be in
hexadecimal notation.

Chapter 17. Compiler options 335

|
|
|

|

|

|||||||||||||||||||||||||||||

|
||

|

|

||
|

DEC If you specify MAP(DEC), data item offsets within groups will be in decimal
notation.

The output includes the following items:
v DATA DIVISION map
v Nested program structure map, and program attributes
v Size of the program's WORKING-STORAGE and LOCAL-STORAGE and its location in the

object code if the program is compiled with the NORENT option

If you want to limit the MAP output, use *CONTROL MAP or NOMAP statements in the
DATA DIVISION. Source statements that follow *CONTROL NOMAP are not included in
the listing until a *CONTROL MAP statement switches the output back to normal MAP
format. For example:
*CONTROL NOMAP *CBL NOMAP

01 A 01 A
02 B 02 B

*CONTROL MAP *CBL MAP

When the MAP(HEX|DEC) option is in effect, you also get an embedded MAP report in
the source code listing. The condensed MAP information is shown to the right of
data-name definitions in the WORKING-STORAGE SECTION, FILE SECTION,
LOCAL-STORAGE SECTION, and LINKAGE SECTION of the DATA DIVISION. When both
XREF data and an embedded MAP summary are on the same line, the embedded MAP
summary is listed first.

“Example: MAP output” on page 400

RELATED CONCEPTS

Chapter 19, “Debugging,” on page 385

RELATED TASKS

“Getting listings” on page 395

RELATED REFERENCES

*CONTROL (*CBL) statement (Enterprise COBOL Language Reference)

MAXPCF
Use the MAXPCF option to specify a maximum program complexity factor value. The
program complexity factor (PCF) is computed by the compiler and the computed
value is in the listing file. If the PCF of your program exceeds the maximum value,
the compiler will automatically reduce the optimization level to speed up the
compilation and use less storage. Therefore, when you compile a suite of
programs, you do not have to specify an OPTIMIZE option value for each program.

MAXPCF option syntax

►► MAXPCF(n) ►◄

Default is: MAXPCF(60000)

336 Enterprise COBOL for z/OS, V5.2 Programming Guide

||
|

|

|

Abbreviations are: None

n must be an integer of 0 - 999999.

The aspects of the program taken into consideration when computing the
complexity factor include:
v The number of COBOL statements in the PROCEDURE DIVISION, including

generated statements from the CICS, SQL or SQLIMS options, and the expansion of
COPY and REPLACE statements

v Initialization operations for WORKING-STORAGE or LOCAL-STORAGE data items with
value clauses

v Operations for variable-length groups or subgroups in the DATA DIVISION, which
compute their size at run time

Note: PCF is not a metric to measure how complex a program is. It is merely a
count of COBOL items that can cause problems for optimization when there are a
lot of them. To measure program complexity, you should use something like the
Metrics feature provided by IBM Developer for z Systems®.

For large and complex programs, you can use the MAXPCF option to set a threshold
on the program complexity that the compiler attempts optimize. Lower the
MAXPCF value to reduce the optimization level, hence the compiler needs less
memory and compilation time. Raise the MAXPCF value to attempt to optimize
the programs at the cost of longer compilation time.

If you specify MAXPCF(0), no limit is enforced on the complexity of the program,
and the MAXPCF option has no effect.

If you specify MAXPCF(n) and n is not zero, when the program complexity factor
exceeds n, any specification of OPTIMIZE(1) or OPTIMIZE(2) is reset to OPTIMIZE(0),
and a warning message is generated.

If the COBOL source file contains a sequence of source programs (a batch compile),
the MAXPCF limit is applied on a per program basis.

Notes:

v If the OPTIMIZE(1) or OPTIMIZE(2) option is set at installation time as a fixed,
nonoverridable option, then MAXPCF(n) with a nonzero n is an option conflict. In
this case, the OPTIMIZE option takes precedence and the MAXPCF(0) option is
forced on.

v If you attempt to optimize a program larger than the default threshold by
raising the value of MAXPCF to n where n is greater than the default, or by
specifying MAXPCF(0), the compiler might take excessive time to compile or fail
to compile because of insufficient memory.

RELATED REFERENCES

“OPTIMIZE” on page 346

MDECK
The MDECK compiler option specifies that a copy of the updated input source after
library processing (that is, the result of COPY, BASIS, REPLACE, EXEC SQL INCLUDE,
and EXEC SQLIMS INCLUDE statements) is written to a file.

Chapter 17. Compiler options 337

|
|
|
|

https://www.ibm.com/support/knowledgecenter/SSQ2R2_14.1.0/com.ibm.rsar.analysis.metrics.cobol.doc/topics/t_cobol_metrics.html

If Enterprise COBOL is running under z/OS UNIX, the MDECK output is written in
the current directory to a file that has the same name as the COBOL source file and
a suffix of .dek. For Enterprise COBOL running under TSO or batch, the MDECK
output is written to the data set defined by the SYSMDECK DD allocation, which must
specify an MVS data set that has RECFM F or FB and an LRECL of 80 bytes.

Note: When compiling under z/OS TSO or batch, the COBOL compiler requires
the SYSMDECK data set allocation for all compilations, no matter if you specify the
MDECK or NOMDECK option:
v If you specify the MDECK option, the SYSMDECK DD allocation must specify a

permanent data set.
v If you specify the NOMDECK option, the SYSMDECK DD allocation can specify either

a temporary utility data set or a permanent data set.

MDECK option syntax

►►
NOMDECK

MDECK
COMPILE

(NOCOMPILE)

►◄

Default is: NOMDECK

Abbreviations are: NOMD|MD|MD(C|NOC)

Option specification:

You cannot specify the MDECK option in a PROCESS (or CBL) statement. You can
specify it only in one of the following ways:
v In the PARM parameter of JCL
v As a cob2 command option
v As an installation default
v In the COBOPT environment variable

Suboptions:

v When MDECK(COMPILE) is in effect, compilation continues normally after library
processing and generation of the MDECK output file have completed, subject to the
settings of the COMPILE|NOCOMPILE, DECK|NODECK, and OBJECT|NOOBJECT compiler
options.

v When MDECK(NOCOMPILE) is in effect, compilation is terminated after library
processing has completed and the expanded source program file has been
written. The compiler does no further syntax checking or code generation
regardless of the settings of the COMPILE, DECK, and OBJECT compiler options.

If you specify MDECK with no suboption, MDECK(COMPILE) is implied.

Contents of the MDECK output file:

338 Enterprise COBOL for z/OS, V5.2 Programming Guide

If you use the MDECK option with programs that contain EXEC CICS, EXEC SQL, or
EXEC SQLIMS statements, these EXEC statements are included in the MDECK output as
is. However, if you compile using the SQL or SQLIMS option, the corresponding EXEC
SQL INCLUDE or EXEC SQLIMS INCLUDE statements are expanded in the MDECK output.

CBL, PROCESS, *CONTROL, and *CBL card images are passed to the MDECK output file in
the proper locations.

For a batch compilation (multiple COBOL source programs in a single input file), a
single MDECK output file that contains the complete expanded source is created.

Any SEQUENCE compiler-option processing is reflected in the MDECK file.

COPY statements are included in the MDECK file as comments.

RELATED TASKS

“Starting the compiler from an assembler program” on page 265
“Defining the library-processing output file (SYSMDECK)” on page 272

RELATED REFERENCES

“Conflicting compiler options” on page 304
Chapter 18, “Compiler-directing statements,” on page 381

NAME
Use NAME to generate a link-edit NAME card for each object module. You can also use
NAME to generate names for each program object when you are doing batch
compilations.

When NAME is specified, a NAME card is appended to each object module that is
created. Program object names are formed using the rules for forming module
names from PROGRAM-ID statements.

NAME option syntax

►►
NONAME

NAME
NOALIAS

(ALIAS)

►◄

Default is: NONAME, or NAME(NOALIAS) if only NAME is specified

Abbreviations are: None

If you specify NAME(ALIAS), and your program contains ENTRY statements, a
link-edit ALIAS card is generated for each ENTRY statement.

RELATED REFERENCES

PROGRAM-ID paragraph (Enterprise COBOL Language Reference)

Chapter 17. Compiler options 339

NSYMBOL
The NSYMBOL option controls the interpretation of the N symbol used in literals and
PICTURE clauses, indicating whether national or DBCS processing is assumed.

NSYMBOL option syntax

►►
NATIONAL

NSYMBOL(DBCS) ►◄

Default is: NSYMBOL(NATIONAL)

Abbreviations are: NS(NAT|DBCS)

With NSYMBOL(NATIONAL):
v Data items defined with a PICTURE clause that consists only of the symbol N

without the USAGE clause are treated as if the USAGE NATIONAL clause is specified.
v Literals of the form N". . ." or N’. . .’ are treated as national literals.

With NSYMBOL(DBCS):
v Data items defined with a PICTURE clause that consists only of the symbol N

without the USAGE clause are treated as if the USAGE DISPLAY-1 clause is specified.
v Literals of the form N". . ." or N’. . .’ are treated as DBCS literals.

The NSYMBOL(DBCS) option provides compatibility with previous releases of IBM
COBOL, and the NSYMBOL(NATIONAL) option makes the handling of the above
language elements consistent with the 2002 COBOL Standard in this regard.

NSYMBOL(NATIONAL) is recommended for applications that use Unicode data or
object-oriented syntax for Java interoperability.

RELATED REFERENCES

“Conflicting compiler options” on page 304

NUMBER
Use the NUMBER compiler option if you have line numbers in your source code and
want those numbers to be used in error messages and SOURCE, MAP, LIST, and XREF
listings.

NUMBER option syntax

►►
NONUMBER

NUMBER
►◄

340 Enterprise COBOL for z/OS, V5.2 Programming Guide

Default is: NONUMBER

Abbreviations are: NUM|NONUM

If you request NUMBER, the compiler checks columns 1 through 6 to make sure that
they contain only numbers and that the numbers are in numeric collating
sequence. (In contrast, SEQUENCE checks the characters in these columns according
to EBCDIC collating sequence.) When a line number is found to be out of
sequence, the compiler assigns to it a line number with a value one higher than the
line number of the preceding statement. The compiler flags the new value with
two asterisks and includes in the listing a message indicating an out-of-sequence
error. Sequence-checking continues with the next statement, based on the newly
assigned value of the previous line.

If you use COPY statements and NUMBER is in effect, be sure that your source
program line numbers and the copybook line numbers are coordinated.

If you are doing a batch compilation and NUMBER is in effect, all programs in the
batch compile will be treated as a single input file. The sequence numbers of the
entire input file must be in ascending order.

Use NONUMBER if you do not have line numbers in your source code, or if you want
the compiler to ignore the line numbers you do have in your source code. With
NONUMBER in effect, the compiler generates line numbers for your source statements
and uses those numbers as references in listings.

NUMCHECK
The NUMCHECK compiler option tells the compiler whether to generate extra code to
validate data items when they are used as sending data items. For zoned decimal
(numeric USAGE DISPLAY) and packed decimal (COMP-3) data items, the compiler
generates implicit numeric class tests for each sending field. For binary data items,
the compiler generates SIZE ERROR checking to see whether the data item has more
digits than its PICTURE clause allows.

NUMCHECK option syntax

►►

▼

NONUMCHECK

NUMCHECK
,

(ZON)
(ALPHNUM)

NOALPHNUM
NOZON
PAC
NOPAC
BIN
NOBIN
MSG
ABD

►◄

Chapter 17. Compiler options 341

|

|
|
|
|
|
|

|

|

|||

|
||

Default is: NONUMCHECK

Suboption defaults are:
v If no suboption is specified, defaults are ZON(ALPHNUM), PAC, BIN and MSG. For

example, NUMCHECK has the same effect as NUMCHECK(ZON(ALPHNUM),PAC,BIN,MSG).
v If no datatype suboption is specified, default datatype suboptions are

ZON(ALPHNUM), PAC, and BIN. For example, NUMCHECK(ABD) shas the same effect
as NUMCHECK(ZON(ALPHNUM),PAC,BIN,ABD).

v If only one datatype suboption is specified, defaults are NOZON, NOPAC, NOBIN, and
MSG. For example, NUMCHECK(BIN) has the same effect as
NUMCHECK(NOZON,NOPAC,BIN,MSG).

v If all datatype suboptions are specified with NO, then the listing will show
NONUMCHECK. For example, NUMCHECK(NOZON,NOPAC,NOBIN) has the same effect as
NONUMCHECK.

Abbreviations are: NONC | NC

ZON [(ALPHNUM | NOALPHNUM)] | NOZON

Specifying ZON or ZON(ALPHNUM) causes the compiler to generate code for an
implicit numeric class test for zoned decimal (numeric USAGE DISPLAY) data
items that are used as sending data items in COBOL statements.

Specifying ZON(NOALPHNUM) causes the compiler to generate code for an
implicit numeric class test for zoned decimal (numeric USAGE DISPLAY)
data items that are used as sending data items in COBOL statements,
except when they are used in a comparison with an alphanumeric data
item, alphanumeric literal or alphanumeric figurative constant.

Receivers are not checked, unless they are both a sender and a receiver,
such as data item B in the following sample statements:
ADD A TO B

DIVIDE A INTO B

COMPUTE B = A + B

INITIALIZE B REPLACING ALPHANUMERIC BY B

This checking is done before the data is used in each statement:
v If the data is NOT NUMERIC, either a warning message for

NUMCHECK(ZON,MSG) or a terminating message for NUMCHECK(ZON,ABD) is
issued.

v If the data is NUMERIC, the external behavior of the statement is the same
as NUMCHECK(NOZON), other than being slower.

PAC | NOPAC

Specifying PAC causes the compiler to generate code for an implicit
numeric class test for packed decimal (COMP-3) data items that are used as
sending data items in COBOL statements. For packed decimal data items
that have an even number of digits, the unused bits are checked for ones.

Restriction: For CALL statements, NUMCHECK(ZON) and NUMCHECK(PAC) check
BY CONTENT data items that are zoned decimal or packed decimal, but they
do not check BY REFERENCE parameters. (Neither zoned decimal nor packed
decimal data items can be specified in a BY VALUE phrase.)

BIN | NOBIN
When TRUNC(OPT) or TRUNC(STD) is in effect, specifying NUMCHECK(BIN)
causes the compiler to generate code similar to ON SIZE ERROR to test if

342 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

|
|

|
|
|

|
|
|

|
|
|

|

|

|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|
|
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|

binary data items contents are bigger than the PICTURE clause. This extra
code will be generated only for binary data items that are used as sending
data items, and COMP-5 data items will not get this ON SIZE ERROR code
generated.

NUMCHECK(BIN) has no effect if TRUNC(BIN) is in effect.

MSG | ABD
Determines whether the message issued for invalid data is a warning level
message to continue processing or a terminating level message to cause an
abend:
v If MSG is in effect, a runtime warning message with the line number, data

item name, data item content, and program name is issued.
v If ABD is in effect, a terminating message is issued that causes an abend.

Performance considerations: NUMCHECK is much slower than NONUMCHECK, depending
on how many zoned decimal (numeric USAGE DISPLAY) data items, packed
decimal (COMP-3) data items, and binary data items are used in a COBOL
program.

Note: In Enterprise COBOL V5.2 with PTF for APAR PI81006 installed, ZONECHECK
is deprecated but is tolerated for compatibility, and it is replaced by
NUMCHECK(ZON(ALPHNUM)).

RELATED TASKS

“Checking for incompatible data (numeric class test)” on page 54

RELATED REFERENCES

“NUMPROC”
“TRUNC” on page 368
“ZONECHECK” on page 375
“ZONEDATA” on page 377

NUMPROC
Use NUMPROC(NOPFD) if your internal decimal and zoned decimal data might use
nonpreferred signs.

NUMPROC option syntax

►►
NOPFD

NUMPROC(PFD) ►◄

Default is: NUMPROC(NOPFD)

Abbreviations are: None

The compiler accepts any valid sign configuration: X'A', X'B', X'C', X'D', X'E', or
X'F'. NUMPROC(NOPFD) is the recommended option in most cases.

Chapter 17. Compiler options 343

|
|
|
|

|

|
|
|
|

|
|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

Performance considerations: NUMPROC(PFD) improves the performance of
processing internal decimal and zoned decimal data. Use this option however only
if your numeric data agrees exactly with the following IBM system standards:
v Zoned decimal, unsigned: High-order 4 bits of the sign byte contain X'F'.
v Zoned decimal, signed overpunch: High-order 4 bits of the sign byte contain

X'C' if a number is positive or 0, and X'D' if it is not.
v Zoned decimal, separate sign: Separate sign contains the character '+' if a

number is positive or 0, and '-' if it is not.
v Internal decimal, unsigned: Low-order 4 bits of the low-order byte contain X'F'.
v Internal decimal, signed: Low-order 4 bits of the low-order byte contain X'C' if

a number is positive or 0, and X'D' if it is not.

Data produced by COBOL arithmetic statements conforms to the IBM system
standards described above. However, using REDEFINES and group moves could
change data so that it no longer conforms. If you use NUMPROC(PFD), use the
INITIALIZE statement to initialize data fields, rather than using group moves.

Using NUMPROC(PFD) can affect class tests for numeric data. Use NUMPROC(NOPFD) if a
COBOL program calls programs written in PL/I or FORTRAN.

Sign representation is affected not only by the NUMPROC option, but also by the
NUMCLS installation option.

RELATED TASKS

“Checking for incompatible data (numeric class test)” on page 54

RELATED REFERENCES

“Sign representation of zoned and packed-decimal data” on page 53

OBJECT
Use OBJECT to write the generated object code to a file to be used as input for the
binder.

OBJECT option syntax

►►
OBJECT

NOOBJECT
►◄

Default is: OBJECT

Abbreviations are: OBJ|NOOBJ

If you specify OBJECT, include a SYSLIN DD statement in your JCL for compilation.

The only difference between DECK and OBJECT is in the routing of output to the data
sets:
v DECK output goes to the data set associated with ddname SYSPUNCH.
v OBJECT output goes to the data set associated with ddname SYSLIN.

344 Enterprise COBOL for z/OS, V5.2 Programming Guide

Use the option that your installation guidelines recommend.

RELATED REFERENCES

“Conflicting compiler options” on page 304

OFFSET
Use OFFSET to produce a condensed PROCEDURE DIVISION listing.

OFFSET option syntax

►►
NOOFFSET

OFFSET
►◄

Default is: NOOFFSET

Abbreviations are: OFF|NOOFF

With OFFSET, the condensed PROCEDURE DIVISION listing will contain line numbers,
statement references, and the location of the first instruction generated for each
statement. In addition, the listing also shows:
v Global tables
v Literal pools
v Size of the program's WORKING-STORAGE, and its location in the object code if the

program is compiled with the NORENT option

RELATED REFERENCES

“Conflicting compiler options” on page 304

OPTFILE
Use OPTFILE to enable the specifying of COBOL compiler options in a data set.
Using a compiler-option data set circumvents the 100-character limit on options
specified in a JCL PARM string.

OPTFILE option syntax

►► OPTFILE ►◄

Default is: None

Abbreviations are: None

Chapter 17. Compiler options 345

You can specify OPTFILE as a compiler invocation option or in the PROCESS or CBL
statement in your COBOL source program. OPTFILE cannot be specified as an
installation default.

OPTFILE is ignored if you compile using the cob2 command in the z/OS UNIX
environment. (In that environment, the COBOPT environment variable provides a
capability that is comparable to OPTFILE.)

If OPTFILE is in effect, compiler options are read from the data set that you identify
in a SYSOPTF DD statement. A SYSOPTF data set must have RECFM F or FB and an
LRECL of 80 bytes. For further details about the format of a SYSOPTF data set, see the
related task below about defining a compiler-option data set.

The precedence of options in the SYSOPTF data set is determined by where you
specify the OPTFILE option. For example, if you specify OPTFILE in the invocation
PARM string, an option specified later in the PARM string supersedes any option
specified in the SYSOPTF data set that conflicts with it.

(Conceptually, OPTFILE in an options specification is replaced with the options that
are in the SYSOPTF data set; then the usual rules about precedence of compiler
options and conflicting compiler options apply.)

If you start the COBOL compiler from within an assembler program, you can use
the alternate ddname list to specify a ddname to be used instead of SYSOPTF to
identify the compiler-option data set.

RELATED TASKS

“Starting the compiler from an assembler program” on page 265
“Defining a compiler-option data set (SYSOPTF)” on page 269
“Specifying compiler options under z/OS” on page 272
Chapter 15, “Compiling under z/OS UNIX,” on page 283

RELATED REFERENCES

“Conflicting compiler options” on page 304

OPTIMIZE
Use OPTIMIZE to reduce the run time of your object program. Optimization might
also reduce the amount of storage your object program uses.

OPTIMIZE option syntax

►►
0

OPTIMIZE (1)
2

►◄

Default is: OPTIMIZE(0)

Abbreviations are: OPT(0), OPT(1), or OPT(2)

346 Enterprise COBOL for z/OS, V5.2 Programming Guide

Optimizations are performed under the assumption that the program and data are
valid, given the compiler options. For example, external decimal data that has
USAGE DISPLAY must be valid unless ZONEDATA(MIG) is used to allow invalid zone
bits for comparisons. If the program or data is invalid, programs might behave
differently at different levels of optimization or between different versions of
Enterprise COBOL.
v OPTIMIZE(0) specifies limited optimizations, which result in the shortest

compilation time. When the TEST option is specified, full debug capabilities are
available.

v OPTIMIZE(1) specifies optimizations that improve application runtime
performance. Optimizations at this level include basic inlining, strength
reduction, simplification of complex operations into equivalent simpler
operations, removal of some unreachable code and block rearrangement. Also,
OPTIMIZE(1) includes some intrablock optimizations such as common
subexpression elimination and value propagation. When the TEST option is
specified, most debug capabilities are available.

v OPTIMIZE(2) specifies further optimizations, which include more aggressive
simplifications and instruction scheduling. Also, some interblock optimizations
such as global value propagation and loop invariant code motion are included.
When the TEST option is specified, some debug capabilities are available.

When OPTIMIZE(1) or OPTIMIZE(2) is used without the TEST compiler option, care
must be taken with user-written condition handlers registered via the Language
Environment service CEEHDLR. In particular, if a condition handler accesses data
items that are not defined local to the condition handler program themselves (for
example, data items defined in the application as EXTERNAL), such data items must
be defined with the VOLATILE clause to ensure that the handler uses the latest value
of the data item, or the condition handler program can be compiled with the TEST
compiler option. The use of the VOLATILE clause is preferred over the use of the
TEST option because the use of the TEST option can reduce optimization for the
entire program, while VOLATILE localizes the reduced optimization.

For more information about the VOLATILE clause, see VOLATILE clause in the
Enterprise COBOL Language Reference.

Note: In Enterprise COBOL V5, the NOOPTIMIZE, OPTIMIZE, OPTIMIZE(STD), and
OPTIMIZE(FULL) options are removed but are tolerated for compatibility. If one of
those options is specified, it is mapped to the new option or options as follows:

Table 48. Mapping of removed options to new options

Removed options New options

NOOPTIMIZE OPTIMIZE(0)

OPTIMIZE OPTIMIZE(1)

OPTIMIZE(STD) OPTIMIZE(1)

OPTIMIZE(FULL) OPTIMIZE(1) and STGOPT

RELATED CONCEPTS

“Optimization” on page 667

RELATED TASKS

“Writing routines for handling errors” on page 250

Chapter 17. Compiler options 347

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

RELATED REFERENCES

“Conflicting compiler options” on page 304
“MAXPCF” on page 336
“TEST” on page 364
“STGOPT” on page 362
VOLATILE clause (Enterprise COBOL Language Reference)

OUTDD
Use OUTDD to specify that you want DISPLAY output that is directed to the system
logical output device to go to a specific ddname.

You can specify a file in the z/OS UNIX file system with the ddname named in
OUTDD. To understand where output is directed when this ddname is not allocated,
see the related task about displaying data.

OUTDD option syntax

►► OUTDD(ddname) ►◄

Default is: OUTDD(SYSOUT)

Abbreviations are: OUT

If the OUTDD compiler option and the Language Environment MSGFILE runtime
option specify the same ddname (both default to SYSOUT), DISPLAY output to the
system logical output device is written using Language Environment message
facilities.

Restriction: The OUTDD option has no effect under CICS.

RELATED TASKS

“Displaying data on the system logical output device” on page 36
“Coding COBOL programs to run under CICS” on page 429

RELATED REFERENCES

Language Environment Programming Reference (MSGFILE)

PGMNAME
The PGMNAME option controls the handling of program-names and entry-point
names.

348 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|
|
|
|

PGMNAME option syntax

►►
COMPAT

PGMNAME(LONGMIXED)
LONGUPPER

►◄

Default is: PGMNAME(COMPAT)

Abbreviations are: PGMN(LM|LU|CO)

LONGUPPER can be abbreviated as UPPER, LU, or U. LONGMIXED can be abbreviated as
MIXED, LM, or M.

PGMNAME controls the handling of names used in the following contexts:
v Program-names defined in the PROGRAM-ID paragraph
v Program entry-point names in the ENTRY statement
v Program-name references in:

– CALL statements that reference nested programs, statically linked programs, or
DLLs

– SET procedure-pointer or function-pointer statements that reference statically
linked programs or DLLs

– CANCEL statements that reference nested programs

PGMNAME(COMPAT)
With PGMNAME(COMPAT), program-names are handled in a manner compatible with
older versions of COBOL compilers:
v The program-name can be up to 30 characters in length.
v All the characters used in the name must be alphabetic, digits, the hyphen, or

the underscore, except that if the program-name is a literal and is in the
outermost program, then the literal can also contain the extension characters @,
#, and $, and the first character can be an underscore.

v At least one character must be alphabetic.
v The hyphen cannot be used as the first or last character.

External program-names are processed by the compiler as follows:
v They are folded to uppercase.
v They are truncated to eight characters.
v Hyphens are translated to zero (0).
v If the first character is not alphabetic, and is not an underscore, it is converted as

follows:
– 1-9 are translated to A-I.
– Anything else is translated to J.

PGMNAME(LONGUPPER)
With PGMNAME(LONGUPPER), program-names that are specified in the PROGRAM-ID
paragraph as COBOL user-defined words must follow the normal COBOL rules for
forming a user-defined word:
v The program-name can be up to 30 characters in length.

Chapter 17. Compiler options 349

v All the characters used in the name must be alphabetic, digits, the hyphen, or
the underscore.

v At least one character must be alphabetic.
v The hyphen cannot be used as the first or last character.
v The underscore cannot be used as the first character.

When a program-name is specified as a literal, in either a definition or a reference,
then:
v The program-name can be up to 160 characters in length.
v All the characters used in the name must be alphabetic, digits, the hyphen, or

the underscore.
v At least one character must be alphabetic.
v The hyphen cannot be used as the first or last character.
v The underscore can be used in any position.

External program-names are processed by the compiler as follows:
v They are folded to uppercase.
v Hyphens are translated to zero (0).
v If the first character is not alphabetic, and is not an underscore, it is converted as

follows:
– 1-9 are translated to A-I.
– Anything else is translated to J.

Names of nested programs are folded to uppercase by the compiler but otherwise
are processed as is, without truncation or translation.

PGMNAME(LONGMIXED)
With PGMNAME(LONGMIXED), program-names are processed as is, without truncation,
translation, or folding to uppercase.

With PGMNAME(LONGMIXED), all program-name definitions must be specified using
the literal format of the program-name in the PROGRAM-ID paragraph or ENTRY
statement. The literal user for a program-name can contain any character in the
range X’41’-X’FE’.

Usage notes
v The following elements are not affected by the PGMNAME option:

– Class-names and method-names.
– System-names (assignment-names in SELECT . . . ASSIGN, and text-names or

library-names in COPY statements).
– Dynamic calls.

Dynamic calls are resolved with truncation of the program-name to eight
characters, folding to uppercase, and translation of embedded hyphens or a
leading digit.

– CANCEL of nonnested programs. Name resolution uses the same mechanism as
for a dynamic call.

v Link-edit considerations: COBOL programs that are compiled with the
PGMNAME(LONGUPPER) or PGMNAME(LONGMIXED) option must be link-edited in AMODE
31.

350 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Dynamic calls are not permitted to COBOL programs compiled with the
PGMNAME(LONGMIXED) or PGMNAME(LONGUPPER) options unless the program-name is
less than or equal to 8 bytes, and all uppercase. In addition, the name of the
program must be identical to the name of the module that contains it.

v When using the extended character set supported by PGMNAME(LONGMIXED), be
sure to use names that conform to the binder (linkage-editor) or system
conventions that apply, depending on the mechanism used to resolve the names.
Using characters such as commas or parentheses is not recommended, because
these characters are used in the syntax of binder (linkage-editor) control
statements.

RELATED REFERENCES

PROGRAM-ID paragraph (Enterprise COBOL Language Reference)

QUALIFY
QUALIFY affects qualification rules and controls whether to extend qualification
rules so that some data items that cannot be referenced under COBOL Standard
rules can be referenced.

QUALIFY option syntax

►►
COMPAT

QUALIFY(EXTEND) ►◄

Default is: QUALIFY(COMPAT)

Abbreviations are: QUA(C|E)

QUALIFY(COMPAT)
If QUALIFY(COMPAT) is in effect, references to data items must be unique.

QUALIFY(EXTEND)
If QUALIFY(EXTEND) is in effect, qualification rules are extended so that
some references that are not unique by COBOL standard rules can be
unique. If every level in the containing hierarchy of names is specified, the
set of qualifiers is called a complete set of qualifiers. If there is only one data
item with a specific complete set of qualifiers, the reference resolves to that
data item, even if the same set of qualifiers can match with another
reference as an incomplete set of qualifiers.

Example
01 A.

02 B.
03 C PIC X.
03 A PIC X.

02 C PIC X.
.
.
.

Move space to C of A *> Refers to 02 level C (unique only with QUALIFY(EXTEND))
Move space to A *> Refers to 01 level A (unique only with QUALIFY(EXTEND))
Move space to C of B of A *> Refers to 03 level C (unique by COBOL standard rules)
Move space to C of B *> Refers to 03 level C (unique by COBOL standard rules)

Chapter 17. Compiler options 351

|

|
|
|

|

|

||||||||||||||||

|
||

|

|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

QUOTE/APOST
Use QUOTE if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to
represent one or more quotation mark (") characters. Use APOST if you want the
figurative constant [ALL] QUOTE or [ALL] QUOTES to represent one or more single
quotation mark (') characters.

QUOTE/APOST option syntax

►►
QUOTE

APOST
►◄

Default is: QUOTE

Abbreviations are: Q|APOST

Delimiters: You can use either quotation marks or single quotation marks as literal
delimiters regardless of whether the APOST or QUOTE option is in effect. The
delimiter character used as the opening delimiter for a literal must be used as the
closing delimiter for that literal.

RENT
A program compiled as RENT is generated as a reentrant object program. A program
compiled as NORENT is generated as a nonreentrant object program.

Either a reentrant or a nonreentrant program can be invoked as a main program or
as a subprogram.

RENT option syntax

►►
RENT

NORENT
►◄

Default is: RENT

Abbreviations are: None

DATA and RMODE settings: The RENT option interacts with other compiler options that
affect storage and its addressability. Use the DATA(24|31) option for reentrant
programs to control whether dynamic data areas are allocated in unrestricted
storage or in storage obtained from below 16 MB. Compile programs with RENT if
they will be run in virtual storage addresses above 16 MB.

352 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

Execution of nonreentrant programs above 16 MB is not supported. Programs
compiled with NORENT must be RMODE 24.

The setting of the DATA option does not affect programs compiled with NORENT.

For information about which Enterprise COBOL programs need to be reentrant, see
the related task about making programs reentrant.

Link-edit considerations: If all programs in a program object are compiled with
RENT, it is recommended that the program object be link-edited with the RENT
binder (linkage-editor) option. Use the REUS binder (linkage-editor) option instead
if the program object will also contain any non-COBOL programs that are only
serially reusable.

If any program in a program object is not reentrant, the program object must not
be link-edited with the RENT or REUS link-edit attributes. The NOREUS binder
(linkage-editor) option is needed to ensure that the CANCEL statement will guarantee
a fresh copy of the program on a subsequent CALL.

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

“Making programs reentrant” on page 490
DB2 Application Programming and SQL Guide (Using reentrant code)

RELATED REFERENCES

“Conflicting compiler options” on page 304
“RMODE”

RMODE
The RMODE setting influences the RMODE (residency mode) of your generated object
program.

RMODE option syntax

►►
AUTO

RMODE(24)
ANY

►◄

Default is: AUTO

Abbreviations are: None

A program compiled with the RMODE(AUTO) option will have RMODE 24 if NORENT is
specified, or RMODE ANY if RENT is specified. RMODE AUTO is compatible with older
compilers such as VS COBOL II, which produced RMODE 24 for programs compiled
with NORENT, and RMODE ANY for programs compiled with RENT.

Chapter 17. Compiler options 353

A program compiled with the RMODE(24) option will have RMODE 24 whether NORENT
or RENT is specified.

A program compiled with the RMODE(ANY) option must also be compiled with the
RENT option. The program will have the RMODE ANY attribute.

If the NORENT option is specified, the RMODE(24) or RMODE(AUTO) compiler option
must be specified. Overriding the module RMODE with a binder option or control
statement is not supported.

DATA and RENT: The RMODE option interacts with other compiler options and runtime
options that affect storage and its addressability. For information about passing
data between programs with different modes, see the related concept about storage
and its addressability.

Link-edit considerations: If the object code that COBOL generates has an attribute
of RMODE 24, you must link-edit the code with RMODE 24. If the object code that
COBOL generates has an attribute of RMODE ANY, you can link-edit the code with
either RMODE ANY or RMODE 24.

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED REFERENCES

“Allocation of buffers for QSAM files” on page 181
“Conflicting compiler options” on page 304

RULES
You can use the RULES option to request information about your program from the
compiler to improve the program by flagging certain types of source code at
compile time.

RULES option syntax

►► ▼

NORULES

ENDPERIOD
RULES (NOENDPERIOD)

EVENPACK
NOEVENPACK
LAXPERF
NOLAXPERF
SLACKBYTES
NOSLACKBYTES

►◄

Default is: NORULES

Abbreviations are:
v ENDP = ENDPERIOD
v EVENP = EVENPACK

354 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|
|
|

|

|

|||

|
||

|

|

|

|

v LXPRF = LAXPERF
v SLCKB = SLACKBYTES

You can specify the following suboptions for RULES:

ENDPERIOD | NOENDPERIOD
The default is ENDPERIOD. Specifying NOENDPERIOD causes the compiler to
issue warning messages when the scope of a conditional statement is
terminated by a period instead of an explicit scope terminator END-*.

EVENPACK | NOEVENPACK
The default is EVENPACK. Specifying NOEVENPACK causes the compiler to issue
warning messages for any USAGE PACKED-DECIMAL (COMP-3) data
items that have an even number of digits because those data items whose
unused bits are not zero can lead to an unexpected program behavior.

Note: RULES(NOEVENPACK) helps compilers to identify even-length USAGE
PACKED-DECIMAL (COMP-3) data items. However, it is not necessary to
change those data items to odd-length items when the related database
schema uses even-length packed values.

LAXPERF | NOLAXPERF
The default is LAXPERF. Specifying NOLAXPERF suboption causes the compiler
to issue warning messages for usage of inefficient COBOL features. These
features might include USAGE DISPLAY numeric data items in arithmetic
statements, large amounts of space padding in MOVE statements, inefficient
compiler options, and other cases.

SLACKBYTES | NOSLACKBYTES
The default is SLACKBYTES. Specifying NOSLACKBYTES causes the compiler to
issue warning messages for any SYNCHONIZED data items that cause the
compiler to add slack bytes, either slack bytes within records or slack bytes
between records. Each data item that causes slack bytes to be added gets a
compiler diagnostic.

If the RULES option is specified with no suboptions, the default is
RULES(ENDPERIOD,EVENPACK,LAXPERF,SLACKBYTES).

Notes:

v It is not necessary to specify all of the suboptions for RULES. If a suboption is not
specified, the default takes effect.

v You can optionally use the RULES option with the MSGEXIT suboption of the EXIT
compiler option to enforce local coding standards. For example, if you want to
ensure that no programmers use periods instead of explicit scope delimiters to
delimit conditional statements, you can change the severity of the ENDPERIOD
message from Warning level (RC=4) to Severe level (RC=12). For a sample of
how to modify the severity of this and other RULES messages, see the sample
MSGEXIT in SIGYSAMP called IGYMSGXT.

RELATED REFERENCES

SYNCHRONIZED clause (Enterprise COBOL Language Reference)

Chapter 17. Compiler options 355

|

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|
|
|
|

|
|

SEQUENCE
When you use SEQUENCE, the compiler examines columns 1 through 6 to check that
the source statements are arranged in ascending order according to their EBCDIC
collating sequence. The compiler issues a diagnostic message if any statements are
not in ascending order.

Source statements with blanks in columns 1 through 6 do not participate in this
sequence check and do not result in messages.

SEQUENCE option syntax

►►
SEQUENCE

NOSEQUENCE
►◄

Default is: SEQUENCE

Abbreviations are: SEQ|NOSEQ

If you use COPY statements with the SEQUENCE option in effect, be sure that your
source program's sequence fields and the copybook sequence fields are
coordinated.

If you use NUMBER and SEQUENCE, the sequence is checked according to numeric,
rather than EBCDIC, collating sequence.

If you are doing a batch compilation and SEQUENCE is in effect, all programs in the
batch compilation are treated as a single input file. The sequence numbers of the
entire input file must be in ascending order.

Use NOSEQUENCE to suppress this checking and the diagnostic messages.

RELATED TASKS

“Finding line sequence problems” on page 391

SERVICE
Use SERVICE to place a string in the object module if the object module is
generated. If the object module is linked into a program object, the string is loaded
into memory with this program object. If the Language Environment dump
includes a traceback, this string is included in that traceback.

356 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

|
|
|
|

|

SERVICE option syntax

►►
NOSERVICE

SERVICE('service string')
►◄

Default is: NOSERVICE

Abbreviations are: SERV|NOSERV

The service string is limited to 64 characters in length.

SOURCE
Use SOURCE to get a listing of your source program. This listing will include any
statements embedded by PROCESS or COPY statements.

SOURCE option syntax

►►
SOURCE

NOSOURCE
►◄

Default is: SOURCE

Abbreviations are: S|NOS

You must specify SOURCE if you want embedded messages in the source listing.

Use NOSOURCE to suppress the source code from the compiler output listing.

If you want to limit the SOURCE output, use *CONTROL SOURCE or NOSOURCE
statements in your PROCEDURE DIVISION. Source statements that follow a *CONTROL
NOSOURCE statement are not included in the listing until a subsequent *CONTROL
SOURCE statement switches the output back to normal SOURCE format.

“Example: MAP output” on page 400

RELATED REFERENCES

*CONTROL (*CBL) statement (Enterprise COBOL Language Reference)

SPACE
Use SPACE to select single-, double-, or triple-spacing in your source code listing.

Chapter 17. Compiler options 357

|

|||||||||||||||

|
||

|

|

|

SPACE option syntax

►►
1

SPACE(2)
3

►◄

Default is: SPACE(1)

Abbreviations are: None

SPACE has meaning only when the SOURCE compiler option is in effect.

RELATED REFERENCES

“SOURCE” on page 357

SQL
Use the SQL compiler option to enable the DB2 coprocessor and to specify DB2
suboptions. You must specify the SQL option if a COBOL source program contains
SQL statements (EXEC SQL statements) and the program has not been processed
by the DB2 precompiler.

SQL option syntax

►►
NOSQL

SQL
("DB2-suboption-string")

►◄

Default is: NOSQL

Abbreviations are: None

When you use the SQL option, the DB2 coprocessor writes the database request
module (DBRM) to ddname DBRMLIB. DB2 must be available on the machine on
which you compile.

If you specify the NOSQL option, any SQL statements found in the source program
are diagnosed and discarded.

Use either quotation marks or single quotation marks to delimit the string of DB2
suboptions.

You can partition a long suboption string into multiple suboption strings in
multiple CBL statements. For example:
//STEP1 EXEC IGYWC, . . .
// PARM.COBOL=’SQL("string1")’
//COBOL.SYSIN DD *

CBL SQL("string2")

358 Enterprise COBOL for z/OS, V5.2 Programming Guide

CBL SQL(’string3’)
IDENTIFICATION DIVISION.
PROGRAM-ID. DRIVER1.
. . .

The DB2 suboptions are concatenated in the order of their appearance. Thus in the
example above, the compiler passes the following suboption string to the DB2
coprocessor:
"string1 string2 string3"

The concatenated strings are delimited with single spaces as shown. If multiple
instances of the same DB2 option are found, the last specification of each option
prevails. The compiler limits the length of the concatenated DB2 suboption string
to 4 KB.

RELATED CONCEPTS

“DB2 coprocessor” on page 441
“COBOL and DB2 CCSID determination” on page 447

RELATED TASKS

“Compiling with the SQL option” on page 445
“Separating DB2 suboptions” on page 446

RELATED REFERENCES

“Conflicting compiler options” on page 304

SQLCCSID
Use the SQLCCSID compiler option to control whether the CODEPAGE compiler option
will influence the processing of SQL statements in your COBOL programs.

SQLCCSID option syntax

►►
SQLCCSID

NOSQLCCSID
►◄

Default is: SQLCCSID

Abbreviations are: SQLC|NOSQLC

The SQLCCSID option has an effect only if you use the integrated DB2 coprocessor
(SQL compiler option).

If SQLCCSID is in effect, the setting of the CODEPAGE compiler option will influence
the processing of SQL statements within your COBOL programs when you use the
integrated DB2 coprocessor. If NOSQLCCSID is in effect, the CODEPAGE setting will not
influence the processing of SQL statements when you use the integrated DB2
coprocessor; only COBOL statements will be sensitive to the CCSID specified in the
CODEPAGE option.

For further information about this option, see the related task.

Chapter 17. Compiler options 359

RELATED CONCEPTS

“DB2 coprocessor” on page 441
“COBOL and DB2 CCSID determination” on page 447

RELATED TASKS

“Programming with the SQLCCSID or NOSQLCCSID option” on page 448

RELATED REFERENCES

“Code-page determination for string host variables in SQL statements” on page 447
“CODEPAGE” on page 313
“SQL” on page 358

SQLIMS
Use the SQLIMS compiler option to enable the IMS SQL coprocessor and to specify
Information Management System (IMS) suboptions. You must specify the SQLIMS
option if a COBOL source program contains SQLIMS statements (EXEC SQLIMS
statements).

SQLIMS option syntax

►►
NOSQLIMS

SQLIMS
("IMS-suboption-string")

►◄

Default: NOSQLIMS

Abbreviation: None

If you specify the NOSQLIMS option, any SQLIMS statements that are found in the
source program are diagnosed and discarded.

Use either double quotation marks or single quotation marks to delimit the string
of IMS suboptions.

You can partition a long suboption string into multiple suboption strings in
multiple CBL statements. For example:
//STEP1 EXEC IGYWC, . . .
// PARM.COBOL='SQLIMS("string1")'
//COBOL.SYSIN DD *

CBL SQLIMS("string2")
CBL SQLIMS('string3')
IDENTIFICATION DIVISION.
PROGRAM-ID. DRIVER1.
. . .

The IMS suboptions are concatenated in the order of their appearance. Thus in the
proceeding example, the compiler passes the following suboption strings to the
IMS SQL coprocessor:
"string1 string2 string3"

360 Enterprise COBOL for z/OS, V5.2 Programming Guide

The concatenated strings are delimited with single spaces as shown. If multiple
instances of the same IMS suboption are found, the last specification of each
suboption takes effect. The compiler limits the length of the concatenated IMS
suboption string to 4 KB.

RELATED CONCEPTS

“IMS SQL coprocessor” on page 453

RELATED TASKS

“Compiling with the SQLIMS option” on page 455
“Separating IMS suboptions” on page 456

RELATED REFERENCES

“Conflicting compiler options” on page 304

SSRANGE
Use SSRANGE to generate code that checks for out-of-range storage references.

SSRANGE option syntax

►►

▼

NOSSRANGE

,

SSRANGE ()
NOZLEN
ZLEN
ABD
MSG

►◄

With the PTF for APAR PI53044 installed, new suboptions ZLEN and NOZLEN are
added to control how the compiler checks reference modification lengths.

With the PTF for APAR PI86343 installed, new suboptions MSG and ABD are
added to control the runtime behavior of the COBOL program when a range check
fails.

Default is: NOSSRANGE

Suboption default is: NOZLEN,ABD if only SSRANGE is specified.

Abbreviations are: SSR|NOSSR

SSRANGE generates code that checks whether subscripts, including ALL subscripts, or
indexes try to reference areas outside the region of their associated tables. Each
subscript or index is not individually checked for validity. Instead, the effective
address is checked to ensure that it does not reference outside the table.

If you specify SSRANGE with no suboptions, it will be accepted as a specification of
SSRANGE(NOZLEN,ABD).

Chapter 17. Compiler options 361

|

|

|||

|
||

|
|
|

|

|
|

Note: If the SSRANGE option is in effect, range checks will be generated by the
compiler and the checks will always be conducted at run time. You cannot disable
the compiled-in range checks at run time by specifying the runtime option
CHECK(OFF).

Variable-length items are also checked to ensure that references are within their
maximum defined length.

Reference modification expressions are checked to ensure that:
v The starting position is greater than or equal to 1.
v The starting position is not greater than the current length of the subject data

item.
v The length value (if specified) is greater than or equal to 1.
v The starting position and length value (if specified) do not reference an area

beyond the end of the subject data item.

The ZLEN and NOZLEN suboptions control how the compiler checks reference
modification lengths:
v If ZLEN is in effect, the compiler will generate code to ensure that reference

modification lengths are greater than or equal to zero. Zero-length reference
modification specifications will not get an SSRANGE error at run time.

v If NOZLEN is in effect, the compiler will generate code to ensure that reference
modification lengths are greater than or equal to 1. Zero-length reference
modification specifications will get an SSRANGE error at run time. This is
compatible with how SSRANGE behaved in previous COBOL versions.

The MSG and ABD suboptions control the runtime behavior of the COBOL program
when a range check fails.
v If MSG is in effect and a range check fails, a runtime warning message will be

issued. This means that the program will continue executing and might
potentially identify other out-of-range conditions.

v If ABD is in effect and a range check fails, the first out-of-range condition will
result in a runtime error message and the program will ABEND. You can find
the next potential out-of-range condition by fixing the first out-of-range
condition and then recompiling and running the program again. To identify all
other potential out-of-range conditions, you might need to repeat this process
several times.

For unbounded groups or their subordinate items, checking is done only for
reference modification expressions. Subscripted or indexed references to tables
subordinate to an unbounded group are not checked.

RELATED CONCEPTS

“Reference modifiers” on page 113

RELATED TASKS

“Checking for valid ranges” on page 391

STGOPT
The STGOPT option controls storage optimization.

362 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

STGOPT option syntax

►►
NOSTGOPT

STGOPT
►◄

Default is: NOSTGOPT

Abbreviations are: SO, NOSO

If you specify STGOPT, the compiler might discard any or all of the following data
items, and does not allocate storage for them.
v Unreferenced LOCAL-STORAGE and non-external WORKING-STORAGE level-77 and

level-01 elementary data items
v Non-external level-01 group items if none of their subordinate items are

referenced
v Unreferenced special registers

Note: The STGOPT option is ignored for data items that have the VOLATILE
clause. For details, see VOLATILE clause in the Enterprise COBOL Language
Reference.
The compiler will not generate code to initialize discarded data items to the values
in their VALUE clauses.

In addition, with STGOPT, data items in the LOCAL-STORAGE SECTION can be
reordered in memory to optimize performance.

TERMINAL
Use TERMINAL to send progress and diagnostic messages to the SYSTERM ddname.

TERMINAL option syntax

►►
NOTERMINAL

TERMINAL
►◄

Default is: NOTERMINAL

Abbreviations are: TERM|NOTERM

Use NOTERMINAL if you do not want this additional output.

Chapter 17. Compiler options 363

|
|
|
|

TEST
Use TEST to produce object code that enables debugging and problem
determination tools such as Debug Tool and Fault Analyzer. With TEST, you can
also enable the inclusion of symbolic variables in the formatted dumps that are
produced by Language Environment.

TEST option syntax

►►
NODWARF

NOTEST
DWARF

NOEJPD SOURCE
TEST

EJPD NOSOURCE

►◄

Option default is: NOTEST(NODWARF)

Suboption defaults are:
v NODWARF if only NOTEST is specified
v NOEJPD,SOURCE if only TEST is specified

Abbreviations are: None

Suboption abbreviation is: NOS | S

NOTEST suboptions

DWARF If you specify NOTEST(DWARF), basic DWARF diagnostic information is
included in the application module. This option enables the best usability
for application failure analysis tools, such as CEEDUMP and IBM Fault
Analyzer. With NOTEST(DWARF), the debugging information is a subset of
the DWARF information that is available with TEST.

Debugging information generated by the compiler is in the
industry-standard DWARF format. For more information about DWARF,
see About Common Debug Architecture in the DWARF/ELF Extensions Library
Reference.

NODWARF
If you specify NOTEST(NODWARF), DWARF diagnostic information is not
included in the application module.

TEST suboptions

When the TEST option is specified, DWARF debugging information is included in the
application module.

The EJPD and NOEJPD suboptions control enablement of the Debug Tool commands
JUMPTO and GOTO in production debugging sessions. These suboptions take effect
only if you specify the TEST option and a non-zero OPTIMIZE level (OPTIMIZE(1) or
OPTIMIZE(2)).

364 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://www.ibm.com/software/awdtools/commondebug/library/
http://www.ibm.com/software/awdtools/commondebug/library/

EJPD If you specify TEST(EJPD) and a non-zero OPTIMIZE level:
v The JUMPTO and GOTO commands are enabled.
v The amount of program optimization is reduced. Optimization is done

within statements, but most optimizations do not cross statement
boundaries.

NOEJPD If you specify TEST(NOEJPD) and a non-zero OPTIMIZE level:
v The JUMPTO and GOTO commands are not enabled. However, you can still

use JUMPTO and GOTO if you use the SET WARNING OFF Debug Tool
command. In this scenario, JUMPTO and GOTO will have unpredictable
results.

v The normal amount of program optimization is done.

SOURCE If you specify TEST(SOURCE), the generated DWARF debug information
generated by the compiler includes the expanded source code, and the
compiler listing is not needed by IBM Debug Tool.

NOSOURCE
If you specify TEST(NOSOURCE), the generated DWARF debugging information
does not include the expanded source code, and you will not be able to
use IBM Debug Tool.

Note: If you specify the TEST option, you must set the CODEPAGE option to the
CCSID that is used for the COBOL source program. In particular, programs that
use Japanese characters in DBCS literals or DBCS user-defined words must be
compiled with the CODEPAGE option set to a Japanese codepage CCSID. For more
information, see “CODEPAGE” on page 313.

Performance versus debugging capability:

You can control the amount of debugging capability that you get and so also the
program performance, as follows:
v For the best performance, but with some restrictions on debugging, compile

using a non-zero OPTIMIZE level, STGOPT and TEST(NOEJPD).
– The Debug Tool commands JUMPTO and GOTO are not supported. However, you

can still use JUMPTO and GOTO if you use the SET WARNING OFF Debug Tool
command. In this scenario, JUMPTO and GOTO will have unpredictable results.

– Except for the DESCRIBE ATTRIBUTES command, Debug Tool commands cannot
refer to any data item that was discarded from a program by the STGOPT
option.

– The Debug Tool command AT CALL entry-name is not supported.
v For some reduction in program performance from the production-debugging

scenario above, but to enable predictable behavior for the Debug Tool commands
JUMPTO and GOTO, specify a non-zero OPTIMIZE level and TEST(EJPD).
The restrictions above about referring to items discarded by the STGOPT option,
and about the AT CALL command also apply when you use a non-zero OPTIMIZE
level and TEST(EJPD).

v For slowest performance but maximum debugging capability, specify
OPTIMIZE(0), NOSTGOPT and TEST.
The OPTIMIZE(0) option causes the compiler to generate slower code, but all
Debug Tool commands are supported.

Language Environment:

Chapter 17. Compiler options 365

|
|
|

The TEST option specified with any of its suboptions can improve your formatted
dumps from Language Environment by adding these two features to the dumps:
v A line number that indicates the failing statement, rather than just an offset
v The values of the program variables

With NOTEST(DWARF), the dump will have program variables but will not have the
line number of the failing statement. With NOTEST(NODWARF), the dump will not
have program variables nor the line number of the failing statement.

Enterprise COBOL uses the Language Environment-provided dump services to
produce dumps that are consistent in content and format with those that are
produced by other Language Environment-conforming member languages.

Whether Language Environment produces a dump for unhandled conditions
depends on the setting of the runtime option TERMTHDACT. If you specify
TERMTHDACT(DUMP), a dump is generated when a condition of severity 2 or greater
goes unhandled.

RELATED CONCEPTS

DWARF/ELF Extensions Library Reference (About Common Debug
Architecture)

RELATED TASKS

“Using the debugger” on page 395
Language Environment Debugging Guide (Generating a
Language Environment dump with TERMTHDACT)
Debug Tool User's Guide (Special considerations while using the TEST

runtime option)

RELATED REFERENCES

“Logical record length and block size” on page 268
“cob2 input and output files” on page 288
“Conflicting compiler options” on page 304
“OPTIMIZE” on page 346
Language Environment Programming Reference (TEST | NOTEST)

THREAD
THREAD indicates that a COBOL program is to be enabled for execution in a
Language Environment enclave that has multiple POSIX threads or PL/I tasks.

THREAD option syntax

►►
NOTHREAD

THREAD
►◄

Default is: NOTHREAD

Abbreviations are: None

366 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://www.ibm.com/software/awdtools/commondebug/library/

A program that has been compiled using the THREAD option can also be used in a
nonthreaded application. However, if a COBOL program is to be run in a threaded
application, all the COBOL programs in the Language Environment enclave must
be compiled using the THREAD option.

NOTHREAD indicates that the COBOL program is not to be enabled for execution in
an enclave that has multiple POSIX threads or PL/I tasks.

Programs that are compiled using compilers earlier than Enterprise COBOL are
treated as if compiled using NOTHREAD.

If the THREAD option is in effect, the following elements are not supported. If
encountered, they are diagnosed as errors:
v ALTER statement
v DEBUG-ITEM special register
v GO TO statement without procedure-name
v INITIAL phrase in PROGRAM-ID clause
v Nested programs
v RERUN

v Segmentation module
v SORT or MERGE statements
v STOP literal statement
v USE FOR DEBUGGING statement

Additionally, some language constructs have different semantics than in the
nonthreaded case.

Although threaded applications are subject to a number of programming and
environment restrictions, the use of a program in nonthreaded applications is not
so restricted. For example, a program compiled using the THREAD option can run in
the CICS and IMS environments, can run AMODE 24, and can call and be called by
other programs that are not enabled for multithreading, provided that the
application does not contain multiple POSIX threads or PL/I tasks at run time.

Programs compiled using the THREAD option are supported in the reusable
environment that is created by calling the Language Environment preinitialization
routine CEEPIPI. But a reusable environment created by using the RTEREUS runtime
option is not supported for programs compiled using the THREAD option.

Performance consideration: If you use the THREAD option, you can expect some
runtime performance degradation due to the overhead of serialization logic that is
automatically generated.

RELATED TASKS

Chapter 27, “Preparing COBOL programs for multithreading,” on page 517

RELATED REFERENCES

“Conflicting compiler options” on page 304

Chapter 17. Compiler options 367

TRUNC
TRUNC affects the way that binary data is truncated during moves and arithmetic
operations.

TRUNC option syntax

►►
STD

TRUNC(OPT)
BIN

►◄

Default is: TRUNC(STD)

Abbreviations are: None

TRUNC has no effect on COMP-5 data items; COMP-5 items are handled as if
TRUNC(BIN) is in effect regardless of the TRUNC suboption specified.

TRUNC(STD)
TRUNC(STD) applies only to USAGE BINARY receiving fields in MOVE statements
and arithmetic expressions. When TRUNC(STD) is in effect, the final result of
an arithmetic expression, or the sending field in the MOVE statement, is
truncated to the number of digits in the PICTURE clause of the BINARY
receiving field.

TRUNC(OPT)
TRUNC(OPT) is a performance option. When TRUNC(OPT) is in effect, the
compiler assumes that data conforms to PICTURE specifications in USAGE
BINARY receiving fields in MOVE statements and arithmetic expressions. The
results are manipulated in the most optimal way, either truncating to the
number of digits in the PICTURE clause, or to the size of the binary field in
storage (halfword, fullword, or doubleword).

Tips:

v Use the TRUNC(OPT) option only if you are sure that the data being
moved into the binary areas will not have a value with larger precision
than that defined by the PICTURE clause for the binary item. Otherwise,
unpredictable results could occur. This truncation is performed in the
most efficient manner possible; therefore, the results are dependent on
the particular code sequence generated. It is not possible to predict the
truncation without seeing the code sequence generated for a particular
statement.

TRUNC(BIN)
The TRUNC(BIN) option applies to all COBOL language that processes USAGE
BINARY data. When TRUNC(BIN) is in effect, all binary items (USAGE COMP,
COMP-4, or BINARY) are handled as native hardware binary items, that is, as
if they were each individually declared USAGE COMP-5:
v BINARY receiving fields are truncated only at halfword, fullword, or

doubleword boundaries.
v BINARY sending fields are handled as halfwords, fullwords, or

doublewords when the receiver is numeric; TRUNC(BIN) has no effect
when the receiver is not numeric.

368 Enterprise COBOL for z/OS, V5.2 Programming Guide

v The full binary content of fields is significant.
v DISPLAY will convert the entire content of binary fields with no

truncation.

Recommendations: TRUNC(BIN) is the recommended option for programs
that use binary values set by other products. Other products, such as IMS,
DB2, C/C++, FORTRAN, and PL/I, might place values in COBOL binary
data items that do not conform to the PICTURE clause of the data items. You
can use TRUNC(OPT) with CICS programs provided that your data conforms
to the PICTURE clause for your BINARY data items.

USAGE COMP-5 has the effect of applying TRUNC(BIN) behavior to individual
data items. Therefore, you can avoid the performance overhead of using
TRUNC(BIN) for every binary data item by specifying COMP-5 on only some
of the binary data items, such as those data items that are passed to
non-COBOL programs or other products and subsystems. The use of
COMP-5 is not affected by the TRUNC suboption in effect.

Large literals in VALUE clauses: When you use the compiler option
TRUNC(BIN), numeric literals specified in VALUE clauses for binary data
items (COMP, COMP-4, or BINARY) can generally contain a value of magnitude
up to the capacity of the native binary representation (2, 4, or 8 bytes)
rather than being limited to the value implied by the number of 9s in the
PICTURE clause.

TRUNC example 1
01 BIN-VAR PIC S99 USAGE BINARY.
. . .

MOVE 123451 to BIN-VAR

The following table shows values of the data items after the MOVE statement.

Data item Decimal Hex Display

Sender 123451 00|01|E2|3B 123451

Receiver TRUNC(STD) 51 00|33 51

Receiver TRUNC(OPT) -7621 E2|3B 2J

Receiver TRUNC(BIN) -7621 E2|3B 762J

A halfword of storage is allocated for BIN-VAR. The result of this MOVE statement if
the program is compiled with the TRUNC(STD) option is 51; the field is truncated to
conform to the PICTURE clause.

If you compile the program with TRUNC(BIN), the result of the MOVE statement is
-7621. The reason for the unusual result is that nonzero high-order digits are
truncated. Here, the generated code sequence would merely move the lower
halfword quantity X'E23B' to the receiver. Because the new truncated value
overflows into the sign bit of the binary halfword, the value becomes a negative
number.

It is better not to compile this MOVE statement with TRUNC(OPT), because 123451 has
greater precision than the PICTURE clause for BIN-VAR. With TRUNC(OPT), the results
are again -7621. This is because the best performance was obtained by not doing a
decimal truncation.

Chapter 17. Compiler options 369

TRUNC example 2
01 BIN-VAR PIC 9(6) USAGE BINARY
. . .

MOVE 1234567891 to BIN-VAR

The following table shows values of the data items after the MOVE statement.

Data item Decimal Hex Display

Sender 1234567891 49|96|02|D3 1234567891

Receiver TRUNC(STD) 567891 00|08|AA|53 567891

Receiver TRUNC(OPT) 567891 53|AA|08|00 567891

Receiver TRUNC(BIN) 1234567891 49|96|02|D3 1234567891

When you specify TRUNC(STD), the sending data is truncated to six integer digits to
conform to the PICTURE clause of the BINARY receiver.

When you specify TRUNC(OPT), the compiler assumes the sending data is not larger
than the PICTURE clause precision of the BINARY receiver. The most efficient code
sequence in this case is truncation as if TRUNC(STD) were in effect.

When you specify TRUNC(BIN), no truncation occurs because all of the sending data
fits into the binary fullword allocated for BIN-VAR.

RELATED CONCEPTS

“Formats for numeric data” on page 47

RELATED TASKS

“Compiling with the CICS option” on page 433

RELATED REFERENCES

“NUMCHECK” on page 341
VALUE clause (Enterprise COBOL Language Reference)

VBREF
Use VBREF to get a cross-reference between all verbs used in the source program
and the line numbers in which they are used. VBREF also produces a summary of
the number of times each verb was used in the program.

VBREF option syntax

►►
NOVBREF

VBREF
►◄

Default is: NOVBREF

Abbreviations are: None

370 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

Use NOVBREF for more efficient compilation.

VLR
The VLR option affects the file status returned from READ statements for
variable-length records when the length of record returned is inconsistent with the
record descriptions. It eases your migration from earlier versions to Enterprise
COBOL V5, if your programs have READ statements that result in a record length
conflict.

VLR option syntax

►►
STANDARD

VLR(COMPAT) ►◄

Default is: VLR(STANDARD)

Abbreviations are: VLR(C|S)

After the execution of a READ statement:
v If the number of character positions in the record that is read is less than the

minimum size specified by the record description entries for the file, the portion
of the record area that is to the right of the last valid character read is
undefined.

v If the number of character positions in the record that is read is greater than the
maximum size specified by the record description entries for the file, the record
is truncated on the right to the maximum size.

In either of these cases, the READ statement is successful, and the file status is set to
either 00 (hiding the record length conflict condition) or 04 (indicating that a record
length conflict has occurred), depending on the VLR compiler option setting.

VLR(COMPAT)

If you specify VLR(COMPAT), you get the status value of 00 when READ
statements encounter a record length conflict.

Note: This setting can hide I/O problems that can arise with the wrong
length read situation. Use the VLR(COMPAT) option with caution, and check
for correct READ statements.

VLR(STANDARD)

If you specify VLR(STANDARD), you get the status value of 04 when READ
statements encounter a record length conflict.

You can add code to test for FS=04 to avoid accessing undefined data in a
record and also avoid getting protection exceptions for attempting to
reference a part of the record that was truncated.

Using VLR(STANDARD) can result in more reliable code and fewer I/O problems
because the file status will tell you when a “wrong length READ” might occur. A
new compiler message, MSGIGYP3178, can also help you avoid I/O problems by

Chapter 17. Compiler options 371

|

|
|
|
|
|

|

|

||||||||||||||||

|
||

|

|

|

|
|
|
|

|
|
|

|
|
|

|

|
|

|
|
|

|

|
|

|
|
|

|
|
|

telling you if a program has a possibility of a “wrong length READ”. This message
can be used to assist with migration from VLR(COMPAT) to VLR(STANDARD) by
indicating the possible “wrong length READ” that you can solve by correcting the
File Definition (FD). You can also raise the severity of the message so that the
program must be corrected in order to run. To do this, use the MSGEXIT suboption
of the EXIT compiler option to change the severity of message MSGIGYP3178 from
I (RC=0) to S (RC=12), E (RC=8), or W (RC=4). If you are not interested in seeing
this message, you can suppress the message completely.

RELATED REFERENCES

“EXIT” on page 324
Compatible READ results of variable length records - wrong length READ
(Enterprise COBOL Migration Guide)

VSAMOPENFS
The VSAMOPENFS option affects the user file status reported from successful VSAM
OPEN statements that require verified file integrity check.

VSAMOPENFS option syntax

►►
COMPAT

VSAMOPENFS(SUCC) ►◄

Default is: VSAMOPENFS(COMPAT)

Abbreviations are: VS(C | S)

COMPAT If you specify VSAMOPENFS(COMPAT), the statement returns the file status 97
when a VSAM OPEN statement is successfully verified. This is compatible
with pre-V6 COBOL runtime behavior.

SUCC If you specify VSAMOPENFS(SUCC), the statement returns the file status 00
when a VSAM OPEN statement is successfully verified. This allows users
to simply check for 0 in the first digit of the returned file status, as they
usually do with other successful operations.

WORD
Use WORD(xxxx) to specify that an alternate reserved-word table is to be used during
compilation.

WORD option syntax

►►
NOWORD

WORD(xxxx)
►◄

372 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

||||||||||||||||

|
||

|

|

||
|
|

||
|
|
|

Default is: NOWORD

Abbreviations are: WD|NOWD

xxxx specifies the ending characters of the name of the reserved-word table
(IGYCxxxx) to be used in your compilation. IGYC are the first four standard
characters of the name, and xxxx can be one to four characters in length.

Alternate reserved-word tables provide changes to the IBM-supplied default
reserved-word table. Your systems programmer might have created one or more
alternate reserved-word tables for your site. See your systems programmer for the
names of alternate reserved-word tables.

Enterprise COBOL provides an alternate reserved-word table (IGYCCICS)
specifically for CICS applications. It is set up to flag COBOL words not supported
under CICS with an error message. If you want to use this CICS reserved-word
table during your compilation, specify the compiler option WORD(CICS).

RELATED TASKS

“Compiling with the CICS option” on page 433

RELATED REFERENCES

“Conflicting compiler options” on page 304
“CICS reserved-word table” on page 437

XMLPARSE
Use XMLPARSE to select the parser to be used for processing XML input, and,
therefore, the XML processing capabilities that are available to your program.

XMLPARSE option syntax

►►
XMLSS

XMLPARSE(COMPAT) ►◄

Default is: XMLSS

Abbreviations are: XP(X|C)

If you specify the XMLPARSE(XMLSS) option, XML PARSE statements are processed
using the z/OS XML System Services parser. The following XML parsing
capabilities are available only if you specify XMLPARSE(XMLSS):
v Validation of XML input documents against an XML schema (by using the

VALIDATING phrase of the XML PARSE statement)
v Enhanced namespace processing (special registers XML-NAMESPACE,

XML-NNAMESPACE, XML-NAMESPACE-PREFIX, and XML-NNAMESPACE-PREFIX)
v Automatic conversion of document fragments to Unicode UTF-16 (by using the

RETURNING NATIONAL phrase of the XML PARSE statement)
v Specification of the encoding of the input document (by using the ENCODING

phrase of the XML PARSE statement)

Chapter 17. Compiler options 373

|

|
|

|

|

||||||||||||||||

|
||

|

|

|
|
|

|
|

|
|

|
|

|
|

v Direct parsing of XML documents encoded in UTF-8
v Parsing of XML documents, a buffer of XML at a time
v Offloading of XML parsing to System z Application Assist Processors (zAAPs)

If you specify the XMLPARSE(COMPAT) option, XML PARSE statements are processed
using the XML parser that is a built-in component of the COBOL library. The XML
PARSE statement results and operational behaviors are then compatible with those
obtained with Enterprise COBOL Version 3, and also with Version 4 when
XMLPARSE(COMPAT) was used, and the advanced features described above for
XMLPARSE(XMLSS) are not available.

RELATED TASKS

Chapter 28, “Processing XML input,” on page 527

RELATED REFERENCES

XML PARSE statement (Enterprise COBOL Language Reference)
z/OS XML System Services User's Guide and Reference

XREF
Use XREF to produce a sorted cross-reference listing.

XREF option syntax

►►

XREF
FULL

(SHORT)

NOXREF
►◄

Default is: XREF(FULL)

Abbreviations are: X|NOX

You can choose XREF, XREF(FULL), or XREF(SHORT). If you specify XREF without any
suboptions, XREF(FULL) will be in effect.

A section of the listing shows all the program-names, data-names, and
procedure-names that are referenced in your program, and the line numbers where
those names are defined. External program-names are identified.

“Example: XREF output: data-name cross-references” on page 421
“Example: XREF output: program-name cross-references” on page 422

A section is also included that cross-references COPY or BASIS statements in the
program with the data sets or files from which associated copybooks were
obtained.

“Example: XREF output: COPY/BASIS cross-references” on page 422

374 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

|

|
|
|
|
|
|

|
|

|
|
|

|

EBCDIC data-names and procedure-names are listed in alphanumeric order. DBCS
data-names and procedure-names are listed based on their physical order in the
program; they are shown before the EBCDIC data-names and procedure-names
unless the DBCSXREF installation option is selected with a DBCS ordering program.
In that case, DBCS data-names and procedure-names are in the order specified by
the DBCS ordering program.

If you use XREF and SOURCE, data-name and procedure-name cross-reference
information is printed on the same line as the original source. Line-number
references or other information appears on the right-hand side of the listing page.
On the right of source lines that reference an intrinsic function, the letters IFN are
printed with the line number of the locations where the function arguments are
defined. Information included in the embedded references lets you know if an
identifier is undefined (UND) or defined more than once (DUP), if items are implicitly
defined (IMP) (such as special registers or figurative constants), or if a
program-name is external (EXT).

If you use XREF and NOSOURCE, you get only the sorted cross-reference listing.

XREF(SHORT) prints only the explicitly referenced data items in the cross-reference
listing. XREF(SHORT) applies to DBCS data-names and procedure-names as well as
to single-byte names.

NOXREF suppresses this listing.

Usage notes

v Group names used in a MOVE CORRESPONDING statement are in the XREF listing.
The elementary names in those groups are also listed.

v In the data-name XREF listing, line numbers that are preceded by the letter M
indicate that the data item is explicitly modified by a statement on that line.

v XREF listings take additional storage.
v If there is more than one data set in your SYSLIB concatenation, in some cases

the COPY/BASIS cross-reference might be incomplete or missing. This loss can
occur if XREF is set only in a CBL or PROCESS statement, and XREFOPT=NO is set as
an installation default or NOXREF is coded in your JCL PARM parameter.
To ensure that the COPY/BASIS cross-reference is complete, either verify with your
system programmer that XREFOPT=FULL or XREFOPT=SHORT is your installation
default, or code the XREF option in your JCL PARM parameter.

RELATED CONCEPTS

Chapter 19, “Debugging,” on page 385

RELATED TASKS

“Getting listings” on page 395

RELATED REFERENCES

Language Environment Debugging Guide (COBOL compiler options)

ZONECHECK
Use the ZONECHECK option to have the compiler generate IF NUMERIC class tests for
every use of zoned decimal data items.

Chapter 17. Compiler options 375

|

|
|

Note: In Enterprise COBOL V5.2 with PTF for APAR PI81006 installed, ZONECHECK
is deprecated but is tolerated for compatibility, and it is replaced by
NUMCHECK(ZON(ALPHNUM)).

ZONECHECK option syntax

►►
NOZONECHECK

ZONECHECK (MSG)
ABD

►◄

Default is: NOZONECHECK

Abbreviations are: NOZC|ZC(MSG)|ZC(ABD)

MSG

The MSG suboption requests that an IF NUMERIC test be done on every use
of zoned decimal data items as senders, and if the data is invalid (for
example, NOT NUMERIC), a runtime warning message with the line number
and data item name is issued. ZONECHECK(MSG) is treated as if
NUMCHECK(ZON,MSG) were in effect.

ABD

The ABD suboption requests that an IF NUMERIC test be done on every use
of zoned decimal data items as senders, and if the data is invalid (for
example, NOT NUMERIC), a terminating message is issued that causes an
abend. ZONECHECK(ABD) is treated as if NUMCHECK(ZON,ABD) were in effect.

Both ZONECHECK(MSG) and ZONECHECK(ABD) result in the compiler generating an
implicit numeric class test for each zoned decimal data item that is referenced as a
sender in a COBOL statement. Receivers are not checked, unless they are both a
sender and a receiver, such as data item B in the following sample statements:
ADD A TO B

DIVIDE A INTO B

COMPUTE B = A + B

INITIALIZE B REPLACING ALPHANUMERIC BY B

This checking is done before the data item is used in each statement:
v If the data item is NOT NUMERIC, either a warning message for ZONECHECK(MSG) or

a terminating message for ZONECHECK(ABD) is issued.
v If the data item is NUMERIC, the external behavior of the statement is the same as

NOZONECHECK, other than being slower.

Performance considerations: ZONECHECK(MSG) and ZONECHECK(ABD) are much slower
than NOZONECHECK, depending on how many zoned decimal data items are used in
COBOL statements in a program.

RELATED TASKS

“Checking for incompatible data (numeric class test)” on page 54

376 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|

|

|

||||||||||||||||||||||||||

|
||

|

|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|

|

|

|

|

|
|

|
|

|
|
|

|
|

RELATED REFERENCES

“NUMCHECK” on page 341
“NUMPROC” on page 343
“ZONEDATA”

ZONEDATA

The ZONEDATA option tells the compiler whether the data in USAGE DISPLAY and
PACKED-DECIMAL data items is valid, and if not, what the behavior of the compiler
should be.

ZONEDATA option syntax

►►
PFD

ZONEDATA(MIG)
NOPFD

►◄

Default is: ZONEDATA(PFD)

Abbreviations are: ZD(PFD) | ZD(MIG) | ZD(NOPFD)

Each digit of a valid zoned decimal number is represented by a single byte from
X’F0’ through X’F9’. The 4 high-order bits of each byte are zone bits, and the 4
low-order bits of each byte contain the value of the digit. The 4 high-order bits of
the low-order byte for SIGN TRAILING represent the sign of the item. The sign is in
the high-order byte with SIGN LEADING, or in a separate byte for SIGN IS SEPARATE.

ZONEDATA(PFD)

When the ZONEDATA(PFD) option is in effect, the compiler assumes that all
data in USAGE DISPLAY and PACKED-DECIMAL data items is valid, and
generates the most efficient code possible to make numeric comparisons.
For example, the compiler might generate a string comparison to avoid
numeric conversion.

ZONEDATA(MIG)

When the ZONEDATA(MIG) option is in effect, the compiler generates
instructions to do numeric comparisons that ignore the zone bits of each
digit in zoned decimal data items. For example, the zoned decimal value is
converted to packed-decimal with a PACK instruction before the
comparison. The compiler will also avoid performing known optimizations
that might produce a different result than COBOL V4 (or earlier versions)
when a zoned decimal or packed decimal data item has invalid digits or
an invalid sign code, or when a zoned decimal data item has invalid zone
bits.

ZONEDATA(NOPFD)

When the ZONEDATA(NOPFD) option is in effect, the compiler generates
instructions for numeric comparisons or an alphanumeric comparison of
zoned decimal data in the same manner as COBOL V4 (or earlier versions)
does when using NUMPROC(NOPFD | PFD) with COBOL V4 (or earlier
versions) :

Chapter 17. Compiler options 377

|
|
|
|

|
|

|
|
|

|

|

|||||||||||||||||||

|
||

|

|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

v In the cases where COBOL V4 (or earlier versions) considered the zone
bits, the compiler generates an alphanumeric comparison which will also
consider the zone bits of each digit in zoned decimal data items. The
zoned decimal value remains as zoned decimal.

v In the cases where COBOL V4 (or earlier versions) ignored the zone bits,
the compiler generates numeric comparisons that ignore the zone bits of
each digit in zoned decimal data items. The zoned decimal value is
converted to packed-decimal with a PACK instruction before the
comparison.

In order for the compiler to generate comparisons of zoned decimal data in
the same way that COBOL V4 (or earlier versions) did, the NUMPROC
suboption used in COBOL V5 must match the NUMPROC suboption used in
COBOL V4 (or earlier versions):
v To get the COBOL V4 (or earlier versions) NUMPROC(NOPFD) behavior in

COBOL V5, use ZONEDATA(NOPFD) and NUMPROC(NOPFD) in COBOL V5.
v To get the COBOL V4 (or earlier versions) NUMPROC(PFD) behavior in

COBOL V5, use ZONEDATA(NOPFD) and NUMPROC(PFD) in COBOL V5.

The compiler will also avoid performing known optimizations that might
produce a different result than COBOL V4 (or earlier versions) when a
zoned decimal or packed decimal data item has invalid digits or an invalid
sign code, or when a zoned decimal data item has invalid zone bits.

Note: The sign code must be a valid sign code according to the NUMPROC
compiler option setting. In addition, the low-order byte must have a valid
zone (x’F’) for unsigned and signed with either SIGN IS LEADING or SIGN
IS SEPARATE.

Note: The ZONEDATA option affects the behaviour of MOVE statements, comparisons,
and computations for USAGE DISPLAY or PACKED-DECIMAL data items that could
contain invalid digits, an invalid sign code, or invalid zone bits.

In the following example, you can see a data item with an invalid zone bit 4 in the
zone bits in the middle of data item VALUE1, forced in by REDEFINES:
77 VALUE0 PIC X(4) VALUE ’00 0’. <* x’F0F040F0’
77 VALUE1 REDEFINES VALUE0 PIC 9(4).
PROCEDURE DIVISION.

IF VALUE1 = ZERO
DISPLAY ’ZONEDATA(MIG) is in effect ’ VALUE1

ELSE
DISPLAY ’ZONEDATA(NOPFD | PFD) is in effect ’ VALUE1

END-IF

In this example:
v With COBOL V4 (or earlier versions) or earlier versions, the test is true if the

NUMPROC(MIG) option is used, and false for NUMPROC(NOPFD | PFD).
v With COBOL V5 or later versions:

– When using ZONEDATA(PFD), the test is true at OPT(0) and false at OPT(1 | 2).
– When using ZONEDATA(NOPFD), the test is false at any OPT setting.

In all, to ease your migration to COBOL V5:
v If your digits, sign code, and zone bits are valid, use ZONEDATA(PFD) and the

same NUMPROC setting that you used with COBOL V4 (or earlier versions) when
using COBOL V5.

v If you have invalid digits, invalid sign code, or invalid zone bits:

378 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|
|
|

|

– If you used NUMPROC(MIG) with COBOL V4 (or earlier versions) , use
ZONEDATA(MIG) and NUMPROC(NOPFD) with COBOL V5.

– If you used NUMPROC(NOPFD) with COBOL V4 (or earlier versions) , use
ZONEDATA(NOPFD) and NUMPROC(NOPFD) with COBOL V5.

– If you used NUMPROC(PFD) with COBOL V4 (or earlier versions) , use
ZONEDATA(NOPFD) and NUMPROC(PFD) with COBOL V5.

Note: It is not always possible to entirely match the behaviour of the old compiler
even with these options when faced with clearly invalid data. For example, even
for compares, ZONEDATA(NOPFD) isn't going to give the same result in all cases as
COBOL V4.

Performance considerations: ZONEDATA(PFD) gives better runtime performance than
ZONEDATA(NOPFD | MIG) does. ZONEDATA(NOPFD | MIG) disables some of the
optimizations that NUMPROC(PFD) can give.

RELATED TASKS

“Checking for incompatible data (numeric class test)” on page 54

RELATED REFERENCES

“NUMCHECK” on page 341
“NUMPROC” on page 343
“ZONECHECK” on page 375

ZWB
If you compile using ZWB, the compiler removes the sign from a signed zoned
decimal (DISPLAY) field before comparing this field to an alphanumeric elementary
field during execution.

ZWB option syntax

►►
ZWB

NOZWB
►◄

Default is: ZWB

Abbreviations are: None

If the zoned decimal item is a scaled item (that is, it contains the symbol P in its
PICTURE string), comparisons that use the decimal item are not affected by ZWB.
Such items always have their sign removed before the comparison is made to an
alphanumeric field.

ZWB affects how a program runs. The same COBOL program can produce different
results depending on the setting of this option.

Use NOZWB if you want to test input numeric fields for SPACES.

Chapter 17. Compiler options 379

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|

380 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 18. Compiler-directing statements

Several statements help you to direct the compilation of your program.

These are the compiler-directing statements:

BASIS statement
This extended source program library statement provides a complete
COBOL program as the source for a compilation. For rules of formation
and processing, see the description of text-name for the COPY statement.

CALLINTERFACE directive
The CALLINTERFACE directive specifies the interface convention for
CALL and SET statements. The convention specified stays in effect until
another CALLINTERFACE directive is encountered in the source.

The CALLINTERFACE directive can be used only in the procedure
division and its effect is limited to the current compilation unit.

*CONTROL (*CBL) statement
This compiler-directing statement selectively suppresses or allows output
to be produced. The names *CONTROL and *CBL are synonymous.

COPY statement

COPY statement syntax

►► COPY text-name
literal-1 OF library-name

IN literal-2
SUPPRESS

►

►

▼REPLACING operand-1 BY operand-2
LEADING == partial-word-1 == BY == partial-word-2 ==
TRAILNG

. ►◄

This library statement places prewritten text into a COBOL program.

Neither text-name nor library-name need to be unique within a program.
They can be identical to other user-defined words in the program, except
that they cannot contain the underscore.

The uniqueness of text-name and library-name is determined after the
formation and conversion rules for a system-dependent name have been
applied. If library-name is omitted, SYSLIB is assumed.

Compiling with JCL:

text-name, library-name, and literal-1 and literal-2 are processed as follows:
v The name (which can be from one to 30 characters long) is truncated to

eight characters. Only the first eight characters of text-name and
library-name are used as the identifying name. These eight characters
must be unique within any COBOL library.

v The name is folded to uppercase.
v Hyphens that are not the first or last character are translated to zero (0),

and a warning message is issued.

© Copyright IBM Corp. 1991, 2018 381

|
|
|
|

|
|

|||||||||||||

v If the first character is numeric, then the characters 1-9 are translated to
A-I, zero (0) is converted to J, and a warning message is issued.

For example:
COPY INVOICES1Q
COPY "Company-#Employees" IN Personellib

In the IN/OF phrase, library-name is the ddname that identifies the
partitioned data set to be copied from. Use a DD statement such as in the
following example to define library-name:
//COPYLIB DD DSNAME=ABC.COB,VOLUME=SER=111111,
// DISP=SHR,UNIT=3380

To specify more than one copy library, use either JCL or a combination of
JCL and the IN/OF phrase. Using just JCL, concatenate data sets in your DD
statement for SYSLIB. Alternatively, define multiple DD statements and
include the IN/OF phrase in your COPY statements.

The maximum block size for the copy library depends on the device on
which your data set resides.

Compiling in the z/OS UNIX shell:

When you compile using the cob2 command, copybooks are included from
the z/OS UNIX file system. text-name, library-name, and literal-1 and literal-2
are processed as follows:
v User-defined words are folded to uppercase. Literals are not folded.

Because UNIX is case sensitive, if your file-name is lowercase or mixed
case, you must specify it as a literal.

v If text-name is a literal and library-name is omitted, text-name is used
directly: as a file-name, a relative path name, or an absolute path name
(if the first character is /). For example:
COPY "MyInc"
COPY "x/MyInc"
COPY "/u/user1/MyInc"

v If text-name is a user-defined word, and an environment variable of that
name is defined, the value of the environment variable is used as the
name of the file that contains the copybook.
If an environment variable of that name is not defined, the copybook is
searched for under the following names, in this order:
1. text-name.cpy
2. text-name.CPY
3. text-name.cbl
4. text-name.CBL
5. text-name.cob
6. text-name.COB
7. text-name

v If library-name is a literal, it is treated as the actual path, relative or
absolute, from which to copy file text-name.

v If library-name is a user-defined word, it is treated as an environment
variable. The value of the environment variable is used as the path. If
the environment variable is not set, an error occurs.

v If both library-name and text-name are specified, the compiler forms the
path name for the copybook by concatenating library-name and text-name

382 Enterprise COBOL for z/OS, V5.2 Programming Guide

with a path separator (/) inserted between the two values. For example,
suppose you have the following setting for COPY MYCOPY OF MYLIB:
export MYCOPY=mystuff/today.cpy
export MYLIB=/u/user1

These settings result in:
/u/user1/mystuff/today.cpy

If library-name is an environment variable that identifies the path from
which copybooks are to be copied, use an export command to define
library-name, as in this example:
export COPYLIB=/u/mystuff/copybooks

The name of the environment variable must be uppercase. To specify more
than one copy library, set the environment variable to multiple path names
delimited by colon (:).

If library-name is omitted and text-name is not an absolute path name, the
copybook is searched for in this order:
1. In the current directory
2. In the paths specified on the -I cob2 option
3. In the paths specified in the SYSLIB environment variable

For additional information about the COPY statement, for example, the rules
for text replacement, see the related reference.

DELETE statement
This extended source library statement removes COBOL statements from
the BASIS source program.

EJECT statement
This compiler-directing statement specifies that the next source statement is
to be printed at the top of the next page.

ENTER statement
The statement is treated as a comment.

INSERT statement
This library statement adds COBOL statements to the BASIS source
program.

PROCESS (CBL) statement
This statement, which you place before the IDENTIFICATION DIVISION
header of an outermost program, indicates which compiler options are to
be used during compilation of the program.

REPLACE statement
This statement is used to replace source program text.

SERVICE LABEL statement
This statement is generated by the CICS translator to indicate control flow,
and should be used at the resume point for a call to CEE3SRP. It is not
intended for general use.

SKIP1/2/3 statement
These statements indicate lines to be skipped in the source listing.

TITLE statement
This statement specifies that a title (header) should be printed at the top of
each page of the source listing.

Chapter 18. Compiler-directing statements 383

USE statement
The USE statement provides declaratives to specify these elements:
v Error-handling procedures: EXCEPTION/ERROR
v Debugging lines and sections: DEBUGGING

RELATED TASKS

“Changing the header of a source listing” on page 5
“Specifying compiler options under z/OS” on page 272
“Specifying compiler options under z/OS UNIX” on page 284
“Setting environment variables under z/OS UNIX” on page 283
“Eliminating repetitive coding” on page 675

RELATED REFERENCES

“cob2 syntax and options” on page 287
CALLINTERFACE (Enterprise COBOL Language Reference)

COPY statement (Enterprise COBOL Language Reference)

384 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 19. Debugging

You can choose between two different approaches to determine the cause of
problems in the behavior of your application: source-language debugging or
interactive debugging.

For source-language debugging, COBOL provides several language elements,
compiler options, and listing outputs that make debugging easier.

If the problem with your program is not easily detected and you do not have a
debugger available, you might need to analyze a storage dump of your program.

For interactive debugging, you can use Debug Tool. Debug Tool offers these
productivity enhancements:
v Interactive debugging (in full-screen or line mode), or debugging in batch mode

During an interactive full-screen mode session, you can use Debug Tool's
full-screen services and session panel windows on a 3270 device to debug your
program while it is running.

v COBOL-like commands
For each high-level language supported, commands for coding actions to be
taken at breakpoints are provided in a syntax similar to that programming
language.

v Mixed-language debugging
You can debug an application that contains programs written in a different
language. Debug Tool automatically determines the language of the program or
subprogram being run.

v COBOL-CICS debugging
Debug Tool supports the debugging of CICS applications in both interactive and
batch mode.

v Support for remote debugging
Workstation users can use the IBM Debug Tool Plug-in for Eclipse or the IBM
Problem Determination Tools with Rational® Developer for System z for
debugging programs that run on z/OS.

RELATED TASKS

“Debugging with source language”
“Debugging using compiler options” on page 390
“Using the debugger” on page 395
“Getting listings” on page 395
Debug Tool User's Guide

RELATED REFERENCES

Debug Tool Reference and Messages
Language Environment Debugging Guide (Formatting and analyzing system

dumps, Debugging example COBOL programs)

Debugging with source language
You can use several COBOL language features to pinpoint the cause of a failure in
a program.

© Copyright IBM Corp. 1991, 2018 385

If a failing program is part of a large application that is already in production
(precluding source updates), write a small test case to simulate the failing part of
the program. Code debugging features in the test case to help detect these
problems:
v Errors in program logic
v Input-output errors
v Mismatches of data types
v Uninitialized data
v Problems with procedures

RELATED TASKS

“Tracing program logic”
“Finding and handling input-output errors” on page 387
“Validating data” on page 387
“Moving, initializing or setting uninitialized data” on page 388
“Generating information about procedures” on page 388

RELATED REFERENCES

Source language debugging (Enterprise COBOL Language Reference)

Tracing program logic
Trace the logic of your program by adding DISPLAY statements.

For example, if you determine that the problem is in an EVALUATE statement or in a
set of nested IF statements, use DISPLAY statements in each path to see the logic
flow. If you determine that the calculation of a numeric value is causing the
problem, use DISPLAY statements to check the value of some interim results.

If you use explicit scope terminators to end statements in your program, the logic
is more apparent and therefore easier to trace.

To determine whether a particular routine started and finished, you might insert
code like this into your program:
DISPLAY "ENTER CHECK PROCEDURE"

.

. (checking procedure routine)

.
DISPLAY "FINISHED CHECK PROCEDURE"

After you are sure that the routine works correctly, disable the DISPLAY statements
in one of two ways:
v Put an asterisk in column 7 of each DISPLAY statement line to convert it to a

comment line.
v Put a D in column 7 of each DISPLAY statement to convert it to a comment line.

When you want to reactivate these statements, include a WITH DEBUGGING MODE
clause in the ENVIRONMENT DIVISION; the D in column 7 is ignored and the
DISPLAY statements are implemented.

Before you put the program into production, delete or disable the debugging aids
you used and recompile the program. The program will run more efficiently and
use less storage.

RELATED CONCEPTS

“Scope terminators” on page 20

386 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

DISPLAY statement (Enterprise COBOL Language Reference)

Finding and handling input-output errors
File status keys can help you determine whether your program errors are due to
input-output errors occurring on the storage media.

To use file status keys in debugging, check for a nonzero value in the status key
after each input-output statement. If the value is nonzero (as reported in an error
message), look at the coding of the input-output procedures in the program. You
can also include procedures to correct the error based on the value of the status
key.

If you determine that a problem lies in an input-output procedure, include the USE
EXCEPTION/ERROR declarative to help debug the problem. Then, when a file fails to
open, the appropriate EXCEPTION/ERROR declarative is performed. The appropriate
declarative might be a specific one for the file or one provided for the open
attributes INPUT, OUTPUT, I-O, or EXTEND.

Code each USE AFTER STANDARD ERROR statement in a section that follows the
DECLARATIVES keyword in the PROCEDURE DIVISION.

RELATED TASKS

“Coding ERROR declaratives” on page 244
“Using file status keys” on page 245

RELATED REFERENCES

File status key (Enterprise COBOL Language Reference)

Validating data
If you suspect that your program is trying to perform arithmetic on nonnumeric
data or is receiving the wrong type of data on an input record, use the class test
(the class condition) to validate the type of data.

You can use the class test to check whether the content of a data item is
ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER, DBCS, KANJI, or NUMERIC. If the
data item is described implicitly or explicitly as USAGE NATIONAL, the class test
checks the national character representation of the characters associated with the
specified character class.

You can use the UVALID intrinsic function to check whether a national data item
contains valid UTF-16 encoded data, or whether an alphanumeric or alphabetic
item contains valid UTF-8 encoded data.

RELATED TASKS

“Coding conditional expressions” on page 98
“Testing for valid DBCS characters” on page 151

RELATED REFERENCES

Class condition (Enterprise COBOL Language Reference)
UVALID (Enterprise COBOL Language Reference)

Chapter 19. Debugging 387

Moving, initializing or setting uninitialized data
Use an INITIALIZE or SET statement to initialize a table or data item when you
suspect that a problem might be caused by residual data in those fields.

If the problem happens intermittently and not always with the same data, it could
be that a switch was not initialized but is generally set to the right value (0 or 1)
by chance. By using a SET statement to ensure that the switch is initialized, you
can determine that the uninitialized switch is the cause of the problem or remove
it as a possible cause.

RELATED REFERENCES

INITIALIZE statement (Enterprise COBOL Language Reference)
SET statement (Enterprise COBOL Language Reference)
“INITCHECK” on page 331

Generating information about procedures
Generate information about your program or test case and how it is running by
coding the USE FOR DEBUGGING declarative. This declarative lets you include
statements in the program and indicate when they should be performed when you
run your program.

For example, to determine how many times a procedure is run, you could include
a debugging procedure in the USE FOR DEBUGGING declarative and use a counter to
keep track of the number of times that control passes to that procedure. You can
use the counter technique to check items such as these:
v How many times a PERFORM statement runs, and thus whether a particular

routine is being used and whether the control structure is correct
v How many times a loop runs, and thus whether the loop is executing and

whether the number for the loop is accurate

You can use debugging lines or debugging statements or both in your program.

Debugging lines are statements that are identified by a D in column 7. To make
debugging lines in your program active, code the WITH DEBUGGING MODE clause on
the SOURCE-COMPUTER line in the ENVIRONMENT DIVISION. Otherwise debugging lines
are treated as comments.

Debugging statements are the statements that are coded in the DECLARATIVES section
of the PROCEDURE DIVISION. Code each USE FOR DEBUGGING declarative in a separate
section. Code the debugging statements as follows:
v Only in a DECLARATIVES section.
v Following the header USE FOR DEBUGGING.
v Only in the outermost program; they are not valid in nested programs.

Debugging statements are also never triggered by procedures that are contained
in nested programs.

To use debugging statements in your program, you must include the WITH
DEBUGGING MODE clause and use the DEBUG runtime option.

Options restrictions:

v You cannot use the USE FOR DEBUGGING declarative in a program that you
compile with the THREAD option.

388 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

“Example: USE FOR DEBUGGING”

RELATED REFERENCES

SOURCE-COMPUTER paragraph (Enterprise COBOL Language Reference)
Debugging lines (Enterprise COBOL Language Reference)
Debugging sections (Enterprise COBOL Language Reference)
DEBUGGING declarative (Enterprise COBOL Language Reference)

Example: USE FOR DEBUGGING
This example shows the kind of statements that are needed to use a DISPLAY
statement and a USE FOR DEBUGGING declarative to test a program.

The DISPLAY statement writes information to the terminal or to an output data set.
The USE FOR DEBUGGING declarative is used with a counter to show how many
times a routine runs.
Environment Division.
. . .
Data Division.
. . .
Working-Storage Section.
. . . (other entries your program needs)
01 Trace-Msg PIC X(30) Value " Trace for Procedure-Name : ".
01 Total PIC 9(9) Value 1.
. . .
Procedure Division.
Declaratives.
Debug-Declaratives Section.

Use For Debugging On Some-Routine.
Debug-Declaratives-Paragraph.

Display Trace-Msg, Debug-Name, Total.
End Declaratives.

Main-Program Section.
. . . (source program statements)
Perform Some-Routine.
. . . (source program statements)
Stop Run.

Some-Routine.
. . . (whatever statements you need in this paragraph)
Add 1 To Total.

Some-Routine-End.

The DISPLAY statement in the DECLARATIVES SECTION issues this message every time
the procedure Some-Routine runs:

Trace For Procedure-Name : Some-Routine 22

The number at the end of the message, 22, is the value accumulated in the data
item Total; it indicates the number of times Some-Routine has run. The statements
in the debugging declarative are performed before the named procedure runs.

You can also use the DISPLAY statement to trace program execution and show the
flow through the program. You do this by dropping Total from the DISPLAY
statement and changing the USE FOR DEBUGGING declarative in the DECLARATIVES
SECTION to:
USE FOR DEBUGGING ON ALL PROCEDURES.

As a result, a message is displayed before each nondebugging procedure in the
outermost program runs.

Chapter 19. Debugging 389

Debugging using compiler options
You can use certain compiler options to help you find errors in your program, find
various elements in your program, obtain listings, and prepare your program for
debugging.

You can find the following errors by using compiler options (the options are
shown in parentheses):
v Syntax errors such as duplicate data-names (NOCOMPILE)
v Missing sections (SEQUENCE)
v Invalid subscript values (SSRANGE)

You can find the following elements in your program by using compiler options:
v Error messages and locations of the associated errors (FLAG)
v Program entity definitions and references; text-names and library-names from

COPY or BASIS statements, and the associated data sets or files from which
copybooks are obtained (XREF)

v Data items in the DATA DIVISION (MAP)
v Verb references (VBREF)

You can get a copy of your source (SOURCE) or a listing of generated code (LIST).

You prepare your program for debugging by using the TEST compiler option.

RELATED TASKS

“Finding coding errors”
“Finding line sequence problems” on page 391
“Checking for valid ranges” on page 391
“Selecting the level of error to be diagnosed” on page 392
“Finding program entity definitions and references” on page 394
“Listing data items” on page 394
“Getting listings” on page 395

RELATED REFERENCES

Chapter 17, “Compiler options,” on page 301

Finding coding errors
Use the NOCOMPILE option to compile conditionally or to only check syntax. When
used with the SOURCE option, NOCOMPILE produces a listing that will help you find
coding mistakes such as missing definitions, improperly defined data items, and
duplicate data-names.

If you are compiling in the TSO foreground, you can send the messages to your
screen by using the TERM compiler option and defining your data set as the
SYSTERM data set.

Checking syntax only: To only check the syntax of your program, and not produce
object code, use NOCOMPILE without a suboption. If you also specify the SOURCE
option, the compiler produces a listing.

When you specify NOCOMPILE, several compiler options are suppressed. See the
related reference below about the COMPILE option for details.

390 Enterprise COBOL for z/OS, V5.2 Programming Guide

Compiling conditionally: To compile conditionally, use NOCOMPILE(x), where x is
one of the severity levels of errors. Your program is compiled if all the errors are of
a lower severity than x. The severity levels that you can use, from highest to
lowest, are S (severe), E (error), and W (warning).

If an error of level x or higher occurs, the compilation stops and your program is
only checked for syntax.

RELATED REFERENCES

“COMPILE” on page 316

Finding line sequence problems
Use the SEQUENCE compiler option to find statements that are out of sequence.
Breaks in sequence indicate that a section of a source program was moved or
deleted.

When you use SEQUENCE, the compiler checks the source statement numbers to
determine whether they are in ascending sequence. Two asterisks are placed beside
statement numbers that are out of sequence. The total number of these statements
is printed as the first line in the diagnostics after the source listing.

RELATED REFERENCES

“SEQUENCE” on page 356

Checking for valid ranges
Use the SSRANGE compiler option to check whether addresses fall within proper
ranges.

SSRANGE causes the following addresses to be checked:
v Subscripted or indexed data references: Is the effective address of the specified

table element within the maximum boundary of the containing group? (This
checking is not done for UNBOUNDED tables and groups.)

v Variable-length data references (a reference to a data item that contains an
OCCURS DEPENDING ON clause): Is the actual length greater than or equal to zero,
and within the maximum defined length for the group data item? (This checking
is not done for UNBOUNDED groups.)

v Reference-modified data references: Are the offset and length positive? Is the
sum of the offset and length within the maximum length for the data item?

If the SSRANGE option is in effect, checking is performed at run time if the COBOL
statement that contains the indexed, subscripted, variable-length, or
reference-modified data item is executed.

If an effective address is outside the range of the data item that contains the
referenced data, an error message is generated and the program stops. The
message identifies the table or identifier that was referenced and the line number
where the error occurred. Additional information is provided depending on the
type of reference that caused the error.

If all subscripts, indices, and reference modifiers in a given data reference are
literals and they result in a reference outside the data item, the error is diagnosed
at compile time regardless of the setting of the SSRANGE option.

Chapter 19. Debugging 391

Performance consideration: SSRANGE can somewhat degrade performance because
of the extra overhead to check each subscripted or indexed item.

RELATED REFERENCES

“SSRANGE” on page 361
“Performance-related compiler options” on page 669

Selecting the level of error to be diagnosed
Use the FLAG compiler option to specify the level of error to be diagnosed during
compilation and to indicate whether error messages are to be embedded in the
listing. Use FLAG(I) or FLAG(I,I) to be notified of all errors.

Specify as the first parameter the lowest severity level of the syntax-error messages
to be issued. Optionally specify the second parameter as the lowest level of the
syntax-error messages to be embedded in the source listing. This severity level
must be the same or higher than the level for the first parameter. If you specify
both parameters, you must also specify the SOURCE compiler option.

Table 49. Severity levels of compiler messages

Severity level Resulting messages

U (unrecoverable) U messages only

S (severe) All S and U messages

E (error) All E, S, and U messages

W (warning) All W, E, S, and U messages

I (informational) All messages

When you specify the second parameter, each syntax-error message (except a
U-level message) is embedded in the source listing at the point where the compiler
had enough information to detect that error. All embedded messages (except those
issued by the library compiler phase) directly follow the statement to which they
refer. The number of the statement that had the error is also included with the
message. Embedded messages are repeated with the rest of the diagnostic
messages at the end of the source listing.

Note: You can suppress some error messages and change the severity of others
with the MSGEXIT suboption of the EXIT option.

When you specify the NOSOURCE compiler option, the syntax-error messages are
included only at the end of the listing. Messages for unrecoverable errors are not
embedded in the source listing, because an error of this severity terminates the
compilation.

“Example: embedded messages” on page 393

RELATED TASKS

“Generating a list of compiler messages” on page 280

RELATED REFERENCES

“Severity codes for compiler diagnostic messages” on page 282
“Messages and listings for compiler-detected errors” on page 280
“FLAG” on page 328

392 Enterprise COBOL for z/OS, V5.2 Programming Guide

Example: embedded messages
The following example shows the embedded messages generated by specifying a
second parameter to the FLAG option. Some messages in the summary apply to
more than one COBOL statement.

LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference
...
090671** /
090672** ***
090673** *** I N I T I A L I Z E P A R A G R A P H **
090674** *** Open files. Accept date, time and format header lines. **
090675** *** Load location-table. **
090676** ***
090677** 100-initialize-paragraph.
090678** move spaces to ws-transaction-record IMP 331
090679** move spaces to ws-commuter-record IMP 307
090680** move zeroes to commuter-zipcode IMP 318
090681** move zeroes to commuter-home-phone IMP 319
090682** move zeroes to commuter-work-phone IMP 320
090683** move zeroes to commuter-update-date IMP 324
090684** open input update-transaction-file 204

==090684==> IGYPS2052-S An error was found in the definition of file "LOCATION-FILE". The
reference to this file was discarded.

090685** location-file 193
090686** i-o commuter-file 181
090687** output print-file 217
090688** if commuter-file-status not = "00" and not = "97" 241
090689** 1 display "100-OPEN"
090690** 1 move 100 to comp-code 231
090691** 1 perform 500-vsam-error 91069
090692** 1 perform 900-abnormal-termination 91114
090693** end-if
090694** accept ws-date from date UND

==090694==> IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.
090695** move corr ws-date to header-date UND 455

==090695==> IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.
090696** accept ws-time from time UND

==090696==> IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.
090697** move corr ws-time to header-time UND 449

==090697==> IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.
090698** read location-file 193

==090698==> IGYPS2053-S An error was found in the definition of file "LOCATION-FILE". This
input/output statement was discarded.

090699** at end
090700** 1 set location-eof to true 256
090701** end-read

...
LineID Message code Message text

IGYSC0090-W 1700 sequence errors were found in this program.
IGYSC3002-I A severe error was found in the program. The "OPTIMIZE" compiler option was cancelled.

160 IGYDS1089-S "ASSIGNN" was invalid. Scanning was resumed at the next area "A" item, level-number, or
the start of the next clause.

193 IGYGR1207-S The "ASSIGN" clause was missing or invalid in the "SELECT" entry for file "LOCATION-FILE".
The file definition was discarded.

269 IGYDS1066-S "REDEFINES" object "WS-DATE" was not the immediately preceding level-1 data item.
The "REDEFINES" clause was discarded.

90602 IGYPS2052-S An error was found in the definition of file "LOCATION-FILE". The reference to this file
was discarded. Same message on line: 90684

90694 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.
Same message on line: 90695

90696 IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.
Same message on line: 90697

90698 IGYPS2053-S An error was found in the definition of file "LOCATION-FILE". This input/output statement
was discarded. Same message on line: 90709

Messages Total Informational Warning Error Severe Terminating
Printed: 13 1 1 11
* Statistics for COBOL program IGYTCARA:
* Source records = 1755
* Data Division statements = 295
* Procedure Division statements = 479
* Generated COBOL statements = 0
* Program complexity factor = 486
End of compilation 1, program IGYTCARA, highest severity 12.
Return code 12

Chapter 19. Debugging 393

Finding program entity definitions and references
Use the XREF(FULL) compiler option to find out where a data-name,
procedure-name, or program-name is defined and referenced. Use it also to
produce a cross-reference of COPY or BASIS statements to the data sets or files from
which copybooks were obtained.

A sorted cross-reference includes the line number where the data-name,
procedure-name, or program-name was defined and the line numbers of all
references to it.

To include only the explicitly referenced data items, use the XREF(SHORT) option.

Use both the XREF (either FULL or SHORT) and the SOURCE options to print a modified
cross-reference to the right of the source listing. This embedded cross-reference
shows the line number where the data-name or procedure-name was defined.

For further details, see the related reference about the XREF compiler option.

“Example: XREF output: data-name cross-references” on page 421
“Example: XREF output: program-name cross-references” on page 422
“Example: XREF output: COPY/BASIS cross-references” on page 422
“Example: XREF output: embedded cross-reference” on page 423

RELATED TASKS

“Getting listings” on page 395

RELATED REFERENCES

“XREF” on page 374

Listing data items
Use the MAP(HEX|DEC) compiler option to create a listing of the DATA DIVISION items
and all implicitly declared items. Use the MAP output to locate the contents of a
data item in a system dump.

When you specify the MAP(HEX|DEC) option, an embedded MAP summary that
contains condensed MAP information is generated to the right of the COBOL source
data definition.
v If you specify MAP(HEX) or MAP with no suboption, data item offsets within

groups will be in hexadecimal notation.
v If you specify MAP(DEC), data item offsets within groups will be in decimal

notation.

When both XREF data and an embedded MAP summary are on the same line, the
embedded summary is printed first.

You can select or inhibit parts of the MAP listing and embedded MAP summary by
using *CONTROL MAP|NOMAP (or *CBL MAP|NOMAP) statements throughout the source.
For example:
*CONTROL NOMAP

01 A
02 B

*CONTROL MAP

“Example: MAP output” on page 400

394 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

|
|

|
|

RELATED TASKS

“Getting listings”

RELATED REFERENCES

“MAP” on page 335

Using the debugger
You can use Debug Tool to debug your Enterprise COBOL programs. Use the TEST
compiler option to prepare your COBOL program so that you can step through the
executable program with the debugger.

For remote debugging, there is an Eclipse plugin that provides a client graphical
user interface to the debugging information provided by the Debug Tool engine
running under z/OS or z/OS UNIX. The IBM Debug Tool Plug-in for Eclipse is
included with Rational Developer for System z and also with the IBM Problem
Determination Tools Studio.

You can specify the TEST suboption NOSOURCE to have smaller object programs
stored on disk. The loaded size does not change, the debug information is never
loaded unless requested, for example, by a debugger such as Debug Tool or by LE
(for CEEDUMP). With the NOSOURCE suboption, you will not be able to see the
source in the Debug Tool source window.

Specify the OPTIMIZE(0), NOSTGOPT and TEST compiler options to get the most
debugging function.

Specify a non-zero OPTIMIZE level, NOSTGOPT and TEST(EJPD) compiler options to
get better performance with a few restrictions on debugging function.

Specify a non-zero OPTIMIZE level, STGOPT and TEST(NOEJPD) compiler options to
get the best performance but still be able to use Debug Tool, with some restrictions
on debugging function.

For details about which compiler options to use for maximum debugging
capability versus best performance, see the related reference about the TEST
compiler option.

RELATED TASKS

Debug Tool User's Guide (Preparing your program for debugging)

RELATED REFERENCES

“TEST” on page 364

Getting listings
Get the information that you need for debugging by requesting the appropriate
compiler listing with the use of compiler options.

Attention: The listings produced by the compiler are not a programming interface
and are subject to change.

Chapter 19. Debugging 395

|
|

Table 50. Using compiler options to get listings

Use Listing Contents Compiler option

To check a list of the
options in effect for the
program, statistics about
the content of the program,
and diagnostic messages
about the compilation

Short listing v List of options in effect
for the program

v Statistics about the
content of the program

v Diagnostic messages
about the compilation1

NOSOURCE, NOXREF, NOVBREF,
NOMAP, NOOFFSET, NOLIST

To aid in testing and
debugging your program;
to have a record after the
program has been
debugged

Source listing Copy of your source “SOURCE” on page 357

To find certain data items
in a storage dump; to see
the final storage allocation
after reentrancy or
optimization has been
accounted for; to see where
programs are defined and
check their attributes

Map of DATA DIVISION
items

All DATA DIVISION items
and all implicitly declared
items

Embedded map summary
(in the right margin of the
listing for lines in the DATA
DIVISION that contain data
declarations)

Nested program map (if the
program contains nested
programs)

“MAP” on page 3352

To find where a name is
defined, referenced, or
modified; to determine the
context (such as whether a
verb was used in a PERFORM
block) in which a procedure
is referenced; to determine
the data set or file from
which a copybook was
obtained

Sorted cross-reference
listing of names; sorted
cross-reference listing of
COPY/BASIS statements and
copybook data sets or files

Data-names,
procedure-names, and
program-names; references
to these names

COPY/BASIS text-names and
library names, and the data
sets or files from which
associated copybooks were
obtained

Embedded modified
cross-reference provides
line numbers where
data-names and
procedure-names were
defined

“XREF” on page 3742,3

To find the failing verb in a
program or the address in
storage of a data item that
is moved while the
program is running

PROCEDURE DIVISION code
and assembler code
produced by the compiler3

Generated code “LIST” on page 3342,4

To verify you still have a
valid logic path after you
move or add PROCEDURE
DIVISION sections

Condensed PROCEDURE
DIVISION listing

Condensed verb listing,
global tables,
WORKING-STORAGE
information, and literals

“OFFSET” on page 345

To find an instance of a
certain verb

Alphabetic listing of verbs Each verb used, number of
times each verb was used,
line numbers where each
verb was used

“VBREF” on page 370

396 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 50. Using compiler options to get listings (continued)

Use Listing Contents Compiler option

1. To eliminate messages, turn off the options (such as FLAG) that govern the level of compile diagnostic
information. You can also selectively suppress messages by using the MSGEXIT suboption of the EXIT compiler
option.

2. To use your line numbers in the compiled program, use the NUMBER compiler option. The compiler checks the
sequence of your source statement line numbers in columns 1 through 6 as the statements are read in. When it
finds a line number out of sequence, the compiler assigns to it a number with a value one higher than the line
number of the preceding statement. The new value is flagged with two asterisks. A diagnostic message
indicating an out-of-sequence error is included in the compilation listing.

3. The context of the procedure reference is indicated by the characters preceding the line number.

4. You can control the listing of generated object code by selectively placing *CONTROL LIST and *CONTROL NOLIST
(or equivalently, *CBL LIST and *CBL NOLIST) statements in your source. Note that the *CONTROL statement is
different than the PROCESS (or CBL) statement.

The output is generated if:

v You specify the COMPILE option (or the NOCOMPILE(x) option is in effect and an error level x or higher does not
occur).

v You do not specify the OFFSET option. OFFSET and LIST are mutually exclusive options with OFFSET taking
precedence.

“Example: short listing”
“Example: SOURCE and NUMBER output” on page 399
“Example: MAP output” on page 400
“Example: embedded map summary” on page 402
“Example: nested program map” on page 405
“Example: XREF output: data-name cross-references” on page 421
“Example: XREF output: program-name cross-references” on page 422
“Example: XREF output: COPY/BASIS cross-references” on page 422
“Example: XREF output: embedded cross-reference” on page 423
“Example: OFFSET compiler output” on page 424
“Example: VBREF compiler output” on page 425

RELATED TASKS

“Generating a list of compiler messages” on page 280
“Reading LIST output” on page 405
Language Environment Debugging Guide (Debugging COBOL programs)

RELATED REFERENCES

“Messages and listings for compiler-detected errors” on page 280

Example: short listing
The parenthetical numbers shown in the listing below correspond to numbered
explanations that follow the listing. For illustrative purposes, some errors that
cause diagnostic messages were deliberately introduced.
Invocation parameters: (1)
OPTFILE
PROCESS(CBL) statements: (2)
CBL NODECK
CBL NOADV,NODYN,NONAME,NONUMBER,QUOTE,SEQ,DUMP
CBL NOSOURCE, NOXREF, NOVBREF, NOMAP, NOOFFSET, NOLIST
Options from SYSOPTF: (3)
C,NODU,FLAG(I),X,MAP,NOLIST,RENT,OPT(1),SSR
TEST TRUNC(OPT)
Options in effect: (4)
NOADATA
NOADV
AFP(VOLATILE)

Chapter 19. Debugging 397

QUOTE
ARCH(7)
ARITH(COMPAT)

NOAWO
NOBLOCK0
BUFSIZE(4096)

NOCICS
CODEPAGE(1140)
COMPILE

NOCOPYRIGHT
NOCURRENCY
DATA(31)
DBCS

NODECK
NODIAGTRUNC
DISPSIGN(COMPAT)

NODLL
DUMP

NODYNAM
NOEXIT
NOEXPORTALL
NOFASTSRT
FLAG(I)

NOFLAGSTD
HGPR(PRESERVE)
INTDATE(ANSI)
LANGUAGE(EN)
LINECOUNT(60)

NOLIST
NOMAP
MAXPCF(60000)

NOMDECK
NONAME
NSYMBOL(NATIONAL)

NONUMBER
NUMPROC(NOPFD)
OBJECT

NOOFFSET
OPTIMIZE(1)
OUTDD(SYSOUT)
PGMNAME(COMPAT)
QUALIFY(COMPAT)
RENT
RMODE(AUTO)

NORULES
NOSERVICE
SEQUENCE

NOSOURCE
SPACE(1)

NOSQL
SQLCCSID

NOSQLIMS
SSRANGE

NOSTGOPT
NOTERM
TEST(NOEJPD,SOURCE)

NOTHREAD
TRUNC(OPT)

NOVBREF
VLR(COMPAT)
VSAMOPENFS(COMPAT)

NOWORD
XMLPARSE(XMLSS)

NOXREF
ZONEDATA(PFD)
ZWB

LineID Message code Message text (5)

IGYSC3002-I A severe error was found in the program. The "OPTIMIZE" and the "STGOPT" compiler
options were cancelled.

160 IGYDS1089-S "ASSIGNN" was invalid. Scanning was resumed at the next area "A" item, level-number,
or the start of the next clause.

192 IGYDS1050-E File "LOCATION-FILE" contained no data record descriptions. The file definition was
discarded.

192 IGYGR1207-S The "ASSIGN" clause was missing or invalid in the "SELECT" entry for file "LOCATION-FILE".
The file definition was discarded.

888 IGYPS2052-S An error was found in the definition of file "LOCATION-FILE". The reference to this file

398 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

|

|
|

|
|

|

|

was discarded.

Same message on line: 979

1000 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

Same message on line: 1001

1004 IGYPS2053-S An error was found in the definition of file "LOCATION-FILE". This input/output statement
was discarded.

Same message on line: 1016

1015 IGYPS2121-S "LOC-CODE" was not defined as a data-name. The statement was discarded.

1212 IGYPS2121-S "WS-NUMERIC-DATE" was not defined as a data-name. The statement was discarded.

1655 IGYPG3113-W Truncation of high-order digit positions may occur due to precision of intermediate results
exceeding 30 digits.

Messages Total Informational Warning Error Severe Terminating (6)
Printed: 13 1 1 1 10
* Statistics for COBOL program IGYTCARA: (7)
* Source records = 1755
* Data Division statements = 295
* Procedure Division statements = 479
* Generated COBOL statements = 0
* Program complexity factor = 486
End of compilation 1, program IGYTCARA, highest severity 12. (8)
Return code 12

(1) Message about options passed to the compiler at compiler invocation. This
message does not appear if no options were passed.

OPTFILE
Requests options from a SYSOPTF data set.

(2) Options coded in the PROCESS (or CBL) statement.

NOOFFSET
Suppresses a condensed listing of the PROCEDURE DIVISION.

NOMAP Suppresses a map report of the items defined in the DATA DIVISION.

(3) Options obtained from the SYSOPTF data set (because the OPTFILE
compiler option was specified).

NOLIST Suppresses an assembler-language expansion of the source code.

TEST The program was compiled for use with debugging and problem
determination tools (such as Debug Tool and Fault Analyzer) and
to get local variables listed in CEEDUMP.

(4) Status of options at the start of this compilation.

(5) Program diagnostics. The first message refers you to any library phase
diagnostics. Diagnostics for the library phase are presented at the
beginning of the listing.

(6) Count of diagnostic messages in this program, grouped by severity level.

(7) Program statistics for the program IGYTCARA.

(8) Program statistics for the compilation unit. When you perform a batch
compilation, the return code is the highest message severity level for the
entire compilation.

Example: SOURCE and NUMBER output
In the portion of the listing shown below, the programmer numbered two of the
statements out of sequence. The note numbers in the listing correspond to
numbered explanations that follow the listing.

(1)
LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference

(2) (3) (4)
000870 /**
000871 *** D O M A I N L O G I C **

Chapter 19. Debugging 399

000872 *** **
000873 *** Initialization. Read and process update transactions until **
000874 *** EOE. Close files and stop run. **
000875 ***
000876 procedure division.
000877 000-do-main-logic.
000878 display "PROGRAM IGYTCARA - Beginning".
000879 perform 050-create-vsam-master-file. 930
000880 perform 100-initialize-paragraph. 982
000881 read update-transaction-file into ws-transaction-record 203 338
000882 at end
000883 1 IA4390 set transaction-eof to true 253
000884 end-read.
000885 IA4410 perform until transaction-eof 253
000886 1 perform 200-edit-update-transaction 1050
000887 1 IA4430 if no-errors 372
000888 2 perform 300-update-commuter-record 1159
000889 1 else
000890 2 perform 400-print-transaction-errors 1312
000891 1 end-if
000892 1 perform 410-re-initialize-fields 1373
000893 1 IA4480 read update-transaction-file into ws-transaction-record 203 338
000894 1 at end
000895 2 IA4500 set transaction-eof to true 253
000896 1 IA4510 end-read
000897 IA4520 end-perform.
000898 close commuter-file update-transaction-file location-file 180 203 192
000899 print-file. 216
000900
000901 *--*
000902 * File status checked after I/O operation. *
000903 *--*
000904
000905 IA4600 if not i-o-okay 241
000906 1 display "000-close"
000907 1 move 0000 to comp-code 230
000908 1 IA4620 perform 500-vsam-error 1386
000909 1 perform 900-abnormal-termination 1432
000910 IA4630 end-if.
000911 ***
000912 * Paragraphs 1100 and 1200 illustrates the intrinsic *
000913 * function computations. *
000914 ***
000915 perform 1100-print-i-f-headings. 1441
000916 perform 1200-print-i-f-data. 1481
000917 display " ".
000918 display " ".
000919 display "PROGRAM IGYTCARA - Normal end".
000920 stop run.

(1) Scale line, which labels Area A, Area B, and source-code column numbers

(2) Source-code line number assigned by the compiler

(3) Program (PL) and statement (SL) nesting level

(4) Columns 1 through 6 of program (the sequence number area)

Example: MAP output
The following example shows output from the MAP option. The numbers used in
the explanation below correspond to the numbers that annotate the output.
Data Division Map

(1)
Data Definition Attribute codes (rightmost column) have the following meanings:

D = Object of OCCURS DEPENDING G = GLOBAL S = Spanned file
E = EXTERNAL O = Has OCCURS clause U = Undefined format file
F = Fixed-length file OG= Group has own length definition V = Variable-length file
FB= Fixed-length blocked file R = REDEFINES VB= Variable-length blocked file
X = Unallocated

(2) (3) (4) (5) (6) (7) (8) (9)
Source Hierarchy and Base Displacement Asmblr Data Data Def
LineID Data Name Locator Structure Definition Data Type Attributes

4 PROGRAM-ID IGYTCARA--*
58 FD COMMUTER-FILE BLF=00001 VSAM F
60 1 COMMUTER-RECORD BLF=00001 DS 0CL80 Group
61 2 COMMUTER-KEY. BLF=00001 000000000 DS 16C Display
62 2 FILLER. BLF=00001 000000016 DS 64C Display
64 FD COMMUTER-FILE-MST BLF=00002 VSAM F
66 1 COMMUTER-RECORD-MST BLF=00002 DS 0CL80 Group
67 2 COMMUTER-KEY-MST. BLF=00002 000000000 DS 16C Display
68 2 FILLER. BLF=00002 000000016 DS 64C Display

140 1 STATUS-AREA DS 0CL8 Group
141 2 COMMUTER-FILE-STATUS. 000000000 DS 2C Display
142 88 I-O-OKAY.
143 2 COMMUTER-VSAM-STATUS. 000000002 DS 0CL6 Group
144 3 VSAM-R15-RETURN-CODE. 000000002 DS 2C Binary
145 3 VSAM-FUNCTION-CODE. 000000004 DS 2C Binary
146 3 VSAM-FEEDBACK-CODE. 000000006 DS 2C Binary
148 77 UPDATE-FILE-STATUS. DS 2C Display
149 77 LOCCODE-FILE-STATUS DS 2C Display
150 77 UPDPRINT-FILE-STATUS. DS 2C Display
152 1 FLAGS . DS 0CL3 Group
153 2 TRANSACTION-EOF-FLAG. 000000000 DS 1C Display
154 88 TRANSACTION-EOF
155 2 LOCATION-EOF-FLAG 000000001 DS 1C Display
156 88 LOCATION-EOF.
157 2 TRANSACTION-MATCH-FLAG. 000000002 DS 1C Display

400 Enterprise COBOL for z/OS, V5.2 Programming Guide

158 88 TRANSACTION-MATCH
159 88 TRANSACTION-MATCH-OFF
216 1 WS-COMMUTER-RECORD. BLX=00001 DS 0CL81 Group E
217 2 WS-COMMUTER-KEY BLX=00001 000000000 DS 0CL16 Group E
218 3 WS-COMMUTER-GENERIC-KEY BLX=00001 000000000 DS 0CL5 Group E
219 4 COMMUTER-SHIFT. BLX=00001 000000000 DS 1C Display E
220 4 COMMUTER-HOME-CODE. BLX=00001 000000001 DS 2C Display E
221 4 COMMUTER-WORK-CODE. BLX=00001 000000003 DS 2C Display E
222 3 COMMUTER-NAME BLX=00001 000000005 DS 9C Display E
223 3 COMMUTER-INITIALS BLX=00001 000000014 DS 2C Display E
224 2 COMMUTER-ADDRESS. BLX=00001 000000016 DS 18C Display E
225 2 COMMUTER-CITY BLX=00001 000000034 DS 13C Display E
226 2 COMMUTER-STATE. BLX=00001 000000047 DS 2C Display E
227 2 COMMUTER-ZIPCODE. BLX=00001 000000049 DS 3P Packed-Dec E
396 1 DETAIL1-LINE. BLL=00001 DS 0CL121 Group
397 2 FILLER. BLL=00001 000000000 DS 2C Display
398 2 PRINT-TRANSACTION-CODE. BLL=00001 000000002 DS 1C Display
399 2 FILLER. BLL=00001 000000003 DS 4C Display
400 2 PRINT-RECORD-TYPE BLL=00001 000000007 DS 3C Display
401 2 FILLER. BLL=00001 000000010 DS 3C Display
402 2 PRINT-SHIFT BLL=00001 000000013 DS 1C Display
403 2 FILLER. BLL=00001 000000014 DS 1C Display
404 2 PRINT-HOME-CODE BLL=00001 000000015 DS 2C Display
405 2 FILLER. BLL=00001 000000017 DS 1C Display
406 2 PRINT-WORK-CODE BLL=00001 000000018 DS 2C Display
407 2 FILLER. BLL=00001 000000020 DS 2C Display
408 2 PRINT-NAME. BLL=00001 000000022 DS 9C Display
454 1 DETAILX-LINE. BLL=XXXXX DS 0CL121 Group X
455 2 FILLER. BLL=XXXXX DS 36C Display X
456 2 PRINT-CITY. BLL=XXXXX DS 13C Display X
457 2 FILLER. BLL=XXXXX DS 3C Display X
458 2 PRINT-STATE BLL=XXXXX DS 2C Display X
459 2 FILLER. BLL=XXXXX DS 1C Display X
460 2 PRINT-ZIPCODE BLL=XXXXX DS 5C Display X
461 2 FILLER. BLL=XXXXX DS 1C Display X
462 2 PRINT-WORK-PHONE. BLL=XXXXX DS 14C Display X
463 2 FILLER. BLL=XXXXX DS 1C Display X
464 2 PRINT-WORK-JUNCTION BLL=XXXXX DS 25C Display X
465 2 FILLER. BLL=XXXXX DS 20C Display X (10)
467 1 DETAIL2-LINE. BLL=00002 DS 0CL121 Group
468 2 FILLER. BLL=00002 000000000 DS 36C Display
469 2 PRINT-CITY. BLL=00002 000000036 DS 13C Display
470 2 FILLER. BLL=00002 000000049 DS 3C Display
471 2 PRINT-STATE BLL=00002 000000052 DS 2C Display
472 2 FILLER. BLL=00002 000000054 DS 1C Display
473 2 PRINT-ZIPCODE BLL=00002 000000055 DS 5C Display
474 2 FILLER. BLL=00002 000000060 DS 1C Display
475 2 PRINT-WORK-PHONE. BLL=00002 000000061 DS 14C Display
476 2 FILLER. BLL=00002 000000075 DS 1C Display
477 2 PRINT-WORK-JUNCTION BLL=00002 000000076 DS 25C Display
478 2 FILLER. BLL=00002 000000101 DS 20C Display

(1) Explanations of the data definition attribute codes.

(2) Source line number where the data item was defined.

(3) Level definition or number. The compiler generates this number in the
following way:
v First level of any hierarchy is always 01. Increase 1 for each level (any

item you coded as level 02 through 49).
v Level-numbers 66, 77, and 88, and the indicators FD and SD, are not

changed.

(4) Data-name that is used in the source module in source order.

(5) Base locator used for this data item.

(6) Hexadecimal displacement from the beginning of the containing structure
if the MAP(HEX) option is in effect. If the MAP(DEC) option is in effect,
decimal displacement is shown.

(7) Pseudoassembler code showing how the data is defined. When a structure
contains variable-length fields, the maximum length of the structure is
shown.

(8) Data type and usage.

(9) Data definition attribute codes. The definitions are explained at the top of
the DATA DIVISION map.

(10) DETAILX-LINE was not referenced in the PROCEDURE DIVISION. Because
STGOPT was specified, DETAILX-LINE was deleted, resulting in the base
locator being set to XXXXX.

Chapter 19. Debugging 401

|
|

“Example: embedded map summary”
“Example: nested program map” on page 405

RELATED REFERENCES

“Terms used in MAP output” on page 403
“Symbols used in LIST and MAP output” on page 404

Example: embedded map summary
The following example shows an embedded map summary from specifying the MAP
option. The summary appears in the right margin of the listing for lines in the DATA
DIVISION that contain data declarations.

000002 Identification Division.
000003
000004 Program-id. IGYTCARA.
. . .

000054 Data division.
000055 File section.
000056
000058 FD COMMUTER-FILE
000059 record 80 characters.
. . . (1) (2) (3)

000060 01 commuter-record. BLF=00001 0CL80
000061 05 commuter-key PIC x(16). BLF=00001,000000000 16C
000062 05 filler PIC x(64). BLF=00001,000000016 64C
. . .

000105 Working-storage section.
000106 01 Working-storage-for-IGYCARA pic x. 1C
000107
000108 77 comp-code pic S9999 comp. 2C
000109 77 ws-type pic x(3) value spaces. 3C
000135 01 i-f-status-area. 0CL2
000136 05 i-f-file-status pic x(2). 000000000 2C
000137 88 i-o-successful value zeroes.
000138
000139
000140 01 status-area. 0CL8
000141 05 commuter-file-status pic x(2). 000000000 2C
000142 88 i-o-okay value zeroes.
000143 05 commuter-vsam-status. 000000002 0CL6
000144 10 vsam-r15-return-code pic 9(2) comp. 000000002 2C
000145 10 vsam-function-code pic 9(1) comp. 000000004 2C
000146 10 vsam-feedback-code pic 9(3) comp. 000000006 2C
000147
000148 77 update-file-status pic xx. 2C
000149 77 loccode-file-status pic xx. 2C
000150 77 updprint-file-status pic xx. 2C
000151
000216 01 ws-commuter-record EXTERNAL. BLX=00001 0CL81
000217 05 ws-commuter-key. BLX=00001,000000000 0CL16
000218 10 ws-commuter-generic-key. BLX=00001,000000000 0CL5
000219 15 commuter-shift pic x. BLX=00001,000000000 1C
000220 15 commuter-home-code pic xx. BLX=00001,000000001 2C
000221 15 commuter-work-code pic xx. BLX=00001,000000003 2C
000222 10 commuter-name pic x(9). BLX=00001,000000005 9C
000223 10 commuter-initials pic xx. BLX=00001,000000014 2C
000224 05 commuter-address pic x(18). BLX=00001,000000016 18C
000225 05 commuter-city pic x(13). BLX=00001,000000034 13C
000226 05 commuter-state pic xx. BLX=00001,000000047 2C
000227 05 commuter-zipcode pic 9(5) comp-3. BLX=00001,000000049 3P
. . .

000395 Linkage Section.
000396 01 detail1-line. BLL=00001 0CL121
000397 05 filler pic xx. BLL=00001,000000000 2C
000398 05 print-transaction-code pic x. BLL=00001,000000002 1C
000399 05 filler pic x(4). BLL=00001,000000003 4C
000400 05 print-record-type pic x(3). BLL=00001,000000007 3C
000401 05 filler pic xxx. BLL=00001,000000010 3C
000402 05 print-shift pic x. BLL=00001,000000013 1C
000403 05 filler pic x. BLL=00001,000000014 1C
000404 05 print-home-code pic xx. BLL=00001,000000015 2C
000405 05 filler pic x. BLL=00001,000000017 1C
000406 05 print-work-code pic xx. BLL=00001,000000018 2C
000407 05 filler pic xx. BLL=00001,000000020 2C
000408 05 print-name pic x(9). BLL=00001,000000022 9C
000409 05 filler pic xx. BLL=00001,000000031 2C
000410 05 print-initials pic xx. BLL=00001,000000033 2C
. . .

000487 procedure division.
000488 000-do-main-logic.
000489 display "PROGRAM IGYTCARA - Beginning".

(1) Base locator used for this data item

402 Enterprise COBOL for z/OS, V5.2 Programming Guide

(2) Decimal displacement from the beginning of the containing structure. It
indicates that the MAP(DEC) option is in effect. If you specified the MAP(HEX)
option or MAP with no suboption, hexadecimal displacement is shown.

(3) Pseudoassembler code showing how the data is defined

RELATED REFERENCES

“Symbols used in LIST and MAP output” on page 404

Terms used in MAP output
The following table describes the terms used in the listings produced by the MAP
compiler option.

Table 51. Terms used in MAP output

Term Definition Description

ALPHABETIC DS nC Alphabetic data item (PICTURE A)

ALPHA-EDIT DS nC Alphabetic-edited data item

AN-EDIT DS nC Alphanumeric-edited data item

BINARY DS 1H2, 1F2, 2F2, 2C,
4C, or 8C

Binary data item (USAGE BINARY, COMPUTATIONAL, or
COMPUTATIONAL-5)

COMP-1 DS 4C Single-precision internal floating-point data item (USAGE
COMPUTATIONAL-1)

COMP-2 DS 8C Double-precision internal floating-point data item (USAGE
COMPUTATIONAL-2)

DBCS DS nC DBCS data item (USAGE DISPLAY-1)

DBCS-EDIT DS nC DBCS-edited data item (USAGE DISPLAY-1)

DISP-FLOAT DS nC Display floating-point data item (USAGE DISPLAY)

DISPLAY DS nC Alphanumeric data item (PICTURE X)

DISP-NUM DS nC Zoned decimal data item (USAGE DISPLAY)

DISP-NUM-EDIT DS nC Numeric-edited data item (USAGE DISPLAY)

FD File definition

FUNCTION-PTR DS nC Function pointer (USAGE FUNCTION-POINTER)

GROUP DS 0CLn1 Fixed-length alphanumeric group data item

GRP-VARLEN DS 0CLn1 Variable-length alphanumeric group data item

INDEX DS nC Index data item (USAGE INDEX)

INDEX-NAME DS nC Index name

NATIONAL DS nC Category national data item (USAGE NATIONAL)

NAT-EDIT DS nC National-edited data item (USAGE NATIONAL)

NAT-FLOAT DS nC National floating-point data item (USAGE NATIONAL)

NAT-GROUP DS 0CLn1 National group (GROUP-USAGE NATIONAL)

NAT-GRP-VARLEN DS 0CLn1 National variable-length group (GROUP-USAGE NATIONAL)

NAT-NUM DS nC National decimal data item (USAGE NATIONAL)

NAT-NUM-EDIT DS nC National numeric-edited data item (USAGE NATIONAL)

OBJECT-REF DS nC Object-reference data item (USAGE OBJECT REFERENCE)

PACKED-DEC DS nP Internal decimal data item (USAGE PACKED-DECIMAL or
COMPUTATIONAL-3)

POINTER DS nC Pointer data item (USAGE POINTER)

Chapter 19. Debugging 403

|
|
|

Table 51. Terms used in MAP output (continued)

Term Definition Description

PROCEDURE-PTR DS nC Procedure pointer (USAGE PROCEDURE-POINTER)

SD Sort file definition

VSAM, QSAM,
LINESEQ

File processing method

1-49, 77 Level-numbers for data descriptions

66 Level-number for RENAMES

88 Level-number for condition-names

1. n is the size in bytes for fixed-length groups and the maximum size in bytes for variable-length groups.

2. If the SYNCHRONIZED clause appears, these fields are used.

Symbols used in LIST and MAP output
The following table describes the symbols used in the listings produced by the
LIST or MAP option.

Table 52. Symbols used in LIST and MAP output

Symbol Definition

BLF_n1 Base locator for files

BLL_n1 Base locator for LINKAGE SECTION

BLO_n1 Base locator for object instance data

BLT_n1 Base locator for XML-TEXT and XML-NTEXT

BLV_n1 Base locator for variably located data

BLX_n1 Base locator for external data

ODOsv_cell ODO save cell number

Pfm_cell PERFORM cell number

Pfmsv_cell Perform save cell number

TSN=N Temporary created by the compiler

VLC_cell Variable-length cell (ODO)

VN_cell Variable name cell for PERFORM statement

VNGO_cell Variable name cell for ALTER statement

VNI_cell Variable name initialization

#Calc00000000n Code to compute addresses of data that is present after an OCCURS DEPENDING
ON clause

#WSVal0000000n Code to initialize the WORKING-STORAGE area for a procedure

_ArgumentList Outgoing arguments to a procedure

_ACON Address of a symbol

_BEtempNNN Temporary created by the optimizer

_CAA Address of the start of the Language Environment Common Anchor Area

CACHED$STATIC Copy of the start address of the static area (for this procedure)

_CONSTANT_AREA+n Offset in the Constant Area

_CRENT Address of the writeable static area (for this module), from the CAA

_incomingArgumentList Incoming parameters to the procedure

_parentDSA For a nested procedure, it is the address of its parent's stack

404 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 52. Symbols used in LIST and MAP output (continued)

Symbol Definition

_QCON Offset to a symbol

_returnValue Return value of the procedure

_VTS_n Temporary created by the optimizer

1. n is the number of the entry. For base locators, it can also be XXXXX, indicating a data item that was deleted by
STGOPT processing.

Example: nested program map
This example shows a map of nested procedures produced by specifying the MAP
compiler option. Numbers in parentheses refer to notes that follow the example.
Nested Program Map
Program Attribute codes (rightmost column) have the following meanings:

C = COMMON
I = INITIAL (1)
U = PROCEDURE DIVISION USING... (5)

Source Nesting Program
LineID Level Program Name from PROGRAM-ID paragraph Attributes

2 0 NESTMAIN. U
120 1 (4) SUBPRO1 I,C,U

(2)199 2 NESTED1 I,C,U
253 1 SUBPRO2 U
335 2 NESTED2 C,U

(3)

(1) Explanations of the program attribute codes

(2) Source line number where the program was defined

(3) Depth of program nesting

(4) Program-name

(5) Program attribute codes

Reading LIST output
Parts of the LIST compiler output might be useful to you for debugging a program.

The LIST compiler option produces several pieces of output:
v An assembler listing of the initialization code for the program (program

signature information bytes) from which you can verify program characteristics
such as:
– Compiler options in effect
– Types of data items present
– Verbs used in the PROCEDURE DIVISION

v An assembler listing of the source code for the program
From the address in storage of the instruction that was executing when an abend
occurred, you can find the COBOL verb that corresponds to that instruction.
After you find the address of the failing instruction, go to the assembler listing
and find the verb for which that instruction was generated. The line number is
in the 3rd column of the assembler listing for your program. Using the line
number, you can locate the VERB by looking at the corresponding line in the
Source Output section of the listing.

v Information about WORKING-STORAGE. This information is contained in the Data
Division Map and in the Static Map.

Chapter 19. Debugging 405

v A description of the writeable static area (WSA) is found in the Static Map or
WSA24 Map sections of the listing. The symbols in WORKING-STORAGE area of the
source are mapped into the writable static area that is shown in the Static Map.
You can use the Data Division Map along with the Static Map section to find the
location of data items defined in WORKING-STORAGE. These data items reside in the
Writeable Static Area (WSA or WSA24). The Static Map gives the offset of each
level-1 data item relative to the beginning of the writable static area. The Data
Division Map section gives the offset of the level-n data items relative to their
respective level-1 member. By using both pieces of information, you can
determine the offset of any data member within the writable static area.
If you compile with the DATA24 option, data items mapped below the line will
appear in the WSA24 Map. You can follow the same process to determine their
locations.

v Information about the constants and the literals used in the program. The
Constant Area contains information about the constants and literals in the
program, as well as those created by the compiler. This section contains the
offset of each constant or literal within the Constant Area.

v Program prolog areas (PPA1, PPA2, PPA3, PPA4) contain information about the
characteristics of the compiled program.

v Externals symbols dictionary contains the list of external symbols defined by or
referred to, in your program.

v Map of the dynamic save area (DSA)
The map of the DSA (also known as the stack frame) contains information about
the contents of the storage acquired each time a separately compiled procedure
is entered.

You do not need to be able to program in assembler language to understand the
LIST output. The comments that accompany most of the assembler code provide
you with a conceptual understanding of the functions performed by the code.

“Example: program initialization code” on page 413
“Example: MD5 signature” on page 414
“Example: Timestamp and version information” on page 414
“Example: Compiler options and program information” on page 414
“Example: assembler code generated from source code” on page 415
“Example: Program prolog areas” on page 416
“Example: Static map” on page 417
“Example: Constant area” on page 418
“Example: Base locator table” on page 418
“Example: External symbols” on page 419
“Example: DSA memory map (Automatic map)” on page 420

RELATED REFERENCES

“Signature information bytes”
“Example: MAP output” on page 400
Language Environment Programming Guide (Stack storage overview)

Signature information bytes
The tables in this topic show program signature information that is part of the
listing of program initialization code provided when you use the LIST compiler
option.

406 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

Table 53. Compiler options in the INFO BYTE section

Offset in
decimal Option Value

00 CODEPAGE CCSID value specified for EBCDIC code page

02 ARCH 7

8

9

10

11

03 OPTIMIZE 0

1

2

The INFO BYTE section of the listing also provides the following values:
v The number of DATA DIVISION statements
v The number of PROCEDURE DIVISION statements

In the following table, different signature bytes represent different information:
v Signature bytes 1-5, and 26-31 refer to compiler options
v Signature bytes 6-7 refer to DATA DIVISION items
v Signature byte 8 refers to ENVIRONMENT DIVISION items
v Signature bytes 9-25 refer to PROCEDURE DIVISION verbs and items

Table 54. Signature information bytes

Offset
in
decimal

Signature
byte Bit

Item

On Off

04 28 0 SQL NOSQL

1 CICS NOCICS

2 MDECK NOMDECK

3 SQLCCSID NOSQLCCSID

4 OPTFILE NOOPTFILE

5 XMLPARSE(XMLSS) XMLPARSE(COMPAT)

6 BLOCK0 NOBLOCK0

7 DISPSIGN(SEP) DISPSIGN(COMPAT)

05 29 0 Program uses Java-based OO syntax

1 Program uses RANDOM function

2 Program uses NATIONAL data (Unicode)

3 XML PARSE with schema validation

4 STGOPT NOSTGOPT

5 AFP(VOLATILE) AFP(NOVOLATILE)

6 HGPR(PRESERVE) HGPR(NOPRESERVE)

7 NOTEST(DWARF) Not NOTEST(DWARF)

Chapter 19. Debugging 407

|

|

|||

Table 54. Signature information bytes (continued)

Offset
in
decimal

Signature
byte Bit

Item

On Off

06 30 0 QUALIFY(EXTEND) QUALIFY(COMPAT)

1 VLR(COMPAT) VLR(STANDARD)

2 COPYRIGHT string specified COPYRIGHT string unspecified

3 SERVICE string specified SERVICE string unspecified

4 ZONEDATA(MIG) ZONEDATA(PFD)

5-7 Reserved

07 31 0 NUMCHECK(ZON[(ALPHNUM)]) Not NUMCHECK(ZON[(ALPHNUM)])

1 NUMCHECK(PAC) Not NUMCHECK(PAC)

2 NUMCHECK(BIN) Not NUMCHECK(BIN)

NONUMCHECK is in effect if bits 0, 1, and 2
are off

3 NUMCHECK(ABD) NUMCHECK(MSG) (if any bit of 0, 1, or 2 is
on)

4 PARMCHECK NOPARMCHECK

5 PARMCHECK(ABD) (if bit 4 is on) PARMCHECK(MSG) (if bit 4 is on)

6 NUMCHECK(ZON(NOALPHNUM)) Not NUMCHECK(ZON(NOALPHNUM))

08 1 0 ADV NOADV

1 APOST QUOTE

2 DATA(31) DATA(24)

3 DECK NODECK

4 DUMP NODUMP

5 DYNAM NODYNAM

6 FASTSRT NOFASTSRT

7 SQLIMS NOSQLIMS

09 2 0 LIB (always on)

1 LIST NOLIST

2 MAP(HEX), MAP(DEC) NOMAP

3 NUM NONUM

4 OBJECT NOOBJECT

5 OFFSET NOOFFSET

6 OPT(1), OPT(2) NOOPT, OPT(0)

7 OUTDD NOOUTDD

408 Enterprise COBOL for z/OS, V5.2 Programming Guide

|||||

|||

|||

|||

|||

||

|||||

|||

|||

|||
|

|||
|

|||

|||

|||

|

Table 54. Signature information bytes (continued)

Offset
in
decimal

Signature
byte Bit

Item

On Off

10 3 0 NUMPROC(PFD) NUMPROC(NOPFD)

1 RENT NORENT

2 RESIDENT (always on)

3 SEQUENCE NOSEQUENCE

4 Reserved

5 SOURCE NOSOURCE

6 Not NOSSRANGE NOSSRANGE

7 TERM NOTERM

11 4 0 TEST NOTEST

1 TRUNC(STD) Not TRUNC(STD)

2 WORD NOWORD

3 VBREF NOVBREF

4 XREF NOXREF

5 ZWB NOZWB

6 NAME NONAME

7 NOCMPR2 (always off)

12 5 0 Reserved NONUMPROC

1 NUMCLS=ALT NUMCLS=PRIM

2 DBCS NODBCS

3 AWO NOAWO

4 TRUNC(BIN) Not TRUNC(BIN)

5 ADATA NOADATA

6 CURRENCY NOCURRENCY

7 Compilation unit is a class Compilation unit is a program

13 6 0 QSAM file descriptor

1 VSAM sequential file descriptor

2 VSAM indexed file descriptor

3 VSAM relative file descriptor

4 CODE-SET clause (ASCII files) in file descriptor

5 Spanned records

6 PIC G or PIC N (DBCS data item)

7 OCCURS DEPENDING ON clause in data description entry

Chapter 19. Debugging 409

|

Table 54. Signature information bytes (continued)

Offset
in
decimal

Signature
byte Bit

Item

On Off

14 7 0 SYNCHRONIZED clause in data description entry

1 JUSTIFIED clause in data description entry

2 USAGE IS POINTER item

3 Complex OCCURS DEPENDING ON clause

4 External floating-point items in the DATA DIVISION

5 Internal floating-point items in the DATA DIVISION

6 Line-sequential file

7 USAGE IS PROCEDURE-POINTER or FUNCTION-POINTER item

15 8 0 FILE STATUS clause in FILE-CONTROL paragraph

1 RERUN clause in I-O-CONTROL paragraph of INPUT-OUTPUT SECTION

2 UPSI switch defined in SPECIAL-NAMES paragraph

4 VSAMOPENFS

16 9 0 ACCEPT

1 ADD

2 ALTER

3 CALL

4 CANCEL

6 CLOSE

17 10 0 COMPUTE

2 DELETE

4 DISPLAY

5 DIVIDE

18 11 1 END-PERFORM

2 ENTER

3 ENTRY

4 EXIT

5 EXEC

6 GO TO

7 IF

19 12 0 INITIALIZE

1 INVOKE

2 INSPECT

3 MERGE

4 MOVE

5 MULTIPLY

6 OPEN

7 PERFORM

410 Enterprise COBOL for z/OS, V5.2 Programming Guide

||

Table 54. Signature information bytes (continued)

Offset
in
decimal

Signature
byte Bit

Item

On Off

20 13 0 READ

2 RELEASE

3 RETURN

4 REWRITE

5 SEARCH

7 SET

21 14 0 SORT

1 START

2 STOP

3 STRING

4 SUBTRACT

7 UNSTRING

22 15 0 USE

1 WRITE

2 CONTINUE

3 END-ADD

4 END-CALL

5 END-COMPUTE

6 END-DELETE

7 END-DIVIDE

23 16 0 END-EVALUATE

1 END-IF

2 END-MULTIPLY

3 END-READ

4 END-RETURN

5 END-REWRITE

6 END-SEARCH

7 END-START

24 17 0 END-STRING

1 END-SUBTRACT

2 END-UNSTRING

3 END-WRITE

4 GOBACK

5 EVALUATE

7 SERVICE

Chapter 19. Debugging 411

Table 54. Signature information bytes (continued)

Offset
in
decimal

Signature
byte Bit

Item

On Off

25 18 0 END-INVOKE

1 END-EXEC

2 XML

3 END-XML

26 19 0-7 Reserved

27 20 0-7 Reserved

28 21 0 Hexadecimal literal

1 Altered GO TO

2 I-O ERROR declarative

3 LABEL declarative

4 DEBUGGING declarative

5 Program segmentation

6 OPEN . . . EXTEND

7 EXIT PROGRAM

29 22 0 CALL literal

1 CALL identifier

2 CALL . . . ON OVERFLOW

3 CALL . . . LENGTH OF

4 CALL . . . ADDRESS OF

5 CLOSE . . . REEL/UNIT

6 Exponentiation used

7 Floating-point items used

30 23 0 COPY

1 BASIS

2 DBCS name in program

3 Shift-out and Shift-in in program

4 Reserved

5 SSRANGE(ZLEN) (if bit 6 in byte 3 is on) SSRANGE(NOZLEN) (if bit 6 in byte 3 is on)

6 SSRANGE(ABD) (if bit 6 in byte 3 is on) SSRANGE(MSG) (if bit 6 in byte 3 is on)

7 Reserved

40 24 0 DBCS literal

1 REPLACE

2 Reference modification was used.

3 Nested program

4 INITIAL

5 COMMON

6 SELECT . . . OPTIONAL

7 EXTERNAL

412 Enterprise COBOL for z/OS, V5.2 Programming Guide

||

|||

|||

|

Table 54. Signature information bytes (continued)

Offset
in
decimal

Signature
byte Bit

Item

On Off

41 25 0 GLOBAL

1 RECORD IS VARYING

2 VOLATILE

5 Intrinsic function was used

6 Z-literal found

7 RECURSIVE

42 26 0 RMODE(ANY) Not RMODE(ANY)

1-3 Reserved

4 Reserved

5 INTDATE(LILIAN) INTDATE(ANSI)

6 Reserved

7 Reserved

43 27 0 PGMNAME(LONGUPPER) Not PGMNAME(LONGUPPER)

1 PGMNAME(LONGMIXED) Not PGMNAME(LONGMIXED)

2 DLL NODLL

3 EXPORTALL NOEXPORTALL

4 TEST(SOURCE) Not TEST(SOURCE)

5 ARITH(EXTEND) ARITH(COMPAT)

6 THREAD NOTHREAD

7 TEST(EJPD) TEST(NOEJPD)

Check return code: A return code greater than 4 from the compiler could mean
that some of the verbs shown in the information bytes might have been discarded
from the program.

RELATED REFERENCES

“LIST” on page 334

Example: program initialization code
A listing of the program initialization code gives you information about the
characteristics of the COBOL source program. Interpret the program signature
information bytes to verify characteristics of your program.

(1) (2) (3) (4) (5)

000000 000003 PROC IGYTCARA
000000 47F0 F014 000003 BC R15,20(,R15) # Skip over constant area
000004 01C3 C5C5 000003 DC X’01C3C5C5’ # Eyecatcher: CEE
000008 0000 0978 000003 DC X’00000978’ # Stack Size
00000C 0000 8910 000003 DC X’00008910’ # Offset to PPA1
000010 47F0 F001 000003 BC R15,1(,R15) # Wrong Entry Point: cause exception
000014 000003 L3282: EQU *
000014 90EC D00C 000003 STM R14,R12,12(,R13) # Save GPRs Used
000018 4110 F024 000003 LA R1,36(,R15) # Args for boot strap routine
00001C 98EF F034 000003 LM R14,R15,52(,R15) #
000020 07FF 000003 BR R15 # Branch to boot strap routine
000022 0000 000003 DC X’0000’ # Available half-word
000024 000003 L3284: EQU * # Boot Strap Info Block
000024 0000 0000 000003 DC X’00000000’ # address of entry label
000028 0000 0000 000003 DC X’00000000’ # WSA24 allocation size
00002C 0000 8A0C 000003 DC X’00008A0C’ # address of Saved Option String
000030 0000 8948 000003 DC X’00008948’ # address of entry point name
000034 0000 0054 000003 DC X’00000054’ # A(Label L3283)
000038 0000 0000 000003 DC X’00000000’ # address of boot strap routine(IGZXBST)
00003C 000003 L3285: EQU * # CEE Parameter Block
00003C 0000 0024 000003 DC X’00000024’ # address of infoBlockLabel

Chapter 19. Debugging 413

||

000040 0000 8A1C 000003 DC X’00008A1C’ # A(PARMCEE-CEEEPARMBlock)
000044 000003 L3280: EQU * # Handle growing stack
000044 58F0 C31C 000003 L R15,796(,R12) # Load CEECAAOGETS
000048 184E 000003 LR R4,R14 # Required NAB
00004A 05EF 000003 BALR R14,R15 # Extend Stack
00004C 0000 0000 000003 DC X’00000000’ # Argument list size = 0
000050 A7F4 0009 000003 J L3281 # Branch back
000054 000003 @MAINENT DS 0H # PRIMARY ENTRY POINT ADDRESS
000054 000003 L3283: EQU * # User Code Entry Point
000054 18EF 000003 LR R14,R15 # Load NAB
000056 4100 E978 000003 LA R0,2424(,R14) # New NAB Address
00005A 5500 C314 000003 CL R0,788(,R12) # Exceed current storage segment?
00005E A724 FFF3 000003 JH L3280 # Yes: branch to recovery code
000062 000003 L3281: EQU * # Stack now has sufficient room
000062 5000 E04C 000003 ST R0,76(,R14) # Update NAB
000066 A708 0010 000003 LHI R0,16 # COBOL Language Word upper half
00006A 8900 0010 000003 SLL R0,16 # shift to upper half of register
00006E A70A 0301 000003 AHI R0,769 # add COBOL Language Word lower half
000072 5000 E000 000003 ST R0,0(,R14) # Save Language Word
000076 50D0 E004 000003 ST R13,4(,R14) # Save Back Chain
00007A 18DE 000003 LR R13,R14 # Set new DSA
00007C 4100 D6D0 000003 LA R0,1744(,R13) # Address of COBDSACB
000080 5000 D074 000003 ST R0,116(,R13) # Saved in member slot1
000084 4100 0000 000003 LA R0,0(,R0) #
000088 5000 D070 000003 ST R0,112(,R13) # zero member slot0

(1) Offset from the start of the COBOL program

(2) Hexadecimal representation of assembler instructions

(3) Source line number

(4) Pseudo-assembler representation of the code generated for the COBOL
program

(5) Comments that explain the pseudo-assembler code

RELATED REFERENCES

“Signature information bytes” on page 406

Example: MD5 signature
The following example shows LIST output about the MD5 signature. This
information is also included in the DWARF debugging data in the application
module. MD5 signature is located at 16 bytes before the Timestamp and Version
Information section.
000608 AAEE 60C2 DAA3 =X’AAEE60C2DAA3’ md5 signature
00060E 776D AEB5 E753 =X’776DAEB5E753’ md5 signature
000614 E767 C4E1 =X’E767C4E1’ md5 signature

Note: The MD5 signature is shown only if the TEST option is specified or if -g is
specified with cob2 under z/OS UNIX.

The presence or absence of the MD5 signature is indicated by a compilation flag
bit of the PPA2. If the bit is set to 1, the MD5 signature is present; if the bit is set to
0, the MD5 signature is absent. For details about PPA2, see z/OS Language
Environment Vendor Interfaces.

RELATED REFERENCES

“Example: Program prolog areas” on page 416

Example: Timestamp and version information
The following example shows LIST output about the version of the compiler and
the data and time of compilation.

Timestamp and Version Information
0029C8 F2F0 F1F3 =C’2013’ Compiled Year
0029CC F0F3 F2F7 =C’0327’ Compiled Date MMDD
0029D0 F1F2 F3F1 F2F2 =C’123122’ Compiled Time HHMMSS
0029D6 F0F5 F0F1 F0F0 =C’050100’ VERSION/RELEASE/MOD LEVEL OF PROD

Timestamp and Version End

Example: Compiler options and program information
The following example shows LIST output for the compiler options and program
information.

414 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|

DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date 03/30/2013 Time 10:48:16

Compiler Options and Program Information Section
(1) (2) (3) (4) (5)

0029DC 0030 =X’0030’ Size of Compiler Options and Prog Info Section
0029DE (+00) 0474 =X’0474’ UNSIGNED BINARY CODE PAGE CCSID VALUE
0029E0 (+02) 06 =X’06’ ARCHITECTURE LEVEL
0029E1 (+03) 00 =X’00’ OPTIMIZATION LEVEL
0029E2 (+04) 1406 =X’1406’ INFO. BYTES 28-29
0029E4 (+06) 0000 =X’0000’ RESERVED
0029E6 (+08) A04875CC2001 =X’A04875CC2001’ INFO. BYTES 1-6
0029EC (+14) 100010884909 =X’100010884909’ INFO. BYTES 7-12
0029F2 (+20) 002008800C00 =X’002008800C00’ INFO. BYTES 13-18
0029F8 (+26) 000001A000 =X’000001A000’ INFO. BYTES 19-23
0029FD (+31) 00 =X’00’ COBOL SIGNATURE LEVEL
0029FE (+32) 0000002F =X’0000002F’ # DATA DIVISION STATEMENTS
002A02 (+36) 0000005B =X’0000005B’ # PROCEDURE DIVISION STATEMENTS
002A06 (+40) 18808008 =X’18808008’ INFO. BYTES 24-27
002A0A (+44) 4040404040404040 =C’ ’ USER LEVEL INFO (LVLINFO)

Compiler Options and Program Information Section End

(1) Offset in the program object

(2) Offset in decimal

(3) Contents of the bytes in hexadecimal format

(4) Assembler representation of the bytes

(5) Explanation of the bytes in the section

Example: assembler code generated from source code
The following example shows a listing of the assembler code that is generated
from source code when you use the LIST compiler option. You can use this listing
to find the COBOL verb that corresponds to the instruction that failed.
000964: display "PROGRAM IGYTCARA - Beginning". (1)

(2) (3) (4) (5) (6)
0001EA E320 3394 0171 000964 LAY R2,5012(,R3) #
0001F0 D203 D5E8 2000 000964 MVC 1512(4,R13),0(R2) # _$CONSTANT_AREA+5012
0001F6 E320 3398 0171 000964 LAY R2,5016(,R3) #
0001FC D203 D5EC 2000 000964 MVC 1516(4,R13),0(R2) # _$CONSTANT_AREA+5016
000202 4120 39C8 000964 LA R2,2504(,R3) #
000206 5020 D5F0 000964 ST R2,1520(,R13) #
00020A E320 338C 0171 000964 LAY R2,5004(,R3) #
000210 D203 D5F4 2000 000964 MVC 1524(4,R13),0(R2) # _$CONSTANT_AREA+5004
000216 E320 339C 0171 000964 LAY R2,5020(,R3) #
00021C D203 D5F8 2000 000964 MVC 1528(4,R13),0(R2) # _$CONSTANT_AREA+5020
000222 D703 D5FC D5FC 000964 XC 1532(4,R13),1532(R13) #
000228 4110 D5E8 000964 LA R1,1512(,R13) # _ArgumentList
00022C E3F0 31D4 0158 000964 LY R15,4564(,R3) # _ACON
000232 58C0 D080 000964 L R12,128(,R13) # _@CAA
000236 0DEF 000964 BASR R14,R15 # Call "IGZXDSP"

000965: perform 050-create-vsam-master-file.
000238 5820 D670 000965 L R2,1648(,R13) # VN_cell
00023C 5020 D544 000965 ST R2,1348(,R13) # PfmSv_Cell
000240 C020 0000 0007 000965 LARL R2
000246 5020 D670 000965 ST R2,1648(,R13) # VN_cell
00024A A7F4 02F4 000965 J 050-CREATE-VSAM-MASTER-FILE
00024E 5820 D544 000965 L R2,1348(,R13) # PfmSv_Cell
000252 5020 D670 000965 ST R2,1648(,R13) # VN_cell

(1) Source code interspersed with the pseudo-assembler instructions

(2) Relative location of the object code instruction in the module, in
hexadecimal notation

(3) Object code instructions, in hexadecimal notation

The first two or four hexadecimal digits are the instruction, and the
remaining digits are the instruction operands. Some instructions have two
operands.

(4) Source line number associated with this assembler code

(5) Object code instructions, in compiler-generated pseudo assembler

(6) Explanation of the instruction and the operands used by the instructions

RELATED REFERENCES

“Symbols used in LIST and MAP output” on page 404

Chapter 19. Debugging 415

|

Example: Program prolog areas
The following example shows LIST output for the program prolog area. The
Program Prologue Area (PPA) is comprised of several sections that contain
information about the compiled program.

There is a PPA1 for every procedure in your program, including procedures
generated by the compiler. The offset to its corresponding PPA1 is recorded at offset
12 (X'C') from the start of each procedure. The PPA1 contains information about the
procedure as well as offsets to the PPA2 and PPA3 sections.

For details on how to use the program prolog areas to locate information in the
listing file, see z/OS Language Environment Vendor Interfaces.
DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date 03/30/2013 Time 10:48:16

1 2 3 4
PPA1: Entry Point Constants

0081E0 1CCEA506 =F’483304710’ Flags
0081E4 00008310 =A(PPA2-IGYTCARA)
0081E8 00008378 =A(PPA3-IGYTCARA)
0081EC 00000000 =F’0’ No EPD
0081F0 FFFE0000 =F’-131072’ Register Save Mask
0081F4 40000000 =F’1073741824’ Member Flags
0081F8 90 =AL1(144) Flags
0081F9 000978 =AL3(2424) Callee’s DSA use/8
0081FC 0000 =AL1(0) Flags
0081FE 0012 =H’18’ Offset/2 to CDL
008200 D00006D0 =F’-805304624’ State variable location
008204 00000000 =F’0’ CDL function length/2
008208 00000000 =F’0’ CDL function EP offset
00820C 00000000 =F’0’ CDL prolog
008210 00000000 =F’0’ CDL epilog
008214 00000000 =F’0’ CDL end
008218 0008 **** AL2(8),C’IGYTCARA’

PPA1 End

There is one PPA2 for each program. The offset to the PPA2 is recorded in each PPA1.
The PPA2 contains offsets to the Time Stamp and Version Information section of
the listing as well as to the PPA4 section.

If the TEST option is not in effect, the PPA2 section looks like this:
PPA2: Entry Point Constants

000800 04002203 =F’67117571’ Flags
000804 FFFFF800 =A(CEESTART-PPA2)
000808 00000058 =F’88’ A(PPA4-PPA2)
00080C FFFFFFB0 =A(TIMESTMP-PPA2)
000810 FFFFF800 =A(PrimaryEntryPoint-PPA2)
000814 02200000 =F’35651584’ Flags

PPA2 End

If the TEST option is in effect, the PPA2 section looks like this:
PPA2: Entry Point Constants

000830 04002203 =F’67117571’ Flags
000834 FFFFF7D0 =A(CEESTART-PPA2)
000838 00000058 =F’88’ A(PPA4-PPA2)
00083C FFFFFFB0 =A(TIMESTMP-PPA2)
000840 FFFFF7D0 =A(PrimaryEntryPoint-PPA2)
000844 02600000 =F’39845888’ Flags

PPA2 End

There is one PPA3 for each program (including each nested program) in a COBOL
source file. Each entry contains offsets, relative to the PPA3 itself, to the base locator
table and to the special register table. The PPA3 also contains an offset from the
start of the program to the first COBOL statement.

PPA3: Entry Point Constants
0014D8 00000000 =F’0’ Flags
0014DC 000000C0 =F’192’ A(Base_Locator_Table-PPA3)
0014E0 000000D8 =F’216’ A(Special_Register_Table-PPA3)
0014E0 00000184 =X’184’ A(User_Entry-CUEntry)

PPA3 End

There is one PPA4 for each program. It has offsets to various compiler generated
tables, such as the writable static area (the Static Map and WSA24 sections). The
offset to the PPA4 is recorded in a field of the PPA2.

PPA4: Entry Point Constants
008340 08000000 =F’134217728’ Flags 1
008344 00020100 =F’131328’ Flags 2
008348 00000000 =F’0’ A(NORENTstatic)

416 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

00834C 00000000 =F’0’ Q(RENTstatic)
008350 00000000 =F’0’ A(DATA24_address_cell-RENTstatic)
008354 FFFF7CC0 =F’-33600’ A(Code-PPA4)
008358 00008398 =F’33688’ Code Length
00835C 00000000 =F’0’ Length NORENTstatic
008360 00002204 =F’8708’ Length RENTstatic
008364 00000000 =F’0’ Length DATA24
008368 002A =X’2A’ A(CUName-PPA4)
008372 00000090 =X’90’ Offset UsrWrkStrg
008376 0000000B =X’B’ Length UsrWrkStrg
00837A 00 =X’0’ Has Externals

PPA4 End

1 Relative location, in hexadecimal format, of the PPA field in the object
module

2 The contents of the field, in hexadecimal

3 An assembler-like syntax defining the field

4 A description of the contents of the field.

RELATED REFERENCES

z/OS Language Environment Vendor Interfaces

Example: Static map
The following example shows LIST output about the writable static area.

The STATIC MAP contains the level-1 symbols defined in the WORKING-STORAGE part
of the program. If compiled with the RENT option, the first column contains the
offset of the level-1 symbol from the start of the Working Storage Area (WSA) for
the program. For NORENT compilations, the offset is the start of the level-1 from a
block of storage allocated by the compiler. The starting address of this block
resides in the Constant Area. The second column is the size of the symbol,
including all of its sub-level members. The third column is the name.

* * * * * S T A T I C M A P * * * * *

OFFSET (HEX) LENGTH (HEX) NAME

0 14 BLF_Ptrs
14 C BLT_Ptrs
20 4 JNIENVPTR
28 2 RETURN-CODE
30 2 SORT-RETURN
38 8 SORT-CONTROL
40 4 SORT-CORE-SIZE
48 4 SORT-FILE-SIZE
50 4 SORT-MODE-SIZE
58 8 SORT-MESSAGE
60 4 TALLY
68 1 SHIFT-OUT
70 1 SHIFT-IN
78 4 XML-CODE
80 1E XML-EVENT
A0 4 XML-INFORMATION
A8 50 COMMUTER-FILE
F8 50 COMMUTER-FILE-MST
148 7A PRINT-FILE
1C8 1 WORKING-STORAGE-FOR-IGYCARA
1D0 2 COMP-CODE
1D8 3 WS-TYPE
1E0 2 I-F-STATUS-AREA
1E8 8 STATUS-AREA
1F0 2 UPDATE-FILE-STATUS
1F8 2 LOCCODE-FILE-STATUS
200 2 UPDPRINT-FILE-STATUS
208 3 FLAGS

Chapter 19. Debugging 417

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

If you compile with the compiler option DATA(24), a WSA 24 Map is generated. It
shows the names of the symbols that are mapped below the 16 MB line. The
symbols in the WORKING-STORAGE area in the source are mapped into the writable
static area which is shown in the Static Map.

* * * * * W S A 2 4 M A P * * * * *

OFFSET (HEX) LENGTH (HEX) NAME

0 4 JNIENVPTR
8 2 RETURN-CODE
10 2 SORT-RETURN
18 8 SORT-CONTROL
20 4 SORT-CORE-SIZE
28 4 SORT-FILE-SIZE
30 4 SORT-MODE-SIZE
38 8 SORT-MESSAGE
40 4 TALLY
48 1 SHIFT-OUT
50 1 SHIFT-IN
58 4 XML-CODE
60 1E XML-EVENT
80 4 XML-INFORMATION
88 50 COMMUTER-FILE
D8 50 COMMUTER-FILE-MST
128 7A PRINT-FILE
1A8 1 WORKING-STORAGE-FOR-IGYCARA
1B0 2 COMP-CODE
1B8 3 WS-TYPE
1C0 2 I-F-STATUS-AREA
1C8 8 STATUS-AREA
1D0 2 UPDATE-FILE-STATUS

Example: Constant area
The following example shows LIST output about strings and other literals from the
COBOL source as well as those generated by the compiler.

The compiler generates loads from (and stores to) the Constant Area by loading
the starting address of Constant Area and adding the fixed offsets to the respective
constants or literals.

CONSTANT AREA:
(1) (2) (3) (4)

006A98 (+0) 00CCDDFF 00000000 C9C7E8E3 C3C1D9C1 00000000 00000000 C9C7E9E2 D9E3C3C4 |........IGYTCARA........IGZSRTCD|
006AB8 (+32) 40000A00 40000000 00000008 00000000 E2E8E2D6 E4E34040 00100000 00000000 |SYSOUT|
006AD8 (+64) 0E000000 00000001 0F000000 0000001E 00000000 40000000 00000003 0064003C |....................|
006AF8 (+96) 000FE800 9F0F0000 00000011 00000000 E3D9C1D5 E2C1C3E3 4B40C3D6 C4C50000 |..Y.............TRANSACT. CODE..|
006B18 (+128) 0000000E 00000000 E2C8C9C6 E340C3D6 C4C54040 40400000 C8D6D4C5 40D3D6C3 |........SHIFT CODE ..HOME LOC|
006B38 (+160) 4B40C3D6 C4C50000 E6D6D9D2 40D3D6C3 4B40C3D6 C4C50000 D3C1E2E3 40D5C1D4 |. CODE..WORK LOC. CODE..LAST NAM|
006B58 (+192) C5404040 40400000 C9D5C9E3 C9C1D3E2 40404040 40400000 C4E4D7D3 C9C3C1E3 |E ..INITIALS ..DUPLICAT|
006B78 (+224) C540D9C5 C34B0000 D9C5C34B 40D5D6E3 40C6D6E4 D5C40000 C1C4C4D9 C5E2E240 |E REC...REC. NOT FOUND..ADDRESS |
006B98 (+256) 40404040 40400000 C3C9E3E8 40404040 40404040 40400000 E2E3C1E3 C540C3D6 | ..CITY ..STATE CO|
006BB8 (+288) C4C54040 40400000 E9C9D7C3 D6C4C540 40404040 40400000 C8D6D4C5 40D7C8D6 |DE ..ZIPCODE ..HOME PHO|
006BD8 (+320) D5C54040 40400000 E6D6D9D2 40D7C8D6 D5C54040 40400000 C8D6D4C5 40D1E4D5 |NE ..WORK PHONE ..HOME JUN|
006BF8 (+352) C3E3C9D6 D5400000 E6D6D9D2 40D1E4D5 C3E3C9D6 D5400000 C4D9C9E5 C9D5C740 |CTION ..WORK JUNCTION ..DRIVING |
006C18 (+384) E2E3C1E3 E4E20000 40D9C5D7 D6D9E340 407B7A40 C9C7E8E3 C3C1D9C1 40404040 |STATUS.. REPORT #: IGYTCARA |
006C38 (+416) 40404040 40404040 40404040 40404040 40404040 40404040 40404000 00000033 ||
006C58 (+448) C3D6D4D4 E4E3C5D9 40C6C9D3 C540E4D7 C4C1E3C5 40D3C9E2 E3404040 40404040 |COMMUTER FILE UPDATE LIST |
006C78 (+480) 40404040 40404040 40404040 40404040 40400000 00000032 40404040 40404040 | |
006C98 (+512) D7C1C7C5 407B7A40 00000000 00000010 40D7D9D6 C7D9C1D4 407B7A40 C9C7E8E3 |PAGE #: PROGRAM #: IGYT|
006CB8 (+544) C3C1D9C1 40404040 404040D9 E4D540E3 C9D4C57A 40000000 00000025 7A000000 |CARA RUN TIME::...|
006CD8 (+576) 00000030 00000000 D9E4D540 C4C1E3C5 7A400000 0000000A 61000000 0000000B |........RUN DATE:/.......|

(1) Offset in csect.

(2) Offset in base 10.

(3) 8 columns containing the bytes in the Constant Area

(4) Character representation. A dot (.) is used for non-printable characters.

Example: Base locator table
The following example shows LIST output for the base locator table.

418 Enterprise COBOL for z/OS, V5.2 Programming Guide

Base Locator Table
008AB0 01 =X’1’ Table Version
008AB1 00 =X’0’ Reserved
008AB2 0008 =H’8’ Header length
008AB4 00000010 =F’16’ Array byte length
008AB8 2A00 =X’2A00’ Flags & info (element 1)
008ABA 00000014 =X’14’ Offset to cells
008ABE 03 =X’3’ Cell count
008ABF 0A00 =X’A00’ Flags & info (element 2)
008AC1 00000000 =X’0’ Offset to cells
008AC5 05 =X’5’ Cell count
008AC6 0000 =X’0’ Flags & info (end of array)

Base Locator Table End

For more information about the base locator table, see z/OS Language Environment
Vendor Interfaces.

RELATED REFERENCES

z/OS Language Environment Vendor Interfaces (Base locator table)

Example: special register table
The following example shows LIST output for the special register table. The special
register table has a similar format to the base locator table.

Special Register Table
0015B0 01 =X’1’ Table Version
0015B1 00 =X’0’ Reserved
0015B2 0008 =H’8’ Header length
0015B4 00000006 =F’6’ Array byte length
0015B8 12 =X’12’ Flags & info (element 1)
0015B9 00000018 =X’18’ Offset to cells
0015BD 00 =X’0’ Flags & info (end of array)

Special Register Table End

Each entry in the special register table consists of the following items:
v A byte which represents the following information:

– Special register ID number (bits 0 - 4). ID = 1 represents the RETURN-CODE
register

– Access mode (bits 5 - 8)
- MODE = 0; Base Address = Top of Stack
- MODE = 1; Base Addr = NORENT Static
- MODE = 2; Base Addr = 32-bit RENT static
- MODE = 3; 24-bit NORENT static

v An offset to the special register

The end of the special register table is indicated by a null byte.

Example: External symbols
The following example shows LIST output for external symbols defined by, or
referred to in your program. The external symbol dictionary contains one entry per
external symbol defined by or referred to in the program.

Each entry contains the address, length and symbol type. Symbol types are:

ED External Definition

SD Section Definition

LD Label Definition

ER External Reference

PR Pseudo Register
E X T E R N A L S Y M B O L D I C T I O N A R Y

TYPE ID ADDR LENGTH NAME

Chapter 19. Debugging 419

SD 1 000000 000000 IGYTCARA
ED 2 000000 000000 C_CEESG003
ED 3 000000 008AC8 C_CODE
LD 4 000000 000000 IGYTCARA#C
ER 5 000000 000000 CEESTART
ER 6 000000 000000 CEEBETBL
ED 7 000000 000000 C_WSA
PR 8 000000 002204 IGYTCARA#S
ED 9 000000 000022 B_IDRL
ER 10 000000 000000 IGZXBST
ER 11 000000 000000 IGYTCARA
ER 12 000000 000000 IGZXPRS
ER 13 000000 000000 IGZXCMSG
ER 14 000000 000000 IGZXDSP
ER 15 000000 000000 IGZXVCLS

Example: DSA memory map (Automatic map)
The following example shows LIST output for the dynamic save area (DSA). The
DSA contains information about the contents of the storage acquired when a
separately compiled procedure is entered.

* * * * * A U T O M A T I C M A P * * * * *
1 2 3

OFFSET (HEX) LENGTH (HEX) NAME

Block name: IGYTCARA

80 4 _@CAA
C8 3 _BEtemp200
CC 3 _BEtemp204
D0 3 _BEtemp208
D4 3 _BEtemp212
D8 3 _BEtemp216
DC 3 _BEtemp220
E0 3 _BEtemp224
E4 3 _BEtemp228
E8 10 _BEtemp232
F8 20 _BEtemp248
118 20 _BEtemp280
138 4 _BEtemp312
13C 4 _BEtemp316
140 4 _BEtemp320
144 4 _BEtemp324
148 4 _BEtemp328
14C 4 _BEtemp332
150 4 _BEtemp336
154 4 _BEtemp340
158 4 _BEtemp344
15C 4 _BEtemp348
160 4 _BEtemp352
164 4 _BEtemp356
168 4 _BEtemp360
16C 4 _BEtemp364
170 4 _BEtemp368
174 4 _BEtemp372
178 4 _BEtemp376

(1) Hexadecimal offset of the DSA field from the start of the DSA

(2) Length (in hexidecimal) of the DSA field

(3) Symbol name

420 Enterprise COBOL for z/OS, V5.2 Programming Guide

Example: XREF output: data-name cross-references
The following example shows a sorted cross-reference of data-names that is
produced by the XREF compiler option. Numbers in parentheses refer to notes after
the example.
An "M" preceding a data-name reference indicates that the
data-name is modified by this reference.

(1) (2) (3)
Defined Cross-reference of data-names References

265 ABEND-ITEM1
266 ABEND-ITEM2
347 ADD-CODE 1102 1162
381 ADDRESS-ERROR. M1126
280 AREA-CODE. 1236 1261 1324 1345
382 CITY-ERROR M1129

(4)
Context usage is indicated by the letter preceding a procedure-name
reference. These letters and their meanings are:

A = ALTER (procedure-name)
D = GO TO (procedure-name) DEPENDING ON
E = End of range of (PERFORM) through (procedure-name)
G = GO TO (procedure-name)
P = PERFORM (procedure-name)
T = (ALTER) TO PROCEED TO (procedure-name)
U = USE FOR DEBUGGING (procedure-name)

(5) (6) (7)
Defined Cross-reference of procedures References

877 000-DO-MAIN-LOGIC
930 050-CREATE-STL-MASTER-FILE . . P879
982 100-INITIALIZE-PARAGRAPH . . . P880
1441 1100-PRINT-I-F-HEADINGS. . . . P915
1481 1200-PRINT-I-F-DATA. P916
1543 1210-GET-MILES-TIME. P1510
1636 1220-STORE-MILES-TIME. P1511
1652 1230-PRINT-SUB-I-F-DATA. . . . P1532
1676 1240-COMPUTE-SUMMARY P1533
1050 200-EDIT-UPDATE-TRANSACTION. . P886
1124 210-EDIT-THE-REST. P1116
1159 300-UPDATE-COMMUTER-RECORD . . P888
1207 310-FORMAT-COMMUTER-RECORD . . P1164 P1179
1258 320-PRINT-COMMUTER-RECORD. . . P1165 P1176 P1182 P1192
1288 330-PRINT-REPORT P1178 P1202 P1256 P1280 P1340 P1365 P1369
1312 400-PRINT-TRANSACTION-ERRORS . P890

Cross-reference of data-names:

(1) Line number where the name was defined.

(2) Data-name.

(3) Line numbers where the name was used. If M precedes the line number, the
data item was explicitly modified at the location.

Cross-reference of procedure references:

(4) Explanations of the context usage codes for procedure references.

(5) Line number where the procedure-name is defined.

(6) Procedure-name.

(7) Line numbers where the procedure is referenced, and the context usage
code for the procedure.

“Example: XREF output: program-name cross-references” on page 422
“Example: XREF output: COPY/BASIS cross-references” on page 422
“Example: XREF output: embedded cross-reference” on page 423

Chapter 19. Debugging 421

Example: XREF output: program-name cross-references
The following example shows a sorted cross-reference of program-names produced
by the XREF compiler option. Numbers in parentheses refer to notes that follow the
example.

(1) (2) (3)
Defined Cross-reference of programs References

EXTERNAL EXTERNAL1. 25
2 X. 41
12 X1 33 7
20 X11. 25 16
27 X12. 32 17
35 X2 40 8

(1) Line number where the program-name was defined. If the program is
external, the word EXTERNAL is displayed instead of a definition line
number.

(2) Program-name.

(3) Line numbers where the program is referenced.

Example: XREF output: COPY/BASIS cross-references
The following example shows a sorted cross-reference of copybooks to the
library-names and data-set names of the associated copybooks, produced by the
XREF compiler option under z/OS. Numbers in parentheses refer to notes after the
example.

COPY/BASIS cross-reference of text-names, library names

(1) (1) (2) (3) (4)
Text-name Library File name Concat ISPF
(Member) (DDNAME) (Data set name) Level Created

ACTIONS OTHERLIB USERID.COBOL.COPY 0 1992/07/11
ACTIONS SYSLIB USERID.COBOL.COPY 0 1992/07/11
CUSTOMER ALTDDXXY USERID.COBOL.LIB3 0 2007/06/01
CUSTOMER SYSLIB USERID.COBOL.LIB2PDSE 1 2007/06/07
HOUSE ALTDDXXY USERID.COBOL.LIB2 1 2007/06/07
HOUSE SYSLIB USERID.COBOL.LIB2PDSE 1
IMOTOR SYSLIB USERID.COBOL.LIB4X 3 2007/06/07
ISOVERFY SYSLIB USERID.COBOL.COPY 0
NSMAP SYSLIB USERID.COBOL.LIB3 2

(1) Text-name and library (an abbreviation for library-name) are from the
statement COPY text-name OF library-name in the source, for example,
Copy ACTIONS Of OTHERLIB.

(2) The name of the data set from which the COPY member was copied.

(3) Abbreviation for concatenation level. Indicates how many levels deep a
given data set is from the first data set in the concatenation for a given
ddname.

For example, four data sets in the example above are concatenated to
ddname SYSLIB:

DDNAME DSNAME (concatenation level)

SYSLIB DD DSN=USERID.COBOL.COPY, 0
DD DSN=USERID.COBOL.LIB2PDSE, 1
DD DSN=USERID.COBOL.LIB3, 2
DD DSN=USERID.COBOL.LIB4X 3

422 Enterprise COBOL for z/OS, V5.2 Programming Guide

Thus for example member NSMAP shown in the listing above was found
in data set USERID.COBOL.LIB3, which is two levels down from the first
data set in the SYSLIB concatenation.

(4) Creation date is shown if the PDS or PDSE was edited with STATS ON in
ISPF.

Tip: Under z/OS, if there is more than one data set in your SYSLIB concatenation,
the COPY/BASIS cross-reference might in some cases be incomplete or missing. For
details, see the related reference about the XREF compiler option.

If you compile in the z/OS UNIX shell, the cross-reference looks like the excerpt
shown below.

COPY/BASIS cross-reference of text-names, library names, and file names

(5) (5) (6)
Text-name Library-name File name

’/copydir/copyM.cbl’ SYSLIB /u/JSMITH/cobol//copydir/copyM.cbl
’/copyA.cpy’ SYSLIB /u/JSMITH/cobol//copyA.cpy
’cobol/copyA.cpy’ ALTDD2 /u/JSMITH/cobol/copyA.cpy
’copy/stuff.cpy’ ALTDD2 /u/JSMITH/copy/stuff.cpy
’copydir/copyM.cbl’ SYSLIB /u/JSMITH/cobol/copydir/copyM.cbl
’copydir/copyM.cbl’ SYSLIB (default) /u/JSMITH/cobol/copydir/copyM.cbl
’stuff.cpy’ ALTDD /u/JSMITH/copy/stuff.cpy
"copyA.cpy" (7) SYSLIB (default) /u/JSMITH/cobol/copyA.cpy
"reallyXXVeryLongLon> SYSLIB (default) (8)<JSMITH/cobol/reallyXXVeryLongLongName.cpy
OTHERDD ALTDD2 /u/JSMITH//copy/other.cob
. . .

Note: Some names were truncated. > = truncated on right < = truncated on left

(5) From the COPY statement in the source; for example the COPY statement
corresponding to the third item in the cross-reference above would be:
COPY ’cobol/copyA.cpy’ Of ALTDD2

(6) The fully qualified path of the file from which the COPY member was
copied

(7) Truncation of a long text-name or library-name on the right is marked by a
greater-than sign (>).

(8) Truncation of a long file name on the left is marked by a less-than sign (<).

RELATED REFERENCES

“XREF” on page 374

Example: XREF output: embedded cross-reference
The following example shows a modified cross-reference that is embedded in the
source listing. The cross-reference is produced by the XREF compiler option.
LineID PL SL ----+-*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference

. . .
000878 procedure division.
000879 000-do-main-logic.
000880 display "PROGRAM IGYTCARA - Beginning".
000881 perform 050-create-vsam-master-file. 932 (1)
000882 perform 100-initialize-paragraph. 984
000883 read update-transaction-file into ws-transaction-record 204 340
000884 at end
000885 1 set transaction-eof to true 254
000886 end-read.

. . .
000984 100-initialize-paragraph.
000985 move spaces to ws-transaction-record IMP 340 (2)
000986 move spaces to ws-commuter-record IMP 316
000987 move zeroes to commuter-zipcode IMP 327
000988 move zeroes to commuter-home-phone IMP 328
000989 move zeroes to commuter-work-phone IMP 329
000990 move zeroes to commuter-update-date IMP 333
000991 open input update-transaction-file 204
000992 location-file 193

Chapter 19. Debugging 423

000993 i-o commuter-file 181
000994 output print-file 217

. . .
001442 1100-print-i-f-headings.
001443
001444 open output print-file. 217
001445
001446 move function when-compiled to when-comp. IFN 698 (2)
001447 move when-comp (5:2) to compile-month. 698 640
001448 move when-comp (7:2) to compile-day. 698 642
001449 move when-comp (3:2) to compile-year. 698 644
001450
001451 move function current-date (5:2) to current-month. IFN 649
001452 move function current-date (7:2) to current-day. IFN 651
001453 move function current-date (3:2) to current-year. IFN 653
001454
001455 write print-record from i-f-header-line-1 222 635
001456 after new-page. 138

. . .

(1) Line number of the definition of the data-name or procedure-name in the
program

(2) Special definition symbols:

UND The user name is undefined.

DUP The user name is defined more than once.

IMP Implicitly defined name, such as special registers and figurative
constants.

IFN Intrinsic function reference.

EXT External reference.

* The program-name is unresolved because the NOCOMPILE option is
in effect.

Example: OFFSET compiler output
The following example shows a compiler listing that has a condensed verb listing,
global tables, WORKING-STORAGE information, and literals. The listing is output from
the OFFSET compiler option.
DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date 03/30/2013 Time 10:48:16
. . .
(1) (2) (3)

LINE # HEXLOC VERB LINE # HEXLOC VERB LINE # HEXLOC VERB
000880 0026F0 DISPLAY 000881 002702 PERFORM 000933 002702 OPEN
000934 002722 IF 000935 00272C DISPLAY 000936 002736 PERFORM
001389 002736 DISPLAY 001390 002740 DISPLAY 001391 00274A DISPLAY
001392 002754 DISPLAY 001393 00275E DISPLAY 001394 002768 DISPLAY
001395 002772 DISPLAY 000937 00277C PERFORM 001434 00277C DISPLAY
001435 002786 STOP 000939 0027A2 MOVE 000940 0027AC WRITE
000941 0027D6 IF 000942 0027E0 DISPLAY 000943 0027EA PERFORM
001389 0027EA DISPLAY 001390 0027F4 DISPLAY 001391 0027FE DISPLAY
001392 002808 DISPLAY 001393 002812 DISPLAY 001394 00281C DISPLAY
001395 002826 DISPLAY 000944 002830 DISPLAY 000945 00283A PERFORM
001403 00283A DISPLAY 001404 002844 DISPLAY 001405 00284E DISPLAY
001406 002858 DISPLAY 001407 002862 CALL 000947 002888 CLOSE

(1) Line number. Your line numbers or compiler-generated line numbers are
listed.

(2) Offset, from the start of the program, of the code generated for this verb
(in hexadecimal notation).

The verbs are listed in the order in which they occur and are listed once
for each time they are used.

(3) Verb used.

RELATED REFERENCES

“OFFSET” on page 345

424 Enterprise COBOL for z/OS, V5.2 Programming Guide

Example: VBREF compiler output
The following example shows an alphabetic listing of all the verbs in a program,
and shows where each is referenced. The listing is produced by the VBREF compiler
option.
(1) (2) (3)

2 ACCEPT 1010 1012
2 ADD. 1290 1306
1 CALL 1406
5 CLOSE. 898 945 970 1526 1535
20 COMPUTE. 1506 1640 1644 1657 1660 1663 1664 1665 1678 1682 1686 1691 1696 1701 1709 1713

1718 1723 1728 1733
2 CONTINUE 1062 1069
2 DELETE 964 1193
48 DISPLAY. 878 906 917 918 919 933 940 942 947 953 960 966 972 996 997 998 999 1003 1006 1037

1090 1168 1171 1185 1195 1387 1388 1389 1390 1391 1392 1393 1401 1402 1403 1404
1405 1433 1485 1486 1492 1497 1498 1520 1521 1528 1529 1624

2 EVALUATE 1161 1557
47 IF 887 905 932 939 946 952 959 965 971 993 1002 1036 1051 1054 1071 1074 1077 1089

1102 1111 1115 1125 1128 1131 1134 1137 1141 1145 1148 1151 1167 1184 1194 1240
1247 1265 1272 1289 1321 1330 1339 1351 1361 1484 1496 1519 1527

183 MOVE 907 937 957 983 984 985 986 987 988 1004 1011 1013 1025 1038 1052 1055 1060 1067
1072 1075 1078 1079 1080 1081 1082 1083 1091 1103 1112 1126 1129 1132 1135 1139
1143 1146 1149 1152 1160 1163 1169 1175 1177 1180 1181 1186 1191 1196 1201 1208
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1229 1230
1231 1232 1233 1234 1235 1239 1241 1244 1248 1250 1251 1253 1254 1255 1257 1258
1259 1260 1264 1266 1269 1273 1275 1276 1278 1279 1291 1294 1299 1301 1303 1307
1313 1314 1315 1316 1317 1318 1319 1320 1322 1323 1327 1328 1331 1333 1334 1336
1338 1341 1342 1343 1344 1348 1349 1352 1354 1355 1357 1362 1364 1368 1374 1375
1376 1377 1378 1379 1380 1381 1414 1417 1422 1425 1445 1446 1447 1448 1450 1451
1452 1457 1464 1489 1502 1507 1508 1509 1517 1551 1561 1566 1571 1576 1581 1586
1591 1596 1601 1606 1611 1616 1621 1626 1627 1679 1683 1688 1693 1698 1703 1710
1715 1720 1725 1730 1735

5 OPEN 931 951 989 1443 1483
62 PERFORM. 879 880 885 886 888 890 892 908 909 915 916 934 935 941 943 948 949 954 955 961

962 967 968 973 974 1000 1005 1008 1023 1039 1092 1093 1116 1164 1165 1170 1172
1176 1178 1179 1182 1187 1188 1192 1197 1198 1202 1246 1256 1271 1280 1329 1340
1350 1359 1365 1369 1504 1510 1511 1532 1533

8 READ 881 893 958 1014 1026 1085 1490 1514
1 REWRITE. 1183
4 SEARCH 1058 1065 1413 1421
46 SET. 883 895 1016 1028 1041 1057 1064 1084 1087 1363 1412 1420 1493 1499 1516 1522 1548

1550 1559 1560 1564 1565 1569 1570 1574 1575 1579 1580 1584 1585 1589 1590 1594
1595 1599 1600 1604 1605 1609 1610 1614 1615 1619 1620 1639 1643

2 STOP 920 1434
4 STRING 1236 1261 1324 1345
33 WRITE. 938 1166 1292 1293 1295 1296 1297 1298 1300 1302 1305 1454 1459 1462 1465 1467 1469

1471 1512 1654 1655 1667 1668 1669 1740 1742 1744 1745 1746 1747 1748 1749 1750

(1) Number of times the verb is used in the program

(2) Verb

(3) Line numbers where the verb is used

Chapter 19. Debugging 425

426 Enterprise COBOL for z/OS, V5.2 Programming Guide

Part 3. Targeting COBOL programs for certain environments

© Copyright IBM Corp. 1991, 2018 427

428 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 20. Developing COBOL programs for CICS

COBOL programs that are written for CICS can run under CICS Transaction Server.
CICS COBOL application programs that use CICS services must use the CICS
command-level interface.

When you use the CICS compiler option, the Enterprise COBOL compiler handles
both native COBOL statements and embedded CICS statements in the source
program. You can still use the separate CICS translator to translate CICS
statements to COBOL code, but use of the integrated CICS translator is
recommended instead.

After you compile and bind your program, you need to do some other steps such
as updating CICS tables before you can run the COBOL program under CICS.
However, these CICS topics are beyond the scope of COBOL information. For
further information, see the related tasks.

You can determine how runtime errors are handled by setting the CBLPSHPOP
runtime option. For information about CICS HANDLE and CBLPSHPOP, see the related
tasks.

RELATED CONCEPTS

“Integrated CICS translator” on page 435

RELATED TASKS

“Coding COBOL programs to run under CICS”
“Compiling with the CICS option” on page 433
“Using the separate CICS translator” on page 436
“Handling errors by using CICS HANDLE” on page 438
Language Environment Programming Guide (Condition handling under CICS:

using the CBLPSHPOP runtime option)
CICS Application Programming Guide

RELATED REFERENCES

“CICS” on page 312

Coding COBOL programs to run under CICS
To code a program to run under CICS, code CICS commands in the PROCEDURE
DIVISION by using the EXEC CICS command format.
EXEC CICS command-name command-options
END-EXEC

CICS commands have the basic format shown above. Within EXEC commands, use
the space as a word separator; do not use a comma or a semicolon. Do not code
COBOL statements within EXEC CICS commands.

Restriction: You cannot run COBOL programs that have object-oriented syntax for
Java interoperability in CICS. In addition, if you write programs to run under
CICS, do not use the following code:
v FILE-CONTROL entry in the ENVIRONMENT DIVISION, unless the FILE-CONTROL entry

is used for a SORT statement

© Copyright IBM Corp. 1991, 2018 429

|

http://publibfp.dhe.ibm.com/epubs/pdf/dfhp3f02.pdf

v FILE SECTION of the DATA DIVISION, unless the FILE SECTION is used for a SORT
statement

v User-specified parameters to the main program
v USE declaratives (except USE FOR DEBUGGING)
v These COBOL language statements:

– ACCEPT format 1: data transfer (you can use format-2 ACCEPT to retrieve the
system date and time)

– CLOSE

– DELETE

– DISPLAY UPON CONSOLE

– DISPLAY UPON SYSPUNCH

– MERGE

– OPEN

– READ

– RERUN

– REWRITE

– START

– STOP literal

– WRITE

If you plan to use the separate CICS translator, you must put any REPLACE
statements that contain EXEC commands after the PROCEDURE DIVISION header for
the program, otherwise the commands will not be translated.

Coding file input and output: You must use CICS commands for most input and
output processing. Therefore, do not describe files or code any OPEN, CLOSE, READ,
START, REWRITE, WRITE, or DELETE statements. Instead, use CICS commands to
retrieve, update, insert, and delete data.

Coding a COBOL program to run above the 16 MB line: Under Enterprise
COBOL, the following restrictions apply when you code a COBOL program to run
above the 16 MB line:
v If you use IMS/ESA® without DBCTL, DL/I CALL statements are supported only if

all the data passed in the call resides below the 16 MB line. Therefore, you must
specify the DATA(24) compiler option. However, if you use IMS/ESA with DBCTL,
you can use the DATA(31) compiler option instead and pass data that resides
above the 16 MB line.
If you use EXEC DLI instead of DL/I CALL statements, you can specify DATA(31)
regardless of the level of the IMS product.

v If the receiving program is link-edited with AMODE 31, addresses that are passed
must be 31 bits long, or 24 bits long with the leftmost byte set to zeros.

v If the receiving program is link-edited with AMODE 24, addresses that are passed
must be 24 bits long.

Displaying the contents of data items: DISPLAY to the system logical output device
(SYSOUT, SYSLIST, SYSLST) is supported under CICS. The DISPLAY output is
written to the Language Environment message file (transient data queue CESE).
DISPLAY . . . UPON CONSOLE and DISPLAY . . . UPON SYSPUNCH, however, are not
allowed. You can specify the DISPSIGN option to control output formatting for
DISPLAY of signed numeric items.

430 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

RELATED CONCEPTS

“Integrated CICS translator” on page 435

RELATED TASKS

“Sorting under CICS” on page 237
“Getting the system date under CICS”
“Calling to or from COBOL programs”
“Determining the success of ECI calls” on page 433
“Using the separate CICS translator” on page 436

RELATED REFERENCES

“CICS SORT application restrictions” on page 237
“DISPSIGN” on page 320

Getting the system date under CICS
To retrieve the system date in a CICS program, use a format-2 ACCEPT statement or
the CURRENT-DATE intrinsic function.

You can use any of these format-2 ACCEPT statements in CICS to get the system
date:
v ACCEPT identifier-2 FROM DATE (two-digit year)
v ACCEPT identifier-2 FROM DATE YYYYMMDD

v ACCEPT identifier-2 FROM DAY (two-digit year)
v ACCEPT identifier-2 FROM DAY YYYYDDD

v ACCEPT identifier-2 FROM DAY-OF-WEEK (one-digit integer, where 1 represents
Monday)

You can use this format-2 ACCEPT statement in CICS to get the system time:
v ACCEPT identifier-2 FROM TIME

Alternatively, you can use the CURRENT-DATE intrinsic function, which can also
provide the time.

These methods work in both CICS and non-CICS environments.

Do not use a format-1 ACCEPT statement in a CICS program.

RELATED TASKS

“Assigning input from a screen or file (ACCEPT)” on page 34

RELATED REFERENCES

CURRENT-DATE (Enterprise COBOL Language Reference)

Calling to or from COBOL programs
You can make calls to or from VS COBOL II, COBOL for MVS & VM, COBOL for
OS/390 & VM, and Enterprise COBOL programs by using the CALL statement.

If you are calling a separately compiled COBOL program that was processed with
either the separate CICS translator or the integrated CICS translator, you must pass
DFHEIBLK and DFHCOMMAREA as the first two parameters in the CALL statement.

Chapter 20. Developing COBOL programs for CICS 431

Called programs that are processed by the separate CICS translator or the
integrated CICS translator can contain any function that is supported by CICS for
the language.

Dynamic calls:

You can use COBOL dynamic calls when running under CICS. If a COBOL
program contains EXEC CICS statements or contains EXEC SQL statements, the
NODYNAM compiler option is required. To dynamically call a program in this case,
you can use CALL identifier with the NODYNAM compiler option.

If a COBOL program contains no EXEC CICS statements and contains no EXEC SQL
statements, there is no requirement to compile with NODYNAM. To dynamically call a
program in this case, you can use either CALL literal with the DYNAM compiler option,
or CALL identifier.

Note: END-EXEC cannot be followed by a period when it is associated with EXEC
CICS statements even though it is required for EXEC SQL statements.

You must define dynamically called programs in the CICS program processing
table (PPT) if you are not using CICS autoinstall. Under CICS, COBOL programs
do not support dynamic calls to subprograms that have the RELOAD=YES option
coded in their CICS PROGRAM definition. Dynamic calls to programs that are defined
with RELOAD=YES can cause a storage shortage. Use the RELOAD=NO option for
programs that are to be dynamically called by COBOL.

Interlanguage communication (ILC):

Support for ILC with other high-level languages is available. Where ILC is not
supported, you can use CICS LINK, XCTL, and RETURN instead.

The following table shows the calling relationship between COBOL and assembler
programs. In the table, assembler programs that conform to the interface that is
described in the Language Environment Programming Guide are called Language
Environment-conforming assembler programs. Those that do not conform to the
interface are non-Language Environment-conforming assembler programs.

Table 55. Calls between COBOL and assembler under CICS

Calls between COBOL and
assembler programs

Language
Environment-conforming
assembler program

Non-Language
Environment-conforming
assembler program

From an Enterprise COBOL
program to the assembler
program?

Yes Yes

From the assembler program to
an Enterprise COBOL program?

Yes No

Nested programs:

When you compile with the integrated CICS translator, the translator generates the
DFHEIBLK and DFHCOMMAREA control blocks with the GLOBAL clause in the outermost
program. Therefore if you code nested programs, you do not have to pass these
control blocks as arguments on calls to the nested programs.

432 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

If you code nested programs and you plan to use the separate CICS translator,
pass DFHEIBLK and DFHCOMMAREA as parameters to the nested programs that contain
EXEC commands or references to the EXEC interface block (EIB). You must pass the
same parameters also to any program that forms part of the control hierarchy
between such a program and its top-level program.

RELATED CONCEPTS

“Integrated CICS translator” on page 435

RELATED TASKS

“Using the separate CICS translator” on page 436
“Choosing the DYNAM or NODYNAM compiler option” on page 451
“Handling errors when calling programs” on page 250
Language Environment Writing ILC Communication Applications (ILC under CICS)
CICS External Interfaces Guide
Language Environment Programming Guide

RELATED REFERENCES

“DYNAM” on page 323

Determining the success of ECI calls
After calls to the external CICS interface (ECI), the content of the RETURN-CODE
special register is set to an unpredictable value. Therefore, even if your COBOL
program terminates normally after successfully using the external CICS interface,
the job step could end with an undefined return code.

To ensure that a meaningful return code occurs at termination, set the RETURN-CODE
special register before you terminate your program. To make the job return code
reflect the status of the last call to CICS, set the RETURN-CODE special register based
on the response codes from the last call to the external CICS interface.

RELATED TASKS

CICS External Interfaces Guide

Compiling with the CICS option
Use the CICS compiler option to enable the integrated CICS translator and to
specify CICS suboptions.

If you specify the NOCICS option, the compiler diagnoses and discards any CICS
statements that it finds in your source program. If you have already used the
separate CICS translator, you must use NOCICS.

You can specify the CICS option in any of the compiler option sources: compiler
invocation, PROCESS or CBL statements, or installation default. If the CICS option is
the COBOL installation default, you cannot specify CICS suboptions. However,
making the CICS option the installation default is not recommended, because the
changes that are made by the integrated CICS translator are not appropriate for
non-CICS applications.

All CBL or PROCESS statements must precede any comment lines, in accordance with
the rules for Enterprise COBOL.

Chapter 20. Developing COBOL programs for CICS 433

http://publib.boulder.ibm.com/epubs/pdf/dfhtmd00.pdf
http://publib.boulder.ibm.com/epubs/pdf/dfhtmd00.pdf

The COBOL compiler passes to the integrated CICS translator the CICS suboption
string that you provide in the CICS compiler option. The compiler does not analyze
the suboption string.

When you use the integrated CICS translator, you must compile with the following
options:

Table 56. Compiler options required for the integrated CICS translator

Compiler option Comment

AFP If your code runs on a version of CICS Transaction Server that
is earlier than V4.1, you must specify AFP(VOLATILE).

CICS If you specify NOLIB, DYNAM, or NORENT, the compiler forces
NODYNAM, and RENT on.

NODYNAM Must be in effect with CICS

RENT Must be in effect with CICS

In addition, IBM recommends that you use the compiler option WORD(CICS) to
cause the compiler to flag language elements that are not supported under CICS.

To compile your program with the integrated CICS translator, you can use the
standard JCL procedural statements that are supplied with COBOL. In addition to
specifying the above compiler options, you must change your JCL in two ways:
v Specify the STEPLIB override for the COBOL step.
v Add the data set that contains the integrated CICS translator services, unless

these services are in the linklist.

The default name of the data set for CICS Transaction Server V5R1 is
CICSTS51.CICS.SDFHLOAD, but your installation might have changed the name.
For example, you might have the following line in your JCL:
//STEPLIB DD DSN=CICSTS41.CICS.SDFHLOAD,DISP=SHR

The COBOL compiler listing includes the error diagnostics (such as syntax errors
in the CICS statements) that the integrated CICS translator generates. The listing
reflects the input source; it does not include the COBOL statements that the
integrated CICS translator generates.

Compiling a sequence of programs: When you use the CICS option to compile a
source file that contains a sequence of COBOL programs, the order of precedence
of the options from highest to lowest is:
v Options that are specified in the CBL or PROCESS card that initiates the unit of

compilation
v Options that are specified when the compiler is started
v CICS default options

RELATED CONCEPTS

“Integrated CICS translator” on page 435

RELATED TASKS

“Coding COBOL programs to run under CICS” on page 429
“Separating CICS suboptions” on page 435
CICS Application Programming Guide

434 Enterprise COBOL for z/OS, V5.2 Programming Guide

||
|

|
|

http://publibfp.dhe.ibm.com/epubs/pdf/dfhp3f02.pdf

RELATED REFERENCES

“CICS” on page 312
“Conflicting compiler options” on page 304

Separating CICS suboptions
You can partition the specification of CICS suboptions into multiple CBL statements.
CICS suboptions are cumulative. The compiler concatenates them from multiple
sources in the order that they are specified.

For example, suppose that a JCL file has the following code:
//STEP1 EXEC IGYWC, . . .
//PARM.COBOL="CICS("FLAG(I)")"
//COBOL.SYSIN DD *

CBL CICS("DEBUG")
CBL CICS("LINKAGE")
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL1.

During compilation, the compiler passes the following CICS suboption string to
the integrated CICS translator:
"FLAG(I) DEBUG LINKAGE"

The concatenated strings are delimited with single spaces and with a quotation
mark or single quotation mark around the group. When the compiler finds
multiple instances of the same CICS suboption, the last specification of the
suboption in the concatenated string takes effect. The compiler limits the length of
the concatenated CICS suboption string to 4 KB.

RELATED REFERENCES

“CICS” on page 312

Integrated CICS translator
When you compile a COBOL program using the CICS compiler option, the COBOL
compiler works with the integrated CICS translator to handle both native COBOL
and embedded CICS statements in the source program.

When the compiler encounters CICS statements, and at other significant points in
the source program, the compiler interfaces with the integrated CICS translator. All
text between EXEC CICS and END-EXEC statements is passed to the translator. The
translator takes appropriate actions and then returns to the compiler, typically
indicating which native language statements to generate.

Although you can still translate embedded CICS statements separately, it is
recommended that you use the integrated CICS translator instead. Certain
restrictions that apply when you use the separate translator do not apply when
you use the integrated translator, and using the integrated translator provides
several advantages:
v You can use Debug Tool to debug the original source instead of the expanded

source that the separate CICS translator generates.
v You do not need to separately translate the EXEC CICS or EXEC DLI statements

that are in copybooks.
v There is no intermediate data set for a translated but not compiled version of the

source program.
v Only one output listing instead of two is produced.

Chapter 20. Developing COBOL programs for CICS 435

v Using nested programs that contain EXEC CICS statements is simpler.
DFHCOMMAREA and DFHEIBLK are generated with the GLOBAL attribute in the
outermost program. You do not need to pass them as arguments on calls to
nested programs or specify them in the USING phrase of the PROCEDURE DIVISION
header of nested programs.

v You can keep nested programs that contain EXEC CICS statements in separate
files, and include those nested programs by using COPY statements.

v REPLACE statements can affect EXEC CICS statements.
v You can compile programs that contain CICS statements in a batch compilation

(compilation of a sequence of programs).
v Because the compiler generates binary fields in CICS control blocks with format

COMP-5 instead of BINARY, there is no dependency on the setting of the TRUNC
compiler option. You can use any setting of the TRUNC option in CICS programs,
subject only to the requirements of the application logic and use of user-defined
binary fields.

Note: The CICS documentation states that the EXCI translator option is not
supported for programs compiled with the integrated CICS translator, but CICS
has reversed this position. You can now compile with the EXCI translator option
and ignore the warning message DFH7006I.

RELATED CONCEPTS

CICS Application Programming Guide (The integrated CICS translator)

RELATED TASKS

“Coding COBOL programs to run under CICS” on page 429
“Compiling with the CICS option” on page 433

RELATED REFERENCES

“CICS” on page 312
“TRUNC” on page 368

Using the separate CICS translator
To run a COBOL program under CICS, you can use the separate CICS translator to
convert the CICS commands to COBOL statements, and then compile and link the
program to create the executable module. However, using the CICS translator that
is integrated with Enterprise COBOL is recommended. The separate CICS
translator has not been updated for newer COBOL language such as floating
comment delimiters and compiler directives. To use the latest features of the
COBOL compiler, use the integrated CICS translator.

To translate CICS statements separately, use the COBOL3 translator option. This
option causes the following line to be inserted:
CBL RENT,NODYNAM,

You can suppress the insertion of a CBL statement by using the CICS translator
option NOCBLCARD.

After you use the separate CICS translator, use the following compiler options
when you compile the program:

436 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|

http://publibfp.dhe.ibm.com/epubs/pdf/dfhp3f02.pdf

Table 57. Compiler options required for the separate CICS translator

Required compiler option Condition

RENT

NODYNAM The program is translated by the CICS translator.

In addition, IBM recommends that you use the compiler option WORD(CICS) to
cause the compiler to flag language elements that are not supported under CICS.

The following TRUNC compiler option recommendations are based on expected
values for binary data items:

Table 58. TRUNC compiler options recommended for the separate CICS translator

Recommended compiler
option Condition

TRUNC(OPT) All binary data items conform to the PICTURE and USAGE clause
for those data items.

TRUNC(BIN) Not all binary data items conform to the PICTURE and USAGE
clause for those data items.

For example, if you use the separate CICS translator and have a data item defined
as PIC S9(8) BINARY that might receive a value greater than eight digits, use the
TRUNC(BIN) compiler option, change the item to USAGE COMP-5, or change the
PICTURE clause.

You might also want to avoid using these options, which have no effect:
v ADV

v FASTSRT

v OUTDD

The input data set for the compiler is the data set that you received as a result of
translation, which is SYSPUNCH by default.

RELATED CONCEPTS

“Integrated CICS translator” on page 435

RELATED TASKS

“Compiling with the CICS option” on page 433

CICS reserved-word table
COBOL provides an alternate reserved-word table (IGYCCICS) for CICS
application programs. If you use the compiler option WORD(CICS), COBOL words
that are not supported under CICS are flagged with an error message.

In addition to the COBOL words restricted by the IBM-supplied default
reserved-word table, the IBM-supplied CICS reserved-word table restricts the
following COBOL words:
v CLOSE

v DELETE

v FD

v FILE

Chapter 20. Developing COBOL programs for CICS 437

v FILE-CONTROL

v INPUT-OUTPUT

v I-O-CONTROL

v MERGE

v OPEN

v READ

v RERUN

v REWRITE

v SD

v SORT

v START

v WRITE

If you intend to use the SORT statement under CICS (COBOL supports an interface
for the SORT statement under CICS), you must change the CICS reserved-word
table to remove the words in bold above from the list of words marked as
restricted.

RELATED TASKS

“Compiling with the CICS option” on page 433
“Sorting under CICS” on page 237

RELATED REFERENCES

“WORD” on page 372

Handling errors by using CICS HANDLE
The setting of the CBLPSHPOP runtime option affects the state of the HANDLE
specifications when a program calls COBOL subprograms using a CALL statement.

When CBLPSHPOP is ON and a COBOL subprogram (not a nested program) is called
with a CALL statement, the following actions occur:
1. As part of program initialization, the run time suspends the HANDLE

specifications of the calling program (using EXEC CICS PUSH HANDLE).
2. The default actions for HANDLE apply until the called program issues its own

HANDLE commands.
3. As part of program termination, the run time reinstates the HANDLE

specifications of the calling program (using EXEC CICS POP HANDLE).

If you use the CICS HANDLE CONDITION or CICS HANDLE AID commands, the LABEL
specified for the CICS HANDLE command must be in the same PROCEDURE DIVISION
as the CICS command that causes branching to the CICS HANDLE label. You cannot
use the CICS HANDLE commands with the LABEL option to handle conditions, aids,
or abends that were caused by another program invoked with the COBOL CALL
statement. Attempts to perform cross-program branching by using the CICS HANDLE
command with the LABEL option result in a transaction abend.

If a condition, aid, or abend occurs in a nested program, the LABEL for the
condition, aid, or abend must be in the same nested program; otherwise
unpredictable results occur.

438 Enterprise COBOL for z/OS, V5.2 Programming Guide

Performance considerations: When CBLPSHPOP is OFF, the run time does not
perform CICS PUSH or POP on a CALL to any COBOL subprogram. If the
subprograms do not use any of the EXEC CICS condition-handling commands, you
can run with CBLPSHPOP(OFF), thus eliminating the overhead of the PUSH HANDLE
and POP HANDLE commands. As a result, performance can be improved compared to
running with CBLPSHPOP(ON).

If you are migrating an application from the VS COBOL II run time to the
Language Environment run time, see the related reference for information about
the CBLPSHPOP option for additional considerations.

“Example: handling errors by using CICS HANDLE”

RELATED TASKS

“Running efficiently with CICS, IMS, or VSAM” on page 672

RELATED REFERENCES

Enterprise COBOL Migration Guide (CICS HANDLE
commands and the CBLPSHPOP runtime option)

Enterprise COBOL Version 4 Performance Tuning

Example: handling errors by using CICS HANDLE
The following example shows the use of CICS HANDLE in COBOL programs.

Program A has a CICS HANDLE CONDITION command and program B has no CICS
HANDLE commands. Program A calls program B; program A also calls nested
program A1. A condition is handled in one of three scenarios.

(1) CBLPSHPOP(ON): If the CICS READ command in program B causes a
condition, the condition is not handled by program A (the HANDLE
specifications are suspended because the run time performs a CICS PUSH
HANDLE). The condition turns into a transaction abend.

(2) CBLPSHPOP(OFF): If the CICS READ command in program B causes a
condition, the condition is not handled by program A (the run time
diagnoses the attempt to perform cross-program branching by using a CICS
HANDLE command with the LABEL option). The condition turns into a
transaction abend.

(3) If the CICS READ command in nested program A1 causes a condition, the
flow of control goes to label ERR-1, and unpredictable results occur.

* Program A *

ID DIVISION.
PROGRAM-ID. A.
. . .
PROCEDURE DIVISION.

EXEC CICS HANDLE CONDITION
ERROR(ERR-1)
END-EXEC.

CALL ’B’ USING DFHEIBLK DFHCOMMAREA.
CALL ’A1’.
. . .

THE-END.
EXEC CICS RETURN END-EXEC.

ERR-1.
. . .
* Nested program A1.
ID DIVISION.

Chapter 20. Developing COBOL programs for CICS 439

PROGRAM-ID. A1.
PROCEDURE DIVISION.

EXEC CICS READ (3)
FILE(’LEDGER’)
INTO(RECORD)
RIDFLD(ACCTNO)
END-EXEC.

END PROGRAM A1.
END PROGRAM A.
*

* Program B *

ID DIVISION.
PROGRAM-ID. B.
. . .
PROCEDURE DIVISION.

EXEC CICS READ (1) (2)
FILE(’MASTER’)
INTO(RECORD)
RIDFLD(ACCTNO)
END-EXEC.

. . .
END PROGRAM B.

440 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 21. Programming for a DB2 environment

In general, the coding for a COBOL program will be the same if you want the
program to access a DB2 database. However, to retrieve, update, insert, and delete
DB2 data and use other DB2 services, you must use SQL statements.

To communicate with DB2, do these steps:
v Code any SQL statements that you need, delimiting them with EXEC SQL and

END-EXEC statements.
v Either use the DB2 stand-alone precompiler, or compile with the SQL compiler

option and use the DB2 coprocessor.

RELATED CONCEPTS

“DB2 coprocessor”
“COBOL and DB2 CCSID determination” on page 447

RELATED TASKS

“Coding SQL statements” on page 442
“Compiling with the SQL option” on page 445
“Choosing the DYNAM or NODYNAM compiler option” on page 451

RELATED REFERENCES

“Differences in how the DB2 precompiler and coprocessor behave” on page 449

DB2 coprocessor
When you use the DB2 coprocessor (called SQL statement coprocessor by DB2), the
compiler handles your source programs that contain embedded SQL statements
without your having to use a separate precompile step.

To use the DB2 coprocessor, specify the SQL compiler option.

When the compiler encounters SQL statements in the source program, it interfaces
with the DB2 coprocessor. All text between EXEC SQL and END-EXEC statements is
passed to the coprocessor. The coprocessor takes appropriate actions for the SQL
statements and indicates to the compiler which native COBOL statements to
generate for them.

Although the use of a separate precompile step continues to be supported, it is
recommended that you use the coprocessor instead:
v Interactive debugging with Debug Tool is enhanced when you use the

coprocessor because you see the SQL statements (not the generated COBOL
source) in the listing.

v The COBOL compiler listing includes the error diagnostics (such as syntax errors
in the SQL statements) that the DB2 coprocessor generates.

v Certain restrictions on the use of COBOL language that apply when you use the
precompile step do not apply when you use the DB2 coprocessor. With the
coprocessor:
– You can use SQL statements in any nested program. (With the precompiler,

SQL statements are restricted to the outermost program.)
– You can use SQL statements in copybooks.

© Copyright IBM Corp. 1991, 2018 441

– REPLACE statements work in SQL statements.

Compiling with the DB2 coprocessor generates a DB2 database request module
(DBRM) along with the usual COBOL compiler outputs such as object module and
listing. The DBRM writes to the data set that you specified in the DBRMLIB DD
statement in the JCL for the COBOL compile step. As input to the DB2 bind
process, the DBRM data set contains information about the SQL statements and
host variables in the program.

RELATED CONCEPTS

“COBOL and DB2 CCSID determination” on page 447

RELATED TASKS

“Compiling with the SQL option” on page 445

RELATED REFERENCES

“Differences in how the DB2 precompiler and coprocessor behave” on page 449
“SQL” on page 358

Coding SQL statements
Delimit SQL statements with EXEC SQL and END-EXEC. The EXEC SQL and END-EXEC
delimiters must each be complete on one line. You cannot continue them across
multiple lines. Do not code COBOL statements within EXEC SQL statements.

You also need to do these special steps:
v Code an EXEC SQL INCLUDE statement to include an SQL communication area

(SQLCA) in the WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION of the
outermost program. LOCAL-STORAGE is recommended for recursive programs and
programs that use the THREAD compiler option.

v Define all host variables that you use in SQL statements in the WORKING-STORAGE
SECTION, LOCAL-STORAGE SECTION, or LINKAGE SECTION. However, you do not need
to identify them with EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END
DECLARE SECTION.

Restriction: You cannot use SQL statements in object-oriented classes or methods.

RELATED TASKS

“Using SQL INCLUDE with the DB2 coprocessor”
“Using character data in SQL statements” on page 443
“Using national decimal data in SQL statements” on page 444
“Using national group items in SQL statements” on page 444
“Using binary items in SQL statements” on page 445
“Determining the success of SQL statements” on page 445
DB2 Application Programming and SQL Guide (Coding SQL statements in a

COBOL application)

RELATED REFERENCES

“Code-page determination for string host variables in SQL statements” on page 447
DB2 SQL Reference

Using SQL INCLUDE with the DB2 coprocessor
An SQL INCLUDE statement is treated identically to a native COBOL COPY statement
when you use the SQL compiler option.

442 Enterprise COBOL for z/OS, V5.2 Programming Guide

The following two lines are therefore treated the same way. (The period that ends
the EXEC SQL INCLUDE statement is required.)
EXEC SQL INCLUDE name END-EXEC.
COPY "name".

The processing of the name in an SQL INCLUDE statement follows the same rules as
those of the literal in a COPY literal-1 statement that does not have a REPLACING
phrase.

The library search order for SQL INCLUDE statements is the same SYSLIB
concatenation as the compiler uses to resolve COBOL COPY statements that do not
specify a library-name.

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 381
“Differences in how the DB2 precompiler and coprocessor behave” on page 449
COPY statement (Enterprise COBOL Language Reference)

Using character data in SQL statements
You can code any of the following USAGE clauses to describe host variables for
character data that you use in EXEC SQL statements: USAGE DISPLAY for single-byte
or UTF-8 data, USAGE DISPLAY-1 for DBCS data, or USAGE NATIONAL for UTF-16
data.

When you use the stand-alone DB2 precompiler, you must specify the code page
(CCSID) in EXEC SQL DECLARE statements for host variables that are declared with
USAGE NATIONAL. You must specify the code page for host variables that are
declared with USAGE DISPLAY or DISPLAY-1 only if the CCSID that is in effect for
the COBOL CODEPAGE compiler option does not match the CCSIDs that are used by
DB2 for character and graphic data.

Consider the following code. The two highlighted statements are unnecessary
when you use the integrated DB2 coprocessor (with the SQLCCSID compiler option,
as detailed in the related concept below), because the code-page information is
handled implicitly.
CBL CODEPAGE(1140) NSYMBOL(NATIONAL)
. . .
WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.
01 INT1 PIC S9(4) USAGE COMP.
01 C1140.

49 C1140-LEN PIC S9(4) USAGE COMP.
49 C1140-TEXT PIC X(50).
EXEC SQL DECLARE :C1140 VARIABLE CCSID 1140 END-EXEC.

01 G1200.
49 G1200-LEN PIC S9(4) USAGE COMP.
49 G1200-TEXT PIC N(50) USAGE NATIONAL.
EXEC SQL DECLARE :G1200 VARIABLE CCSID 1200 END-EXEC.
. . .
EXEC SQL FETCH C1 INTO :INT1, :C1140, :G1200 END-EXEC.

If you specify EXEC SQL DECLARE variable-name VARIABLE CCSID nnnn END-EXEC, that
specification overrides the implied CCSID. For example, the following code would
cause DB2 to treat C1208-TEXT as encoded in UTF-8 (CCSID 1208) rather than as
encoded in the CCSID in effect for the COBOL CODEPAGE compiler option:

Chapter 21. Programming for a DB2 environment 443

01 C1208.
49 C1208-LEN PIC S9(4) USAGE COMP.
49 C1208-TEXT PIC X(50).
EXEC SQL DECLARE :C1208 VARIABLE CCSID 1208 END-EXEC.

The NSYMBOL compiler option has no effect on a character literal inside an EXEC SQL
statement. Character literals in an EXEC SQL statement follow the SQL rules for
character constants.

RELATED CONCEPTS

“COBOL and DB2 CCSID determination” on page 447

RELATED TASKS

DB2 Application Programming and SQL Guide (Coding SQL statements in a
COBOL application)

RELATED REFERENCES

“Differences in how the DB2 precompiler and coprocessor behave” on page 449
“CODEPAGE” on page 313
DB2 SQL Reference

Using national decimal data in SQL statements
You can use national decimal host variables in EXEC SQL statements when you use
either the integrated DB2 coprocessor or the DB2 precompiler. You do not need to
specify the CCSID in EXEC SQL DECLARE statements in either case. CCSID 1200 is
used automatically.

Any national decimal host variable that you specify in an EXEC SQL statement must
have the following characteristics:
v It must be signed.
v It must be specified with the SIGN LEADING SEPARATE clause.
v USAGE NATIONAL must be in effect implicitly or explicitly.

RELATED CONCEPTS

“Formats for numeric data” on page 47

RELATED TASKS

“Defining national numeric data items” on page 133

RELATED REFERENCES

“Differences in how the DB2 precompiler and coprocessor behave” on page 449

Using national group items in SQL statements
You can use a national group item as a host variable in an EXEC SQL statement. The
national group item is treated with group semantics (that is, as shorthand for the
set of host variables that are subordinate to the group item) rather than as an
elementary item.

Because all subordinate items in a national group must have USAGE NATIONAL, a
national group item cannot describe a variable-length string.

RELATED TASKS

“Using national groups” on page 134

444 Enterprise COBOL for z/OS, V5.2 Programming Guide

Using binary items in SQL statements
For binary data items that you specify in an EXEC SQL statement, you can define
the data items as either USAGE COMP-5 or as USAGE BINARY, COMP, or COMP-4.

If you define the binary data items as USAGE BINARY, COMP, or COMP-4, use the
TRUNC(BIN) option. (This technique might have a larger effect on performance than
using USAGE COMP-5 on individual data items.) If instead TRUNC(OPT) or TRUNC(STD)
is in effect, the compiler accepts the items but the data might not be valid because
of the decimal truncation rules. You need to ensure that truncation does not affect
the validity of the data.

RELATED CONCEPTS

“Formats for numeric data” on page 47

RELATED REFERENCES

“TRUNC” on page 368

Determining the success of SQL statements
When DB2 finishes executing an SQL statement, DB2 sends a return code in the
SQLCA structure, with one exception, to indicate whether the operation succeeded
or failed. In your program, test the return code and take any necessary action.

The exception occurs when a program runs under DSN from one of the alternate
entry points of the TSO batch mode module IKJEFT01 (IKJEFT1A or IKJEFT1B). In
this case, the return code is passed in register 15.

After execution of SQL statements, the content of the RETURN-CODE special register
might not be valid. Therefore, even if your COBOL program terminates normally
after successfully using SQL statements, the job step could end with an undefined
return code. To ensure that a meaningful return code is given at termination, set
the RETURN-CODE special register before terminating your program.

RELATED TASKS

DB2 Application Programming and SQL Guide (Coding SQL statements in a
COBOL application)

Compiling with the SQL option
You use the SQL compiler option to enable the DB2 coprocessor and to specify DB2
suboptions.

You can specify the SQL option in any of the compiler option sources: compiler
invocation, PROCESS or CBL statements, or installation default. You cannot specify
DB2 suboptions when the SQL option is the COBOL installation default, but you
can specify default DB2 suboptions by customizing the DB2 product installation
defaults.

The DB2 suboption string that you provide in the SQL compiler option is made
available to the DB2 coprocessor. Only the DB2 coprocessor views the contents of
the string.

You can use standard JCL procedural statements to compile your program with the
DB2 coprocessor. In addition to specifying the above compiler options, specify the
following items in your JCL:

Chapter 21. Programming for a DB2 environment 445

v DBRMLIB DD statement with the location for the generated database request
module (DBRM).

v STEPLIB override for the COBOL step, adding the data set that contains the DB2
coprocessor services, unless these services are in the LNKLST. Typically, this data
set is this data set is xxxxxx.SDSNLOAD. For example, for DB2 9 it might be
DSN910.SDSNLOAD, but your installation might have changed the name.

For example, you might have the following lines in your JCL:
//DBRMLIB DD DSN=PAYROLL.MONTHLY.DBRMLIB.DATA(MASTER),DISP=SHR
//STEPLIB DD DSN=DSN910.SDSNLOAD,DISP=SHR

Compiling a batch of programs: If you use the SQL option when compiling a
source file that contains a sequence of COBOL programs (a batch compile
sequence), SQL must be in effect for only the first program of the sequence.
Although you can specify SQL upon compiler invocation, the option will be in
effect for only the first program. If you specify SQL in a CBL or PROCESS statement
for a program other than the first program in the batch, you will receive a
compiler diagnostic message.

RELATED CONCEPTS

“DB2 coprocessor” on page 441
“COBOL and DB2 CCSID determination” on page 447

RELATED TASKS

“Separating DB2 suboptions”
“Choosing the DYNAM or NODYNAM compiler option” on page 451

RELATED REFERENCES

“DYNAM” on page 323
“SQL” on page 358
DB2 Command Reference

Separating DB2 suboptions
Because of the concatenation of multiple SQL option specifications, you can
separate DB2 suboptions (which might not fit in one CBL statement) into multiple
CBL statements.

The options that you include in the suboption string are cumulative. The compiler
concatenates these suboptions from multiple sources in the order that they are
specified. For example, suppose that your source file has the following code:
//STEP1 EXEC IGYWC, . . .
// PARM.COBOL=’SQL("string1")’
//COBOL.SYSIN DD *

CBL SQL("string2")
CBL SQL("string3")
IDENTIFICATION DIVISION.
PROGRAM-ID. DRIVER1.

During compilation, the compiler passes the following suboption string to the DB2
coprocessor:
"string1 string2 string3"

The concatenated strings are delimited with single spaces. If the compiler finds
multiple instances of the same SQL suboption, the last specification of that
suboption in the concatenated string takes effect. The compiler limits the length of
the concatenated DB2 suboption string to 4 KB.

446 Enterprise COBOL for z/OS, V5.2 Programming Guide

COBOL and DB2 CCSID determination
All DB2 string data other than BLOB, BINARY, and VARBINARY data has an
associated encoding scheme and a coded character set ID (CCSID). This is true for
fixed-length and variable-length character strings, fixed-length and variable-length
graphic character strings, CLOB host variables, and DBCLOB host variables.

When you use the integrated DB2 coprocessor, the determination of the code page
CCSID that will be associated with the string host variables used in SQL statement
processing depends on the setting of the COBOL SQLCCSID option, on the
programming techniques used, and on various DB2 configuration options.

When you use the SQL and SQLCCSID COBOL compiler options, the CCSID value
nnnnn that is specified in the CODEPAGE compiler option, or that is determined from
the COBOL data type of a host variable, is communicated automatically from
COBOL to DB2. DB2 associates the COBOL CCSID with host variables, overriding
the CCSID that would otherwise be implied by DB2 external mechanisms and
defaults. This associated CCSID is used for the processing of the SQL statements
that reference host variables.

When you use the SQL and NOSQLCCSID compiler options, the CCSID value nnnnn
that is specified in the CODEPAGE compiler option is used only for processing
COBOL statements within the COBOL program; that CCSID is not used for the
processing of SQL statements. Instead, DB2 assumes in processing SQL statements
that host variable data values are encoded according to the CCSID or CCSIDs that
are specified through DB2 external mechanisms and defaults.

RELATED CONCEPTS

“DB2 coprocessor” on page 441

RELATED TASKS

“Programming with the SQLCCSID or NOSQLCCSID option” on page 448

RELATED REFERENCES

“Code-page determination for string host variables in SQL statements”
“CODEPAGE” on page 313
“SQL” on page 358
“SQLCCSID” on page 359

Code-page determination for string host variables in SQL
statements

When you use the integrated DB2 coprocessor (SQL compiler option), the code page
for processing string host variables in SQL statements is determined as shown
below, in descending order of precedence.
v A host variable that has USAGE NATIONAL is always processed by DB2 using

CCSID 1200 (Unicode UTF-16). For example:
01 hostvariable pic n(10) usage national.

v An alphanumeric host variable that has an explicit FOR BIT DATA declaration is
set by DB2 to CCSID 66535, which indicates that the variable does not represent
encoded characters. For example:
EXEC SQL DECLARE hostvariable VARIABLE FOR BIT DATA END-EXEC

v A BLOB, BINARY, or VARBINARY host variable has no CCSID association.
These string types do not represent encoded characters.

Chapter 21. Programming for a DB2 environment 447

v A host variable for which you specify an explicit CCSID override in the SQLDA
is processed with that CCSID.

v A host variable that you specify in a declaration with an explicit CCSID is
processed with that CCSID. For example:
EXEC SQL DECLARE hostvariable VARIABLE CCSID nnnnn END-EXEC

v An alphanumeric host variable, if the SQLCCSID compiler option is in effect, is
processed with the CCSID nnnnn from the CODEPAGE compiler option.

v A DBCS host variable, if the SQLCCSID option is in effect, is processed with the
mapped value mmmmm, which is the pure DBCS CCSID component of the
mixed (MBCS) CCSID nnnnn from the CODEPAGE(nnnnn) compiler option.

v An alphanumeric or DBCS host variable, if the NOSQLCCSID option is in effect, is
processed with the CCSID from the DB2 ENCODING bind option, if specified,
or from the APPLICATION ENCODING set in DSNHDECP through the DB2
installation panel DSNTIPF.

RELATED REFERENCES

“CODEPAGE” on page 313
“SQLCCSID” on page 359

Programming with the SQLCCSID or NOSQLCCSID option
In general, the SQLCCSID option is recommended for new applications that use the
integrated DB2 coprocessor, and as a long-term direction for existing applications.
The NOSQLCCSID option is recommended as a mechanism for migrating existing
precompiler-based applications to use the integrated DB2 coprocessor.

The SQLCCSID option is recommended for COBOL-DB2 applications that have any
of these characteristics:
v Use COBOL Unicode support
v Use other COBOL syntax that is indirectly sensitive to CCSID encoding, such as

XML support or object-oriented syntax for Java interoperability
v Process character data that is encoded in a CCSID that is different from the

default CCSID assumed by DB2

The NOSQLCCSID option is recommended for applications that require the highest
compatibility with the behavior of the DB2 precompiler.

For applications that use COBOL alphanumeric data items as host variables
interacting with DB2 string data that is defined with the FOR BIT DATA subtype,
you must either:
v Use the NOSQLCCSID compiler option
v Specify explicit FOR BIT DATA declarations for those host variables, for example:

EXEC SQL DECLARE hostvariable VARIABLE FOR BIT DATA END-EXEC

Usage notes

v If you use the DB2 DCLGEN command to generate COBOL declarations for a table,
you can optionally create FOR BIT DATA declarations automatically. To do so,
specify the DCLBIT(YES) option of the DCLGEN command.

v Performance consideration: Using the SQLCCSID compiler option could result in
some performance overhead in SQL processing, because with SQLCCSID in effect
the default DB2 CCSID association mechanism is overridden with a mechanism
that works on a per-host-variable basis.

448 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED CONCEPTS

“DB2 coprocessor” on page 441

RELATED REFERENCES

“SQLCCSID” on page 359

Differences in how the DB2 precompiler and coprocessor behave
The sections that follow enumerate the differences in behavior between the
stand-alone COBOL DB2 precompiler and the integrated COBOL DB2 coprocessor.

For details about the CCSID determination under the DB2 precompiler and
coprocessor, see “COBOL and DB2 CCSID determination” on page 447.

Period at the end of EXEC SQL INCLUDE statements

Precompiler: The DB2 precompiler does not require that a period end each EXEC
SQL INCLUDE statement. If a period is specified, the precompiler processes it as part
of the statement. If a period is not specified, the precompiler accepts the statement
as if a period had been specified.

Coprocessor: The DB2 coprocessor treats each EXEC SQL INCLUDE statement like a
COPY statement, and requires that a period end the statement. For example:
IF A = B THEN

EXEC SQL INCLUDE some_code_here END-EXEC.
ELSE

. . .
END-IF

Note that the period does not terminate the IF statement.

EXEC SQL INCLUDE and nested COPY REPLACING

Precompiler: With the DB2 precompiler, an EXEC SQL INCLUDE statement can
reference a copybook that contains a COPY statement that uses the REPLACING
phrase.

Coprocessor: With the DB2 coprocessor, an EXEC SQL INCLUDE statement cannot
reference a copybook that contains a COPY statement that uses the REPLACING
phrase. The coprocessor processes each EXEC SQL INCLUDE statement identically to a
COPY statement, and nested COPY statements cannot have the REPLACING phrase.

EXEC SQL and REPLACE or COPY REPLACING
Precompiler: With the DB2 precompiler, COBOL REPLACE statements and the
REPLACING phrase of the COPY statement act on the expanded source created from
the EXEC SQL statement. COBOL rules for REPLACE and REPLACING are used.

Coprocessor: With the DB2 coprocessor, REPLACE and COPY . . . REPLACING
statements act on the original source program, including EXEC SQL statements.

Different behavior can result, as in the following example:
REPLACE == ABC == By == XYZ ==.
01 G.

02 ABC PIC X(10).
. . .
EXEC SQL SELECT * INTO :G.ABC FROM TABLE1 END-EXEC

Chapter 21. Programming for a DB2 environment 449

With the precompiler, the reference to G.ABC will appear as ABC of G in the
expanded source and will be replaced with XYZ of G. With the coprocessor,
replacement will not occur, because ABC is not delimited by separators in the
original source string G.ABC.

Source code after an END-EXEC statement
Precompiler: The DB2 precompiler ignores any code that follows END-EXEC
statements on the same line.

Coprocessor: The DB2 coprocessor processes code that follows END-EXEC statements
on the same line.

Multiple definitions of host variables
Precompiler: The DB2 precompiler does not require that host variable references be
unique. The first definition that maps to a valid DB2 data type is used.

Coprocessor: The DB2 coprocessor requires that each host variable reference be
unique. The coprocessor diagnoses nonunique references to host variables. You
must fully qualify host variable references to make them unique.

EXEC SQL statement continuation lines
Precompiler: The DB2 precompiler requires that EXEC SQL statements start in
columns 12 through 72. Continuation lines of the statements can start anywhere in
columns 8 through 72.

Coprocessor: The DB2 coprocessor requires that all lines of an EXEC SQL statement,
including continuation lines, be coded in columns 12 through 72.

Bit-data host variables
Precompiler: With the DB2 precompiler, a COBOL alphanumeric data item can be
used as a host variable to hold DB2 character data that has subtype FOR BIT DATA.
An explicit EXEC SQL DECLARE VARIABLE statement that declares that host variable
as FOR BIT DATA is not required.

Coprocessor: With the DB2 coprocessor, a COBOL alphanumeric data item can be
used as a host variable to hold DB2 character data that has subtype FOR BIT DATA
if an explicit EXEC SQL DECLARE VARIABLE statement for that host variable is
specified in the COBOL program. For example:
EXEC SQL DECLARE :HV1 VARIABLE FOR BIT DATA END-EXEC.

As an alternative to adding EXEC SQL DECLARE . . . FOR BIT DATA statements, you
can use the NOSQLCCSID compiler option. For details, see the related reference about
code-page determination below.

SQL-INIT-FLAG
Precompiler: With the DB2 precompiler, if you pass host variables that might be
located at different addresses when the program is called more than once, the
called program must reset SQL-INIT-FLAG. Resetting this flag indicates to DB2 that
storage must be initialized when the next SQL statement runs. To reset the flag,
insert the statement MOVE ZERO TO SQL-INIT-FLAG in the PROCEDURE DIVISION of the
called program ahead of any executable SQL statements that use those host
variables.

450 Enterprise COBOL for z/OS, V5.2 Programming Guide

Coprocessor: With the DB2 coprocessor, the called program does not need to reset
SQL-INIT-FLAG. An SQL-INIT-FLAG is automatically defined in the program to aid
program portability. However, statements that modify SQL-INIT-FLAG, such as MOVE
ZERO TO SQL-INIT-FLAG, have no effect on the SQL processing in the program.

RELATED CONCEPTS

“DB2 coprocessor” on page 441
“COBOL and DB2 CCSID determination” on page 447

RELATED REFERENCES

“Code-page determination for string host variables in SQL statements” on page 447
“SQLCCSID” on page 359

Choosing the DYNAM or NODYNAM compiler option
For COBOL programs that have EXEC SQL statements, your choice of the compiler
option DYNAM or NODYNAM depends on the operating environment.

When you run under:
v TSO or IMS: You can use either the DYNAM or NODYNAM compiler option.

Note that IMS and DB2 share a common alias name, DSNHLI, for the language
interface module. You must concatenate your libraries as follows:
– If you use IMS with the DYNAM option, concatenate the IMS library first.
– If you run your application only under DB2, concatenate the DB2 library first.

v CICS or the DB2 call attach facility (CAF): You must use the NODYNAM compiler
option.
Because stored procedures use CAF, you must also compile COBOL stored
procedures with the NODYNAM option.

RELATED TASKS

“Compiling with the SQL option” on page 445
DB2 Application Programming and SQL Guide (Programming for the call

attachment facility)

RELATED REFERENCES

“DYNAM” on page 323

Chapter 21. Programming for a DB2 environment 451

452 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 22. Developing COBOL programs for IMS

Although much of the coding of a COBOL program will be the same when
running under IMS, be aware of the following recommendations and restrictions.

In COBOL, IMS message processing programs (MPPs) do not use non-IMS input or
output statements such as READ, WRITE, REWRITE, OPEN, and CLOSE.

With Enterprise COBOL, you can invoke IMS facilities using the following
interfaces:
v CBLTDLI call
v Language Environment callable service CEETDLI
v EXEC SQLIMS statements

CEETDLI behaves essentially the same way as CBLTDLI, except that CEETDLI
enables LE condition handling to be used. There are some instances when you
cannot use Language Environment condition handling when using CBLTDLI under
IMS.

You can also run object-oriented COBOL programs in a Java dependent region. You
can mix the object-oriented COBOL and Java languages in a single application.

RELATED CONCEPTS

“IMS SQL coprocessor”

RELATED TASKS

“Coding SQLIMS statements” on page 454
“Compiling with the SQLIMS option” on page 455
“Compiling and linking COBOL programs for running under IMS” on page 457
“Using object-oriented COBOL and Java under IMS” on page 458
“Calling a COBOL method from a Java application under IMS” on page 458
“Building a mixed COBOL-Java application that starts with COBOL” on page 459
“Writing mixed-language IMS applications” on page 459

IMS SQL coprocessor
When you use the IMS SQL coprocessor (called SQL statement coprocessor by IMS),
the compiler handles your source programs that contain embedded SQL
statements.

When the compiler encounters SQLIMS statements in the source program, it
interfaces with the IMS SQL coprocessor. All text between EXEC SQLIMS and
END-EXEC statements is passed to the coprocessor. The coprocessor takes
appropriate actions for the SQLIMS statements and indicates to the compiler what
native COBOL statements to generate for them.

Notes:

v The IMS SQL coprocessor processes embedded SQLIMS statements, not embedded
SQL statements.

© Copyright IBM Corp. 1991, 2018 453

v IMS program might contain EXEC SQL statements for accessing a DB2 SQL
database, EXEC SQLIMS statements for accessing an IMS DLI databases, or both.
The SQL option enables EXEC SQL statements while the SQLIMS option enables
EXEC SQLIMS statements.

With the IMS SQL coprocessor, you can use statements in the following ways:
v Use EXEC SQLIMS statements in any nested program.
v Use EXEC SQLIMS statements in COPYBOOKS.
v REPLACE statements work in SQLIMS statements.

RELATED TASKS

“Coding SQLIMS statements”
“Compiling with the SQLIMS option” on page 455
“Compiling and linking COBOL programs for running under IMS” on page 457

RELATED REFERENCES

“SQLIMS” on page 360

Coding SQLIMS statements
Delimit SQLIMS statements with EXEC SQLIMS and END-EXEC. The EXEC SQLIMS and
END-EXEC delimiters must each be complete on one line. Do not code COBOL
statements within EXEC SQLIMS statements.

Code an EXEC SQLIMS INCLUDE statement to include an SQLIMS communication
area (SQLCA) in the WORKING-STORAGE SECTION or LOCAL-STORAGE SECTION of the
outermost program. The LOCAL-STORAGE SECTION is recommended for recursive
programs and programs that use the THREAD compiler option.

Restriction: You cannot use SQLIMS statements in object-oriented classes or
methods.

RELATED TASKS

“Using SQLIMS INCLUDE with the IMS SQL coprocessor”
“Using character data in SQLIMS statements” on page 455
“Using binary items in SQLIMS statements” on page 455

“Determining the success of SQLIMS statements” on page 455

Using SQLIMS INCLUDE with the IMS SQL coprocessor
An SQLIMS INCLUDE statement is treated identically to a native COBOL COPY
statement when you use the SQLIMS compiler option.

The following two lines are therefore treated the same way. The period that ends
the EXEC SQLIMS INCLUDE statement is required.
EXEC SQLIMS INCLUDE name END-EXEC.
COPY "name".

The processing of the name in an SQLIMS INCLUDE statement follows the same rules
as the literal in a COPY literal-1 statement that does not have a REPLACING phrase.

The library search order for SQLIMS INCLUDE statements is the same SYSLIB
concatenation as the compiler uses to resolve COBOL COPY statements that do not
specify a library-name.

454 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 381
COPY statement (Enterprise COBOL Language Reference)

Using character data in SQLIMS statements
Alphanumeric host data items for use in EXEC SQLIMS statements (host variables)
must be defined as USAGE DISPLAY.

Note: Do not use character data items that are defined with USAGE DISPLAY-1 or
USAGE NATIONAL as SQLIMS host variables.

RELATED CONCEPTS

“IMS SQL coprocessor” on page 453

RELATED REFERENCES

“CODEPAGE” on page 313

Using binary items in SQLIMS statements
For binary data items that you specify in an EXEC SQLIMS statement, you can define
the data items as either USAGE COMP-5 or as USAGE BINARY, COMP, or COMP-4.

If you define the binary data items as USAGE BINARY, COMP, or COMP-4, use the
TRUNC(BIN) compiler option. Using this option might have a larger effect on
performance than using USAGE COMP-5 on individual data items. If instead you use
the TRUNC(OPT) or TRUNC(STD) compiler options, the compiler accepts the items but
the data might not be valid because of the decimal truncation rules. You must
ensure that truncation does not affect the validity of the data.

RELATED CONCEPTS

“Formats for numeric data” on page 47

RELATED REFERENCES

“TRUNC” on page 368

Determining the success of SQLIMS statements
When IMS finishes running an SQLIMS statement, IMS sends a return code in the
SQLIMSCA structure to indicate whether the operation succeeded or failed. In
your program, test the return code and take any necessary action.

After execution of SQLIMS statements, the content of the RETURN-CODE special
register might not be valid. Therefore, even if a program terminates normally after
successfully using SQLIMS statements, the job step might end with an undefined
return code. To ensure that a meaningful return code is given at termination, set
the RETURN-CODE special register before you end the program.

RELATED TASKS

IMS Application Programming Guide

Compiling with the SQLIMS option
Use the SQLIMS compiler option to enable the IMS SQL coprocessor and to specify
IMS suboptions.

Chapter 22. Developing COBOL programs for IMS 455

You can specify the SQLIMS option in any of the compiler option sources: compiler
invocation, PROCESS or CBL statements, or installation default. However, you cannot
specify IMS suboptions when the SQLIMS option is the COBOL installation default.
The IMS suboption string in the SQLIMS compiler option is only available to the
IMS SQL coprocessor.

To use the IMS SQL coprocessor, you must compile with the SQLIMS option and
IMS must be available on the system on which you compile.

You can use standard JCL procedural statements to compile your program with the
IMS SQL coprocessor. In addition to specifying the above compiler options, specify
the following item in your JCL:

STEPLIB override for the COBOL step, adding the data set that contains the IMS
SQL coprocessor services, unless these services are in the LNKLST. Typically, the
data set is IMS.SDFSRESL but your installation might have changed the name.

For example, you might have the following lines in your JCL:
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR

Compiling a batch of programs:

If you use the SQLIMS option when you compile a source file that contains a
sequence of COBOL programs (a batch compile sequence), SQLIMS is in effect for
only the first program of the sequence. Although you can specify SQLIMS upon
compiler invocation, the option is in effect for only the first program. If you specify
SQLIMS in a CBL or PROCESS statement for a program other than the first program in
the batch, a compiler diagnostic message is issued.

RELATED CONCEPTS

“IMS SQL coprocessor” on page 453

RELATED TASKS

“Separating IMS suboptions”

RELATED REFERENCES

“SQL” on page 358

Separating IMS suboptions
Because of the concatenation of multiple SQLIMS option specifications, you can
separate IMS suboptions (which might not fit in one CBL statement) into multiple
CBL statements.

The options that you include in the suboption string are cumulative. The compiler
concatenates these suboptions from multiple sources in the order that they are
specified. For example, suppose that your source file contains the following code:
//STEP1 EXEC IGYWC, . . .
// PARM.COBOL=’SQLIMS("string1")’
//COBOL.SYSIN DD *

CBL SQLIMS("string2")
CBL SQLIMS("string3")
IDENTIFICATION DIVISION.
PROGRAM-ID. DRIVER1.

During compilation, the compiler passes the following suboption string to the IMS
SQL coprocessor:

456 Enterprise COBOL for z/OS, V5.2 Programming Guide

"string1 string2 string3"

The concatenated strings are delimited with single spaces. If the compiler finds
multiple instances of the same SQLIMS suboption, the last specification of that
suboption in the concatenated string takes effect. The compiler limits the length of
the concatenated IMS suboption string to 4 KB.

RELATED CONCEPTS

“IMS SQL coprocessor” on page 453

RELATED TASKS

“Compiling with the SQLIMS option” on page 455

Compiling and linking COBOL programs for running under IMS
For best performance in the IMS environment, use the RENT compiler option. RENT
causes COBOL to generate reentrant code. You can then run your application
programs in either preloaded mode (the programs are always resident in storage) or
nonpreload mode without having to recompile using different options.

Preloading can boost performance because subsequent requests for a program can
be handled faster when the program is already in storage (rather than being
fetched from a library each time it is needed).

For IMS programs, using the RENT compiler option is recommended. You must use
the RENT compiler option for a program that is to be run preloaded or both
preloaded and nonpreloaded. When you preload a program object that contains
COBOL programs, all of the COBOL programs in that program object must be
compiled using the RENT option.

You can place programs compiled with the RENT option in the z/OS link pack area.
There they can be shared among the IMS dependent regions.

To run above the 16 MB line, an application program must be compiled with RENT.
The data for IMS application programs can reside above the 16 MB line, and you
can use DATA(31) RENT for programs that use IMS services.

For proper execution of COBOL programs under IMS, observe the following
guidelines for the link-edit attributes:
v To link program objects that contain only COBOL programs compiled with the

RENT compiler option, link as RENT.
v To link program objects that contain a mixture of COBOL RENT programs and

other programs, use the link-edit attributes recommended for the other
programs.

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

“Choosing the DYNAM or NODYNAM compiler option” on page 451
Language Environment Programming Guide (Condition handling under IMS)

RELATED REFERENCES

“DATA” on page 318

Chapter 22. Developing COBOL programs for IMS 457

“RENT” on page 352
Enterprise COBOL Migration Guide (IMS considerations)

Using object-oriented COBOL and Java under IMS
You can mix object-oriented COBOL and Java in an application that runs in a Java
dependent region.

For example, you can:
v Call a COBOL method from a Java application. You can build the messaging

portion of your application in Java and call COBOL methods to access IMS
databases.

v Build a mixed COBOL and Java application that starts with the main method of
a COBOL class and that invokes Java routines.

You must run these applications in either a Java message processing (JMP)
dependent region or a Java batch processing (JBP) dependent region. A program
that reads from the message queue (regardless of the language) must run in a JMP
dependent region.

RELATED TASKS

“Defining a factory section” on page 621
Chapter 30, “Writing object-oriented programs,” on page 589
Chapter 31, “Communicating with Java methods,” on page 633
Chapter 16, “Compiling, linking, and running OO applications,” on page 291
IMS Application Programming Guide

Calling a COBOL method from a Java application under IMS
You can use the object-oriented language support in Enterprise COBOL to write
COBOL methods that a Java program can call under IMS.

When you define a COBOL class and compile it using Enterprise COBOL, the
compiler generates a Java class definition with native methods and the object code
that implements those native methods. You can then create an instance and invoke
the methods of this class from a Java program that runs in a Java dependent
region, just as you would use any other class.

For example, you can define a COBOL class that uses the appropriate DL/I calls to
access an IMS database. To make the implementation of this class available to a
Java program, do the following steps:
1. Compile the COBOL class using Enterprise COBOL. The compiler generates a

Java source file (.java) that contains the class definition, and an object module
(.o) that contains the implementation of the native methods.

2. Compile the generated Java source file using the Java compiler. The Java
compiler creates a class file (.class).

3. Link the object code into a dynamic link library (DLL) in the z/OS UNIX file
system (.so). The directory that contains the COBOL DLLs must be listed in the
LIBPATH, as specified in the IMS.PROCLIB member that is indicated by the
ENVIRON= parameter of the IMS region procedure.

4. Update the sharable application class path in the master JVM options member
(ibm.jvm.sharable.application.class.path in the IMS.PROCLIB member that is
specified by the JVMOPMAS= parameter of the IMS region procedure) to
enable the JVM to access the Java class file.

458 Enterprise COBOL for z/OS, V5.2 Programming Guide

A Java program cannot call procedural COBOL programs directly. To reuse existing
COBOL IMS code, use one of the following techniques:
v Restructure the COBOL code as a method in a COBOL class.
v Write a COBOL class definition and method that serves as a wrapper for the

existing procedural code. The wrapper code can use COBOL CALL statements to
access procedural COBOL programs.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
“Structuring OO applications” on page 630
“Wrapping procedure-oriented COBOL programs” on page 630
IMS Application Programming Guide

Building a mixed COBOL-Java application that starts with
COBOL

An application that runs in a Java dependent region must start with the main
method of a class.

A COBOL class definition that has a main factory method meets this requirement;
therefore, you can use a main factory method as the first routine of a mixed
COBOL and Java application under IMS.

Enterprise COBOL generates a Java class with a main method, which the Java
dependent region can find, instantiate, and invoke. Although you can code the
entire application in COBOL, you would probably build this type of application to
call a Java routine. When the COBOL run time runs within the JVM of a Java
dependent region, it automatically finds and uses this JVM to invoke methods on
Java classes.

The COBOL application should use DL/I calls for processing messages (GU and GN)
and synchronizing transactions (CHKP).

RELATED TASKS

“Structuring OO applications” on page 630
IMS Application Programming Guide
IBM SDK, Java Technology Edition

Writing mixed-language IMS applications
When you write mixed-language IMS applications, you need to be aware of the
effects of the STOP RUN statement. You also need to understand how to process
messages and synchronize transactions, access databases, and use the application
interface block (AIB).

RELATED TASKS

“Using the STOP RUN statement”
“Processing messages and synchronizing transactions” on page 460
“Accessing databases” on page 460
“Using the application interface block” on page 460

Using the STOP RUN statement
If you use the STOP RUN statement in the COBOL portion of your application, the
statement terminates all COBOL and Java routines (including the JVM).

Chapter 22. Developing COBOL programs for IMS 459

https://developer.ibm.com/javasdk/documentation/

Control is returned immediately to IMS. The program and the transaction are left
in a stopped state.

Processing messages and synchronizing transactions
IMS message-processing applications must do all message processing and
transaction synchronization either in COBOL or Java, rather than distributing this
logic between application components written in both languages.

COBOL components use CALL statements to DL/I services to process messages (GU
and GN) and synchronize transactions (CHKP). Java components use Java classes for
IMS to do these functions. You can use object instances of classes derived from
IMSFieldMessage to communicate entire IMS messages between the COBOL and
Java components of the application.

RELATED TASKS

IMS Application Programming Guide

RELATED REFERENCES

IMS Application Programming API Reference

Accessing databases
You can use either Java, COBOL, or a mixture of the two languages to access IMS
databases.

Limitation: EXEC SQL statements for DB2 database access are not supported in
COBOL routines that run in a Java dependent region.

Recommendation: Do not access the same database program communication block
(PCB) from both Java and COBOL. The Java and COBOL parts of the application
share the same database position. Changes in database position from calls in one
part of the application affect the database position in another part of the
application. (This problem occurs whether the affected parts of an application are
written in the same language or in different languages.)

Suppose that a Java component of a mixed application builds an SQL SELECT clause
and uses Java Database Connectivity (JDBC) to query and retrieve results from an
IMS database. The Java class libraries for IMS construct the appropriate request to
IMS to establish the correct position in the database. If you then invoke a COBOL
method that builds a segment search argument (SSA) and issues a GU (Get Unique)
request to IMS against the same database PCB, the request probably altered the
position in the database for that PCB. If so, subsequent JDBC requests to retrieve
more records by using the initial SQL SELECT clause are incorrect because the
database position changed. If you must access the same PCB from multiple
languages, reestablish the database position after an interlanguage call before you
access more records in the database.

RELATED TASKS

IMS Application Programming Guide

Using the application interface block
COBOL applications that run in a Java dependent region normally must use the
AIB interface because the Java dependent region does not provide PCB addresses
to its application.

To use the AIB interface, specify the PCB requested for the call by placing the PCB
name (which must be defined as part of the PSBGEN) in the resource name field of

460 Enterprise COBOL for z/OS, V5.2 Programming Guide

the AIB. (The AIB requires that all PCBs in a program specification block (PSB)
definition have a name.) You do not specify the PCB address directly, and your
application does not need to know the relative PCB position in the PCB list. Upon
the completion of the call, the AIB returns the PCB address that corresponds to the
PCB name that the application passed.

Alternatively, you can obtain PCB addresses by making an IMS INQY call using
subfunction FIND, and the PCB name as the resource name. The call returns the
address of the PCB, which you can then pass to a COBOL program. (This approach
still requires that the PCB name be defined as part of the PSBGEN, but the
application does not have to use the AIB interface.)

“Example: using the application interface block”

RELATED TASKS

IMS Application Programming Guide

Example: using the application interface block:

The following example shows how you can use the AIB interface in a COBOL
application.
Local-storage section.

copy AIB.
. . .

Linkage section.
01 IOPCB.

05 logtterm pic x(08).
05 pic x(02).
05 tpstat pic x(02).
05 iodate pic s9(7) comp-3.
05 iotime pic s9(7) comp-3.
05 pic x(02).
05 seqnum pic x(02).
05 mod pic x(08).

Procedure division.
Move spaces to input-area
Move spaces to AIB
Move "DFSAIB" to AIBRID
Move length of AIB to AIBRLEN
Move "IOPCB" to AIBRSNM1
Move length of input-area to AIBOALEN
Call "CEETDLI" using GU, AIB, input-area
Set address of IOPCB to AIBRESA1
If tpstat = spaces

* . . process input message

Chapter 22. Developing COBOL programs for IMS 461

462 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 23. Running COBOL programs under z/OS UNIX

To run COBOL programs in the z/OS UNIX environment, compile them using
Enterprise COBOL or COBOL for OS/390 & VM. The programs must be reentrant,
so use the compiler and linker option RENT.

If you are going to run the programs from the z/OS UNIX file system, use the
linker option AMODE 31. Any AMODE 24 program that you call from within a z/OS
UNIX application must reside in an MVS PDS or PDSE.

Restrictions: The following restrictions apply to running under z/OS UNIX:
v SORT and MERGE statements are not supported.
v You cannot use the old COBOL interfaces for preinitialization (runtime option

RTEREUS) to establish a reusable environment.
v You cannot run a COBOL program compiled with the NOTHREAD option in more

than one thread. If you start a COBOL application in a second thread, you get a
software condition from the COBOL run time. You can run NOTHREAD COBOL
programs in the initial process thread (IPT) or in one non-IPT that you create
from a C or PL/I routine.
You can run a COBOL program in more than one thread if you compile all the
COBOL programs in the application with the THREAD option.

You can use Debug Tool to debug z/OS UNIX programs in remote debug mode,
for example, by using the Debug Perspective of Rational Developer for System z,
or in full-screen mode (MFI) using a VTAM® terminal.

RELATED TASKS

Chapter 15, “Compiling under z/OS UNIX,” on page 283
“Running OO applications under z/OS UNIX” on page 293
“Running in z/OS UNIX environments”
“Setting and accessing environment variables” on page 464
“Calling UNIX/POSIX APIs” on page 466
“Accessing main program parameters under z/OS UNIX” on page 468
Language Environment Programming Guide

RELATED REFERENCES

“RENT” on page 352

Running in z/OS UNIX environments
You can run COBOL programs in any of the z/OS UNIX execution environments,
either from within a z/OS UNIX shell or from outside a shell.
v You can run programs in either the OMVS shell (OMVS) or the ISPF shell

(ISHELL).
Enter the program-name at the shell prompt. The program must be in the
current directory or in your search path.
You can specify runtime options only by setting the environment variable
_CEE_RUNOPTS before starting the program.
You can run programs that reside in a cataloged MVS data set from a shell by
using the tso utility. For example:
tso "call ’my.loadlib(myprog)’"

© Copyright IBM Corp. 1991, 2018 463

The ISPF shell can direct stdout and stderr only to a z/OS UNIX file, not to
your terminal.

v From outside a shell, you can run programs either under TSO/E or in batch.
To call a COBOL program that resides in a z/OS UNIX file from the TSO/E
prompt, use the BPXBATCH utility or a spawn() syscall in a REXX exec.
To call a COBOL program that resides in a z/OS UNIX file with the EXEC JCL
statement, use the BPXBATCH utility.

RELATED TASKS

“Running OO applications under z/OS UNIX” on page 293
“Setting and accessing environment variables”
“Calling UNIX/POSIX APIs” on page 466
“Accessing main program parameters under z/OS UNIX” on page 468
“Defining and allocating QSAM files” on page 174
“Allocating line-sequential files” on page 214
“Allocating VSAM files” on page 206
“Displaying values on a screen or in a file (DISPLAY)” on page 35
Language Environment Programming Guide (Running POSIX-enabled programs)

RELATED REFERENCES

“TEST” on page 364
UNIX System Services User's Guide (The BPXBATCH utility)
Language Environment Programming Reference

Setting and accessing environment variables
You can set environment variables for z/OS UNIX COBOL programs either from
the shell with commands export and set, or from the program.

Although setting and resetting environment variables from the shell before you
begin to run a program is a typical procedure, you can set, reset, and access
environment variables from the program while it is running.

If you are running a program with BPXBATCH, you can set environment variables
by using an STDENV DD statement.

To reset an environment variable as if it had not been set, use the z/OS UNIX shell
command unset. To reset an environment variable from a COBOL program, call
the setenv() function.

To see the values of all environment variables, use the export command with no
parameters. To access the value of an environment variable from a COBOL
program, call the getenv() function.

“Example: setting and accessing environment variables” on page 466

RELATED TASKS

“Running in z/OS UNIX environments” on page 463
“Setting environment variables that affect execution” on page 465
“Accessing main program parameters under z/OS UNIX” on page 468
“Running OO applications under z/OS UNIX” on page 293
“Setting environment variables under z/OS UNIX” on page 283

RELATED REFERENCES

“Runtime environment variables” on page 465

464 Enterprise COBOL for z/OS, V5.2 Programming Guide

Language Environment Programming Reference
MVS Program Management: User's Guide and Reference

Setting environment variables that affect execution
To set environment variables for z/OS UNIX COBOL programs from a shell, use
the export or set command. To set environment variables from within the
program, call POSIX functions setenv() or putenv().

For example, to set the environment variable MYFILE:
export MYFILE=/usr/mystuff/notes.txt

“Example: setting and accessing environment variables” on page 466

RELATED TASKS

“Calling UNIX/POSIX APIs” on page 466
“Setting environment variables under z/OS UNIX” on page 283

RELATED REFERENCES

“Runtime environment variables”

Runtime environment variables
Several runtime variables are of interest for COBOL programs.

These are the runtime environment variables:

_CEE_ENVFILE
Specifies a file from which to read environment variables.

_CEE_RUNOPTS
Specifies runtime options.

CLASSPATH
Specifies directory paths of Java .class files required for an OO application.

COBJVMINITOPTIONS
Specifies Java virtual machine (JVM) options to be used when COBOL
initializes a JVM.

_IGZ_SYSOUT
Specifies where to direct DISPLAY output. stdout and stderr are the only
allowable values.

LIBPATH
Specifies directory paths of dynamic link libraries.

PATH Specifies directory paths of executable programs.

STEPLIB
Specifies location of programs that are not in the LNKLST.

RELATED TASKS

“Displaying data on the system logical output device” on page 36

RELATED REFERENCES

XL C/C++ Programming Guide (_CEE_ENVFILE)
Language Environment Programming Reference

Chapter 23. Running COBOL programs under z/OS UNIX 465

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

Example: setting and accessing environment variables
The following example shows how you can access and set environment variables
from a COBOL program by calling the standard POSIX functions getenv() and
putenv().

Because getenv() and putenv() are C functions, you must pass arguments BY VALUE.
Pass character strings as BY VALUE pointers that point to null-terminated strings.
Compile programs that call these functions with the NODYNAM and
PGMNAME(LONGMIXED) options.
CBL pgmname(longmixed),nodynam
Identification division.
Program-id. "envdemo".
Data division.
Working-storage section.
01 P pointer.
01 PATH pic x(5) value Z"PATH".
01 var-ptr pointer.
01 var-len pic 9(4) binary.
01 putenv-arg pic x(14) value Z"MYVAR=ABCDEFG".
01 rc pic 9(9) binary.
Linkage section.
01 var pic x(5000).
Procedure division.
* Retrieve and display the PATH environment variable

Set P to address of PATH
Call "getenv" using by value P returning var-ptr
If var-ptr = null then

Display "PATH not set"
Else

Set address of var to var-ptr
Move 0 to var-len
Inspect var tallying var-len
for characters before initial X"00"

Display "PATH = " var(1:var-len)
End-if

* Set environment variable MYVAR to ABCDEFG
Set P to address of putenv-arg
Call "putenv" using by value P returning rc
If rc not = 0 then

Display "putenv failed"
Stop run

End-if
Goback.

Calling UNIX/POSIX APIs
You can call standard UNIX/POSIX functions from z/OS UNIX COBOL programs
and from traditional z/OS COBOL programs by using the CALL literal statement.
These functions are part of Language Environment.

Because these are C functions, you must pass arguments BY VALUE. Pass character
strings as BY VALUE pointers that point to null-terminated strings. You must use the
compiler options NODYNAM and PGMNAME(LONGMIXED) when you compile programs
that call these functions.

You can call the fork(), exec(), and spawn() functions from a COBOL program or
from a non-COBOL program in the same process as COBOL programs. However,
be aware of these restrictions:
v From a forked process you cannot access any COBOL sequential, indexed, or

relative files that were open when you issued the fork. File status code 92 is

466 Enterprise COBOL for z/OS, V5.2 Programming Guide

returned if you attempt such access (CLOSE, READ, WRITE, REWRITE, DELETE, or
START). You can access line-sequential files that were open at the time of a fork.

v You cannot use the fork() function in a process in which any of the following
conditions are true:
– A COBOL SORT or MERGE is running.
– A declarative is running.
– The process has more than one Language Environment enclave (COBOL run

unit).
– The process has used any of the COBOL reusable environment interfaces.
– The process has ever run a VS COBOL II program.

v With one exception, DD allocations are not inherited from a parent process to a
child process. The exception is the local spawn, which creates a child process in
the same address space as the parent process. You request a local spawn by
setting the environment variable _BPX_ SHAREAS=YES before you invoke the
spawn() function.

The exec() and spawn() functions start a new Language Environment enclave in
the new UNIX process. Therefore the target program of the exec() or spawn()
function is a main program, and all COBOL programs in the process start in initial
state with all files closed.

Sample code for calling some of the POSIX routines is provided in the SIGYSAMP
data set.

Table 59. Samples with POSIX function calls

Purpose Sample Functions used

Shows how to use some
of the file and directory
routines

IGYTFL1 v getcwd()

v mkdir()

v rmdir()

v access()

Shows how to use the
iconv routines to convert
data

IGYTCNV v iconv_open()

v iconv()

v iconv_close()

Shows the use of the
exec() routine to run a
new program along with
other process-related
routines

IGYTEXC, IGYTEXC1 v fork()

v getpid()

v getppid()

v execl()

v perror()

v wait()

Shows how to get the
errno value

IGYTERNO, IGYTGETE v perror()

v fopen()

Chapter 23. Running COBOL programs under z/OS UNIX 467

Table 59. Samples with POSIX function calls (continued)

Purpose Sample Functions used

Shows the use of the
interprocess
communication message
routines

IGYTMSQ, IGYTMSQ2 v ftok()

v msgget()

v msgsnd()

v perror()

v fopen()

v fclose()

v msgrcv()

v msgctl()

v perror()

RELATED TASKS

“Running in z/OS UNIX environments” on page 463
“Setting and accessing environment variables” on page 464
“Accessing main program parameters under z/OS UNIX”
Language Environment Programming Guide

RELATED REFERENCES

XL C/C++ Run-Time Library Reference
UNIX System Services Programming: Assembler Callable Services Reference

Accessing main program parameters under z/OS UNIX
When you run a COBOL program from the z/OS UNIX shell command line or
with an exec() or spawn() function, the parameter list consists of three parameters
passed by reference. You can access these parameters with standard COBOL
coding.

argument count
A binary fullword integer that contains the number of elements in each of
the arrays that are passed in the second and third parameters.

argument length list
An array of pointers. The nth entry in the array is the address of a
fullword binary integer that contains the length of the nth entry in the
argument list.

argument list
An array of pointers. The nth entry in the array is the address of the nth
character string passed as an argument in the spawn() or exec() function or
in the command invocation. Each character string is null-terminated.

This array is never empty. The first argument is the character string that
represents the name of the file associated with the process being started.

“Example: accessing main program parameters under z/OS UNIX” on page 469

RELATED TASKS

“Running in z/OS UNIX environments” on page 463
“Setting and accessing environment variables” on page 464
“Calling UNIX/POSIX APIs” on page 466
“Accessing main program parameters under z/OS” on page 505

468 Enterprise COBOL for z/OS, V5.2 Programming Guide

Example: accessing main program parameters under z/OS
UNIX

The following example shows the three parameters that are passed by reference,
and shows the coding that you can use to access them.
Identification division.
Program-id. "EXECED".
**
* This sample program displays arguments received via exec() *
* function of z/OS UNIX *
**
Data division.
Working-storage section.
01 curr-arg-count pic 9(9) binary value zero.
Linkage section.
01 arg-count pic 9(9) binary. (1)
01 arg-length-list. (2)

05 arg-length-addr pointer occurs 1 to 99999
depending on curr-arg-count.

01 arg-list. (3)
05 arg-addr pointer occurs 1 to 99999

depending on curr-arg-count.
01 arg-length pic 9(9) binary.
01 arg pic X(65536).
Procedure division using arg-count arg-length-list arg-list.

* Display number of arguments received *

Display "Number of arguments received: " arg-count

* Display each argument passed to this program *

Perform arg-count times
Add 1 to curr-arg-count

* ***
* * Set address of arg-length to address of current *
* * argument length and display *
* ***

Set Address of arg-length
to arg-length-addr(curr-arg-count)

Display
"Length of Arg " curr-arg-count " = " arg-length

* ***
* * Set address of arg to address of current argument *
* * and display *
* ***

Set Address of arg to arg-addr(curr-arg-count)
Display "Arg " curr-arg-count " = " arg (1:arg-length - 1)

End-Perform
Display "Display of arguments complete."
Goback.

(1) This count contains the number of elements in the arrays that are passed in
the second and third parameters.

(2) This array contains a pointer to the length of the nth entry in the argument
list.

(3) This array contains a pointer to the nth character string passed as an
argument in the spawn() or exec() function or in the command invocation.

Chapter 23. Running COBOL programs under z/OS UNIX 469

|

470 Enterprise COBOL for z/OS, V5.2 Programming Guide

Part 4. Structuring complex applications

© Copyright IBM Corp. 1991, 2018 471

472 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 24. Using subprograms

Many applications consist of several separately compiled programs linked together.
A run unit (the COBOL term that is synonymous with the Language Environment
term enclave) includes one or more object programs and can include object
programs written in other Language Environment member languages.

Language Environment provides interlanguage support that lets your Enterprise
COBOL programs call and be called by programs that meet the requirements of
Language Environment.

Name prefix alert: Do not use program-names that start with prefixes used by IBM
products. If you use programs whose names start with such prefixes, CALL
statements might resolve to IBM library or compiler routines rather than to the
intended program. For a list of prefixes to avoid, see the related task about
identifying a program.

RELATED CONCEPTS

“Main programs, subprograms, and calls”

RELATED TASKS

“Identifying a program” on page 3
“Ending and reentering main programs or subprograms” on page 474
“Transferring control to another program” on page 475
“Making recursive calls” on page 487
“Calling to and from object-oriented programs” on page 487
“Using procedure and function pointers” on page 487
“Making programs reentrant” on page 490
“Handling COBOL limitations with multithreading” on page 522
Language Environment Writing ILC Communication Applications

RELATED REFERENCES

Language Environment Programming Guide (Register conventions)

Main programs, subprograms, and calls
If a COBOL program is the first program in a run unit, that COBOL program is the
main program. Otherwise, it and all other COBOL programs in the run unit are
subprograms. No specific source-code statements or options identify a COBOL
program as a main program or subprogram.

Whether a COBOL program is a main program or subprogram can be significant
for either of two reasons:
v Effect of program termination statements
v State of the program when it is reentered after returning

In the PROCEDURE DIVISION, a program can call another program (generally called a
subprogram), and this called program can itself call other programs. The program
that calls another program is referred to as the calling program, and the program it
calls is referred to as the called program. When the processing of the called
program is completed, the called program can either transfer control back to the
calling program or end the run unit.

© Copyright IBM Corp. 1991, 2018 473

The called COBOL program starts running at the top of the PROCEDURE DIVISION.

RELATED TASKS

“Ending and reentering main programs or subprograms”
“Transferring control to another program” on page 475
“Making recursive calls” on page 487

RELATED REFERENCES

Language Environment Programming Guide

Ending and reentering main programs or subprograms
Whether a program is left in its last-used state or its initial state, and to which
caller it returns, can depend on the termination statements that you use.

You can use any of three termination statements in a program, but they have
different effects as shown in the following table.

Table 60. Effects of termination statements

Termination
statement Main program Subprogram

EXIT PROGRAM No action taken Return to calling program without
ending the run unit. An implicit EXIT
PROGRAM statement is generated if the
called program has no next executable
statement.

In a threaded environment, the thread
is not terminated unless the program is
the first (oldest) one in the thread.

STOP RUN Return to calling program.1 (Might
be the operating system, and
application will end.)

STOP RUN terminates the run unit,
and deletes all dynamically called
programs in the run unit and all
programs link-edited with them. (It
does not delete the main program.)

In a threaded environment, the
entire Language Environment
enclave is terminated, including all
threads running within the
enclave.

Return directly to the program that
called the main program.1 (Might be
the operating system, and application
will end.)

STOP RUN terminates the run unit, and
deletes all dynamically called programs
in the run unit and all programs
link-edited with them. (It does not
delete the main program.)

In a threaded environment, the entire
Language Environment enclave is
terminated, including all threads
running within the enclave.

GOBACK Return to calling program.1 (Might
be the operating system, and
application will end.)

GOBACK terminates the run unit,
and deletes all dynamically called
programs in the run unit and all
programs link-edited with them. (It
does not delete the main program.)

In a threaded environment, the
thread is terminated.2

Return to calling program.

In a threaded environment, if the
program is the first program in a
thread, the thread is terminated.2

474 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 60. Effects of termination statements (continued)

Termination
statement Main program Subprogram

1. If the main program is called by a program written in another language that does not
follow Language Environment linkage conventions, return is to this calling program.

2. If the thread is the initial thread of execution in an enclave, the enclave is terminated.

A subprogram is usually left in its last-used state when it terminates with EXIT
PROGRAM or GOBACK. The next time the subprogram is called in the run unit, its
internal values are as they were left, except that return values for PERFORM
statements are reset to their initial values. (In contrast, a main program is
initialized each time it is called.)

There are some cases in which programs will be in their initial state:
v A subprogram that is dynamically called and then canceled will be in the initial

state the next time it is called.
v A program that has the INITIAL clause in the PROGRAM-ID paragraph will be in

the initial state each time it is called.
v Data items defined in the LOCAL-STORAGE SECTION will be reset to the initial state

specified by their VALUE clauses each time the program is called.

RELATED CONCEPTS

“Comparison of WORKING-STORAGE and LOCAL-STORAGE” on page 14
Language Environment Programming Guide (What happens during termination:

thread termination)

RELATED TASKS

“Calling nested COBOL programs” on page 483
“Making recursive calls” on page 487

Transferring control to another program
You can use several different methods to transfer control to another program: static
calls, dynamic calls, calls to nested programs, and calls to dynamic link libraries
(DLLs).

In addition to making calls between Enterprise COBOL programs, you can also
make static and dynamic calls between Enterprise COBOL and programs compiled
with older compilers in all environments including CICS.

For restrictions about making calls with older levels of programs, see
Interoperability with older levels of IBM COBOL programs in the Enterprise COBOL
Migration Guide.

Calling nested programs lets you create applications using structured
programming techniques. You can use nested programs in place of PERFORM
procedures to prevent unintentional modification of data items. Call nested
programs using either the CALL literal or CALL identifier statement.

Calls to dynamic link libraries (DLLs) are an alternative to COBOL dynamic CALL,
and are well suited to object-oriented COBOL applications, z/OS UNIX programs,
and applications that interoperate with C/C++.

Chapter 24. Using subprograms 475

Under z/OS, linking two program objects together results logically in a single
program with a primary entry point and an alternate entry point, each with its
own name. Each name by which a subprogram is to be dynamically called must be
known to the system. You must specify each such name in binder (linkage-editor)
control statements as either a NAME or an ALIAS of the program object that contains
the subprogram.

RELATED CONCEPTS

“AMODE switching” on page 479
“Performance considerations of static and dynamic calls” on page 481
“Nested programs” on page 484

RELATED TASKS

“Making static calls”
“Making dynamic calls” on page 477
“Making both static and dynamic calls” on page 481
“Calling nested COBOL programs” on page 483

RELATED REFERENCES

Enterprise COBOL Migration Guide
(Interoperability with older levels of IBM COBOL programs)

Making static calls
When you use the CALL literal statement in a program that is compiled using the
NODYNAM and NODLL compiler options, a static call occurs. With these options, all
CALL literal calls are handled as static calls.

With static calls statement, the COBOL program and all called programs are part of
the same program object. When control is transferred, the called program already
resides in storage, and a branch to it takes place. Subsequent executions of the CALL
statement make the called program available in its last-used state unless the called
program has the INITIAL attribute. In that case, the called program and each
program directly or indirectly contained within it are placed into their initial state
each time the called program is called within a run unit.

If you specify alternate entry points, a static CALL statement can use any alternate
entry point to enter the called subprogram.

“Examples: static and dynamic CALL statements” on page 482

RELATED CONCEPTS

“Performance considerations of static and dynamic calls” on page 481

RELATED TASKS

“Making dynamic calls” on page 477
“Making both static and dynamic calls” on page 481
“Calling to and from object-oriented programs” on page 487

RELATED REFERENCES

“DLL” on page 321
“DYNAM” on page 323
CALL statement (Enterprise COBOL Language Reference)

476 Enterprise COBOL for z/OS, V5.2 Programming Guide

Making dynamic calls
When you use a CALL literal statement in a program that is compiled using the
DYNAM and the NODLL compiler options, or when you use the CALL identifier
statement in a program that is compiled using the NODLL compiler option, a
dynamic call occurs.

In these forms of the CALL statement, the called COBOL subprogram is not
link-edited with the main program. Instead, it is link-edited into a separate
program object, and is loaded at run time only when it is required (that is, when
called). The program-name in the PROGRAM-ID paragraph or ENTRY statement must
be identical to the corresponding program object name or program object alias of
the program object that contains the program.

Each subprogram that you call with a dynamic CALL statement can be part of a
different program object that is a member of either the system link library or a
private library that you supply. In either case it must be in an MVS load library; it
cannot reside in the z/OS UNIX file system. When a dynamic CALL statement calls
a subprogram that is not resident in storage, the subprogram is loaded from
secondary storage into the region or partition that contains the main program, and
a branch to the subprogram is performed.

The first dynamic call to a subprogram within a run unit obtains a fresh copy of
the subprogram. Subsequent calls to the same subprogram (by either the original
caller or any other subprogram within the same run unit) result in a branch to the
same copy of the subprogram in its last-used state, provided the subprogram does
not possess the INITIAL attribute. Therefore, the reinitialization of either of the
following items is your responsibility:
v GO TO statements that have been altered
v Data items

If you call the same COBOL program in different run units, a separate copy of
WORKING-STORAGE is allocated for each run unit.

Restrictions: You cannot make dynamic calls to:
v COBOL DLL programs
v COBOL programs compiled with the PGMNAME(LONGMIXED) option, unless the

program-name is less than or equal to eight characters in length and is all
uppercase

v COBOL programs compiled with the PGMNAME(LONGUPPER) option, unless the
program-name is less than or equal to eight characters in length

v More than one entry point in the same COBOL program (unless an intervening
CANCEL statement was executed)

“Examples: static and dynamic CALL statements” on page 482

RELATED CONCEPTS

“When to use a dynamic call with subprograms” on page 478
“Performance considerations of static and dynamic calls” on page 481

RELATED TASKS

“Canceling a subprogram” on page 478
“Making static calls” on page 476
“Making both static and dynamic calls” on page 481

Chapter 24. Using subprograms 477

RELATED REFERENCES

“DLL” on page 321
“DYNAM” on page 323
ENTRY statement (Enterprise COBOL Language Reference)
CALL statement (Enterprise COBOL Language Reference)
Language Environment Programming Reference

Canceling a subprogram
When you issue a CANCEL statement for a subprogram, the storage that is occupied
by the subprogram is freed. A subsequent call to the subprogram functions as
though it were the first call. You can cancel a subprogram from a program other
than the original caller.

If the called subprogram has more than one entry point, ensure that an intervening
CANCEL statement is executed before you specify different entry points in a dynamic
CALL statement to that subprogram.

After a CANCEL statement is processed for a dynamically called contained program,
the program will be in its first-used state. However, the program is not loaded
with the initial call, and storage is not freed after the program is canceled.

“Examples: static and dynamic CALL statements” on page 482

RELATED CONCEPTS

“Performance considerations of static and dynamic calls” on page 481

When to use a dynamic call with subprograms
Your decision to use dynamic calls with subprograms depends on factors such as
location of the program object, frequency of calls to the subprograms, size of the
subprograms, ease of maintenance, the need to call subprograms in their unused
state, the need for AMODE switching, and when the program-names are known.

The program object that you want to dynamically call must be in an MVS load
library rather than in the z/OS UNIX file system.

If subprograms are called in only a few conditions, you can use dynamic calls to
bring in the subprograms only when needed.

If the subprograms are very large or there are many of them, using static calls
might require too much main storage. Less total storage might be required to call
and cancel one, then call and cancel another, than to statically call both.

If you are concerned about ease of maintenance, dynamic calls can help.
Applications do not have to be link-edited again when dynamically called
subprograms are changed.

When you cannot use the INITIAL attribute to ensure that a subprogram is placed
in its unused state each time that it is called, you can set the unused state by using
a combination of dynamic CALL and CANCEL statements. When you cancel a
subprogram that was first called by a COBOL program, the next call causes the
subprogram to be reinitialized to its unused state.

Using the CANCEL statement to explicitly cancel a subprogram that was dynamically
loaded and branched to by a non-COBOL program does not result in any action
being taken to release the subprogram's storage or to delete the subprogram.

478 Enterprise COBOL for z/OS, V5.2 Programming Guide

Suppose you have an AMODE 24 program in the same run unit with Enterprise
COBOL programs that you want to run in 31-bit addressing mode. COBOL
dynamic call processing includes AMODE switching for AMODE 24 programs that call
AMODE 31 programs, and vice versa. To have this implicit AMODE switching done, the
Language Environment runtime options ALL31(OFF) and STACK(,,BELOW) must be
in effect.

When dynamic call is performed, control is passed from the caller to a Language
Environment library routine. After the switching is performed, control passes to
the called program; the save area for the library routine will be positioned between
the save area for the caller program and the save area for the called program.

If you do not know the program-name to be called until run time, use the format
CALL identifier, where identifier is a data item that will contain the name of the
called program at run time. For example, you could use CALL identifier when the
program to be called varies depending on conditional processing in your program.
CALL identifier is always dynamic, even if you use the NODYNAM compiler option.

“Examples: static and dynamic CALL statements” on page 482

RELATED CONCEPTS

“AMODE switching”
“Performance considerations of static and dynamic calls” on page 481

RELATED TASKS

“Making dynamic calls” on page 477

RELATED REFERENCES

“DYNAM” on page 323
CALL statement (Enterprise COBOL Language Reference)
Language Environment Programming Reference

AMODE switching
When you have an application that has COBOL subprograms, some of the COBOL
subprograms can be AMODE 31 and some can be AMODE 24. To have this mixed AMODE
support, the calls must be dynamic and the Language Environment runtime
options ALL31(OFF) and STACK(,,BELOW) must be in effect.

If your application consists of only COBOL programs, and you are using dynamic
calls, each COBOL subprogram will always be entered in the proper AMODE. For
example, if you are using a dynamic call from an AMODE 31 COBOL program to an
AMODE 24 COBOL program, the AMODE is automatically switched.

However, if you are using procedure pointers, function pointers, or other
languages that call COBOL subprograms, you must ensure that when a COBOL
program is called more than once in an enclave, it is entered in the same AMODE
each time that it is called. The AMODE is not automatically switched in this case.

The following scenario shows that AMODE problems can arise when procedure
pointers are used to call COBOL subprograms. This scenario is not supported
because the COBOL program COBOLY is not entered in the same AMODE each time
that it is called.

Chapter 24. Using subprograms 479

1. COBOLX is AMODE 31. It uses the SET statement to set a procedure pointer to
COBOLZ. COBOLZ is a reentrant program object and is AMODE 31 and RMODE
24. COBOLX calls COBOLZ using the procedure pointer. COBOLZ is entered in
AMODE 31.

2. COBOLZ returns to COBOLX.
3. COBOLX dynamically calls COBOLY, passing the procedure pointer for

COBOLZ. COBOLY is a reentrant program object, and is AMODE 24 and RMODE
24. COBOLY is entered in AMODE 24.

4. COBOLY calls COBOLZ using the procedure pointer. This call causes COBOLZ
to be entered in AMODE 24, which is not the same AMODE in which COBOLZ was
entered when it was called the first time.

The following scenario uses a mix of COBOL and assembler language. This
scenario is not supported because the COBOL program COBOLB is not entered in
the same AMODE each time that it is called.

1. COBOLA is AMODE 31. COBOLA dynamically calls COBOLB. COBOLB is a
reentrant program object and is AMODE 31 and RMODE 24. COBOLB is entered in
AMODE 31.

2. COBOLB returns to COBOLA.

480 Enterprise COBOL for z/OS, V5.2 Programming Guide

3. COBOLA dynamically calls ASSEM10, which is in assembler language.
ASSEM10 is a reentrant program object, and is AMODE 24 and RMODE 24.
ASSEM10 is entered in AMODE 24.

4. ASSEM10 loads COBOLB. ASSEM10 does a BALR instruction to COBOLB.
COBOLB is entered in AMODE 24, which is not the same AMODE in which
COBOLB was entered when it was called the first time.

RELATED CONCEPTS

“Storage and its addressability” on page 39
“When to use a dynamic call with subprograms” on page 478

RELATED TASKS

“Making dynamic calls” on page 477

RELATED REFERENCES

Language Environment Programming Reference (ALL31)

Performance considerations of static and dynamic calls
Because a statically called program is link-edited into the same program object as
the calling program, a static call is faster than a dynamic call. A static call is the
preferred method if your application does not require the services of the dynamic
call.

Statically called programs cannot be deleted using CANCEL, so static calls might take
more main storage. If storage is a concern, think about using dynamic calls.
Storage usage of calls depends on whether:
v The subprogram is called only a few times. Regardless of whether it is called, a

statically called program is loaded into storage; a dynamically called program is
loaded only when it is called.

v You subsequently delete the dynamically called subprogram with a CANCEL
statement.
You cannot delete a statically called program, but you can delete a dynamically
called program. Using a dynamic call and then a CANCEL statement to delete the
dynamically called program after it is no longer needed in the application (and
not after each call to it) might require less storage than using a static call.

RELATED CONCEPTS

“When to use a dynamic call with subprograms” on page 478

RELATED TASKS

“Making static calls” on page 476
“Making dynamic calls” on page 477

Making both static and dynamic calls
You can use both static and dynamic CALL statements in the same program if you
compile the program with the NODYNAM compiler option.

In this case, with the CALL literal statement, the called subprogram will be
link-edited with the main program into one program object. The CALL identifier
statement results in the dynamic invocation of a separate program object.

When a dynamic CALL statement and a static CALL statement to the same
subprogram are issued within one program, a second copy of the subprogram is

Chapter 24. Using subprograms 481

loaded into storage. Because this arrangement does not guarantee that the
subprogram will be left in its last-used state, results can be unpredictable.

RELATED REFERENCES

“DYNAM” on page 323

Examples: static and dynamic CALL statements
This example shows how you can code static and dynamic calls.

The example has three parts:
v Code that uses a static call to call a subprogram
v Code that uses a dynamic call to call the same subprogram
v The subprogram that is called by the two types of calls

The following example shows how you would code static calls:
PROCESS NODYNAM NODLL
IDENTIFICATION DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RECORD-2 PIC X. (6)
01 RECORD-1. (2)

05 PAY PICTURE S9(5)V99.
05 HOURLY-RATE PICTURE S9V99.
05 HOURS PICTURE S99V9.

. . .
PROCEDURE DIVISION.

CALL "SUBPROG" USING RECORD-1. (1)
CALL "PAYMASTR" USING RECORD-1 RECORD-2. (5)
STOP RUN.

The following example shows how you would code dynamic calls:
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PGM-NAME PICTURE X(8).
01 RECORD-2 PIC x. (6)
01 RECORD-1. (2)

05 PAY PICTURE S9(5)V99.
05 HOURLY-RATE PICTURE S9V99.
05 HOURS PICTURE S99V9.

. . .
PROCEDURE DIVISION.
. . .

MOVE "SUBPROG" TO PGM-NAME.
CALL PGM-NAME USING RECORD-1. (1)
CANCEL PGM-NAME.
MOVE "PAYMASTR" TO PGM-NAME. (4)
CALL PGM-NAME USING RECORD-1 RECORD-2. (5)
STOP RUN.

The following example shows a called subprogram that is called by each of the
two preceding calling programs:
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROG.
DATA DIVISION.
LINKAGE SECTION.
01 PAYREC. (2)

10 PAY PICTURE S9(5)V99.
10 HOURLY-RATE PICTURE S9V99.
10 HOURS PICTURE S99V9.

77 PAY-CODE PICTURE 9. (6)
PROCEDURE DIVISION USING PAYREC. (1)

482 Enterprise COBOL for z/OS, V5.2 Programming Guide

. . .
EXIT PROGRAM. (3)
ENTRY "PAYMASTR" USING PAYREC PAY-CODE. (5)
. . .
GOBACK. (7)

(1) Processing begins in the calling program. When the first CALL statement is
executed, control is transferred to the first statement of the PROCEDURE
DIVISION in SUBPROG, which is the called program.

In each of the CALL statements, the operand of the first USING option is
identified as RECORD-1.

(2) When SUBPROG receives control, the values within RECORD-1 are made
available to SUBPROG; however, in SUBPROG they are referred to as PAYREC.

The PICTURE character-strings within PAYREC and PAY-CODE contain the same
number of characters as RECORD-1 and RECORD-2, although the descriptions
are not identical.

(3) When processing within SUBPROG reaches the EXIT PROGRAM statement,
control is returned to the calling program. Processing continues in that
program until the second CALL statement is executed.

(4) In the example of a dynamically called program, because the second CALL
statement refers to another entry point within SUBPROG, a CANCEL statement
is executed before the second CALL statement.

(5) With the second CALL statement in the calling program, control is again
transferred to SUBPROG, but this time processing begins at the statement
following the ENTRY statement in SUBPROG.

(6) The values within RECORD-1 are again made available to PAYREC. In
addition, the value in RECORD-2 is now made available to SUBPROG through
the corresponding USING operand, PAY-CODE.

When control is transferred the second time from the statically linked
program, SUBPROG is made available in its last-used state (that is, if any
values in SUBPROG storage were changed during the first execution, those
changed values are still in effect). When control is transferred from the
dynamically linked program, however, SUBPROG is made available in its
initial state, because of the CANCEL statement that has been executed.

(7) When processing reaches the GOBACK statement, control is returned to the
calling program at the statement immediately after the second CALL
statement.

In any given execution of the called program and either of the two calling
programs, if the values within RECORD-1 are changed between the time of the first
CALL and the second, the values passed at the time of the second CALL statement
will be the changed, not the original, values. If you want to use the original values,
you must save them.

Calling nested COBOL programs
By calling nested programs, you can create applications that use structured
programming techniques. You can also call nested programs instead of PERFORM
procedures to prevent unintentional modification of data items.

Use either CALL literal or CALL identifier statements to make calls to nested
programs.

Chapter 24. Using subprograms 483

You can call a contained program only from its directly containing program unless
you identify the contained program as COMMON in its PROGRAM-ID paragraph. In that
case, you can call the common program from any program that is contained (directly
or indirectly) in the same program as the common program. Only contained
programs can be identified as COMMON. Recursive calls are not allowed.

Follow these guidelines when using nested program structures:
v Code an IDENTIFICATION DIVISION in each program. All other divisions are

optional.
v Optionally make the name of each contained program unique. Although the

names of contained programs are not required to be unique (as described in the
related reference about scope of names), making the names unique could help
make your application more maintainable. You can use any valid user-defined
word or an alphanumeric literal as the name of a contained program.

v In the outermost program, code any CONFIGURATION SECTION entries that might
be required. Contained programs cannot have a CONFIGURATION SECTION.

v Include each contained program in the containing program immediately before
the END PROGRAM marker of the containing program.

v Use an END PROGRAM marker to terminate contained and containing programs.

You cannot use the THREAD option when compiling programs that contain nested
programs.

RELATED CONCEPTS

“Nested programs”

RELATED REFERENCES

“Scope of names” on page 486

Nested programs
A COBOL program can nest, or contain, other COBOL programs. The nested
programs can themselves contain other programs. A nested program can be
directly or indirectly contained in a program.

There are four main advantages to nesting called programs:
v Nested programs provide a method for creating modular functions and

maintaining structured programming techniques. They can be used analogously
to perform procedures (using the PERFORM statement), but with more structured
control flow and with the ability to protect local data items.

v Nested programs let you debug a program before including it in an application.
v Nested programs enable you to compile an application with a single invocation

of the compiler.
v Calls to nested programs have the best performance of all the forms of COBOL

CALL statements.

The following example describes a nested structure that has directly and indirectly
contained programs:

484 Enterprise COBOL for z/OS, V5.2 Programming Guide

“Example: structure of nested programs”

RELATED TASKS

“Calling nested COBOL programs” on page 483

RELATED REFERENCES

“Scope of names” on page 486

Example: structure of nested programs
The following example shows a nested structure with some contained programs
that are identified as COMMON.

Chapter 24. Using subprograms 485

The following table describes the calling hierarchy for the structure that is shown
in the example above. Programs A12, A2, and A3 are identified as COMMON, and the
calls associated with them differ.

This program Can call these programs
And can be called by these
programs

A A1, A2, A3 None

A1 A11, A12, A2, A3 A

A11 A111, A12, A2, A3 A1

A111 A12, A2, A3 A11

A12 A2, A3 A1, A11, A111

A2 A3 A, A1, A11, A111, A12, A3

A3 A2 A, A1, A11, A111, A12, A2

In this example, note that:
v A2 cannot call A1 because A1 is not common and is not contained in A2.
v A1 can call A2 because A2 is common.

Scope of names
Names in nested structures are divided into two classes: local and global. The class
determines whether a name is known beyond the scope of the program that
declares it. A specific search sequence locates the declaration of a name after it is
referenced in a program.

Local names:
Names (except the program-name) are local unless declared to be otherwise. Local
names are visible or accessible only within the program in which they are declared.
They are not visible or accessible to contained and containing programs.

Global names:
A name that is global (indicated by using the GLOBAL clause) is visible and
accessible to the program in which it is declared and to all the programs that are
directly and indirectly contained in that program. Therefore, the contained
programs can share common data and files from the containing program simply by
referencing the names of the items.

Any item that is subordinate to a global item (including condition-names and
indexes) is automatically global.

You can declare the same name with the GLOBAL clause more than one time,
provided that each declaration occurs in a different program. Be aware that you
can mask, or hide, a name in a nested structure by having the same name occur in
different programs in the same containing structure. However, such masking could
cause problems during a search for a name declaration.

Searches for name declarations:
When a name is referenced in a program, a search is made to locate the declaration
for that name. The search begins in the program that contains the reference and
continues outward to the containing programs until a match is found. The search
follows this process:
1. Declarations in the program are searched.

486 Enterprise COBOL for z/OS, V5.2 Programming Guide

2. If no match is found, only global declarations are searched in successive outer
containing programs.

3. The search ends when the first matching name is found. If no match is found,
an error exists.

The search is for a global name, not for a particular type of object associated with
the name such as a data item or file connector. The search stops when any match is
found, regardless of the type of object. If the object declared is of a different type
than that expected, an error condition exists.

Making recursive calls
A called program can directly or indirectly execute its caller. For example, program
X calls program Y, program Y calls program Z, and program Z then calls program
X. This type of call is recursive.

To make a recursive call, you must code the RECURSIVE clause in the PROGRAM-ID
paragraph of the recursively called program. If you try to recursively call a
COBOL program that does not have the RECURSIVE clause in the PROGRAM-ID
paragraph, a condition is signaled. If the condition remains unhandled, the run
unit will end.

RELATED TASKS

“Identifying a program as recursive” on page 4

RELATED REFERENCES

PROGRAM-ID paragraph (Enterprise COBOL Language Reference)

Calling to and from object-oriented programs
When you create applications that contain object-oriented (OO) programs, the OO
COBOL programs are DLL programs and can be in one or more dynamic link
libraries (DLLs). Each class definition must be in a separate DLL, however.

Calls to or from COBOL DLL programs must either use DLL linkage or be static
calls. COBOL dynamic calls to or from COBOL DLL programs are not supported.

If you must call a COBOL DLL program from a COBOL non-DLL program, other
means to ensure that the DLL linkage mechanism is followed are available.

Using procedure and function pointers
You can set procedure-pointer and function-pointer data items only by using
format 6 of the SET statement.

Procedure pointers are data items defined with the USAGE IS PROCEDURE-POINTER
clause. Function pointers are data items defined with the USAGE IS
FUNCTION-POINTER clause. In this information, “pointer” refers to either a
procedure-pointer data item or a function-pointer data item. You can set either of
these data items to contain entry addresses of, or pointers to, these entry points:
v Another COBOL program that is not nested. For example, to have a user-written

error-handling routine take control when an exception condition occurs, you
must first pass the entry address of the routine to CEEHDLR, a
condition-management Language Environment callable service, so that the
routine is registered.

Chapter 24. Using subprograms 487

v A program written in another language. For example, to receive the entry
address of a C function, call the function with the CALL RETURNING statement. It
will return a pointer that you can either use as a function pointer or convert to a
procedure pointer by using a form of the SET statement.

v An alternate entry point in another COBOL program (as defined in an ENTRY
statement).

The SET statement sets the pointer to refer either to an entry point in the same
program object as your program, to a separate program object, or to an entry point
that is exported from a DLL, depending on the DYNAM|NODYNAM and DLL|NODLL
compiler options. Therefore, consider these factors when using these pointer data
items:
v If you compile a program with the NODYNAM and NODLL options and set a pointer

item to a literal value (to an actual name of an entry point), the value must refer
to an entry point in the same program object. Otherwise the reference cannot be
resolved.

v If you compile a program with the NODLL option and either set a pointer item to
an identifier that will contain the name of the entry point at run time or set the
pointer item to a literal and compile with the DYNAM option, then the pointer
item, whether a literal or variable, must point to an entry point in a separate
program objectlink. The entry point can be either the primary entry point or an
alternate entry point named in an ALIAS binder (linkage-editor) statement.

v If you compile with the NODYNAM and DLL options and set a pointer item to a
literal value (the actual name of an entry point), the value must refer to an entry
point in the same program object or to an entry-point name that is exported
from a DLL module. In the latter case you must include the DLL side file for the
target DLL module in the link-edit of your program object.

v If you compile with the NODYNAM and DLL options and set a pointer item to an
identifier (a data item that contains the entry point name at run time), the
identifier value must refer to the entry-point name that is exported from a DLL
module. In this case the DLL module name must match the name of the
exported entry point.

If you set a pointer item to an entry address in a dynamically called program
object, and your program subsequently cancels that dynamically called module,
then that pointer item becomes undefined. Reference to it thereafter is not reliable.

Procedure pointer and function pointer calls are supported for AMODE 24
applications. However, the addressing mode cannot be switched for these calls, so
the called and calling programs must have the same addressing mode at execution
time.

COBOL entry points with the AMODE ANY attribute can be entered in either AMODE 31
or AMODE 24. However, the AMODE value that is in effect when the program is
entered for the first time must also be in effect for all subsequent reentries of the
program during the current Language Environment enclave.

RELATED TASKS

“Deciding which type of pointer to use” on page 489
“Calling alternate entry points” on page 489
“Using procedure or function pointers with DLLs” on page 512

RELATED REFERENCES

“DLL” on page 321
“DYNAM” on page 323

488 Enterprise COBOL for z/OS, V5.2 Programming Guide

CANCEL statement (Enterprise COBOL Language Reference)
Format 6: SET for procedure-pointer and function-pointer data items

(Enterprise COBOL Language Reference)
ENTRY statement (Enterprise COBOL Language Reference)
MVS Program Management: User's Guide and Reference

Deciding which type of pointer to use
Use procedure pointers to call other COBOL programs and to call Language
Environment callable services. Use function pointers to communicate with C/C++
programs or with services provided by the Java Native Interface.

Procedure pointers are more efficient than function pointers for COBOL-to-COBOL
calls, and are required for calls to Language Environment condition-handling
services.

Many callable services written in C return function pointers. You can call such a C
function pointer from your COBOL program by using COBOL function pointers as
shown below.
IDENTIFICATION DIVISION.
PROGRAM-ID. DEMO.
ENVIRONMENT DIVISION.
DATA DIVISION.
*
WORKING-STORAGE SECTION.
01 FP USAGE FUNCTION-POINTER.
*
PROCEDURE DIVISION.

CALL "c-function" RETURNING FP.
CALL FP.

RELATED TASKS

“Using procedure or function pointers with DLLs” on page 512
“Accessing JNI services” on page 633

Calling alternate entry points
Static calls to alternate entry points work without restriction.

Dynamic calls to alternate entry points require the following elements:
v Either explicitly specified NAME or ALIAS binder (linkage-editor) control

statements, or use of the NAME compiler option which generates them
automatically.

v An intervening CANCEL for any dynamic call to the same module at a different
entry point. CANCEL causes the program to be invoked in initial state when it is
called at a new entry point.

You can specify another entry point at which a program will begin running by
using the ENTRY label in the called program. However, this method is not
recommended in a structured program.

“Examples: static and dynamic CALL statements” on page 482

RELATED REFERENCES

“NAME” on page 339
CANCEL statement (Enterprise COBOL Language Reference)
ENTRY statement (Enterprise COBOL Language Reference)
MVS Program Management: User's Guide and Reference

Chapter 24. Using subprograms 489

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

Making programs reentrant
If more than one user will run an application program at the same time (for
example, users in different address spaces accessing a program that resides in the
link pack area), you must make the program reentrant by compiling with the RENT
option.

You do not need to worry about multiple copies of variables. The compiler creates
the necessary reentrancy controls in the object module.

The following Enterprise COBOL programs must be reentrant:
v Programs to be used with CICS
v Programs to be preloaded with IMS
v Programs to be used as DB2 stored procedures
v Programs to be run in the z/OS UNIX environment
v Programs that are enabled for DLL support
v Programs that use object-oriented syntax

For reentrant programs, use the DATA compiler option and the HEAP and ALL31
runtime options to control whether dynamic data areas, such as WORKING-STORAGE,
are obtained from storage below or above the 16 MB line.

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

“Compiling programs to create DLLs” on page 508
Chapter 16, “Compiling, linking, and running OO applications,” on page 291

RELATED REFERENCES

“RENT” on page 352
“DATA” on page 318
Language Environment Programming Reference (ALL31, HEAP)

490 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 25. Sharing data

If a run unit consists of several separately compiled programs that call each other,
the programs must be able to communicate with each other. They also usually
need access to common data.

This information describes how you can write programs that share data with other
programs. In this information, a subprogram is any program that is called by
another program.

RELATED TASKS

“Using data from another program” on page 16
“Sharing data with Java” on page 637
“Passing data”
“Coding the LINKAGE SECTION” on page 495
“Coding the PROCEDURE DIVISION for passing arguments” on page 496
“Passing return-code information” on page 500
“Sharing data by using the EXTERNAL clause” on page 501
“Sharing files between programs (external files)” on page 501
“Accessing main program parameters under z/OS” on page 505

Passing data
You can choose among three ways of passing data between programs: BY
REFERENCE, BY CONTENT, or BY VALUE.

BY REFERENCE
The subprogram refers to and processes the data items in the storage of the
calling program rather than working on a copy of the data. BY REFERENCE is
the assumed passing mechanism for a parameter if none of the three ways
is specified or implied for the parameter.

BY CONTENT
The calling program passes only the contents of the literal or identifier. The
called program cannot change the value of the literal or identifier in the
calling program, even if it modifies the data item in which it received the
literal or identifier.

BY VALUE
The calling program or method passes the value of the literal or identifier,
not a reference to the sending data item. The called program or invoked
method can change the parameter. However, because the subprogram or
method has access only to a temporary copy of the sending data item, any
change does not affect the argument in the calling program.

The following figure shows the differences in values passed BY REFERENCE, BY
CONTENT, and BY VALUE:

© Copyright IBM Corp. 1991, 2018 491

Determine which of these data-passing methods to use based on what you want
your program to do with the data.

Table 61. Methods for passing data in the CALL statement

Code Purpose Comments

CALL . . . BY REFERENCE
identifier

To have the definition of the argument
of the CALL statement in the calling
program and the definition of the
parameter in the called program share
the same memory

Any changes made by the subprogram
to the parameter affect the argument in
the calling program.

CALL . . . BY REFERENCE
ADDRESS OF identifier

To pass the address of identifier to a
called program, where identifier is an
item in the LINKAGE SECTION

Any changes made by the subprogram
to the address affect the address in the
calling program.

CALL . . . BY REFERENCE
file-name

To pass a data control block (DCB) to
assembler programs

The file-name must reference a QSAM
sequential file.1

CALL . . . BY CONTENT ADDRESS
OF identifier

To pass a copy of the address of
identifier to a called program

Any changes to the copy of the address
will not affect the address of identifier,
but changes to identifier using the copy
of the address will cause changes to
identifier.

CALL . . . BY CONTENT identifier To pass a copy of the identifier to the
subprogram

Changes to the parameter by the
subprogram will not affect the caller's
identifier.

CALL . . . BY CONTENT literal To pass a copy of a literal value to a
called program

CALL . . . BY CONTENT LENGTH
OF identifier

To pass a copy of the length of a data
item

The calling program passes the length
of the identifier from its LENGTH special
register.

A combination of BY REFERENCE
and BY CONTENT such as:

CALL ’ERRPROC’
USING BY REFERENCE A
BY CONTENT LENGTH OF A.

To pass both a data item and a copy of
its length to a subprogram

CALL . . . BY VALUE identifier To pass data to a program, such as a
C/C++ program, that uses BY VALUE
parameter linkage conventions

A copy of the identifier is passed
directly in the parameter list.

492 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 61. Methods for passing data in the CALL statement (continued)

Code Purpose Comments

CALL . . . BY VALUE literal To pass data to a program, such as a
C/C++ program, that uses BY VALUE
parameter linkage conventions

A copy of the literal is passed directly
in the parameter list.

CALL . . . BY VALUE ADDRESS OF
identifier

To pass the address of identifier to a
called program. This is the
recommended way to pass data to a
C/C++ program that expects a pointer
to the data.

Any changes to the copy of the address
will not affect the address of identifier,
but changes to identifier using the copy
of the address will cause changes to
identifier.

CALL . . . RETURNING To call a C/C++ function with a
function return value

1. File-names as CALL operands are allowed as an IBM extension to COBOL. Any use of the extension generally
depends on the specific internal implementation of the compiler. Control block field settings might change in
future releases. Any changes made to the control block are the user's responsibility and are not supported by
IBM.

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

“Describing arguments in the calling program”
“Describing parameters in the called program” on page 494
“Testing for OMITTED arguments” on page 495
“Specifying CALL . . . RETURNING” on page 501
“Sharing data by using the EXTERNAL clause” on page 501
“Sharing files between programs (external files)” on page 501
“Sharing data with Java” on page 637

RELATED REFERENCES

CALL statement (Enterprise COBOL Language Reference)
The USING phrase (Enterprise COBOL Language Reference)
INVOKE statement (Enterprise COBOL Language Reference)

Describing arguments in the calling program
In the calling program, describe arguments in the DATA DIVISION in the same
manner as other data items in the DATA DIVISION.

Storage for arguments is allocated only in the outermost program. For example,
program A calls program B, which calls program C. Data items are allocated in
program A. They are described in the LINKAGE SECTION of programs B and C,
making the one set of data available to all three programs.

If you reference data in a file, the file must be open when the data is referenced.

Code the USING phrase of the CALL statement to pass the arguments. If you pass a
data item BY VALUE, it must be an elementary item.

To pass CALL arguments from AMODE 31 programs to AMODE 24 programs, you must
ensure that the arguments are in storage below the 16 MB line to be addressed by
the AMODE 24 subprogram.
v For reentrant AMODE 31 programs, compile the program with the DATA(24)

option, or specify the Language Environment runtime option HEAP(,,BELOW) if

Chapter 25. Sharing data 493

WORKING-STORAGE is allocated from HEAP storage. For more information
about when WORKING-STORAGE is allocated from HEAP storage, see “Storage
and its addressability” on page 39.

v For nonreentrant programs that are compiled with the NORENT option, compile
with the RMODE(24) or RMODE(AUTO) option. Consequently, the following items are
allocated below the 16 MB line, and can be passed as arguments to AMODE 24
programs:
– WORKING-STORAGE data items without the EXTERNAL clause
– FD record areas
– QSAM buffers

v For mixed AMODE applications, the Language Environment runtime options
ALL31(OFF) and STACK(,,BELOW) are required. Consequently, the LOCAL-STORAGE
SECTION data items and data items with the EXTERNAL attributes will be allocated
below the 16 MB line, and can be passed as arguments to AMODE 24 programs.

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

“Coding the LINKAGE SECTION” on page 495
“Coding the PROCEDURE DIVISION for passing arguments” on page 496

RELATED REFERENCES

The USING phrase (Enterprise COBOL Language Reference)

Describing parameters in the called program
You must know what data is being passed from the calling program and describe
it in the LINKAGE SECTION of each program that is called directly or indirectly by
the calling program.

Code the USING phrase after the PROCEDURE DIVISION header to name the
parameters that receive the data that is passed from the calling program.

When arguments are passed to the subprogram BY REFERENCE, it is invalid for the
subprogram to specify any relationship between its parameters and any fields
other than those that are passed and defined in the main program. The
subprogram must not:
v Define a parameter to be larger in total number of bytes than the corresponding

argument.
v Use subscript references to refer to elements beyond the limits of tables that are

passed as arguments by the calling program.
v Use reference modification to access data beyond the length of defined

parameters.
v Manipulate the address of a parameter in order to access other data items that

are defined in the calling program.

If any of the rules above are violated, unexpected results might occur.

RELATED TASKS

“Coding the LINKAGE SECTION” on page 495

RELATED REFERENCES

The USING phrase (Enterprise COBOL Language Reference)

494 Enterprise COBOL for z/OS, V5.2 Programming Guide

Testing for OMITTED arguments
You can specify that one or more BY REFERENCE arguments are not to be passed to a
called program by coding the OMITTED keyword in place of those arguments in the
CALL statement.

For example, to omit the second argument when calling program sub1, code this
statement:
Call ’sub1’ Using PARM1, OMITTED, PARM3

The arguments in the USING phrase of the CALL statement must match the
parameters of the called program in number and position.

In a called program, you can test whether an argument was passed as OMITTED by
comparing the address of the corresponding parameter to NULL. For example:
Program-ID. sub1.
. . .
Procedure Division Using RPARM1, RPARM2, RPARM3.

If Address Of RPARM2 = Null Then
Display ’No 2nd argument was passed this time’

Else
Perform Process-Parm-2

End-If

RELATED REFERENCES

CALL statement (Enterprise COBOL Language Reference)
The USING phrase (Enterprise COBOL Language Reference)

Coding the LINKAGE SECTION
Code the same number of data-names in the identifier list of the called program as
the number of arguments in the calling program. Synchronize by position, because
the compiler passes the first argument from the calling program to the first
identifier of the called program, and so on.

You will introduce errors if the number of data-names in the identifier list of a
called program is greater than the number of arguments passed from the calling
program. The compiler does not try to match arguments and parameters.

The following figure shows a data item being passed from one program to another
(implicitly BY REFERENCE):

Chapter 25. Sharing data 495

In the calling program, the code for parts (PARTCODE) and the part number (PARTNO)
are distinct data items. In the called program, by contrast, the code for parts and
the part number are combined into one data item (PART-ID). In the called program,
a reference to PART-ID is the only valid reference to these items.

RELATED TASKS

“Accessing main program parameters under z/OS” on page 505

Coding the PROCEDURE DIVISION for passing arguments
If you pass an argument BY VALUE, code the USING BY VALUE clause in the
PROCEDURE DIVISION header of the subprogram. If you pass an argument BY
REFERENCE or BY CONTENT, you do not need to indicate in the header how the
argument was passed.
PROCEDURE DIVISION USING BY VALUE. . .
PROCEDURE DIVISION USING. . .
PROCEDURE DIVISION USING BY REFERENCE. . .

The first header above indicates that the data items are passed BY VALUE; the
second or third headers indicate that the items are passed BY REFERENCE or BY
CONTENT.

RELATED REFERENCES

The procedure division header (Enterprise COBOL Language Reference)
The USING phrase (Enterprise COBOL Language Reference)
CALL statement (Enterprise COBOL Language Reference)

Grouping data to be passed
Consider grouping all the data items that you need to pass between programs and
putting them under one level-01 item. If you do so, you can pass a single level-01
record.

Note that if you pass a data item BY VALUE, it must be an elementary item.

To lessen the possibility of mismatched records, put the level-01 record into a copy
library and copy it into both programs. That is, copy it in the WORKING-STORAGE
SECTION of the calling program and in the LINKAGE SECTION of the called program.

RELATED TASKS

“Coding the LINKAGE SECTION” on page 495

RELATED REFERENCES

CALL statement (Enterprise COBOL Language Reference)

Handling null-terminated strings
COBOL supports null-terminated strings when you use string-handling verbs
together with null-terminated literals and the hexadecimal literal X’00’.

You can manipulate null-terminated strings (passed from a C program, for
example) by using string-handling mechanisms such as those in the following
code:
01 L pic X(20) value z’ab’.
01 M pic X(20) value z’cd’.
01 N pic X(20).
01 N-Length pic 99 value zero.
01 Y pic X(13) value ’Hello, World!’.

496 Enterprise COBOL for z/OS, V5.2 Programming Guide

To determine the length of a null-terminated string, and display the value of the
string and its length, code:
Inspect N tallying N-length for characters before initial X’00’
Display ’N: ’ N(1:N-length) ’ Length: ’ N-length

To move a null-terminated string to an alphanumeric string, but delete the null,
code:
Unstring N delimited by X’00’ into X

To create a null-terminated string, code:
String Y delimited by size

X’00’ delimited by size
into N.

To concatenate two null-terminated strings, code:
String L delimited by x’00’

M delimited by x’00’
X’00’ delimited by size
into N.

RELATED TASKS

“Manipulating null-terminated strings” on page 110

RELATED REFERENCES

Null-terminated alphanumeric literals (Enterprise COBOL Language Reference)

Using pointers to process a chained list
When you need to pass and receive addresses of record areas, you can use pointer
data items, which are either data items that are defined with the USAGE IS POINTER
clause or are ADDRESS OF special registers.

A typical application for using pointer data items is in processing a chained list, a
series of records in which each record points to the next.

When you pass addresses between programs in a chained list, you can use NULL to
assign the value of an address that is not valid (nonnumeric 0) to a pointer item in
either of two ways:
v Use a VALUE IS NULL clause in its data definition.
v Use NULL as the sending field in a SET statement.

In the case of a chained list in which the pointer data item in the last record
contains a null value, you can use this code to check for the end of the list:
IF PTR-NEXT-REC = NULL
. . .

(logic for end of chain)

If the program has not reached the end of the list, the program can process the
record and move on to the next record.

The data passed from a calling program might contain header information that you
want to ignore. Because pointer data items are not numeric, you cannot directly
perform arithmetic on them. However, to bypass header information, you can use
the SET statement to increment the passed address.

“Example: using pointers to process a chained list” on page 498

Chapter 25. Sharing data 497

RELATED TASKS

“Coding the LINKAGE SECTION” on page 495
“Coding the PROCEDURE DIVISION for passing arguments” on page 496

RELATED REFERENCES

SET statement (Enterprise COBOL Language Reference)

Example: using pointers to process a chained list
The following example shows how you might process a linked list, that is, a
chained list of data items.

For this example, picture a chained list of data that consists of individual salary
records. The following figure shows one way to visualize how the records are
linked in storage. The first item in each record except the last points to the next
record. The first item in the last record contains a null value (instead of a valid
address) to indicate that it is the last record.

The high-level pseudocode for an application that processes these records might
be:
Obtain address of first record in chained list from routine
Check for end of the list
Do until end of the list

Process record
Traverse to the next record

End

The following code contains an outline of the calling program, LISTS, used in this
example of processing a chained list.
IDENTIFICATION DIVISION.
PROGRAM-ID. LISTS.
ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.
77 PTR-FIRST POINTER VALUE IS NULL. (1)
77 DEPT-TOTAL PIC 9(4) VALUE IS 0.

LINKAGE SECTION.
01 SALARY-REC.

02 PTR-NEXT-REC POINTER. (2)
02 NAME PIC X(20).
02 DEPT PIC 9(4).
02 SALARY PIC 9(6).

01 DEPT-X PIC 9(4).

PROCEDURE DIVISION USING DEPT-X.

* FOR EVERYONE IN THE DEPARTMENT RECEIVED AS DEPT-X,
* GO THROUGH ALL THE RECORDS IN THE CHAINED LIST BASED ON THE
* ADDRESS OBTAINED FROM THE PROGRAM CHAIN-ANCH
* AND ACCUMULATE THE SALARIES.
* IN EACH RECORD, PTR-NEXT-REC IS A POINTER TO THE NEXT RECORD

498 Enterprise COBOL for z/OS, V5.2 Programming Guide

* IN THE LIST; IN THE LAST RECORD, PTR-NEXT-REC IS NULL.
* DISPLAY THE TOTAL.

CALL "CHAIN-ANCH" USING PTR-FIRST (3)
SET ADDRESS OF SALARY-REC TO PTR-FIRST (4)

PERFORM WITH TEST BEFORE UNTIL ADDRESS OF SALARY-REC = NULL (5)

IF DEPT = DEPT-X
THEN ADD SALARY TO DEPT-TOTAL
ELSE CONTINUE

END-IF
SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC (6)

END-PERFORM

DISPLAY DEPT-TOTAL
GOBACK.

(1) PTR-FIRST is defined as a pointer data item with an initial value of NULL.
On a successful return from the call to CHAIN-ANCH, PTR-FIRST contains the
address of the first record in the chained list. If something goes wrong
with the call, and PTR-FIRST never receives the value of the address of the
first record in the chain, a null value remains in PTR-FIRST and, according
to the logic of the program, the records will not be processed.

(2) The LINKAGE SECTION of the calling program contains the description of the
records in the chained list. It also contains the description of the
department code that is passed in the USING clause of the CALL statement.

(3) To obtain the address of the first SALARY-REC record area, the LISTS
program calls the program CHAIN-ANCH.

(4) The SET statement bases the record description SALARY-REC on the address
contained in PTR-FIRST.

(5) The chained list in this example is set up so that the last record contains an
address that is not valid. This check for the end of the chained list is
accomplished with a do-while structure where the value NULL is assigned
to the pointer data item in the last record.

(6) The address of the record in the LINKAGE-SECTION is set equal to the
address of the next record by means of the pointer data item sent as the
first field in SALARY-REC. The record-processing routine repeats, processing
the next record in the chained list.

To increment addresses received from another program, you could set up the
LINKAGE SECTION and PROCEDURE DIVISION like this:
LINKAGE SECTION.
01 RECORD-A.

02 HEADER PIC X(12).
02 REAL-SALARY-REC PIC X(30).

. . .
01 SALARY-REC.

02 PTR-NEXT-REC POINTER.
02 NAME PIC X(20).
02 DEPT PIC 9(4).
02 SALARY PIC 9(6).

. . .
PROCEDURE DIVISION USING DEPT-X.
. . .

SET ADDRESS OF SALARY-REC TO ADDRESS OF REAL-SALARY-REC

Chapter 25. Sharing data 499

The address of SALARY-REC is now based on the address of REAL-SALARY-REC, or
RECORD-A + 12.

RELATED TASKS

“Using pointers to process a chained list” on page 497

Passing return-code information
Use the RETURN-CODE special register to pass return codes between programs.
(Methods do not return information in the RETURN-CODE special register, but they
can check the register after a call to a program.)

You can also use the RETURNING phrase in the PROCEDURE DIVISION header of a
method to return information to an invoking program or method. If you use
PROCEDURE DIVISION . . . RETURNING with CALL . . . RETURNING, the RETURN-CODE
register will not be set.

Using the RETURN-CODE special register
When a COBOL program returns to its caller, the contents of the RETURN-CODE
special register are stored into register 15.

When control is returned to a COBOL program or method from a call, the contents
of register 15 are stored into the RETURN-CODE special register of the calling program
or method. When control is returned from a COBOL program to the operating
system, the special register contents are returned as a user return code.

You might need to think about this handling of the RETURN-CODE special register
when control is returned to a COBOL program from a non-COBOL program. If the
non-COBOL program does not use register 15 to pass back the return code, the
RETURN-CODE special register of the COBOL program might be updated with an
invalid value. Unless you set this special register to a meaningful value before
your Enterprise COBOL program returns to the operating system, a return code
that is invalid will be passed to the system.

For equivalent function between COBOL and C programs, have your COBOL
program call the C program with the RETURNING phrase. If the C program
(function) correctly declares a function value, the RETURNING value of the calling
COBOL program will be set.

You cannot set the RETURN-CODE special register by using the INVOKE statement.

Using PROCEDURE DIVISION RETURNING . . .
Use the RETURNING phrase in the PROCEDURE DIVISION header of a program to return
information to the calling program.
PROCEDURE DIVISION RETURNING dataname2

When the called program in the example above successfully returns to its caller,
the value in dataname2 is stored into the identifier that was specified in the
RETURNING phrase of the CALL statement:
CALL . . . RETURNING dataname2

CEEPIPI: The results of specifying PROCEDURE DIVISION RETURNING in programs that
are called with the Language Environment preinitialization service (CEEPIPI) are
undefined.

500 Enterprise COBOL for z/OS, V5.2 Programming Guide

Specifying CALL . . . RETURNING
You can specify the RETURNING phrase of the CALL statement for calls to C/C++
functions or to COBOL subroutines.

The RETURNING phrase has the following format.
CALL . . . RETURNING dataname2

The return value of the called program is stored into dataname2. You must define
dataname2 in the DATA DIVISION of the calling program. The data type of the return
value that is declared in the target function must be identical to the data type of
dataname2.

Sharing data by using the EXTERNAL clause
Use the EXTERNAL clause to enable separately compiled programs and methods
(including programs in a batch sequence) to share data items. Code EXTERNAL in the
level-01 data description in the WORKING-STORAGE SECTION.

The following rules apply:
v Items that are subordinate to an EXTERNAL group item are themselves EXTERNAL.
v You cannot use the name of an EXTERNAL data item as the name for another

EXTERNAL item in the same program.
v You cannot code the VALUE clause for any group item or subordinate item that is

EXTERNAL.

In the run unit, any COBOL program or method that has the same data description
for the item as the program that contains the item can access and process that item.
For example, suppose program A has the following data description:
01 EXT-ITEM1 EXTERNAL PIC 99.

Program B can access that data item if B has the identical data description in its
WORKING-STORAGE SECTION.

Any program that has access to an EXTERNAL data item can change the value of that
item. Therefore do not use this clause for data items that you need to protect.

Sharing files between programs (external files)
To enable separately compiled programs or methods in a run unit to access a file
as a common file, use the EXTERNAL clause for the file.

It is recommended that you follow these guidelines:
v Use the same data-name in the FILE STATUS clause of all the programs that

check the file status code.
v For each program that checks the same file status field, code the EXTERNAL clause

in the level-01 data definition for the file status field.

Using an external file has these benefits:
v Even if the main program does not contain any input or output statements, it

can reference the record area of the file.
v Each subprogram can control a single input or output function, such as OPEN or

READ.
v Each program has access to the file.

Chapter 25. Sharing data 501

“Example: using external files”

RELATED TASKS

“Using data in input and output operations” on page 11

RELATED REFERENCES

EXTERNAL clause (Enterprise COBOL Language Reference)

Example: using external files
The following example shows the use of an external file in several programs. COPY
statements ensure that each subprogram contains an identical description of the
file.

The following table describes the main program and subprograms.

Name Function

ef1 The main program, which calls all the subprograms and then verifies the
contents of a record area

ef1openo Opens the external file for output and checks the file status code

ef1write Writes a record to the external file and checks the file status code

ef1openi Opens the external file for input and checks the file status code

ef1read Reads a record from the external file and checks the file status code

ef1close Closes the external file and checks the file status code

Each program uses three copybooks:
v efselect is placed in the FILE-CONTROL paragraph:

Select ef1
Assign To ef1
File Status Is efs1
Organization Is Sequential.

v effile is placed in the FILE SECTION:
Fd ef1 Is External

Record Contains 80 Characters
Recording Mode F.

01 ef-record-1.
02 ef-item-1 Pic X(80).

v efwrkstg is placed in the WORKING-STORAGE SECTION:
01 efs1 Pic 99 External.

Input/output using external files
IDENTIFICATION DIVISION.
Program-Id.

ef1.
*
* This main program controls external file processing.
*
ENVIRONMENT DIVISION.
Input-Output Section.
File-Control.

Copy efselect.
DATA DIVISION.
FILE SECTION.

Copy effile.
WORKING-STORAGE SECTION.

Copy efwrkstg.

502 Enterprise COBOL for z/OS, V5.2 Programming Guide

PROCEDURE DIVISION.
Call "ef1openo"
Call "ef1write"
Call "ef1close"
Call "ef1openi"
Call "ef1read"
If ef-record-1 = "First record" Then
Display "First record correct"

Else
Display "First record incorrect"
Display "Expected: " "First record"
Display "Found : " ef-record-1

End-If
Call "ef1close"
Goback.

End Program ef1.
IDENTIFICATION DIVISION.
Program-Id.

ef1openo.
*
* This program opens the external file for output.
*
ENVIRONMENT DIVISION.
Input-Output Section.
File-Control.

Copy efselect.
DATA DIVISION.
FILE SECTION.

Copy effile.
WORKING-STORAGE SECTION.

Copy efwrkstg.
PROCEDURE DIVISION.

Open Output ef1
If efs1 Not = 0
Display "file status " efs1 " on open output"
Stop Run

End-If
Goback.

End Program ef1openo.
IDENTIFICATION DIVISION.
Program-Id.

ef1write.
*
* This program writes a record to the external file.
*
ENVIRONMENT DIVISION.
Input-Output Section.
File-Control.

Copy efselect.
DATA DIVISION.
FILE SECTION.

Copy effile.
WORKING-STORAGE SECTION.

Copy efwrkstg.
PROCEDURE DIVISION.

Move "First record" to ef-record-1
Write ef-record-1
If efs1 Not = 0
Display "file status " efs1 " on write"
Stop Run

End-If
Goback.

End Program ef1write.
Identification Division.
Program-Id.

ef1openi.
*

Chapter 25. Sharing data 503

* This program opens the external file for input.
*
ENVIRONMENT DIVISION.
Input-Output Section.
File-Control.

Copy efselect.
DATA DIVISION.
FILE SECTION.

Copy effile.
WORKING-STORAGE SECTION.

Copy efwrkstg.
PROCEDURE DIVISION.

Open Input ef1
If efs1 Not = 0

Display "file status " efs1 " on open input"
Stop Run

End-If
Goback.

End Program ef1openi.
Identification Division.
Program-Id.

ef1read.
*
* This program reads a record from the external file.
*
ENVIRONMENT DIVISION.
Input-Output Section.
File-Control.

Copy efselect.
DATA DIVISION.
FILE SECTION.

Copy effile.
WORKING-STORAGE SECTION.

Copy efwrkstg.
PROCEDURE DIVISION.

Read ef1
If efs1 Not = 0

Display "file status " efs1 " on read"
Stop Run

End-If
Goback.

End Program ef1read.
Identification Division.
Program-Id.

ef1close.
*
* This program closes the external file.
*
ENVIRONMENT DIVISION.
Input-Output Section.
File-Control.

Copy efselect.
DATA DIVISION.
FILE SECTION.

Copy effile.
WORKING-STORAGE SECTION.

Copy efwrkstg.
PROCEDURE DIVISION.

Close ef1
If efs1 Not = 0

Display "file status " efs1 " on close"
Stop Run

End-If
Goback.

End Program ef1close.

504 Enterprise COBOL for z/OS, V5.2 Programming Guide

Accessing main program parameters under z/OS
When you run an Enterprise COBOL program under z/OS and pass the program a
parameter string, for example, by using JCL or a TSO command, the parameter list
consists of a character string that has a halfword prefix that contains the string
length.

You can access the parameter string by using a LINKAGE SECTION and standard
COBOL coding as shown in the example referenced below:

“Example: accessing main program parameters under z/OS”

Alternatively, you can obtain the parameter string by calling either of the following
Language Environment callable services, which are described in the related
references below:
v CEE3PRM (query parameter string): obtain the parameter string (if not longer

than 80 characters)
v CEE3PR2 (query parameter string long): obtain the parameter string and its

length

In either case, the parameter string might contain program arguments, runtime
options, or both. The setting of the CBLOPTS runtime option determines the relative
order in which program arguments and runtime options are expected. If
CBLOPTS(ON) (the default) is in effect, and program arguments and runtime options
are both passed in the parameter string, they must appear in the following order,
separated by a forward slash:
program_arguments/runtime_options

For further details, see the related information referenced below.

RELATED TASKS

“Coding the LINKAGE SECTION” on page 495
“Accessing main program parameters under z/OS UNIX” on page 468
Language Environment Programming Guide (Specifying runtime options and

program arguments, Preparing your main routine to receive parameters)

RELATED REFERENCES

Language Environment Customization (CBLOPTS (COBOL only))
Language Environment Programming Reference (CEE3PRM, CEE3PR2)

Example: accessing main program parameters under z/OS
The following example shows how to receive a parameter string that is passed to a
COBOL program that runs under z/OS, and shows the coding that you can use to
access the parameter string.
IDENTIFICATION DIVISION.
PROGRAM-ID. "testarg".
*
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
*
DATA DIVISION.
WORKING-STORAGE SECTION.
*
linkage section.
01 os-parm.

05 parm-len pic s999 comp.
05 parm-string.

Chapter 25. Sharing data 505

10 parm-char pic x occurs 0 to 100 times
depending on parm-len.

*
PROCEDURE DIVISION using os-parm.

display "parm-len=" parm-len
display "parm-string=’" parm-string "’"
evaluate parm-string

when "01" display "case one"
when "02" display "case two"
when "95" display "case ninety-five"
when other display "case unknown"

end-evaluate
GOBACK.

Suppose that the CBLOPTS(ON) runtime option is in effect, and that you pass the
following argument in the JCL or TSO command that you use to run the program:
’95/’

Then the resulting output is:
parm-len=002
parm-string=’95’
case ninety-five

506 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 26. Creating a DLL or a DLL application

Creating a dynamic link library (DLL) or a DLL application is similar to creating a
regular COBOL application. It involves writing, compiling, and linking your source
code.

Special considerations when writing a DLL or a DLL application include:
v Determining how the parts of the program object or the application relate to

each other or to other DLLs
v Deciding what linking or calling mechanisms to use

Depending on whether you want to create a DLL program object or a program
object that references a separate DLL, you need to use slightly different compiler
and binder (linkage-editor) options.

RELATED CONCEPTS

“Dynamic link libraries (DLLs)”

RELATED TASKS

“Creating a DLL under z/OS UNIX” on page 286
“Compiling programs to create DLLs” on page 508
“Linking DLLs” on page 509
“Using CALL identifier with DLLs” on page 510
“Using DLL linkage and dynamic calls together” on page 512
“Using COBOL DLLs with C/C++ programs” on page 515
“Using DLLs in OO COBOL applications” on page 516
“Using procedure or function pointers with DLLs” on page 512

Dynamic link libraries (DLLs)
A DLL is a program object that can be accessed from other separate program
objects.

A DLL differs from a traditional program object in that it exports definitions of
programs, functions, or variables to DLLs, DLL applications, or non-DLLs.
Therefore, you do not need to link the target routines into the same program object
as the referencing routine. When an application references a separate DLL for the
first time, the system automatically loads the DLL into memory. In other words,
calling a program in a DLL is similar to calling a program object with a dynamic
CALL.

© Copyright IBM Corp. 1991, 2018 507

A DLL application is an application that references imported definitions of
programs, functions, or variables.

Although some functions of z/OS DLLs overlap the functions provided by COBOL
dynamic CALL statements, DLLs have several advantages over regular z/OS
program objects and dynamic calls:
v DLLs are common across COBOL and C/C++, thus providing better

interoperation for applications that use multiple programming languages.
Reentrant COBOL and C/C++ DLLs can also interoperate smoothly.

v You can make calls to programs in separate DLL modules that have long
program-names. (Dynamic call resolution truncates program-names to eight
characters.) Using the COBOL option PGMNAME(LONGUPPER) or PGMNAME(LONGMIXED)
and the COBOL DLL support, you can make calls between program objects with
names of up to 160 characters.

DLLs are supported by IBM z/OS Language Environment, based on function
provided by the z/OS program management binder. DLL support is available for
applications running under z/OS in batch or in TSO, CICS, z/OS UNIX, or IMS
environments.

RELATED REFERENCES

“PGMNAME” on page 348
MVS Program Management: User's Guide and Reference (Binder support for DLLs)

Compiling programs to create DLLs
When you compile a COBOL program with the DLL option, it becomes enabled for
DLL support. Applications that use DLL support must be reentrant. Therefore, you
must compile them with the RENT compiler option and link them with the RENT
binder option.

In an application with DLL support, use the following compiler options depending
on where the programs or classes are:

Table 62. Compiler options for DLL applications

Programs or classes in: Compile with:

Root program object DLL, RENT, NOEXPORTALL

DLL program objects used by other program
objects

DLL, RENT, EXPORTALL

508 Enterprise COBOL for z/OS, V5.2 Programming Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

If a DLL program object includes some programs that are used only from within
the DLL module, you can hide these routines by compiling them with NOEXPORTALL.

“Example: sample JCL for a procedural DLL application” on page 510

RELATED TASKS

“Creating a DLL under z/OS UNIX” on page 286
“Linking DLLs”
Chapter 26, “Creating a DLL or a DLL application,” on page 507

RELATED REFERENCES

“DLL” on page 321
“EXPORTALL” on page 326
“RENT” on page 352

Linking DLLs
You can link DLL-enabled object modules into separate DLL program objects, or
you can link them together statically. You can decide whether to package the
application as one module or as several DLL modules at link time.

The DLL support in the z/OS binder is recommended for linking DLL
applications. The binder can directly receive the output of COBOL compilers.

A binder-based DLL must reside in a PDSE or in a z/OS UNIX file rather than in a
PDS.

When using the binder to link a DLL application, use the following options:

Table 63. Binder options for DLL applications

Type of code Link using binder parameters:

DLL applications DYNAM(DLL), RENT

Applications that use mixed-case exported
program-names

Class definitions or INVOKE statements

CASE(MIXED)

You must specify a SYSDEFSD DD statement to indicate the data set in which the
binder should create a DLL definition side file. This side file contains IMPORT
control statements for each symbol exported by a DLL. The binder SYSLIN input
(the binding code that references the DLL code) must include the DLL definition
side files for DLLs that are to be referenced from the module being linked.

If there are programs in the module that you do not want to make available with
DLL linkage, you can edit the definition side file to remove these programs.

“Example: sample JCL for a procedural DLL application” on page 510

RELATED TASKS

“Creating a DLL under z/OS UNIX” on page 286
Chapter 26, “Creating a DLL or a DLL application,” on page 507
“Compiling programs to create DLLs” on page 508

RELATED REFERENCES

MVS Program Management: User's Guide and Reference (Binder support for DLLs)

Chapter 26. Creating a DLL or a DLL application 509

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieab100/toc.htm?sc=SSLTBW_latest

Example: sample JCL for a procedural DLL application
The following example shows how to create an application that consists of a main
program that calls a DLL subprogram.

The first step creates the DLL program object that contains the subprogram
DemoDLLSubprogram. The second step creates the main program object that contains
the program MainProgram. The third step runs the application.
//DLLSAMP JOB ,
// TIME=(1),MSGLEVEL=(1,1),MSGCLASS=H,CLASS=A,
// NOTIFY=&SYSUID,USER=&SYSUID
// SET LEPFX=’SYS1’
//*---
//* Compile COBOL subprogram, bind to form a DLL.
//*---
//STEP1 EXEC IGYWCL,REGION=80M,GOPGM=DEMODLL,
// PARM.COBOL=’RENT,PGMN(LM),DLL,EXPORTALL’,
// PARM.LKED=’RENT,LIST,XREF,LET,MAP,DYNAM(DLL),CASE(MIXED)’
//COBOL.SYSIN DD *

Identification division.
Program-id. "DemoDLLSubprogram".
Procedure division.

Display "Hello from DemoDLLSubprogram!".
End program "DemoDLLSubprogram".

/*
//LKED.SYSDEFSD DD DSN=&&SIDEDECK,UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(TRK,(1,1))
//LKED.SYSLMOD DD DSN=&&GOSET(&GOPGM),DSNTYPE=LIBRARY,DISP=(MOD,PASS)
//LKED.SYSIN DD DUMMY
//*---
//* Compile and bind COBOL main program
//*---
//STEP2 EXEC IGYWCL,REGION=80M,GOPGM=MAINPGM,
// PARM.COBOL=’RENT,PGMNAME(LM),DLL’,
// PARM.LKED=’RENT,LIST,XREF,LET,MAP,DYNAM(DLL),CASE(MIXED)’
//COBOL.SYSIN DD *

Identification division.
Program-id. "MainProgram".
Procedure division.

Call "DemoDLLSubprogram"
Stop Run.

End program "MainProgram".
/*
//LKED.SYSIN DD DSN=&&SIDEDECK,DISP=(OLD,DELETE)
//*---
//* Execute the main program, calling the subprogram DLL.
//*---
//STEP3 EXEC PGM=MAINPGM,REGION=80M
//STEPLIB DD DSN=&&GOSET,DISP=(OLD,DELETE)
// DD DSN=&LEPFX..SCEERUN,DISP=SHR
// DD DSN=&LEPFX..SCEERUN2,DISP=SHR
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*

Using CALL identifier with DLLs
In a COBOL program that has been compiled with the DLL option, you can use
CALL identifier and CALL literal statements to make calls to DLLs. However, there are
a few additional considerations for the CALL identifier case.

For the content of the identifier or for the literal, use the name of either of the
following programs:

510 Enterprise COBOL for z/OS, V5.2 Programming Guide

v A nested program in the same compilation unit that is eligible to be called from
the program that contains the CALL identifier statement.

v A program in a separately bound DLL module. The target program-name must
be exported from the DLL, and the DLL module name must match the exported
name of the target program.

In the nonnested case, the runtime environment interprets the program-name in
the identifier according to the setting of the PGMNAME compiler option of the program
that contains the CALL statement, and interprets the program-name that is exported
from the target DLL according to the setting of the PGMNAME option used when the
target program was compiled.

The search for the target DLL in the z/OS UNIX file system is case sensitive. If the
target DLL is a PDS or PDSE member, the DLL member name must be eight
characters or less. For the purpose of the search for the DLL as a PDS or PDSE
member, the run time automatically converts the name to uppercase.

If the runtime environment cannot resolve the CALL statement in either of these
cases, control is transferred to the ON EXCEPTION or ON OVERFLOW phrase of the CALL
statement. If the CALL statement does not specify one of these phrases in this
situation, Language Environment raises a severity-3 condition.

RELATED TASKS

“Using DLL linkage and dynamic calls together” on page 512
“Compiling programs to create DLLs” on page 508
“Linking DLLs” on page 509

RELATED REFERENCES

“DLL” on page 321
“PGMNAME” on page 348
CALL statement (Enterprise COBOL Language Reference)
“Search order for DLLs in the z/OS UNIX file system”

Search order for DLLs in the z/OS UNIX file system
When you use the z/OS UNIX file system, the search order for resolving a DLL
reference in a CALL statement depends on the setting of the Language Environment
POSIX runtime option.

If the POSIX runtime option is ON, the search order is as follows:
1. The runtime environment looks for the DLL in the z/OS UNIX file system. If

the LIBPATH environment variable is set, the run time searches each directory
listed. Otherwise, it searches just the current directory. The search for the DLL
in the z/OS UNIX file system is case sensitive.

2. If the runtime environment does not find the DLL in the z/OS UNIX file
system, it tries to load the DLL from the MVS load library search order of the
caller. In this case, the DLL name must be eight characters or less. The run time
automatically converts the DLL name to uppercase for this search.

If the POSIX runtime option is set to OFF, the search order is reversed:
1. The runtime environment tries to load the DLL from the search order for the

load library of the caller.
2. If the runtime environment cannot load the DLL from this load library, it tries

to load the DLL from the z/OS UNIX file system.

Chapter 26. Creating a DLL or a DLL application 511

RELATED TASKS

“Using CALL identifier with DLLs” on page 510

RELATED REFERENCES

Language Environment Programming Reference (POSIX)

Using DLL linkage and dynamic calls together
For applications (that is, Language Environment enclaves) that are structured as
multiple separately bound modules, each module can be invoked by using
dynamic call linkage or DLL linkage. For a certain module, use exclusively one
form of linkage to enter it. However, the caller can contain CALL statements with
both linkage types, calling out to different modules.

DLL linkage refers to a call in a program that is compiled with the DLL and NODYNAM
options, or a call with the CALLINTERFACE compiler directive that specifies DLL. In
such calls, the called subprogram is resolved to an exported name in a separate
module. DLL linkage can also refer to an invocation of a method that is defined in
a separate module.

Within a compilation unit you can call a specific program with only one of the
calling conventions: Dynamic, DLL or Static. If a program is called by using
different calling conventions, the compiler diagnoses this case and force all the
calls to have the same convention as the first call statement that is encountered for
that program.

A program can contain CALL statements with both dynamic call linkage and DLL
linkage. It can do so by using the CALLINTERFACE compiler directive to specify
the linkage type of a particular call. All components of a DLL application must
have the same AMODE. The automatic AMODE switching normally provided by
COBOL dynamic calls is not available for DLL linkages. You cannot cancel
programs that are called by using DLL linkage.

All components of a DLL application must have the same AMODE. The automatic
AMODE switching normally provided by COBOL dynamic calls is not available
for DLL linkages.

RELATED CONCEPTS

“Dynamic link libraries (DLLs)” on page 507

RELATED TASKS

“Compiling programs to create DLLs” on page 508
“Linking DLLs” on page 509
“Using procedure or function pointers with DLLs”
“Calling DLLs from non-DLLs” on page 513

RELATED REFERENCES

“DLL” on page 321
“EXPORTALL” on page 326
CALLINTERFACE (Enterprise COBOL Language Reference)

Using procedure or function pointers with DLLs
In run units that contain both DLLs and non-DLLs, use procedure- and
function-pointer data items with care.

512 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

The SET procedure-pointer-1 TO ENTRY entry-name statement, SET function-pointer-1 TO
ENTRY entry-name statement, and the CALL statement have a call linkage type that
associates with them. The call linkage type is determined by the compiler options
and the CALLINTERFACE directive that are in effect on that statement. In a program
that is compiled with the DLL option, the default call linkage type is DLL.
Otherwise, the linkage type is non-DLL. This default can be overridden by the
CALLINTERFACE directive.

For a procedure-pointer or function-pointer data item that is set by a SET statement
with linkage type non-DLL, it must not be used by a CALL statement with linkage
type DLL. For a SET statement with linkage type DLL and the entry-name is an
identifier, and if the NODYNAM option is in effect, the entry-name identifier value must
refer to the entry-point name that is exported from a DLL module. The DLL
module name must match the name of the exported entry point. In this case, note
also that:
v The program-name that is contained in the identifier is interpreted according to

the setting of the PGMNAME(COMPAT|LONGUPPER|LONGMIXED) compiler option of the
program that contains the CALL statement.

v The program-name that is exported from the target DLL is interpreted according
to the setting of the PGMNAME option used when compiling the target program.

v The search for the target DLL in the z/OS UNIX file system is case sensitive.
v If the target DLL is a PDS or PDSE member, the DLL member name must have

eight characters or less. For the purpose of the search for the DLL as a PDS or
PDSE member, the name is automatically converted to uppercase.

RELATED TASKS

“Using CALL identifier with DLLs” on page 510
“Using procedure and function pointers” on page 487
“Compiling programs to create DLLs” on page 508
“Linking DLLs” on page 509

RELATED REFERENCES

“DLL” on page 321
“EXPORTALL” on page 326
CALLINTERFACE (Enterprise COBOL Language Reference)

Calling DLLs from non-DLLs
It is possible to call a DLL from a COBOL program that is compiled with the NODLL
option, but there are restrictions.

You can use the following methods to ensure that the DLL linkage is followed:
v Put the COBOL DLL programs that you want to call from the COBOL non-DLL

programs in the program object that contains the main program. Use static calls
from the COBOL non-DLL programs to call the COBOL DLL programs.
The COBOL DLL programs in the program object that contains the main
program can call COBOL DLL programs in other DLLs.

v Put the COBOL DLL programs in DLLs and call them from COBOL non-DLL
programs with CALL function-pointer, where function-pointer is set to a function
descriptor of the target program. You can obtain the address of the function
descriptor for the program in the DLL by calling a C routine that uses dllload
and dllqueryfn.

“Example: calling DLLs from non-DLLs” on page 514

Chapter 26. Creating a DLL or a DLL application 513

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

RELATED TASKS

“Using procedure and function pointers” on page 487

Example: calling DLLs from non-DLLs
The following example shows how a COBOL program that is not in a DLL
(COBOL1) can call a COBOL program that is in a DLL (program ooc05R in DLL
OOC05R).
CBL NODYNAM

IDENTIFICATION DIVISION.
PROGRAM-ID. ’COBOL1’.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
01 DLL-INFO.

03 DLL-LOADMOD-NAME PIC X(12).
03 DLL-PROGRAM-NAME PIC X(160).
03 DLL-PROGRAM-HANDLE FUNCTION-POINTER.

77 DLL-RC PIC S9(9) BINARY.
77 DLL-STATUS PIC X(1) VALUE ’N’.

88 DLL-LOADED VALUE ’Y’.
88 DLL-NOT-LOADED VALUE ’N’.

PROCEDURE DIVISION.

IF DLL-NOT-LOADED
THEN

* Move the names in. They must be null terminated.
MOVE Z’OOC05R’ TO DLL-LOADMOD-NAME
MOVE Z’ooc05r’ TO DLL-PROGRAM-NAME

* Call the C routine to load the DLL and to get the
* function descriptor address.

CALL ’A1CCDLGT’ USING BY REFERENCE DLL-INFO
BY REFERENCE DLL-RC

IF DLL-RC = 0
THEN

SET DLL-LOADED TO TRUE
ELSE

DISPLAY ’A1CCLDGT failed with rc = ’
DLL-RC

MOVE 16 TO RETURN-CODE
STOP RUN

END-IF
END-IF

* Use the function pointer on the call statement to call the
* program in the DLL.
* Call the program in the DLL.

CALL DLL-PROGRAM-HANDLE

GOBACK.

#include <stdio.h>
#include <dll.h>
#pragma linkage (A1CCDLGT,COBOL)

typedef struct dll_lm {
char dll_loadmod_name[(12]);
char dll_func_name[(160]);
void (*fptr) (void); /* function pointer */

514 Enterprise COBOL for z/OS, V5.2 Programming Guide

} dll_lm;

void A1CCDLGT (dll_lm *dll, int *rc)
{

dllhandle *handle;
void (*fptr1)(void);
*rc = 0;
/* Load the DLL */
handle = dllload(dll->dll_loadmod_name);
if (handle == NULL) {

perror("A1CCDLGT failed on call to load DLL./n");
*rc = 1;
return;

}

/* Get the address of the function */
fptr1 = (void (*)(void))

dllqueryfn(handle,dll->dll_func_name);
if (fptr1 == NULL) {

perror("A1CCDLGT failed on retrieving function./n");
*rc = 2;
return;

}
/* Return the function pointer */
dll->fptr = fptr1;
return;

}

Using COBOL DLLs with C/C++ programs
COBOL support for DLLs interoperates with the DLL support in the z/OS C/C++
products, except for COBOL EXTERNAL data. In particular, COBOL applications can
call functions that are exported from C/C++ DLLs, and C/C++ applications can
call COBOL programs that are exported from COBOL DLLs.

COBOL data items that are declared with the EXTERNAL attribute are independent of
DLL support. These data items are accessible by name from any COBOL program
in the run unit that declares them, regardless of whether the programs are in DLLs.

The COBOL options DLL, RENT, and EXPORTALL work much the same way as the
C/C++ DLL, RENT, and EXPORTALL options. (The DLL option applies only to C.)
However, the C/C++ compiler produces DLL-enabled code by default.

You can pass a C/C++ DLL function pointer to COBOL and use it within COBOL,
receiving the C/C++ function pointer as a function-pointer data item. The
following example shows a COBOL call to a C function that returns a function
pointer to a service, followed by a COBOL call to the service.
Identification Division.
Program-id. Demo.
Data Division.
Working-Storage section.
01 fp usage function-pointer.
Procedure Division.

Call "c-function" returning fp.
Call fp.

RELATED TASKS

“Compiling programs to create DLLs” on page 508
“Linking DLLs” on page 509

Chapter 26. Creating a DLL or a DLL application 515

RELATED REFERENCES

“DLL” on page 321
“EXPORTALL” on page 326
“RENT” on page 352
EXTERNAL clause (Enterprise COBOL Language Reference)
CALLINTERFACE (Enterprise COBOL Language Reference)

Using DLLs in OO COBOL applications
You must compile each COBOL class definition using the DLL, THREAD, RENT, and
DBCS compiler options, and link-edit it into a separate DLL module using the RENT
binder option.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
“Compiling programs to create DLLs” on page 508
“Linking DLLs” on page 509

RELATED REFERENCES

“DLL” on page 321
“THREAD” on page 366
“RENT” on page 352
“DBCS” on page 319

516 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

Chapter 27. Preparing COBOL programs for multithreading

You can run COBOL programs in multiple threads within a process under batch,
TSO, IMS, or z/OS UNIX.

There is no explicit COBOL language to use for multithreaded execution; rather,
you compile with the THREAD compiler option.

COBOL does not directly support managing program threads. However, you can
run COBOL programs that you compile with the THREAD compiler option in
multithreaded application servers, in applications that use a C/C++ driver
program to create the threads, in programs that interoperate with Java and use
Java threads, and in applications that use PL/I tasking. In other words, other
programs can call COBOL programs in such a way that the COBOL programs run
in multiple threads within a process or as multiple program invocation instances
within a thread. Your threaded application must run within a single Language
Environment enclave.

Choosing LOCAL-STORAGE or WORKING-STORAGE: Because you must code your
multithreaded programs as recursive, the persistence of data is that of any
recursive program:
v Data items in the LOCAL-STORAGE SECTION are automatically allocated for each

instance of a program invocation. When a program runs in multiple threads
simultaneously, each invocation has a separate copy of LOCAL-STORAGE data.

v Data items in the WORKING-STORAGE SECTION are allocated once for each program
and are thus available in their last-used state to all invocations of the program.

For the data that you want to isolate to an individual program invocation instance,
define the data in the LOCAL-STORAGE SECTION. In general, this choice is appropriate
for working data in threaded programs. If you define data in WORKING-STORAGE and
your program changes the contents of the data, you must take one of the following
actions:
v Structure your application so that you do not access data in WORKING-STORAGE

simultaneously from multiple threads.
v If you do access data simultaneously from separate threads, write appropriate

serialization code.

RELATED CONCEPTS

“Multithreading” on page 518

RELATED TASKS

“Choosing THREAD to support multithreading” on page 519
“Transferring control to multithreaded programs” on page 519
“Ending multithreaded programs” on page 520
“Processing files with multithreading” on page 520
“Handling COBOL limitations with multithreading” on page 522

RELATED REFERENCES

“THREAD” on page 366
PROGRAM-ID paragraph (Enterprise COBOL Language Reference)

© Copyright IBM Corp. 1991, 2018 517

Multithreading
To use COBOL support for multithreading, you need to understand how processes,
threads, run units, and program invocation instances relate to each other.

The operating system and multithreaded applications can handle execution flow
within a process, which is the course of events when all or part of a program runs.
Programs that run within a process can share resources. Processes can be
manipulated. For example, they can have a high or low priority in terms of the
amount of time that the system devotes to running the process.

Within a process, an application can initiate one or more threads, each of which is a
stream of computer instructions that controls that thread. A multithreaded process
begins with one stream of instructions (one thread) and can later create other
instruction streams to perform tasks. These multiple threads can run concurrently.
Within a thread, control is transferred between executing programs.

In a multithreaded environment, a COBOL run unit is the portion of the process
that includes threads that have actively executing COBOL programs. The COBOL
run unit continues until no COBOL program is active in the execution stack for
any of the threads. For example, a called COBOL program contains a GOBACK
statement and returns control to a C program. Within the run unit, COBOL
programs can call non-COBOL programs, and vice versa.

Within a thread, control is transferred between separate COBOL and non-COBOL
programs. For example, a COBOL program can call another COBOL program or a
C program. Each separately called program is a program invocation instance.
Program invocation instances of a particular program can exist in multiple threads
within a given process.

The following illustration shows these relationships between processes, threads,
run units, and program invocation instances.

RELATED CONCEPTS

Language Environment Programming Guide (Program management model,
Understanding the basics: threads)

518 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Choosing THREAD to support multithreading”
“Transferring control to multithreaded programs”
“Ending multithreaded programs” on page 520
“Processing files with multithreading” on page 520
“Handling COBOL limitations with multithreading” on page 522

RELATED REFERENCES

“THREAD” on page 366

Choosing THREAD to support multithreading
Use the THREAD compiler option for multithreading support. Use THREAD if your
program will be called in more than one thread in a single process by an
application. However, THREAD might adversely affect performance because of the
serialization logic that is automatically generated.

In order to run COBOL programs in more than one thread, you must compile all
of the COBOL programs in the application using the THREAD compiler option. You
must also compile them with the RENT compiler option and link them with the
RENT option of the binder (linkage-editor).

Use the THREAD option when you compile object-oriented (OO) clients and classes.

Language restrictions: When you use the THREAD option, you cannot use certain
language elements. For details, see the related reference below.

Recursion: Before you compile a program using the THREAD compiler option, you
must specify the RECURSIVE phrase in the PROGRAM-ID paragraph. If you do not do
so, an error will occur.

RELATED TASKS

“Sharing data in recursive or multithreaded programs” on page 17
“Compiling OO applications under z/OS UNIX” on page 291

RELATED REFERENCES

“THREAD” on page 366

Transferring control to multithreaded programs
When you write COBOL programs for a multithreaded environment, choose
appropriate program linkage statements.

As in single-threaded environments, a called program is in its initial state when it
is first called within a run unit and when it is first called after a CANCEL to the
called program. Ensure that the program that you name on a CANCEL statement is
not active on any thread. If you try to cancel an active program, a severity-3
Language Environment condition occurs.

If your threaded application requires preinitialization, use the Language
Environment services (CEEPIPI interface). You cannot use the COBOL-specific
interfaces for preinitialization (runtime option RTEREUS) to establish a reusable
environment from any program that has been compiled with the THREAD option.

Chapter 27. Preparing COBOL programs for multithreading 519

RELATED CONCEPTS

Language Environment Programming Guide (What happens during termination:
enclave termination)

RELATED TASKS

“Ending multithreaded programs”
“Ending and reentering main programs or subprograms” on page 474

Ending multithreaded programs
You can end a multithreaded program by using GOBACK, EXIT PROGRAM, or STOP RUN.

Use GOBACK to return to the caller of the program. When you use GOBACK from the
first program in a thread, the thread is terminated. If that thread is the initial
thread in an enclave, the entire enclave is terminated.

Use EXIT PROGRAM as you would GOBACK, except from a main program where it has
no effect.

Use STOP RUN to terminate the entire Language Environment enclave and to return
control to the caller of the main program (which might be the operating system).
All threads that are executing within the enclave are terminated.

RELATED CONCEPTS

Language Environment Programming Guide (What happens during termination:
enclave termination)

RELATED TASKS

“Ending and reentering main programs or subprograms” on page 474

Processing files with multithreading
In threaded applications, you can code COBOL statements for input and output in
QSAM, VSAM, and line-sequential files.

Each file definition (FD) has an implicit serialization lock. This lock is used with
automatic serialization logic during the input or output operation that is associated
with the execution of the following statements:
v OPEN

v CLOSE

v READ

v WRITE

v REWRITE

v START

v DELETE

Automatic serialization also occurs for the implicit MOVE that is associated with the
following statements:
WRITE record-name FROM identifier
READ file-name INTO identifier

Automatic serialization is not applied to any statements specified within the
following conditional phrases:
v AT END

520 Enterprise COBOL for z/OS, V5.2 Programming Guide

v NOT AT END

v INVALID KEY

v NOT INVALID KEY

v AT END-OF-PAGE

v NOT AT END-OF-PAGE

RELATED CONCEPTS

“File-definition (FD) storage”

RELATED TASKS

“Closing QSAM files” on page 173
“Closing VSAM files” on page 200
“Coding ERROR declaratives” on page 244
“Serializing file access with multithreading”

File-definition (FD) storage
On all program invocations, the storage that is associated with a file definition
(such as FD records and the record area that is associated with the SAME RECORD
AREA clause) is allocated and available in its last-used state.

All threads of execution share this storage. You can depend on automatic
serialization for this storage during the execution of the OPEN, CLOSE, READ, WRITE,
REWRITE, START, and DELETE statements, but not between uses of these statements.

RELATED TASKS

“Serializing file access with multithreading”

Serializing file access with multithreading
To take full advantage of automatic serialization and to avoid explicitly writing
your own serialization logic, use one of the recommended file organizations and
usage patterns when you access files in threaded programs.

Use one of the following file organizations:
v Sequential organization
v Line-sequential organization
v Relative organization with sequential access
v Indexed organization with sequential access

Use the following pattern for input:
OPEN INPUT fn
. . .
READ fn INTO local-storage-item
. . .

* Process the record from the local-storage item
. . .
CLOSE fn

Use the following pattern for output:
OPEN OUTPUT fn
. . .

* Construct output record in local-storage item
. . .
WRITE rec FROM local-storage-item
. . .
CLOSE fn

Chapter 27. Preparing COBOL programs for multithreading 521

With other usage patterns, you must take one of the following actions:
v Verify the safety of your application logic. Ensure that two instances of the

program are never simultaneously active on different threads.
v Code explicit serialization logic by using calls to POSIX services.

To avoid serialization problems when you access a file from multiple threads,
define the data items that are associated with the file (such as file-status data items
and key arguments) in the LOCAL-STORAGE SECTION.

“Example: usage patterns of file input and output with multithreading”

RELATED TASKS

“Calling UNIX/POSIX APIs” on page 466

Example: usage patterns of file input and output with
multithreading

The following examples show the need for explicit serialization logic when you
deviate from the recommended usage pattern for file input and output in your
multithreaded applications. These examples also explain the unexpected behavior
that might result if you fail to handle serialization properly.

In each example, two instances of a program that contains the sample operations
are running within one run unit on two different threads.
READ F1
. . .
REWRITE R1

In the example above, the second thread might execute the READ statement after the
READ statement is executed on the first thread but before the REWRITE statement is
executed on the first thread. The REWRITE statement might not update the record
that you intended. To ensure the results that you want, write explicit serialization
logic.
READ F1
. . .
* Process the data in the FD record description entry for F1
. . .

In the example above, the second thread might execute the READ statement while
the first thread is still processing a record in the FD record description entry. The
second READ statement would overlay the record that the first thread is processing.
To avoid this problem, use the recommended technique:
READ F1 INTO LOCAL-STORAGE-item

Other cases: You must give similar consideration to other usage patterns that
involve a sequence of related input and output operations, such as START followed
by READ NEXT, or READ followed by DELETE. Take appropriate steps to ensure the
correct processing of file input and output.

Handling COBOL limitations with multithreading
Some COBOL applications depend on subsystems or other applications. In a
multithreaded environment, these dependencies and others result in some
limitations on COBOL programs.

522 Enterprise COBOL for z/OS, V5.2 Programming Guide

In general, you must synchronize access to resources that are visible to the
application within a run unit. Exceptions to this requirement are DISPLAY and
ACCEPT, which you can use from multiple threads, and supported COBOL file I/O
statements that have the recommended usage pattern; all synchronization is
provided for these by the runtime environment.

CICS: You cannot run multithreaded applications in CICS. In CICS, you can run a
COBOL program that has been compiled with the THREAD option and that is part of
an application that has no multiple threads or PL/I tasks.

Recursive: Because you must code the programs in a multithreaded application as
recursive, you must adhere to all the restrictions and programming considerations
that apply to recursive programs, such as not coding nested programs.

Reentrancy: You must compile your multithreading programs with the RENT
compiler option and link them with the RENT option of the binder (linkage-editor).

POSIX and PL/I: If you use POSIX threads in your multithreaded application, you
must specify the Language Environment runtime option POSIX(ON). If the
application uses PL/I tasking, you must specify POSIX(OFF). You cannot mix
POSIX threads and PL/I tasks in the same application.

PL/I tasking: To include COBOL programs in applications that contain multiple
PL/I tasks, follow these guidelines:
v Compile all COBOL programs that you run in multiple PL/I tasks with the

THREAD option. If you compile any COBOL program with the NOTHREAD option, all
of the COBOL programs must run in one PL/I task.

v You can call COBOL programs compiled with the THREAD option from one or
more PL/I tasks. However, calls from PL/I programs to COBOL programs
cannot include the TASK or EVENT option. The PL/I tasking call must first call a
PL/I program or function that in turn calls the COBOL program. This
indirection is required because you cannot specify the COBOL program directly
as the target of a PL/I CALL statement that includes the TASK or EVENT option.

v Be aware that issuing a STOP RUN statement from a COBOL program or a STOP
statement from a PL/I program terminates the entire Language Environment
enclave, including all the tasks of execution.

v Do not code explicit POSIX threading (calls to pthread_create()) in any run unit
that includes PL/I tasking.

C and Language Environment conforming assembler: You can combine your
multithreaded COBOL programs with C programs and Language Environment
conforming assembler programs in the same run unit when those programs are
also appropriately coded for multithreaded execution.

AMODE: You must run your multithreaded applications with AMODE 31. You can
run a COBOL program that has been compiled with the THREAD option with AMODE
24 as part of an application that does not have multiple threads or PL/I tasks.

Asynchronous signals: In a threaded application your COBOL program might be
interrupted by an asynchronous signal or interrupt. If your program contains logic
that cannot tolerate such an interrupt, you must disable the interrupts for the
duration of that logic. Call a C/C++ function to set the signal mask appropriately.

Chapter 27. Preparing COBOL programs for multithreading 523

Older COBOL programs: To run your COBOL programs on multiple threads of a
multithreaded application, you must compile them with Enterprise COBOL and
use the THREAD option. Run applications that contain programs compiled by older
compilers only on one thread.

IGZETUN and IGZEOPT: Do not use the modules IGZETUN (for storage tuning)
or IGZEOPT (for runtime options) for applications in which the main program has
been compiled with the THREAD option; these CSECTs are ignored.

UPSI switches: All programs and all threads in an application share a single copy
of UPSI switches. If you modify switches in a threaded application, you must code
appropriate serialization logic.

RELATED TASKS

“Making recursive calls” on page 487
“Serializing file access with multithreading” on page 521
XL C/C++ Programming Guide (Using threads in z/OS UNIX System Services

applications)
Language Environment Writing ILC Communication Applications

524 Enterprise COBOL for z/OS, V5.2 Programming Guide

Part 5. Using XML and COBOL together

© Copyright IBM Corp. 1991, 2018 525

526 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 28. Processing XML input

You can process XML input in a COBOL program by using the XML PARSE
statement.

The XML PARSE statement is the COBOL language interface to either of two
high-speed XML parsers. You use the XMLPARSE compiler option to select the
appropriate parser for your application:
v XMLPARSE(XMLSS) selects the z/OS XML System Services parser.

This option provides enhanced features such as namespace processing,
validation of XML documents with respect to an XML schema, and conversion
of text fragments to national character representation (Unicode UTF-16).

v XMLPARSE(COMPAT) selects the XML parser that is built into the COBOL library.
This option provides compatibility with XML parsing in Enterprise COBOL
Version 3 and Version 4.

Processing XML input involves passing control between the XML parser and a
processing procedure in which you handle parser events.

Use the following COBOL facilities to process XML input:
v The XML PARSE statement to begin XML parsing and to identify the source XML

document and the processing procedure.
You can also use the following optional phrases of the XML PARSE statement:
– ENCODING to specify the encoding of the XML document
– VALIDATING to identify an XML schema against which the XML document is to

be validated
v The processing procedure to control the parsing, that is, receive and process

XML events and associated document fragments, and return to the parser for
continued processing

v Special registers to exchange information between the parser and the processing
procedure:
– XML-CODE to receive the status of XML parsing and, in some cases, to return

information to the parser
– XML-EVENT to receive the name of each XML event from the parser
– XML-INFORMATION provides a mechanism to easily determine whether an XML

event is complete
– XML-NTEXT to receive XML document fragments that are returned as national

character data
– XML-TEXT to receive document fragments that are returned as alphanumeric

data
– XML-NAMESPACE or XML-NNAMESPACE to receive a namespace identifier for a

NAMESPACE-DECLARATION XML event, or for an element name or attribute name
that is in a namespace

– XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX to receive a namespace
prefix for a NAMESPACE-DECLARATION XML event, or for an element name or
attribute name that is prefixed

v The optional RETURNING NATIONAL phrase of the XML PARSE statement to indicate
that the fragments of an XML document in an alphanumeric data item are to be

© Copyright IBM Corp. 1991, 2018 527

|
|
|

|

|
|
|

|

|
|

converted to UTF-16 and returned to the processing procedure in the national
special registers XML-NTEXT, XML-NNAMESPACE, and XML-NNAMESPACE-PREFIX

You can use the ENCODING, VALIDATING, and RETURNING NATIONAL phrases of the XML
PARSE statement only if XMLPARSE(XMLSS) is in effect.

Link-edit consideration: COBOL programs that contain the XML PARSE statement
must be link-edited with AMODE 31.

RELATED CONCEPTS

“XML parser in COBOL”

RELATED TASKS

“Accessing XML documents” on page 530
“Parsing XML documents” on page 530
“Handling XML PARSE exceptions” on page 552
“Terminating XML parsing” on page 556

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“The encoding of XML documents” on page 546
Appendix C, “XML reference material,” on page 701
Extensible Markup Language (XML)

XML parser in COBOL
Enterprise COBOL provides an event-based interface that lets you parse XML
documents and transform them to COBOL data structures.

The XML parser finds fragments within the source XML document, and your
processing procedure acts on those fragments. The fragments are associated with
XML events; you code the processing procedure to handle each XML event.

Execution of the XML PARSE statement begins the parsing and establishes the
processing procedure with the parser. The parser transfers control to the processing
procedure for each XML event that it detects while processing the document. After
processing the event, the processing procedure automatically returns control to the
parser. Each normal return from the processing procedure causes the parser to
continue analyzing the XML document to report the next event. Throughout this
operation, control passes back and forth between the parser and the processing
procedure.

In the XML PARSE statement, you can also specify two imperative statements to
which you want control to be passed at the end of the parsing: one if a normal end
occurs, and the other if an exception condition exists.

The following figure shows a high-level overview of the basic exchange of control
between the parser and your COBOL program:

528 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

http://www.w3.org/XML/

Normally, parsing continues until the entire XML document has been parsed.

The XML parser checks XML documents for most aspects of well formedness. A
document is well formed if it adheres to the XML syntax in the XML specification
and follows some additional rules such as proper use of end tags and uniqueness
of attribute names.

When you parse an XML document with validation against an XML schema, the
z/OS XML System Services parser additionally verifies that the XML document
adheres to the content and structure prescribed in the schema. For example, the
parser checks that there are no unexpected elements or attributes, that no required
elements or attributes are missing, and that any values of elements or attributes are
legal.

RELATED CONCEPTS

“XML schemas” on page 542
“XML input document encoding” on page 547

RELATED TASKS

“Parsing XML documents” on page 530
“Parsing XML documents with validation” on page 540
“Handling XML PARSE exceptions” on page 552
“Terminating XML parsing” on page 556

RELATED REFERENCES

“The encoding of XML documents” on page 546
XML specification

Chapter 28. Processing XML input 529

http://www.w3.org/TR/xml

Accessing XML documents
Before you can parse an XML document using an XML PARSE statement, you must
make the document available to your program. Common methods of acquiring an
XML document are by retrieval from a WebSphere MQ message, a CICS transient
queue or communication area, or an IMS message processing queue; or by reading
the document from a file.

If the XML document that you want to parse is held in a file, use ordinary COBOL
facilities to place the document into a data item in your program:
v A FILE-CONTROL entry to define the file to your program.
v An OPEN statement to open the file.
v READ statements to read all the records from the file into a data item (either an

elementary item of category alphanumeric or national, or an alphanumeric or
national group). You can define the data item in the WORKING-STORAGE SECTION or
the LOCAL-STORAGE SECTION.

v Optionally, the STRING statement to string all of the separate records together
into one continuous stream, to remove extraneous blanks, and to handle
variable-length records.

If the XMLPARSE(XMLSS) option is in effect, you can parse an XML document that is
in a file by passing the parser one record (or segment) of text from the file at a
time. This capability is useful for parsing very large XML documents.

RELATED TASKS

“Coding COBOL programs to run under CICS” on page 429
Chapter 22, “Developing COBOL programs for IMS,” on page 453
“Parsing XML documents one segment at a time” on page 543

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)

Parsing XML documents
To parse XML documents, use the XML PARSE statement, specifying the XML
document that is to be parsed and the processing procedure for handling XML
events that occur during parsing, as shown in the following code fragment.
XML PARSE xml-document

PROCESSING PROCEDURE xml-event-handler
ON EXCEPTION

DISPLAY ’XML document error ’ XML-CODE
STOP RUN

NOT ON EXCEPTION
DISPLAY ’XML document was successfully parsed.’

END-XML

In the XML PARSE statement, you first identify the parse data item (xml-document in
the example above) that contains the XML document character stream. In the DATA
DIVISION, define the parse data item as an elementary data item of category
national or as a national group item if the encoding of the document is Unicode
UTF-16; otherwise, define the parse data item as an elementary alphanumeric data
item or an alphanumeric group item:
v If the parse data item is national, the XML document must be encoded in

UTF-16, CCSID 1200.

530 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|

|
|

v If the parse data item is alphanumeric, its content must be encoded in one of the
supported code pages described in the related reference about the encoding of
XML documents.

Next, specify the name of the processing procedure (xml-event-handler in the
example above) that is to handle the XML events that occur during parsing of the
document.

If the XMLPARSE(XMLSS) compiler option is in effect, you can also use any of these
optional phrases of the XML PARSE statement:
v ENCODING, to specify the CCSID of the document
v RETURNING NATIONAL, to cause the parser to automatically convert UTF-8 or

single-byte characters to national characters for return to the processing
procedure

v VALIDATING, to cause the parser to validate the document against an XML
schema

In addition, you can specify either or both of the following optional phrases (as
shown in the fragment above) to indicate the action to be taken after parsing
finishes:
v ON EXCEPTION, to receive control if an unhandled exception occurs during

parsing
v NOT ON EXCEPTION, to receive control otherwise

You can end the XML PARSE statement with the explicit scope terminator END-XML.
Use END-XML to nest an XML PARSE statement that uses the ON EXCEPTION or NOT ON
EXCEPTION phrase in a conditional statement.

The parser passes control to the processing procedure for each XML event. Control
returns to the parser at the end of the processing procedure. This exchange of
control between the XML parser and the processing procedure continues until one
of the following events occurs:
v The entire XML document was parsed, as indicated by the END-OF-DOCUMENT

event.
v If XMLPARSE(XMLSS) is in effect, either:

– The parser detects an error in the document and signals an EXCEPTION event
(regardless of the kind of exception).

– The parser signals an END-OF-INPUT event, and the processing procedure
returns to the parser with special register XML-CODE still set to zero, which
indicates that no further XML data will be provided to the parser.

v If XMLPARSE(COMPAT) is in effect, either:
– The parser signals an encoding conflict EXCEPTION event, and the processing

procedure does not reset special register XML-CODE to zero or to the correct
CCSID before returning to the parser.

– The parser detects an error in the document and signals an EXCEPTION event
(other than an encoding conflict), and the processing procedure does not reset
special register XML-CODE to zero before returning to the parser.

v The parsing process is terminated deliberately by the user's code in the
processing procedure that sets the XML-CODE special register to -1 before it
returns to the parser.

RELATED CONCEPTS

“XML events” on page 534

Chapter 28. Processing XML input 531

|
|

|

|
|
|

|
|

|

|
|

|
|
|

|

|
|
|

|
|
|

“XML-CODE” on page 535
“XML schemas” on page 542
“XML-INFORMATION” on page 536

RELATED TASKS

“Writing procedures to process XML”
“Parsing XML documents with validation” on page 540
“Parsing XML documents one segment at a time” on page 543
“Parsing XML documents encoded in UTF-8” on page 551

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“The encoding of XML documents” on page 546
“XML PARSE exceptions with XMLPARSE(XMLSS) in effect” on page 701
“XML PARSE exceptions with XMLPARSE(COMPAT) in effect” on page 703
XML PARSE statement (Enterprise COBOL Language Reference)

Writing procedures to process XML
In your processing procedure, code statements to handle XML events.

For each event that the parser encounters, the parser passes information to the
processing procedure in several special registers. Use the content of those special
registers to populate COBOL data structures and to control the processing.

Examine the XML-EVENT special register to determine which event the parser passed
to the processing procedure. XML-EVENT contains an event name, such as
'START-OF-ELEMENT'. Obtain the text associated with the event from the XML-TEXT or
XML-NTEXT special register.

If the XMLPARSE(XMLSS) option is in effect, you can use special register
XML-NAMESPACE or XML-NNAMESPACE to determine the namespace identifier, if any,
that is associated with the XML event, and examine the XML-NAMESPACE-PREFIX or
XML-NNAMESPACE-PREFIX special register to determine the associated prefix, if any.

When used in nested programs, the XML special registers are implicitly defined as
GLOBAL in the outermost program.

For additional details about the XML special registers, see the following table.

Table 64. Special registers used by the XML parser

Special register Implicit definition and usage Content

XML-EVENT1 PICTURE X(30) USAGE DISPLAY VALUE SPACE The name of the XML event

XML-CODE2 PICTURE S9(9) USAGE BINARY VALUE ZERO An exception code or zero for each XML event

XML-INFORMATION1 PICTURE S9(9) USAGE BINARY VALUE 0 A mechanism to easily determine whether an XML
EVENT is complete

XML-TEXT1 Variable-length elementary category
alphanumeric item

Text (corresponding to the event that the parser
encountered) from the XML document if you specify
an alphanumeric item for the XML PARSE identifier3

XML-NTEXT1 Variable-length elementary category national
item

Text (corresponding to the event that the parser
encountered) from the XML document if you specify a
national item for the XML PARSE identifier3

XML-NAMESPACE1, 4 Variable-length elementary category
alphanumeric item

The namespace identifier for a NAMESPACE-DECLARATION
XML event or for an element or attribute name that is
in a namespace, if the XML document is in an
alphanumeric data item3

532 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|
|

|
|
|
|

Table 64. Special registers used by the XML parser (continued)

Special register Implicit definition and usage Content

XML-NNAMESPACE1, 4 Variable-length elementary category national
item

The namespace identifier for a NAMESPACE-DECLARATION
XML event or for an element or attribute name that is
in a namespace, if the XML document is in a national
data item or the RETURNING NATIONAL phrase is
specified in the XML PARSE statement

XML-NAMESPACE-PREFIX1, 4 Variable-length elementary category national
item

The prefix, if any, for a NAMESPACE-DECLARATION XML
event or for an element or attribute name that is in a
nondefault namespace, if the XML document is in an
alphanumeric data item3

XML-NNAMESPACE-PREFIX1, 4 Variable-length elementary category national
item

The prefix, if any, for a NAMESPACE-DECLARATION XML
event or for an element or attribute name that is in a
nondefault namespace, if the XML document is in a
national data item or the RETURNING NATIONAL phrase is
specified in the XML PARSE statement

1. You cannot use this special register as a receiving data item.

2. The XML GENERATE statement also uses XML-CODE. Therefore, if you have an XML GENERATE statement in the processing procedure,
save the value of XML-CODE before the XML GENERATE statement, and restore the saved value after the XML GENERATE statement.

3. If you specify the RETURNING NATIONAL phrase in the XML PARSE statement for an alphanumeric data item, text is returned in the
corresponding national special register. You can specify the RETURNING NATIONAL phrase only if the XMLPARSE(XMLSS) option is in
effect.

4. The parser sets the namespace special registers only if the XMLPARSE(XMLSS) option is in effect.

Restrictions:

v A processing procedure must not directly execute an XML PARSE statement.
However, if a processing procedure passes control to a method or outermost
program by using an INVOKE or CALL statement, the target method or program
can execute the same or a different XML PARSE statement. You can also execute
the same XML statement or different XML statements simultaneously from a
program that is running on multiple threads.

v The range of the processing procedure must not cause the execution of any
GOBACK or EXIT PROGRAM statement, except to return control from a method or
program to which control was passed by an INVOKE or CALL statement,
respectively, that is executed in the range of the processing procedure.
You can code a STOP RUN statement in a processing procedure to end the run
unit.

The compiler inserts a return mechanism after the last statement in each processing
procedure.

“Example: program for processing XML” on page 558

RELATED CONCEPTS

“XML events” on page 534
“XML-CODE” on page 535
“XML-TEXT and XML-NTEXT” on page 537
“XML-NAMESPACE and XML-NNAMESPACE” on page 537
“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX” on page 538

RELATED TASKS

“Parsing XML documents one segment at a time” on page 543
“Parsing XML documents with validation” on page 540
“Terminating XML parsing” on page 556

Chapter 28. Processing XML input 533

|
|
|
|

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
XML-EVENT (Enterprise COBOL Language Reference)

XML events
An XML event results when the XML parser detects various conditions (such as
END-OF-INPUT or EXCEPTION) or encounters document fragments (such as
CONTENT-CHARACTERS or START-OF-CDATA-SECTION) while processing an XML
document.

For each event that occurs during XML parsing, the parser sets the associated
event name in the XML-EVENT special register, and passes the XML-EVENT special
register to the processing procedure. Depending on the event, the parser sets other
special registers to contain additional information about the event.

In most cases, the parser sets the XML-TEXT or XML-NTEXT special register to the XML
fragment that caused the event:
v If the XMLPARSE(COMPAT) compiler option is in effect, the parser sets XML-NTEXT if

the XML document is in a national data item, or if the parser finds a character
reference; otherwise, the parser sets XML-TEXT.

v If XMLPARSE(XMLSS) is in effect, the parser sets XML-NTEXT if the RETURNING
NATIONAL phrase is specified in the XML PARSE statement, or if the XML document
is in a national data item; otherwise, the parser sets XML-TEXT.

If XMLPARSE(XMLSS) is in effect, the parser sets the namespace special registers for a
NAMESPACE-DECLARATION event, or if it encounters a name that is in a namespace.

When the parser detects an encoding conflict or a well-formedness or validation
error in the document, it sets XML-EVENT to ’EXCEPTION’ and provides additional
information about the exception in the XML-CODE special register. You can parse
with validation only if XMLPARSE(XMLSS) is in effect. For further details, see the
related task about parsing with validation.

For a detailed description of the set of XML events, see the related reference about
XML-EVENT.

“Example: parsing a simple document” on page 557

RELATED CONCEPTS

“XML parser in COBOL” on page 528
“XML-CODE” on page 535
“XML-INFORMATION” on page 536
“XML-TEXT and XML-NTEXT” on page 537
“XML-NAMESPACE and XML-NNAMESPACE” on page 537
“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX” on page 538

RELATED TASKS

“Writing procedures to process XML” on page 532
“Parsing XML documents with validation” on page 540

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“XML PARSE exceptions with XMLPARSE(XMLSS) in effect” on page 701
“XML PARSE exceptions with XMLPARSE(COMPAT) in effect” on page 703
XML-EVENT (Enterprise COBOL Language Reference)

534 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

XML-CODE
For each XML event except an EXCEPTION event, the parser sets the value of the
XML-CODE special register to zero. For an EXCEPTION event, the parser sets XML-CODE
to a value that identifies the specific exception.

For information about the possible exception codes, see the related references.

When the parser returns control to the XML PARSE statement from your processing
procedure, XML-CODE generally contains the most recent value that was set by the
parser. However, for any event other than EXCEPTION, if you set XML-CODE to -1 in
your processing procedure, parsing terminates with a user-initiated exception
condition when control returns to the parser, and XML-CODE retains the value -1.

For an EXCEPTION XML event when XMLPARSE(COMPAT) is in effect, your processing
procedure can, in some cases, set XML-CODE to a meaningful value before control
returns to the parser. (For details, see the related tasks about handling XML PARSE
exceptions and handling encoding conflicts.) If you set XML-CODE to any other
nonzero value or set it for any other exception, the parser resets XML-CODE to the
original exception code.

For a START-OF-DOCUMENT XML event when compiler option XMLPARSE(COMPAT) is in
effect, your processing procedure can set XML-CODE to 1 before control returns to the
parser. This action instructs the parser to release (at the end of parsing) any
Language Environment resources acquired during parsing.

The following table shows the results of setting XML-CODE to various values. The
leftmost column shows the type of XML event passed to the processing procedure;
the other column headings show the XML-CODE value set by the processing
procedure. The cell at the intersection of each row and column shows the action
that the parser takes upon return from the processing procedure for a given
combination of XML event and XML-CODE value.

Table 65. Results of processing-procedure changes to XML-CODE with XMLPARSE(XMLSS) in effect

XML event type XML-CODE set to -1 XML-CODE set to 0 XML-CODE set to 1
XML-CODE set to

other nonzero values

Fatal EXCEPTION Ignores setting; keeps
original XML-CODE
value

Ignores setting; keeps
original XML-CODE
value

Ignores setting; keeps
original XML-CODE
value

Ignores setting; keeps
original XML-CODE
value

Warning EXCEPTION
(Reason code 800 or
801)

Ignores setting; keeps
original XML-CODE
value

Next event is
ATTRIBUTE-NAME or
START-OF-ELEMENT

Ignores setting; keeps
original XML-CODE
value

Ignores setting; keeps
original XML-CODE
value

END-OF-INPUT Ends immediately;
XML-CODE = -11

Next event is
END-OF-DOCUMENT2

Next event depends
on input2

Fatal runtime error
(message 230S)

Normal event Ends immediately;
XML-CODE = -11

XML-CODE already 0,
no change

Fatal runtime error
(message 230S)

Fatal runtime error
(message 230S)

1. See the related task about terminating XML parsing.

2. See the related task about parsing documents one segment at a time.

Chapter 28. Processing XML input 535

|
|
|
|
|
|

|
|
|
|

||

||||
|
|

||
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

||
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

|

|
|

Table 66. Results of processing-procedure changes to XML-CODE with XMLPARSE(COMPAT) in effect

XML event type -1 0 XML-CODE-100,000 Other nonzero value

Encoding-conflict
exception (exception
codes 50 - 99)

Ignores setting; keeps
original XML-CODE
value

Chooses encoding
depending on the
specific exception
code1

Ignores setting; keeps
original XML-CODE
value

Ignores setting; keeps
original XML-CODE
value

Encoding-choice
exception (exception
codes > 100,000)

Ignores setting; keeps
original XML-CODE
value

Parses using the
CODEPAGE value2

Parses using the
difference (shown
above) as the
encoding value2

Ignores setting; keeps
original XML-CODE
value

Other exception Ignores setting; keeps
original XML-CODE
value

Limited continuation
only for exception
codes 1 - 493

Ignores setting; keeps
original XML-CODE
value

Ignores setting; keeps
original XML-CODE
value

Normal event (except
START-OF-DOCUMENT)

Ends immediately;
XML-CODE = -14

[No apparent change
to XML-CODE]

Ends immediately;
XML-CODE = -1

Ends immediately;
XML-CODE = -1

START-OF-DOCUMENT Ends immediately;
XML-CODE = -14

[No apparent change
to XML-CODE]

Ends immediately;
XML-CODE = -1

v XML-CODE = 1

v Else ends
immediately;
XML-CODE = -1

1. See the exception codes in the related reference about XML PARSE exceptions with XMLPARSE(COMPAT) in effect.

2. See the related task about handling encoding conflicts.

3. See the related task about handling XML PARSE exceptions.

4. See the related task about terminating XML parsing.

XML generation also uses the XML-CODE special register. For details, see the related
task about handling XML GENERATE exceptions.

RELATED CONCEPTS

“How the XML parser handles errors” on page 554

RELATED TASKS

“Writing procedures to process XML” on page 532
“Parsing XML documents one segment at a time” on page 543
“Handling XML PARSE exceptions” on page 552
“Terminating XML parsing” on page 556
“Handling XML GENERATE exceptions” on page 577

RELATED REFERENCES

“XML PARSE exceptions with XMLPARSE(XMLSS) in effect” on page 701
“XML PARSE exceptions with XMLPARSE(COMPAT) in effect” on page 703
“XML GENERATE exceptions” on page 710
XML-CODE (Enterprise COBOL Language Reference)
XML-EVENT (Enterprise COBOL Language Reference)

XML-INFORMATION
For most XML events, the parser sets XML-INFORMATION to indicate whether an XML
EVENT is complete or whether the XML content spans multiple events.

The application program logic can use the XML-INFORMATION special register to
concatenate pieces of parsed XML content together.

536 Enterprise COBOL for z/OS, V5.2 Programming Guide

||

|||||

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

||
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|

|
|
|

|

|

|

|
|

|
|

RELATED CONCEPTS

“XML events” on page 534
“XML-CODE” on page 535

RELATED TASKS

“Writing procedures to process XML” on page 532

RELATED REFERENCES

XML-TEXT (Enterprise COBOL Language Reference)
XML-NTEXT (Enterprise COBOL Language Reference)

XML-TEXT and XML-NTEXT
For most XML events, the parser sets XML-TEXT or XML-NTEXT to an associated
document fragment.

Typically, the parser sets XML-TEXT if the XML document is in an alphanumeric data
item. The parser sets XML-NTEXT if:
v The XML document is in a national data item.
v The XMLPARSE(XMLSS) option is in effect and the RETURNING NATIONAL phrase is

specified in the XML PARSE statement.
v The ATTRIBUTE-NATIONAL-CHARACTER or CONTENT-NATIONAL-CHARACTER event

occurs.

The special registers XML-TEXT and XML-NTEXT are mutually exclusive. When the
parser sets XML-TEXT, XML-NTEXT is empty with length zero. When the parser sets
XML-NTEXT, XML-TEXT is empty with length zero.

To determine the number of character encoding units in XML-NTEXT, use the LENGTH
intrinsic function; for example FUNCTION LENGTH(XML-NTEXT). To determine the
number of bytes in XML-NTEXT, use special register LENGTH OF XML-NTEXT. The
number of character encoding units differs from the number of bytes.

To determine the number of bytes in XML-TEXT, use either special register LENGTH OF
XML-TEXT or the LENGTH intrinsic function; each returns the number of bytes.

The XML-TEXT and XML-NTEXT special registers are undefined outside the processing
procedure.

RELATED CONCEPTS

“XML events” on page 534
“XML-CODE” on page 535

RELATED TASKS

“Writing procedures to process XML” on page 532

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
XML-TEXT (Enterprise COBOL Language Reference)
XML-NTEXT (Enterprise COBOL Language Reference)

XML-NAMESPACE and XML-NNAMESPACE

If the XMLPARSE(XMLSS) option is in effect, the XML parser sets the XML-NAMESPACE
or XML-NNAMESPACE special register to the namespace identifier for a
NAMESPACE-DECLARATION XML event, or if it encounters an element name or
attribute name that is in a namespace.

Chapter 28. Processing XML input 537

|
|

|
|

|
|
|
|

The parser sets XML-NNAMESPACE if the XML document is in a national data item, or
if the RETURNING NATIONAL phrase is specified in the XML PARSE statement.
Otherwise, the parser sets XML-NAMESPACE.

The special registers XML-NAMESPACE and XML-NNAMESPACE are mutually exclusive: If
the parser sets XML-NAMESPACE, XML-NNAMESPACE is empty with length zero. If the
parser sets XML-NNAMESPACE, XML-NAMESPACE is empty with length zero.

To determine the number of character encoding units in XML-NNAMESPACE, use the
LENGTH intrinsic function; for example: FUNCTION LENGTH(XML-NNAMESPACE). To
determine the number of bytes in XML-NNAMESPACE, use special register LENGTH OF
XML-NNAMESPACE. The number of character encoding units differs from the number
of bytes.

To determine the number of bytes in XML-NAMESPACE, use either special register
LENGTH OF XML-NAMESPACE or the LENGTH intrinsic function; each returns the number
of bytes.

The XML namespace special registers are undefined outside the processing
procedure.

RELATED CONCEPTS

“XML events” on page 534
“XML-CODE” on page 535
“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX”
“XML-TEXT and XML-NTEXT” on page 537

RELATED TASKS

“Writing procedures to process XML” on page 532

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)

XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX
If the XMLPARSE(XMLSS) option is in effect, the XML parser sets the
XML-NAMESPACE-PREFIX special register or the XML-NNAMESPACE-PREFIX special
register for a NAMESPACE-DECLARATION XML event that also defines a namespace
prefix, or if an element name or attribute name in a namespace is prefixed.

The parser sets XML-NNAMESPACE-PREFIX if the XML document is in a national data
item, or the RETURNING NATIONAL phrase is specified in the XML PARSE statement.
Otherwise, the parser sets XML-NAMESPACE-PREFIX.

The special registers XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX are
mutually exclusive: If the parser sets XML-NAMESPACE-PREFIX, XML-NNAMESPACE-
PREFIX is empty with length zero. If the parser sets XML-NNAMESPACE-PREFIX,
XML-NAMESPACE-PREFIX is empty with length zero.

To determine the number of character encoding units in XML-NNAMESPACE-PREFIX,
use the LENGTH intrinsic function; for example: FUNCTION LENGTH(XML-NNAMESPACE-
PREFIX). To determine the number of bytes in XML-NNAMESPACE-PREFIX, use special
register LENGTH OF XML-NNAMESPACE-PREFIX. The number of character encoding
units differs from the number of bytes.

538 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|

To determine the number of bytes in XML-NAMESPACE-PREFIX, use either special
register LENGTH OF XML-NAMESPACE-PREFIX or the LENGTH intrinsic function; each
returns the number of bytes.

The XML namespace-prefix special registers are undefined outside the processing
procedure.

RELATED CONCEPTS

“XML events” on page 534
“XML-NAMESPACE and XML-NNAMESPACE” on page 537

RELATED TASKS

“Writing procedures to process XML” on page 532

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)

Transforming XML text to COBOL data items
Because XML data is neither fixed length nor fixed format, you need to use special
techniques when you move XML data to a COBOL data item.

For alphanumeric items, decide whether the XML data should go at the left
(default) end, or at the right end, of the COBOL data item. If the data should go at
the right end, specify the JUSTIFIED RIGHT clause in the definition of the item.

Give special consideration to numeric XML values, particularly “decorated”
monetary values such as '$1,234.00' or '$1234'. These two strings might mean the
same thing in XML, but need quite different definitions if used as COBOL sending
fields.

Use one of the following techniques when you move XML data to COBOL data
items:
v If the format is reasonably regular, code a MOVE to an alphanumeric item that you

redefine appropriately as a numeric-edited item. Then do the final move to a
numeric (operational) item by moving from, and thus de-editing, the
numeric-edited item. (A regular format would have the same number of digits
after the decimal point, a comma separator for values greater than 999, and so
on.)

v For simplicity and vastly increased flexibility, use the following intrinsic
functions for alphanumeric XML data:
– NUMVAL to extract and decode simple numeric values from XML data that

represents plain numbers
– NUMVAL-C to extract and decode numeric values from XML data that represents

monetary quantities
However, using these functions is at the expense of performance.

RELATED TASKS

“Converting to numbers (NUMVAL, NUMVAL-C)” on page 117
“Using national data (Unicode) in COBOL” on page 130
“Writing procedures to process XML” on page 532

Chapter 28. Processing XML input 539

|
|

|

Parsing XML documents with validation
Validating an XML document determines whether the structure and content of the
document conform to a set of rules. In Enterprise COBOL, the rules are expressed
in an XML schema, which is essentially a blueprint for a class of documents.

To validate XML documents while parsing, use the VALIDATING phrase of the XML
PARSE statement. To do so, you must compile your program using the
XMLPARSE(XMLSS) compiler option.

You can validate XML documents only against an XML schema.

In Enterprise COBOL, a schema used for XML validation must be in a
preprocessed format known as Optimized Schema Representation, or OSR. To
generate a schema in OSR format from a text-form schema, use the z/OS UNIX
command xsdosrg, which invokes the OSR generator provided by z/OS System
Services. (Alternatively, you can call the OSR generator programmatically. For
details, see the related reference about z/OS XML System Services.)

For example, to convert the text-form schema in file item.xsd to a schema in
preprocessed format in file item.osr, you can use the following z/OS UNIX
command:
xsdosrg -v -o /u/HLQ/xml/item.osr /u/HLQ/xml/item.xsd

Use one of two forms of the VALIDATING phrase, depending on the location of the
preprocessed schema:
v In one form, you use the FILE keyword and specify an XML schema name. In

this case, the schema must be in an MVS data set or a z/OS UNIX file.
v In the other form, you specify the identifier of a data item that contains the

schema.

If you use the FILE keyword and specify an XML schema name, the COBOL
runtime library automatically retrieves the schema during execution of the XML
PARSE statement. The following code fragment shows this method of specifying
validation:
XML PARSE document-item

VALIDATING WITH FILE schema-name
PROCESSING PROCEDURE xml-event-handler

ON EXCEPTION
DISPLAY ’Document has an error.’
GOBACK

NOT ON EXCEPTION
DISPLAY ’Document is valid.’

END-XML

To associate an XML schema name with the external file that contains the schema,
code the XML-SCHEMA clause in the SPECIAL-NAMES paragraph, specifying either a
literal or a user-defined word to identify the file.

For example, you can associate the XML schema name schema-name shown in the
fragment above with the ddname DDSCHEMA by coding the ddname as a literal in
the XML-SCHEMA clause as follows:
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

XML-SCHEMA schema-name IS ’DDSCHEMA’.

540 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

For running the program, you can associate ddname DDSCHEMA with the z/OS
UNIX file item.osr by coding a DD statement as follows:
//GO.DDSCHEMA DD PATH=’/u/HLQ/xml/item.osr’

Or you can use an analogous TSO ALLOCATE command.

Alternatively, DDSCHEMA in the example above could be the name of an environment
variable that identifies the external file by means of a DSN option that specifies an
MVS data set or a PATH option that specifies a z/OS UNIX file.

If your schema is in an MVS data set, the data set can be any sequential data set
(for example, QSAM fixed blocked or variable blocked, or VSAM ESDS).

For further details about how to associate an XML schema name with the external
file that contains the schema, see the related reference about the XML-SCHEMA clause.

Restriction: XML validation using the FILE keyword is not supported under
CICS.

The automatic retrieval that occurs when you use the FILE keyword is convenient.
But if you have several XML documents of the same type to validate, reading the
schema into memory once and then reusing the schema for each of the documents
provides better performance than automatic retrieval. In this case, you use the
other form of the VALIDATING phrase, in which you specify an identifier that
references an alphanumeric data item that contains the XML schema. For example:
XML PARSE document-item

VALIDATING WITH xmlschema
PROCESSING PROCEDURE xml-event-handler

ON EXCEPTION
DISPLAY ’Document has an error.’
GOBACK

NOT ON EXCEPTION
DISPLAY ’Document is valid.’

END-XML

Read the preprocessed schema into the data item, for example by using normal
COBOL statements.

For more information about this form of the VALIDATING phrase, see the related
reference about the XML PARSE statement.

During parsing with validation, normal XML events are returned until an
exception occurs due to a validation error or well-formedness error. If an XML
document is not valid, the parser signals an XML exception and passes control to
the processing procedure with special register XML-EVENT containing 'EXCEPTION'
and special register XML-CODE containing return code 24 in the high-order halfword
and a specific validation reason code in the low-order halfword.

For information about the return code and reason code for exceptions that might
occur when parsing XML documents with validation, see the related reference
about exceptions with XMLPARSE(XMLSS) in effect.

“Example: parsing XML documents with validation” on page 568

RELATED CONCEPTS

“XML-CODE” on page 535
“XML schemas” on page 542

Chapter 28. Processing XML input 541

|
|
|

RELATED TASKS

“Handling XML PARSE exceptions” on page 552

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“XML PARSE exceptions with XMLPARSE(XMLSS) in effect” on page 701
XML PARSE statement (Enterprise COBOL Language Reference)
XML-SCHEMA clause (Enterprise COBOL Language Reference)
z/OS XML System Services User's Guide and Reference

XML schemas
An XML schema is a mechanism, defined by the W3C, for describing and
constraining the structure and content of XML documents. An XML schema, which
is itself expressed in XML, effectively defines a class of XML documents of a given
type, for example, purchase orders.

For Enterprise COBOL, XML schemas used for validating XML documents must be
in a preprocessed format known as Optimized Schema Representation (OSR). For
information about this format, see the related reference about z/OS XML System
Services.

Consider an XML document that describes an item for stock-keeping purposes:
<stockItem itemNumber="453-SR">

<itemName>Stainless steel rope thimbles</itemName>
<quantityOnHand>23</quantityOnHand>

</stockItem>

The example document above is both well formed and valid according to the
following schema. (The numbers that precede each line are not part of the schema,
but are used in the explanations after the schema.)
1. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
2.
3. <xsd:element name="stockItem" type="stockItemType"/>
4.
5. <xsd:complexType name="stockItemType">
6. <xsd:sequence>
7. <xsd:element name="itemName" type="xsd:string" minOccurs="0"/>
8. <xsd:element name="quantityOnHand">
9. <xsd:simpleType>
10. <xsd:restriction base="xsd:nonNegativeInteger">
11. <xsd:maxExclusive value="100"/>
12. </xsd:restriction>
13. </xsd:simpleType>
14. </xsd:element>
15. </xsd:sequence>
16. <xsd:attribute name="itemNumber" type="SKU" use="required"/>
17. </xsd:complexType>
18.
19. <xsd:simpleType name="SKU">
20. <xsd:restriction base="xsd:string">
21. <xsd:pattern value="\d{3}-[A-Z]{2}"/>
22. </xsd:restriction>
23. </xsd:simpleType>
24.
25. </xsd:schema>

The schema declares (line 3) that the root element is stockItem, which has a
mandatory itemNumber attribute (line 16) of type SKU, and includes a sequence
(lines 6 - 15) of other elements:
v An optional itemName element of type string (line 7)

542 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

v A required quantityOnHand element that has a constrained range of 1 - 99 based
on the type nonNegativeInteger (lines 8 - 14)

Type declarations can be inline and unnamed, as in lines 9 - 13, which include the
maxExclusive facet to specify the legal values for the quantityOnHand element.

For the itemNumber attribute, by contrast, the named type SKU is declared separately
in lines 19 - 23, which include a pattern facet that uses regular expression syntax to
specify that the legal values for that type consist of (in order): 3 digits, a
hyphen-minus, then two uppercase letters.

The example referenced below shows a program that parses documents against
this schema.

“Example: parsing XML documents with validation” on page 568

RELATED TASKS

“Parsing XML documents with validation” on page 540

RELATED REFERENCES

z/OS XML System Services User's Guide and Reference

Parsing XML documents one segment at a time
You can parse XML documents by passing the parser one segment (or record) of
XML text at a time. Processing very large documents, or processing XML
documents that reside in a data set, are two possible major applications of this
technique.

To use this feature, compile your program with the XMLPARSE(XMLSS) compiler
option in effect.

You parse an XML document a segment at a time by initializing the parse data
item to the first segment of the XML document, and then executing the XML PARSE
statement. The parser processes the XML text and returns XML events to your
processing procedure as usual.

At the end of the text segment, the parser signals an END-OF-INPUT XML event,
with XML-CODE set to zero. If there is another segment of the document to process,
in your processing procedure move the next segment of XML data to the parse
data item, set XML-CODE to one, and return to the parser. To signal the end of XML
segments to the parser, return to the parser with XML-CODE still set to zero.

The length of the parse data item is evaluated for each segment, and determines
the segment length.

Variable-length segments: If the XML document segments are variable length,
specify a variable-length item for the parse data item. For example, for
variable-length XML segments, you can define the parse data item as one of the
following items:
v A variable-length group item that contains an OCCURS DEPENDING ON clause
v A reference-modified item
v An FD record that specifies the RECORD IS VARYING DEPENDING ON clause, where

the depending-on data item is used as the length in a reference modifier or ODO
object for the FD record

Chapter 28. Processing XML input 543

|
|

When you send an XML document to the parser in multiple segments, document
content is in some cases returned to the processing procedure in multiple
fragments by means of multiple events, rather than as one large fragment in a
single event.

For example, if the document is split into two segments with the split point in the
middle of a string of content characters, the parser returns the content in two
separate CONTENT-CHARACTERS events. In the processing procedure, you must
reassemble the string of content as needed by the application.

Starting element tags, attribute names, namespace declarations, and ending
element tags are always delivered to the processing procedure in a single event,
even if those items are split between two segments of a document.

If a segment split occurs between the bytes of a multibyte character, the parser
detects the split and reassembles the character for delivery in a single event.

If you are parsing an XML document with an unknown number of repetitive
elements to be processed, use unbounded tables. For more information on
unbounded tables, see “Working with unbounded tables and groups” on page 90.

For each such element in a given document, manage the table size using one of the
following methods:
v Calculating number of elements:

1. Count the number of elements in the document during an initial parse.
2. Set the OCCURS DEPENDING ON object for the table to that size
3. Allocate storage for the table
4. Parse the document a second time to process the XML

v Incremental expansion:
1. Set an initial size in the OCCURS DEPENDING ON object for the unbounded table
2. Parse the document normally. For each element

a. Check the limit and expand the unbounded table if necessary.
3. Allocate a new, larger storage area:
4. Copy the data from the smaller area
5. Free the smaller area
6. Set the table pointer to the address of the larger storage area.

QSAM and VSAM files: You can process XML documents stored in a QSAM or
VSAM file as follows:
1. Open the file and read the first record of the XML document.
2. Execute the XML PARSE statement with the FD record as the parse data item.
3. In the processing-procedure logic for handling the END-OF-INPUT event, read the

next record of the XML document into the parse data item. If not end-of-file
(file status code 10), set XML-CODE to one and return to the parser. If end-of-file,
return to the parser with XML-CODE still set to zero.

4. In your processing procedure logic for the END-OF-DOCUMENT event, close the file.

Miscellaneous information after the root element:

The root element of an XML document might be followed by zero or more
occurrences of a comment or processing instruction, in any order. If you parse the
document one segment at a time, the parser signals an END-OF-INPUT XML event

544 Enterprise COBOL for z/OS, V5.2 Programming Guide

after processing the end tag of the root element only if the last item in the segment
is incomplete. If the segment ends with a complete XML item (such as the root
element end tag, or after that tag, a complete comment or processing instruction),
the next XML event after the event for the item itself is the END-OF-DOCUMENT XML
event.

Tip: To provide successive segments of XML data after the end of the root element,
include at least the first nonspace character of an XML item at the end of each
segment. Include a complete item only on the last segment that you want the
parser to process.

For instance, in the following example, in which each line represents a segment of
an XML document, the segment that includes the text This comment ends this
segment is the last segment to be parsed:

<Tagline>
COBOL is the language of the future!
</Tagline> <
!--First comment--
> <?pi data?> <!-
-This comment ends this segment-->
<!-- This segment is not included in the parse-->

“Example: parsing an XML document one segment at a time” on page 566

RELATED CONCEPTS

“XML events” on page 534
“XML-CODE” on page 535

RELATED TASKS

“Parsing XML documents one segment at a time” on page 543
“XML-CODE” on page 535

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)

Handling splits using the XML-INFORMATION special register
You can parse large XML documents by using the XML-INFORMATION special register.

To use this feature, compile your program with the XMLPARSE(XMLSS) compiler
option in effect.

Splits in character content might occur at arbitrary points in the XML data stream,
even with unsegmented input. The XML-INFORMATION special register simplifies the
reassembly of content. This register may be required for any and all attribute
values and element character content.

The length of the parse data item is evaluated for each segment, and determines
the segment length.

The example, “Example: program for processing XML” on page 558, demonstrates
various ways of assigning values obtained from the XML document to program
data items for later processing.

The XML data is provided to the parser in 40-byte records, imitating the way an
XML document might be acquired from an external source such as a data file. The

Chapter 28. Processing XML input 545

|
|

|

record boundaries are designed so that all data splits but one are accommodated
by the parser. For example, the sample treats as an error a split in any content
except the content of the "filling" element.

In the example, the XML-INFORMATION special register is only used to simplify the
reassembly of content for the "filling" element. This register could be used for
any attribute values and element character content. An XML-INFORMATION value of 2
indicates that the character data for an ATTRIBUTE-CHARACTERS or
CONTENT-CHARACTERS XML event is continued in a subsequent XML event, and
should thus be buffered in order to accumulate the complete character string. A
subsequent XML event of the same type with an XML-INFORMATION value of 1
indicates that XML-TEXT or XML-NTEXT contains the final piece of the character
content, and that the complete string can be moved to the appropriate data item.

In the example, the STRING ... WITH POINTER statement accumulates and
describes properly the complete character value for assignment to the "filling"
identifier.

String xml-text delimited by size into
content-buffer with pointer tally

On overflow
Display ’content buffer (’

length of content-buffer
’ bytes) is too small’

Move -1 to xml-code
End-string

RELATED CONCEPTS

“XML events” on page 534
“XML-CODE” on page 535

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“Example: program for processing XML” on page 558

The encoding of XML documents
XML documents must be encoded in a supported code page.

XML documents generated in or parsed from national data items must be encoded
in Unicode UTF-16 in big-endian format, CCSID 1200.

For XML GENERATE statements, documents generated in alphanumeric data items
must be encoded in Unicode UTF-8 (CCSID 1208) or one of the single-byte
EBCDIC encodings listed in the table below. You can use any CCSID from that
table in the ENCODING phrase of the XML GENERATE statement.

For XML PARSE statements, documents in alphanumeric data items must be encoded
as follows:
v If XMLPARSE(XMLSS) is in effect:

– If the RETURNING NATIONAL phrase is specified in the XML PARSE statement, in
any EBCDIC or ASCII encoding that is supported by z/OS Unicode Services
for conversion to UTF-16

– If the RETURNING NATIONAL phrase is not specified in the XML PARSE statement,
in UTF-8 (CCSID 1208) or one of the single-byte EBCDIC encodings listed in
the table below

546 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|
|
|

|
|
|

v If XMLPARSE(COMPAT) is in effect: in one of the single-byte EBCDIC encodings
listed in the table below

If XMLPARSE(XMLSS) is in effect, you can use any supported CCSID (as described
above for XML PARSE) in the ENCODING phrase of the XML PARSE statement.

Table 67. Coded character sets for XML documents

CCSID Description

1208 UTF-81

1047 Latin 1 / Open Systems

1140, 37 USA, Canada, . . . Euro Country Extended Code Page (ECECP),
Country Extended Code Page (CECP)

1141, 273 Austria, Germany ECECP, CECP

1142, 277 Denmark, Norway ECECP, CECP

1143, 278 Finland, Sweden ECECP, CECP

1144, 280 Italy ECECP, CECP

1145, 284 Spain, Latin America (Spanish) ECECP, CECP

1146, 285 UK ECECP, CECP

1147, 297 France ECECP, CECP

1148, 500 International ECECP, CECP

1149, 871 Iceland ECECP, CECP

1. Supported for the XML PARSE statement in the ENCODING phrase if XMLPARSE(XMLSS) is in
effect

RELATED CONCEPTS

“XML input document encoding”

RELATED TASKS

“Specifying the encoding” on page 549
“Parsing XML documents encoded in UTF-8” on page 551
Chapter 29, “Producing XML output,” on page 571

RELATED REFERENCES

“CODEPAGE” on page 313
“XMLPARSE” on page 373 (compiler option)

XML input document encoding
To parse an XML document using the XML PARSE statement, the document must be
encoded in a supported encoding.

The supported encodings for a given parse operation depend on:
v The category of the data item that contains the XML document
v The setting of the XMLPARSE compiler option
v The optional phrases that are specified in the XML PARSE statement

For XML documents that are contained in a national data item, the supported
encoding is Unicode UTF-16 in big-endian format, CCSID 1200.

Chapter 28. Processing XML input 547

|
|

|

|

For XML documents that are contained in an alphanumeric data item, the
supported encodings if the XMLPARSE(XMLSS) compiler option is in effect are as
follows:
v If the RETURNING NATIONAL phrase is specified in the XML PARSE statement: UTF-8

or any EBCDIC or ASCII encoding that is supported by the z/OS Unicode
Services for conversion to UTF-16

v If the RETURNING NATIONAL phrase is not specified: UTF-8 or any of the
single-byte EBCDIC CCSIDs listed in the related reference about the encoding of
XML documents

For XML documents that are contained in an alphanumeric data item, the
supported CCSIDs if XMLPARSE(COMPAT) is in effect are those specified in the related
reference about the encoding of XML documents.

To parse an XML document that is encoded in an unsupported code page, first
convert the document to national character data (UTF-16) by using the NATIONAL-OF
intrinsic function. You can convert the individual pieces of document text that are
passed to the processing procedure in special register XML-NTEXT back to the
original code page by using the DISPLAY-OF intrinsic function.

XML declaration and white space:

XML documents can begin with white space only if they do not have an XML
declaration:
v If an XML document begins with an XML declaration, the first angle bracket (<)

in the document must be the first character in the document.
v If an XML document does not begin with an XML declaration, the first angle

bracket in the document can be preceded only by white space.

White-space characters have the hexadecimal values shown in the following table.

Table 68. Hexadecimal values of white-space characters

White-space character EBCDIC Unicode

Space X'40' X'0020'

Horizontal tabulation X'05' X'0009'

Carriage return X'0D' X'000D'

Line feed X'25' X'000A'

New line / next line X'15' X'0085'

Determining the encoding of an input XML document
The parser must know the encoding of an XML document in order to process the
document correctly.

If the specified encoding is not one of the supported coded character sets, the
parser signals an XML exception event before beginning the parse operation. If the
actual document encoding does not match the specified encoding, the parser signals
an appropriate XML exception after beginning the parse operation.

Several sources are used in determining the encoding of an XML document:
v If the XMLPARSE(XMLSS) option is in effect:

– The data type of the data item that contains the XML document
– The ENCODING phrase (if used) of the XML PARSE statement

548 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|

|
|
|

|

|

|

– The CCSID specified in the CODEPAGE compiler option
v If the XMLPARSE(COMPAT) option is in effect:

– The data type of the data item that contains the XML document
– The actual encoding determined when the parser examines the first few bytes

of the document
– The encoding declaration specified within the XML document
– The CCSID specified in the CODEPAGE compiler option

If XMLPARSE(XMLSS) is in effect:
v Any encoding declaration specified within the XML document is ignored.
v For XML documents that are contained in a national data item, the ENCODING

phrase of the XML PARSE statement must be omitted or must specify CCSID 1200.
The CCSID specified in the CODEPAGE compiler option is ignored. The parser
signals an XML exception event if the actual document encoding is not UTF-16
in big-endian format.

v For XML documents that are contained in an alphanumeric data item, the
CCSID specified in the ENCODING phrase overrides the CODEPAGE compiler option.
The parser raises an XML exception event at the beginning of the parse
operation if the actual document encoding is not consistent with the specified
CCSID.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 137
“Specifying the encoding”
“Parsing XML documents encoded in UTF-8” on page 551
“Handling XML PARSE exceptions” on page 552

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“The encoding of XML documents” on page 546
“EBCDIC code-page-sensitive characters in XML markup” on page 550

Specifying the encoding
You can choose how to specify the encoding for parsing an XML document that is
in an alphanumeric data item.

The preferred way is to omit the encoding declaration from the document and to
specify the encoding using one of the following means:
v If XMLPARSE(XMLSS) is in effect: the ENCODING phrase of the XML PARSE statement,

or the CODEPAGE compiler option
v If XMLPARSE(COMPAT) is in effect: the CODEPAGE compiler option

Omitting the encoding declaration makes it possible to more easily transmit an
XML document between heterogeneous systems. (If you included an encoding
declaration, you would need to update it to reflect any code-page translation
imposed by the transmission process.)

For XMLPARSE(COMPAT):

You can instead specify an encoding declaration in the XML declaration with
which most XML documents begin. For example:
<?xml version="1.0" encoding="ibm-1140"?>

Chapter 28. Processing XML input 549

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|
|

|

Note that the XML parser generates an exception if it encounters an XML
declaration that does not begin in the first byte of an XML document.

If you specify an encoding declaration, do so in one of the following ways:
v Specify the CCSID number (with or without any number of leading zeros)

prefixed by one of the following strings in any mixture of uppercase and
lowercase letters:
– IBM-
– IBM_
– CCSID-
– CCSID_

v Use one of the aliases listed in the following table. You can code the aliases in
any mixture of uppercase and lowercase letters.

Table 69. Aliases for XML encoding declarations

CCSID Supported aliases

037 EBCDIC-CP-US, EBCDIC-CP-CA, EBCDIC-CP-WT, EBCDIC-CP-NL

500 EBCDIC-CP-BE, EBCDIC-CP-CH

1200 UTF-16

1208 UTF-8

For more information about the CCSIDs that are supported for XML parsing, see
the related reference about the encoding of XML documents.

RELATED CONCEPTS

“XML input document encoding” on page 547

RELATED TASKS

“Parsing XML documents encoded in UTF-8” on page 551
“Handling encoding conflicts” on page 555

RELATED REFERENCES

“The encoding of XML documents” on page 546

EBCDIC code-page-sensitive characters in XML markup
Several special characters that are used in XML markup have different hexadecimal
representations in different EBCDIC code pages.

The following table shows those special characters and their hexadecimal values
for various EBCDIC CCSIDs.

Table 70. Hexadecimal values of special characters for various EBCDIC CCSIDs

Character 1047 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

[X'AD' X'BA' X'63' X'9E' X'B5' X'90' X'4A' X'B1' X'90' X'4A' X'AE'

] X'BD' X'BB' X'FC' X'9F' X'9F' X'51' X'5A' X'BB' X'B5' X'5A' X'9E'

! X'5A' X'5A' X'4F' X'4F' X'4F' X'4F' X'BB' X'5A' X'4F' X'4F' X'4F'

| X'4F' X'4F' X'BB' X'BB' X'BB' X'BB' X'4F' X'4F' X'BB' X'BB' X'BB'

X'7B' X'7B' X'7B' X'4A' X'63' X'B1' X'69' X'7B' X'B1' X'7B' X'7B'

550 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|

Parsing XML documents encoded in UTF-8
If the XMLPARSE(XMLSS) compiler option is in effect, you can parse XML documents
that are encoded in Unicode UTF-8 in a manner similar to parsing other XML
documents. However, some additional requirements apply.

To parse a UTF-8 XML document, you must specify CCSID 1208 in the ENCODING
phrase of the XML PARSE statement, as shown in the following code fragment:
XML PARSE xml-document

WITH ENCODING 1208
PROCESSING PROCEDURE xml-event-handler
. . .

END-XML

You define xml-document as an alphanumeric data item or alphanumeric group
item in WORKING-STORAGE or LOCAL-STORAGE.

If you do not code the RETURNING NATIONAL phrase in the XML PARSE statement, the
parser returns the XML document fragments in the alphanumeric special registers
XML-TEXT, XML-NAMESPACE, and XML-NAMESPACE-PREFIX.

UTF-8 characters are encoded using a variable number of bytes per character. Most
COBOL operations on alphanumeric data assume a single-byte encoding, in which
each character is encoded in 1 byte. When you operate on UTF-8 characters as
alphanumeric data, you must ensure that the data is processed correctly. Avoid
operations (such as reference modification and moves that involve truncation) that
can split a multibyte character between bytes. You cannot reliably use statements
such as INSPECT to process multibyte characters in alphanumeric data.

You can more reliably process UTF-8 document fragments by specifying the
RETURNING NATIONAL phrase in the XML PARSE statement. If you use the RETURNING
NATIONAL phrase, XML document fragments are efficiently converted to UTF-16
encoding and are returned to the application in the national special registers
XML-NTEXT, XML-NNAMESPACE, and XMLNNAMESPACE-PREFIX. Then you can process the
XML text fragments in national data items. (The UTF-16 encoding in national data
items greatly facilitates Unicode processing in COBOL.)

The following code fragment illustrates the use of both the ENCODING phrase and
the RETURNING NATIONAL phrase for parsing a UTF-8 XML document:
XML PARSE xml-document

WITH ENCODING 1208 RETURNING NATIONAL
PROCESSING PROCEDURE xml-event-handler

ON EXCEPTION
DISPLAY ’XML document error ’ XML-CODE
STOP RUN

NOT ON EXCEPTION
DISPLAY ’XML document was successfully parsed.’

END-XML

RELATED CONCEPTS

“XML-TEXT and XML-NTEXT” on page 537
“XML-NAMESPACE and XML-NNAMESPACE” on page 537
“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX” on page 538

RELATED TASKS

“Processing UTF-8 data” on page 141
“Parsing XML documents” on page 530
“Specifying the encoding” on page 549

Chapter 28. Processing XML input 551

|

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“The encoding of XML documents” on page 546
XML PARSE statement (Enterprise COBOL Language Reference)

Handling XML PARSE exceptions
If the XML parser encounters an anomaly or error during parsing, it sets an
exception code in the XML-CODE special register and signals an XML exception
event. The specific exception codes that can occur and the subsequent actions that
you can take differ depending on the setting of the XMLPARSE compiler option.

For XMLPARSE(XMLSS):

Return code and reason code: The exception code is formed from the return code
and the reason code that the parser generates. The return code and the reason code
are each a halfword binary value. The value in XML-CODE is a concatenation of these
two values.

As an example, the following XML document is not well formed because the
element end tag mmsg does not match the element start tag msg:
<msg>Hello</mmsg>

The return code is hexadecimal 000C (XRC_NOT_WELL_FORMED), and the reason code
is hexadecimal 3035 (XRSN_ENDTAG_NAME_MISMATCH), if you parse the document
without validation. The concatenation of these two values, hexadecimal 000C3035,
is returned to the processing procedure in the XML-CODE special register.

If you parse a document with validation, the values returned in XML-CODE for any
well-formedness errors differ from the values returned for the same errors when
you parse without validation. The return code generated by the z/OS XML System
Services parser for any validation error is 24 (hexadecimal 0018).

For more information about the return codes and reason codes that can be
generated, see the related reference about exceptions with XMLPARSE(XMLSS) in
effect.

If XMLPARSE(XMLSS) is in effect, processing procedures cannot handle exception
events and cannot cause parsing to resume. When a processing procedure returns
to the parser from an exception event, the parser does not signal any further
events. The parser transfers control to the statement that is specified in the ON
EXCEPTION phrase of the XML PARSE statement. If you did not code an ON EXCEPTION
phrase, control is passed to the end of the XML PARSE statement. XML-CODE contains
the original exception code set by the parser.

If no exception occurs during parsing, control is passed to the statement specified
in the NOT ON EXCEPTION phrase. If you did not code a NOT ON EXCEPTION phrase,
control is passed to the end of the XML PARSE statement. XML-CODE contains zero.

For XMLPARSE(COMPAT):

If the exception code is within a certain range, you might be able to handle the
exception event within your processing procedure, and resume parsing.

To handle an exception in the processing procedure, follow these steps:

552 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|
|

|

|
|

|

|
|

|

1. Check the contents of XML-CODE.
2. Handle the exception appropriately.
3. Set XML-CODE to zero to indicate that you handled the exception.
4. Return control to the parser.

The exception condition no longer exists.

You can handle exceptions in this way only if the exception code that is passed in
XML-CODE is within one of the following ranges, which indicates that an encoding
conflict was detected:
v 50 - 99
v 100,001 - 165,535

Exception codes 1 - 49: In the processing procedure, you can do limited handling
of exceptions for which the exception code is within the range 1 - 49. After an
exception in this range occurs, the parser does not signal any further normal
events, except the END-OF-DOCUMENT event, even if you set XML-CODE to zero before
returning. If you set XML-CODE to zero, the parser continues parsing the document
and signals any exceptions that it finds. (Doing so can provide a useful way to
discover multiple errors in the document.)

Restriction: The compatibility-mode COBOL XML parser might not signal all
additional exception events. The number of exceptions is limited to the remaining
space in the XML PARSE event token array, probably 8192 events.

At the end of parsing after an exception that has an exception code in the range 1 -
49, control is passed to the statement specified in the ON EXCEPTION phrase. If you
did not code an ON EXCEPTION phrase, control is passed to the end of the XML PARSE
statement. XML-CODE contains the code set by the parser for the most recent
exception.

For all exceptions other than those having an exception code within one of the
ranges described above, the parser does not signal any further events, but passes
control to the statement specified in the ON EXCEPTION phrase. XML-CODE contains
the original exception code even if you set XML-CODE in the processing procedure
before returning control to the parser.

If you do not want to handle an exception, return control to the parser without
changing the value of XML-CODE. The parser transfers control to the statement
specified in the ON EXCEPTION phrase. If you did not code an ON EXCEPTION phrase,
control is transferred to the end of the XML PARSE statement.

If no unhandled exceptions occur before the end of parsing, control is passed to
the statement specified in the NOT ON EXCEPTION phrase. If you did not code a NOT
ON EXCEPTION phrase, control is transferred to the end of the XML PARSE statement.
XML-CODE contains zero.

RELATED CONCEPTS

“XML-CODE” on page 535
“XML input document encoding” on page 547
“How the XML parser handles errors” on page 554

RELATED TASKS

“Writing procedures to process XML” on page 532

Chapter 28. Processing XML input 553

|

|

|

|

|

|
|
|

|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

“Parsing XML documents with validation” on page 540
“Handling encoding conflicts” on page 555

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“The encoding of XML documents” on page 546
“XML PARSE exceptions with XMLPARSE(XMLSS) in effect” on page 701
“XML PARSE exceptions with XMLPARSE(COMPAT) in effect” on page 703
z/OS XML System Services User's Guide and Reference

How the XML parser handles errors
When the XML parser detects an error in an XML document, it generates an XML
exception event and passes control to your processing procedure.

The parser passes the following information in special registers to the processing
procedure:
v XML-EVENT contains 'EXCEPTION'.
v XML-CODE contains a numeric exception code.

The exception codes are described in the related references about XML PARSE
exceptions.

v For fatal exceptions, XML-TEXT or XML-NTEXT contains the document text up to
and including the point where the exception was detected.

v For the warning exceptions issued for using an undeclared prefix, XML-TEXT or
XML-NTEXT contains the fully qualified attribute name or element name. That is,
the name includes the undeclared prefix and the separator colon (:).

v If XMLPARSE(COMPAT) is in effect, XML-TEXT or XML-NTEXT contains the document
text up to and including the point where the exception was detected.

v If XMLPARSE(XMLSS) is in effect, XML-TEXT or XML-NTEXT contains the document text
up to the point where the error or anomaly was detected. If you process the
XML document one segment at a time, the applicable special register contains
only the current segment.

All other XML special registers are empty with length zero.

For XMLPARSE(XMLSS):

Parsing cannot continue after a fatal exception even if you set XML-CODE to zero in
the processing procedure. Upon return to the parser from the processing
procedure, the parser transfers control to the ON EXCEPTION phrase, if specified;
otherwise the parser transfers control to the end of the XML PARSE statement.
XML-CODE contains the original exception code set by the parser.

For XMLPARSE(COMPAT):

The processing procedure might be able to handle an exception so that parsing
continues if the exception code is within one of the following ranges:
v 1 - 99
v 100,001 - 165,535

If the exception code has any other nonzero value, parsing cannot continue.

554 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|
|
|
|
|
|

|

|
|

|
|
|
|

|

|

|
|

|

|

|

Encoding conflicts: The exceptions for encoding conflicts (50 - 99 and 300 - 399)
are signaled before the parsing of the document begins. For these exceptions,
XML-TEXT or XML-NTEXT is either length zero or contains only the encoding
declaration value from the document.

Exception codes 1 - 49: An exception for which the exception code is in the range
1 - 49 is a fatal error according to the XML specification. Therefore, the parser does
not continue normal parsing even if the processing procedure handles the
exception. However, the parser does continue scanning for further errors until it
reaches the end of the document, or until the existing XML EVENT token array is
exhausted. For these exceptions, the parser does not signal any further normal
events except the END-OF-DOCUMENT event.

RELATED CONCEPTS

“XML events” on page 534
“XML-CODE” on page 535
“XML input document encoding” on page 547

RELATED TASKS

“Parsing XML documents one segment at a time” on page 543
“Handling XML PARSE exceptions” on page 552
“Handling encoding conflicts”
“Terminating XML parsing” on page 556

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“The encoding of XML documents” on page 546
“XML PARSE exceptions with XMLPARSE(XMLSS) in effect” on page 701
“XML PARSE exceptions with XMLPARSE(COMPAT) in effect” on page 703
z/OS XML System Services User's Guide and Reference
XML specification

Handling encoding conflicts
The way that you handle encoding-conflict exceptions depends on the setting of
the XMLPARSE compiler option.

For XMLPARSE(XMLSS):

The parser does not continue after an encoding-conflict exception or after any
other type of exception. Any changes that you make in the processing procedure to
the value of XML-CODE are ignored. The value in XML-CODE when the parser returns
to the XML PARSE statement is the original exception code that the parser set.

For XMLPARSE(COMPAT):

Your processing procedure might be able to handle exceptions for document
encoding conflicts. Exception events in which the parse data item is alphanumeric
and the exception code in XML-CODE is within the range 100,001 - 165,535 indicate
that the code page of the document (as specified by its encoding declaration)
conflicts with the external code-page information.

In this special case, you can choose to parse using the code page of the document
by subtracting 100,000 from the value in XML-CODE. For instance, if XML-CODE

Chapter 28. Processing XML input 555

|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|

|

|
|

|

|
|
|
|

|

|
|
|
|
|

|
|

http://www.w3.org/TR/xml

contains 101,140, the code page of the document is 1140. Alternatively, you can
choose to parse using the external code page by setting XML-CODE to zero before
returning to the parser.

The parser takes one of three actions after returning from a processing procedure
for an encoding-conflict exception event:
v If you set XML-CODE to zero, the parser uses the external code page: the value of

the CODEPAGE compiler option.
v If you set XML-CODE to the code page of the document (that is, the original

XML-CODE value minus 100,000), the parser uses the code page of the document.
This is the only case in which the parser continues when XML-CODE has a nonzero
value upon returning from a processing procedure.

v Otherwise, the parser stops processing the document and returns control to the
XML PARSE statement with an exception condition. XML-CODE contains the
exception code that was originally passed with the exception event.

RELATED CONCEPTS

“XML-CODE” on page 535
“XML input document encoding” on page 547
“How the XML parser handles errors” on page 554

RELATED TASKS

“Handling XML PARSE exceptions” on page 552

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
“The encoding of XML documents” on page 546
“XML PARSE exceptions with XMLPARSE(XMLSS) in effect” on page 701
“XML PARSE exceptions with XMLPARSE(COMPAT) in effect” on page 703
z/OS XML System Services User's Guide and Reference

Terminating XML parsing
You can terminate parsing immediately, without processing any remaining XML
text, by setting XML-CODE to -1 in your processing procedure before the procedure
returns to the parser from any normal XML event (that is, any event other than
EXCEPTION).

You can use this technique when the processing procedure has examined enough
of the document or has detected some irregularity in the document that precludes
further meaningful processing.

If you terminate parsing in this way, the parser does not signal any further XML
events, including the exception event. Control transfers to the ON EXCEPTION phrase
of the XML PARSE statement, if that phrase was specified.

In the imperative statement of the ON EXCEPTION phrase, you can determine
whether parsing was deliberately terminated by testing whether XML-CODE contains
-1. If you do not specify the ON EXCEPTION phrase, control transfers to the end of
the XML PARSE statement.

If the XMLPARSE(COMPAT) compiler option is in effect, you can also terminate parsing
after any XML EXCEPTION event by returning to the parser from the processing
procedure without changing the value in XML-CODE. The result is similar to the

556 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|

result of deliberate termination, except that the parser returns to the XML PARSE
statement with XML-CODE containing the original exception code.

If the XMLPARSE(XMLSS) option is in effect, parsing always terminates after any
exception event.

RELATED CONCEPTS

“XML-CODE” on page 535
“How the XML parser handles errors” on page 554

RELATED TASKS

“Writing procedures to process XML” on page 532
“Handling XML PARSE exceptions” on page 552

XML PARSE examples
The examples that are referenced below illustrate various uses of the XML PARSE
statement.

Use these examples to understand the basic use of XML PARSE and for
XMLPARSE(XMLSS), specialized uses such as parsing documents that include
namespaces, parsing documents one segment at a time, and parsing documents
with validation against a schema.

“Example: parsing a simple document”
“Example: program for processing XML” on page 558
“Example: parsing an XML document that uses namespaces” on page 563
“Example: parsing an XML document one segment at a time” on page 566
“Example: parsing XML documents with validation” on page 568

Example: parsing a simple document
This example shows the flow of events and the contents of special register
XML-TEXT that result from the parsing of a simple XML document.

Assume that the COBOL program contains the following XML document in data
item Doc:
<?xml version="1.0"?><msg type="short">Hello, World!</msg>

The following code fragment shows an XML PARSE statement for parsing Doc, and a
processing procedure, P, for handling the XML events:
XML Parse Doc

Processing procedure P
. . .

P. Display XML-Event XML-Text.

The processing procedure displays the content of XML-EVENT and XML-TEXT for each
event that the parser signals during parsing. The following table shows the events
and the text.

Table 71. XML events and special registers

XML-EVENT XML-TEXT

START-OF-DOCUMENT

VERSION-INFORMATION 1.0

START-OF-ELEMENT msg

Chapter 28. Processing XML input 557

|
|

|
|

|
|
|
|

Table 71. XML events and special registers (continued)

XML-EVENT XML-TEXT

ATTRIBUTE-NAME type

ATTRIBUTE-CHARACTERS short

CONTENT-CHARACTERS Hello, World!

END-OF-ELEMENT msg

END-OF-DOCUMENT

RELATED CONCEPTS

“XML events” on page 534
“XML-TEXT and XML-NTEXT” on page 537

Example: program for processing XML
This example shows the parsing of an XML document, and a processing procedure
that reports the various XML events and their associated text fragments.

The XML document is shown in the program source to make it easier to follow the
flow of the parsing. The output of the program with XMLPARSE(XMLSS) and with
XMLPARSE(COMPAT) in effect is shown after the example.

To understand the interaction of the parser and the processing procedure, and to
match events to document fragments, compare the XML document to the output of
the program.
Process codepage(1047)

Identification division.
Program-id. XMLSAMPL.

Data division.
Working-storage section.

**
* XML document data, encoded as initial values of data items. *
**

1 xml-document-data.
2 pic x(39) value ’<?xml version="1.0" encoding="IBM-1047"’.
2 pic x(19) value ’ standalone="yes"?>’.
2 pic x(39) value ’<!--This document is just an example-->’.
2 pic x(10) value ’<sandwich>’.
2 pic x(33) value ’<bread type="baker's best"/>’.
2 pic x(36) value ’<?spread We’ll use real mayonnaise?>’.
2 pic x(29) value ’<meat>Ham & turkey</meat>’.
2 pic x(34) value ’<filling>Cheese, lettuce, tomato, ’.
2 pic x(32) value ’and that’s all, Folks!</filling>’.
2 pic x(25) value ’<![CDATA[We should add a ’.
2 pic x(20) value ’<relish> element!]]>’.
2 pic x(28) value ’<listprice>$4.99</listprice>’.
2 pic x(25) value ’<discount>0.10</discount>’.
2 pic x(31) value ’</sandwich>’.

**
* XML document, represented as fixed-length records. *
**

1 xml-document redefines xml-document-data.
2 xml-segment pic x(40) occurs 10 times.
1 xml-segment-no comp pic s9(4).
1 content-buffer pic x(100).
1 current-element-stack.
2 current-element pic x(30) occurs 10 times.

**
* Sample data definitions for processing numeric XML content. *
**

558 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

1 element-depth comp pic s9(4).
1 discount computational pic 9v99 value 0.
1 display-price pic $$9.99.
1 filling pic x(4095).
1 list-price computational pic 9v99 value 0.
1 ofr-ed pic x(9) justified.
1 ofr-ed-1 redefines ofr-ed pic 999999.99.

Procedure division.
Mainline section.

Move 1 to xml-segment-no
Display ’Initial segment {’ xml-segment(xml-segment-no) ’}’
Display ’ ’
XML parse xml-segment(xml-segment-no)

processing procedure XML-handler
On exception

Display ’XML processing error, XML-Code=’ XML-Code ’.’
Move 16 to return-code
Goback

Not on exception
Display ’XML document successfully parsed.’

End-XML
**
* Process the transformed content and calculate promo price. *
**

Display ’ ’
Display ’-----+++++***** Using information from XML ’

’*****+++++-----’
Display ’ ’
Move list-price to Display-price
Display ’ Sandwich list price: ’ Display-price
Compute Display-price = list-price * (1 - discount)
Display ’ Promotional price: ’ Display-price
Display ’ Get one today!’
Goback.

XML-handler section.
Evaluate XML-Event

* ==> Order XML events most frequent first
When ’START-OF-ELEMENT’

Display ’Start element tag: {’ XML-Text ’}’
Add 1 to element-depth
Move XML-Text to current-element(element-depth)

When ’CONTENT-CHARACTERS’
Display ’Content characters: {’ XML-Text ’}’

* ==> In general, a split can occur for any element or attribute
* ==> data, but in this sample, it only occurs for "filling"...

If xml-information = 2 and
current-element(element-depth) not = ’filling’

Display ’Unexpected split in content for element ’
current-element(element-depth)

Move -1 to xml-code
End-if

* ==> Transform XML content to operational COBOL data item...
Evaluate current-element(element-depth)
When ’filling’

* ==> After reassembling separate pieces of character content...
String xml-text delimited by size into

content-buffer with pointer tally
On overflow

Display ’content buffer (’
length of content-buffer
’ bytes) is too small’

Move -1 to xml-code
End-string
Evaluate xml-information
When 2

Display ’ Character data for element "filling" ’
’is incomplete.’

Chapter 28. Processing XML input 559

Display ’ The partial data was buffered for ’
’content assembly.’

When 1
subtract 1 from tally
move content-buffer(1:tally) to filling
Display ’ Element "filling" data (’ tally

’ bytes) is now complete:’
Display ’ {’ filling(1:tally) ’}’

End-evaluate
When ’listprice’

* ==> Using function NUMVAL-C...
Move XML-Text to content-buffer
Compute list-price =

function numval-c(content-buffer)
When ’discount’

* ==> Using de-editing of a numeric edited item...
Move XML-Text to ofr-ed
Move ofr-ed-1 to discount

End-evaluate
When ’END-OF-ELEMENT’

Display ’End element tag: {’ XML-Text ’}’
Subtract 1 from element-depth

When ’END-OF-INPUT’
Display ’End of input’
Add 1 to xml-segment-no
Display ’ Next segment: {’ xml-segment(xml-segment-no)

’}’
Display ’ ’
Move 1 to xml-code

When ’START-OF-DOCUMENT’
Display ’Start of document’
Move 0 to element-depth
Move 1 to tally

When ’END-OF-DOCUMENT’
Display ’End of document.’

When ’VERSION-INFORMATION’
Display ’Version: {’ XML-Text ’}’

When ’ENCODING-DECLARATION’
Display ’Encoding: {’ XML-Text ’}’

When ’STANDALONE-DECLARATION’
Display ’Standalone: {’ XML-Text ’}’

When ’ATTRIBUTE-NAME’
Display ’Attribute name: {’ XML-Text ’}’

When ’ATTRIBUTE-CHARACTERS’
Display ’Attribute value characters: {’ XML-Text ’}’

When ’ATTRIBUTE-CHARACTER’
Display ’Attribute value character: {’ XML-Text ’}’

When ’START-OF-CDATA-SECTION’
Display ’Start of CData section’

When ’END-OF-CDATA-SECTION’
Display ’End of CData section’

When ’CONTENT-CHARACTER’
Display ’Content character: {’ XML-Text ’}’

When ’PROCESSING-INSTRUCTION-TARGET’
Display ’PI target: {’ XML-Text ’}’

When ’PROCESSING-INSTRUCTION-DATA’
Display ’PI data: {’ XML-Text ’}’

When ’COMMENT’
Display ’Comment: {’ XML-Text ’}’

When ’EXCEPTION’
Compute tally = function length (XML-Text)
Display ’Exception ’ XML-Code ’ at offset ’ tally ’.’

When other
Display ’Unexpected XML event: ’ XML-Event ’.’

End-evaluate
.

End program XMLSAMPL.

560 Enterprise COBOL for z/OS, V5.2 Programming Guide

Output from parsing with XMLPARSE(XMLSS)
From the following output you can see which fragments of the document were
associated with the events that occurred during parsing:
Initial segment {<?xml version="1.0" encoding="ibm-1047" }

Start of document
End of input
Next segment: {standalone="yes"?><!--This document is j}

Version: {1.0}
Encoding: {ibm-1047}
Standalone: {yes}
Comment: {This document is j}
End of input
Next segment: {ust an example--><sandwich><bread type="}

Comment: {ust an example}
Start element tag: {sandwich}
End of input
Next segment: {baker's best"/><?spread We’ll use r}

Start element tag: {bread}
Attribute name: {type}
Attribute value characters: {baker’s best}
End element tag: {bread}
PI target: {spread}
PI data: {We’ll use r}
End of input
Next segment: {eal mayonnaise?><meat>Ham & turkey</}

PI target: {spread}
PI data: {eal mayonnaise}
Start element tag: {meat}
Content characters: {Ham & turkey}
End of input
Next segment: {meat><filling>Cheese, lettuce, tomato, a}

End element tag: {meat}
Start element tag: {filling}
Content characters: {Cheese, lettuce, tomato, a}
Character data for element "filling" is incomplete.
The partial data was buffered for content assembly.

End of input
Next segment: {nd that’s all, Folks!</filling><![CDATA[}

Content characters: {nd that’s all, Folks!}
Element "filling" data (00047 bytes) is now complete:
{Cheese, lettuce, tomato, and that’s all, Folks!}

End element tag: {filling}
End of input
Next segment: {We should add a <relish> element!]]><lis}

Start of CData section
Content characters: {We should add a <relish> element!}
End of CData section
End of input
Next segment: {tprice>$4.99</listprice><discount>0.10</}

Start element tag: {listprice}
Content characters: {$4.99}
End element tag: {listprice}
Start element tag: {discount}
Content characters: {0.10}
End of input
Next segment: {discount></sandwich> }

Chapter 28. Processing XML input 561

|

End element tag: {discount}
End element tag: {sandwich}
End of document.
XML document successfully parsed.

-----+++++***** Using information from XML *****+++++-----

Sandwich list price: $4.99
Promotional price: $4.49
Get one today!

Output from parsing with XMLPARSE(COMPAT)
From the following output you can see which fragments of the document were
associated with the events that occurred during parsing:
Start of document
Version: {1.0}
Encoding: {IBM-1047}
Standalone: {yes}
Comment: {This document is just an example}
Start element tag: {sandwich}
Content characters: { }
Start element tag: {bread}
Attribute name: {type}
Attribute value characters: {baker}
Attribute value character: {’}
Attribute value characters: {s best}
End element tag: {bread}
Content characters: { }
PI target: {spread}
PI data: {please use real mayonnaise }
Content characters: { }
Start element tag: {meat}
Content characters: {Ham }
Content character: {&}
Content characters: { turkey}
End element tag: {meat}
Content characters: { }
Start element tag: {filling}
Content characters: {Cheese, lettuce, tomato, etc.}
End element tag: {filling}
Content characters: { }
Start of CData: {<![CDATA[}
Content characters: {We should add a <relish> element in future!}
End of CData: {]]>}
Content characters: { }
Start element tag: {listprice}
Content characters: {$4.99 }
End element tag: {listprice}
Content characters: { }
Start element tag: {discount}
Content characters: {0.10}
End element tag: {discount}
End element tag: {sandwich}
End of document.
XML document successfully parsed

-----+++++***** Using information from XML *****+++++-----

Sandwich list price: $4.99
Promotional price: $4.49
Get one today!

RELATED CONCEPTS

“XML events” on page 534

562 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

RELATED TASKS

“Handling splits using the XML-INFORMATION special register” on page 545

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
XML-EVENT (Enterprise COBOL Language Reference)

Example: parsing an XML document that uses namespaces

This example shows the parsing of a document that uses namespaces and
namespace prefixes. The program must be compiled using the XMLPARSE(XMLSS)
compiler option.

Namespace identifiers and namespace prefixes are used in the program to qualify
element names and attribute names. This qualification makes it possible to use the
same name in more than one context: title is used both as an author's title (Mr)
and as a book title (Writing COBOL for Fun and Profit).

Sample XML document
The following XML document contains several namespace declarations: a default
namespace; then three namespace identifiers with prefixes (bk, pi, and isbn).
Notice that the default namespace is set to the empty string for the element
comment (xmlns=’’). This setting “undeclares” the default namespace, with the
result that there is no default namespace.
<section
xmlns="http://www.ibm.com/events"
xmlns:bk="urn:loc.gov:books"
xmlns:pi="urn:personalInformation"
xmlns:isbn=’urn:ISBN:0-395-36341-6’>
<title>Book-Signing Event</title>
<signing>
<bk:author pi:title="Mr" pi:name="Jim Ross"/>
<book bk:title="Writing COBOL for Fun and Profit" isbn:number="0426070806"/>
<comment xmlns=’’>What a great issue!</comment>

</signing>
</section>

Results from parsing
The following table shows the sequence of events that the processing procedure
receives from the parser, and shows the content of the associated XML special
registers.

Table 72. XML events and special registers

XML-EVENT XML-TEXT XML-NAMESPACE-PREFIX XML-NAMESPACE

START-OF-DOCUMENT

START-OF-ELEMENT section http://www.ibm.com/events

NAMESPACE-DECLARATION http://www.ibm.com/events

NAMESPACE-DECLARATION bk urn:loc.gov:books

NAMESPACE-DECLARATION pi urn:personalInformation

NAMESPACE-DECLARATION isbn urn:ISBN:0-395-36341-6

START-OF-ELEMENT title http://www.ibm.com/events

CONTENT-CHARACTERS Book-Signing Event

END-OF-ELEMENT title http://www.ibm.com/events

START-OF-ELEMENT signing http://www.ibm.com/events

Chapter 28. Processing XML input 563

|

|
|
|

Table 72. XML events and special registers (continued)

XML-EVENT XML-TEXT XML-NAMESPACE-PREFIX XML-NAMESPACE

START-OF-ELEMENT author bk urn:loc.gov:books

ATTRIBUTE-NAME title pi urn:personalInformation

ATTRIBUTE-CHARACTERS Mr

ATTRIBUTE-NAME name pi urn:personalInformation

ATTRIBUTE-CHARACTERS Jim Ross

END-OF-ELEMENT author bk urn:loc.gov:books

START-OF-ELEMENT book http://www.ibm.com/events

ATTRIBUTE-NAME title bk urn:loc.gov:books

ATTRIBUTE-CHARACTERS Writing COBOL for
Fun and Profit

ATTRIBUTE-NAME number isbn urn:ISBN:0-395-36341-6

ATTRIBUTE-CHARACTERS 0426070806

END-OF-ELEMENT book http://www.ibm.com/events

START-OF-ELEMENT comment

NAMESPACE-DECLARATION

CONTENT-CHARACTERS What a great issue!

END-OF-ELEMENT comment

END-OF-ELEMENT signing http://www.ibm.com/events

END-OF-ELEMENT section http://www.ibm.com/events

END-OF-DOCUMENT

XML PARSE example with an undeclared namespace prefix
The following XML document contains undeclared namespace prefixes:
Identification division.

Program-id. XMLup.
Data division.
Working-storage section.
1 d.
2 pic x(40) value ’<pfx0:root xmlns:pfx1="http://whatever">’.
2 pic x(19) value ’<pfx1:localElName1>’.
2 pic x(20) value ’<pfx2:localElName2/>’.
2 pic x(40) value ’<pfx3:localElName3 pfx4:localAtName4="">’.
2 pic x(02) value ’c1’.
2 pic x(41) value ’<pfx5:localElName5 pfx6:localAtName6=""/>’.
2 pic x(24) value ’c2</pfx3:localElName3>c3’.
2 pic x(32) value ’</pfx1:localElName1></pfx0:root>’.

Procedure division.
main.
display ’XML document: ’ d
display ’ ’
xml parse d processing procedure h
goback.

h.
if xml-event = ’EXCEPTION’
display ’ ’

end-if
display xml-event xml-code ’|’ xml-text ’|’

xml-namespace-prefix ’|’
xml-namespace ’|’

if xml-event = ’EXCEPTION’ and xml-code = 264192 or 264193

564 Enterprise COBOL for z/OS, V5.2 Programming Guide

move 0 to xml-code
end-if
.

End program XMLup.

Results from parsing XML document with an undeclared namespace
prefix

The following table lists the sequence of events that the processing procedure
receives from the parser, and shows the content of the associated XML special
registers.

Table 73. XML events and special registers from parsing XML document with an undeclared namespace prefix

XML-EVENT XML-CODE XML-TEXT
XML-NAMESPACE-
PREFIX XML-NAMESPACE

START-OF-DOCUMENT 000000000

EXCEPTION 000264193 pfx0:root

START-OF-ELEMENT 000000000 root pfx0

NAMESPACE-
DECLARATION

000000000 pfx1 http://whatever

START-OF-ELEMENT 000000000 localElName1 pfx1 http://whatever

EXCEPTION 000264193 pfx2:localElName2

START-OF-ELEMENT 000000000 localElName2 pfx2

END-OF-ELEMENT 000000000 localElName2 pfx2

EXCEPTION 000264193 pfx3:localElName3

START-OF-ELEMENT 000000000 localElName3 pfx3

EXCEPTION 000264192 pfx4:localAtName4

ATTRIBUTE-NAME 000000000 localAtName4 pfx4

ATTRIBUTE-
CHARACTERS

000000000

CONTENT-CHARACTERS 000000000 c1

EXCEPTION 000264193 pfx5:localElName5

START-OF-ELEMENT 000000000 localElName5 pfx5

EXCEPTION 000264192 pfx6:localAtName6

ATTRIBUTE-NAME 000000000 localAtName6 pfx6

ATTRIBUTE-
CHARACTERS

000000000

END-OF-ELEMENT 000000000 localElName5 pfx5

CONTENT-CHARACTERS 000000000 c2

END-OF-ELEMENT 000000000 localElName3 pfx3

CONTENT-CHARACTERS 000000000 c3

END-OF-ELEMENT 000000000 localElName1 pfx1 http://whatever

END-OF-ELEMENT 000000000 root pfx0

END-OF-DOCUMENT 000000000

For a detailed description of the set of XML events, see the related reference about
XML-EVENT.

Chapter 28. Processing XML input 565

RELATED CONCEPTS

“XML events” on page 534
“XML-TEXT and XML-NTEXT” on page 537
“XML-NAMESPACE and XML-NNAMESPACE” on page 537
“XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX” on page 538

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
XML-EVENT (Enterprise COBOL Language Reference)

Example: parsing an XML document one segment at a time
This example shows the parsing of a document one segment at a time. The
program must be compiled using the XMLPARSE(XMLSS) compiler option.

The example shows the XML content of a file, the program that reads and submits
XML text to the parser, and the sequence of events that results from parsing the
input records.

Content of infile
The XML document that will be parsed a segment at a time is contained in file
infile, shown below.
<?xml version=’1.0’?>
<Tagline>
COBOL is the language of the future!
</Tagline>

Program PARSESEG
Program PARSESEG reads a segment (a record) of the XML document from file
infile, then passes the record to the parser using the XML PARSE statement. The
parser processes the XML text and transfers control to the processing procedure for
each XML event. The processing procedure handles each event and returns to the
parser.

At the end of the segment, the parser sets XML-EVENT to END-OF-INPUT, sets
XML-CODE to zero, and transfers control to the processing procedure. The processing
procedure reads the next XML record into the parse data item, sets XML-CODE to
one, and returns to the parser.

The exchange between the processing procedure and the parser continues until the
READ statement returns the end-of-file status code. The processing procedure
returns to the parser with XML-CODE still set to zero to indicate the end of segment
processing.

Identification division.
Program-id. PARSESEG.
Environment division.
Input-output section.
File-control.

Select Input-XML
Assign to infile
File status is Input-XML-status.

Data division.
File section.
FD Input-XML

Record is varying from 1 to 255 depending on Rec-length
Recording mode V.

1 fdrec.
2 pic X occurs 1 to 255 depending on Rec-length .

Working-storage section.

566 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

1 Event-number comp pic 99.
1 Rec-length comp-5 pic 9(4).
1 Input-XML-status pic 99.
Procedure division.

Open input Input-XML
If Input-XML-status not = 0
Display ’Open failed, file status: ’ Input-XML-status
Goback

End-if
Read Input-XML
If Input-XML-status not = 0
Display ’Read failed, file status: ’ Input-XML-status
Goback

End-if
Move 0 to Event-number
Display ’Starting with: ’ fdrec
Display ’Event number and name Content of XML-text’
XML parse fdrec processing procedure Handle-parse-events
Close Input-XML
Goback
.

Handle-parse-events.
Add 1 to Event-number
Display ’ ’ Event-number ’: ’ XML-event ’{’ XML-text ’}’
Evaluate XML-event
When ’END-OF-INPUT’

Read Input-XML
Evaluate Input-XML-status

When 0
Move 1 to XML-code
Display ’Continuing with: ’ fdrec

When 10
Display ’At EOF; no more input.’

When other
Display ’Read failed, file status:’ Input-XML-status
Goback

End-evaluate
When other

Continue
End-evaluate

.
End program PARSESEG.

Results from parsing
To show parsing results, the processing procedure displayed each record of input,
followed by the sequence of XML events and any associated text fragments in
XML-TEXT. The content of XML-TEXT is displayed in braces ({}); empty braces signify
that XML-TEXT is empty.

Notice the extra zero-length CONTENT-CHARACTERS XML event at event number 08.
(Such anomalies are typical when supplying XML text piecemeal.)
Starting with: <?xml version=’1.0’?>
Event number and name Content of XML-TEXT

01: START-OF-DOCUMENT {}
02: VERSION-INFORMATION {1.0}
03: END-OF-INPUT {}

Continuing with: <Tagline>
04: START-OF-ELEMENT {Tagline}
05: END-OF-INPUT {}

Continuing with: COBOL is the language of the future!
06: CONTENT-CHARACTERS {COBOL is the language of the future!}
07: END-OF-INPUT {}

Chapter 28. Processing XML input 567

Continuing with: </Tagline>
08: CONTENT-CHARACTERS {}
09: END-OF-ELEMENT {Tagline}
10: END-OF-DOCUMENT {}

For a detailed description of the XML events that were detected, see the related
reference about XML-EVENT.

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
XML-EVENT (Enterprise COBOL Language Reference)

Example: parsing XML documents with validation
This example shows the parsing of several XML documents with validation against
a schema, and a processing procedure that captures the return code and reason
code that the parser generates after parsing each document. All of the XML
documents are well formed but not necessarily valid.

The program must be compiled using the XMLPARSE(XMLSS) compiler option.

The example uses the schema that was described in the related concept about XML
schemas.

Assume that file item.xsd contains the schema in text format, and that the
preprocessed schema was generated in file item.osr by means of the following
z/OS UNIX command:
xsdosrg -v -o /u/HLQ/xml/item.osr /u/HLQ/xml/item.xsd

The example uses the XML-SCHEMA clause to associate the XML schema name schema
with the ddname ddschema. The following DD statement associates the ddname with
the external z/OS UNIX file that contains the schema:
//GO.DDSCHEMA DD PATH=’/u/HLQ/xml/item.osr’

Program ValidCk
Identification division.

Program-id. ValidCk.
Environment division.
Configuration section.
Special-names.
xml-schema schema is ’ddschema’.

Data division.
Working-storage section.
1 xml-decode.
2 rtn comp Pic 9(2).
2 rsn comp-5 Pic 9(4).
1 hv pic x(16) value ’0123456789ABCDEF’.
1 T Pic 999 COMP.
1 xml-document-1.
2 pic x(52) value

’<!--Valid: the "itemName" element can be omitted-->’.
2 pic x(31) value ’<stockItem itemNumber="123-AB">’.
2 pic x(36) value ’ <quantityOnHand>1</quantityOnHand>’.
2 pic x(12) value ’</stockItem>’.
1 xml-document-2.
2 pic x(44)

value ’<!--Invalid: missing attribute itemNumber-->’.
2 pic x(11) value ’<stockItem>’.
2 pic x(30) value ’ <itemName>No name</itemName>’.
2 pic x(36) value ’ <quantityOnHand>1</quantityOnHand>’.
2 pic x(12) value ’</stockItem>’.

568 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|

1 xml-document-3.
2 pic x(47)

value ’<!--Invalid: unexpected attribute warehouse-->’.
2 pic x(46) value

’<stockItem itemNumber="074-UN" warehouse="NJ">’.
2 pic x(37) value ’ <quantityOnHand>10</quantityOnHand>’.
2 pic x(32) value ’ <itemName>Not here!</itemName>’.
2 pic x(12) value ’</stockItem>’.
1 xml-document-4.
2 pic x(46)

value ’<!--Invalid: illegal attribute value 123-Ab-->’.
2 pic x(31) value ’<stockItem itemNumber="123-Ab">’.
2 pic x(33) value ’ <itemName>Paintbrush</itemName>’.
2 pic x(37) value ’ <quantityOnHand>10</quantityOnHand>’.
2 pic x(12) value ’</stockItem>’.
1 xml-document-5.
2 pic x(46)

value ’<!--Invalid: missing element quantityOnHand-->’.
2 pic x(31) value ’<stockItem itemNumber="074-UN">’.
2 pic x(32) value ’ <itemName>Not here!</itemName>’.
2 pic x(12) value ’</stockItem>’.
1 xml-document-6.
2 pic x(42)

value ’<!--Invalid: unexpected element comment-->’.
2 pic x(31) value ’<stockItem itemNumber="123-AB">’.
2 pic x(33) value ’ <itemName>Paintbrush</itemName>’.
2 pic x(36) value ’ <quantityOnHand>1</quantityOnHand>’.
2 pic x(35) value ’ <comment>Nylon bristles</comment>’.
2 pic x(12) value ’</stockItem>’.
1 xml-document-7.
2 pic x(46) value

’<!--Invalid: out-of-range element value 100-->’.
2 pic x(31) value ’<stockItem itemNumber="123-AB">’.
2 pic x(33) value ’ <itemName>Paintbrush</itemName>’.
2 pic x(38) value ’ <quantityOnHand>100</quantityOnHand>’.
2 pic x(12) value ’</stockItem>’.

Procedure division.
m.
xml parse xml-document-1 validating with file schema

processing procedure p
xml parse xml-document-2 validating with file schema

processing procedure p
xml parse xml-document-3 validating with file schema

processing procedure p
xml parse xml-document-4 validating with file schema

processing procedure p
xml parse xml-document-5 validating with file schema

processing procedure p
xml parse xml-document-6 validating with file schema

processing procedure p
xml parse xml-document-7 validating with file schema

processing procedure p
goback
.

p.
evaluate xml-event

when ’COMMENT’
display ’ ’
display xml-text

when ’END-OF-DOCUMENT’
display ’ Document successfully parsed.’

when ’EXCEPTION’
move xml-code to xml-decode
Divide rsn by 16 giving tally remainder T
display ’ RC=’ rtn ’, reason=x’’’

hv(function mod(rsn / 4096 16) + 1:1)
hv(function mod(rsn / 256 16) + 1:1)

Chapter 28. Processing XML input 569

hv(function mod(rsn / 16 16) + 1:1)
hv(T + 1:1) ’’’’

end-evaluate
.

End program ValidCk.

Output from program ValidCk
In the following output, you can see which XML documents in the source program
failed validation against the schema.

For those documents that were not valid, the parser signaled an XML exception
and passed control to the processing procedure with special register XML-EVENT
containing 'EXCEPTION' and special-register XML-CODE containing the return code and
a specific reason code.
Valid: the "itemName" element can be omitted

Document successfully parsed.

Invalid: missing attribute itemNumber
RC=24, reason=x’8613’

Invalid: unexpected attribute warehouse
RC=24, reason=x’8612’

Invalid: illegal attribute value 123-Ab
RC=24, reason=x’8809’

Invalid: missing element quantityOnHand
RC=24, reason=x’8611’

Invalid: unexpected element comment
RC=24, reason=x’8607’

Invalid: out-of-range element value 100
RC=24, reason=x’8803’

RELATED CONCEPTS

“XML-CODE” on page 535
“XML schemas” on page 542

RELATED TASKS

“Parsing XML documents with validation” on page 540
“Handling XML PARSE exceptions” on page 552

RELATED REFERENCES

“XML PARSE exceptions with XMLPARSE(XMLSS) in effect” on page 701

570 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

Chapter 29. Producing XML output

You can produce XML output from a COBOL program by using the XML GENERATE
statement.

In the XML GENERATE statement, you identify the source and the output data items.
You can optionally also identify:
v A field to receive a count of the XML characters generated
v A code page in which the generated XML document is to be encoded
v A namespace for the generated document
v A namespace prefix to qualify the start and end tag of each element, if you

specify a namespace
v A user-defined element or attribute name in the generated XML document
v Attributes or elements to be suppressed according to some specified conditions
v Particular items to be specified as attributes, elements or content in the

generated XML output.
v A statement to receive control if an exception occurs

Optionally, you can generate an XML declaration for the document, and can cause
eligible source data items to be expressed as attributes in the output rather than as
elements.

You can use the XML-CODE special register to determine the status of XML
generation.

After you transform COBOL data items to XML, you can use the resulting XML
output in various ways, such as deploying it in a web service, passing it as a
message to WebSphere MQ, or transmitting it for subsequent conversion to a CICS
communication area.

Link-edit considerations: COBOL programs that contain the XML GENERATE
statement must be link-edited with AMODE 31.

RELATED TASKS

“Generating XML output”
“Controlling the encoding of generated XML output” on page 576
“Handling XML GENERATE exceptions” on page 577
“Enhancing XML output” on page 583

RELATED REFERENCES

Extensible Markup Language (XML)
XML GENERATE statement (Enterprise COBOL Language Reference)

Generating XML output
To transform COBOL data to XML, use the XML GENERATE statement as in the
example below.
XML GENERATE XML-OUTPUT FROM SOURCE-REC

COUNT IN XML-CHAR-COUNT
ON EXCEPTION

DISPLAY ’XML generation error ’ XML-CODE

© Copyright IBM Corp. 1991, 2018 571

http://www.w3.org/XML/

STOP RUN
NOT ON EXCEPTION

DISPLAY ’XML document was successfully generated.’
END-XML

In the XML GENERATE statement, you first identify the data item (XML-OUTPUT in the
example above) that is to receive the XML output. Define the data item to be large
enough to contain the generated XML output, typically five to 10 times the size of
the COBOL source data depending on the length of its data-name or data-names.

In the DATA DIVISION, you can define the receiving identifier as alphanumeric
(either an alphanumeric group item or an elementary item of category
alphanumeric) or as national (either a national group item or an elementary item
of category national).

Next you identify the source data item that is to be transformed to XML format
(SOURCE-REC in the example). The source data item can be an alphanumeric group
item, national group item, or elementary data item of class alphanumeric or
national.

Some COBOL data items are not transformed to XML, but are ignored. Subordinate
data items of an alphanumeric group item or national group item that you
transform to XML are ignored if they:
v Specify the REDEFINES clause, or are subordinate to such a redefining item
v Specify the RENAMES clause

These items in the source data item are also ignored when you generate XML:
v Elementary FILLER (or unnamed) data items
v Slack bytes inserted for SYNCHRONIZED data items

No extra white space (for example, new lines or indentation) is inserted to make
the generated XML more readable.

Optionally, you can code the COUNT IN phrase to obtain the number of XML
character encoding units that are filled during generation of the XML output. If the
receiving identifier has category national, the count is in UTF-16 character
encoding units. For all other encodings (including UTF-8), the count is in bytes.

You can use the count field as a reference modification length to obtain only that
portion of the receiving data item that contains the generated XML output. For
example, XML-OUTPUT(1:XML-CHAR-COUNT) references the first XML-CHAR-COUNT
character positions of XML-OUTPUT.

Consider the following program excerpt:
01 doc pic x(512).
01 docSize pic 9(9) binary.
01 G.

05 A pic x(3) value "aaa".
05 B.

10 C pic x(3) value "ccc".
10 D pic x(3) value "ddd".

05 E pic x(3) value "eee".
. . .
XML Generate Doc from G

572 Enterprise COBOL for z/OS, V5.2 Programming Guide

The code above generates the following XML document, in which A, B, and E are
expressed as child elements of element G, and C and D become child elements of
element B:
<G><A>aaa<C>ccc</C><D>ddd</D><E>eee</E></G>

Alternatively, you can specify the ATTRIBUTES phrase of the XML GENERATE
statement. The ATTRIBUTES phrase causes every eligible data item included in the
generated XML document to be expressed as an attribute of the containing XML
element, rather than as a child element of the containing XML element. To be
eligible, the data item must be elementary, must have a name other than FILLER,
and must not have an OCCURS clause in its data description entry. The containing
XML element corresponds to the group data item that is immediately
superordinate to the elementary data item. Optionally, you can specify more
precise control of which data items should be expressed as attributes or elements
by using the TYPE OF phrase.

For example, suppose that the XML GENERATE statement in the program excerpt
above had instead been coded as follows:
XML Generate Doc from G with attributes

The code would then generate the following XML document, in which A and E are
expressed as attributes of element G, and C and D become attributes of element B:
<G A="aaa" E="eee"><B C="ccc" D="ddd"></G>

Optionally, you can code the ENCODING phrase of the XML GENERATE statement to
specify the CCSID of the generated XML document. If you do not use the ENCODING
phrase, the document encoding is determined by the category of the receiving data
item and by the CODEPAGE compiler option. For further details, see the related task
below about controlling the encoding of generated XML output.

Optionally, you can code the XML-DECLARATION phrase to cause the generated XML
document to have an XML declaration that includes version information and an
encoding declaration. If the receiving data item is of category:
v National: The encoding declaration has the value UTF-16 (encoding="UTF-16").
v Alphanumeric: The encoding declaration is derived from the ENCODING phrase, if

specified, or from the CODEPAGE compiler option in effect for the program if the
ENCODING phrase is not specified.

For example, the program excerpt below specifies the XML-DECLARATION phrase of
XML GENERATE, and specifies encoding with CCSID 1208 (UTF-8):
01 Greeting.

05 msg pic x(80) value ’Hello, world!’.
. . .
XML Generate Doc from Greeting

with Encoding 1208
with XML-declaration

End-XML

The code above generates the following XML document:
<?xml version="1.0" encoding="UTF-8"?><Greeting><msg>Hello, world!</msg></Greeting>

If you do not code the XML-DECLARATION phrase, an XML declaration is not
generated.

Optionally, you can code the NAMESPACE phrase to specify a namespace for the
generated XML document. The namespace value must be a valid Uniform Resource

Chapter 29. Producing XML output 573

|
|
|
|
|
|
|
|
|

Identifier (URI), for example, a URL (Uniform Resource Locator); for further details,
see the related concept about URI syntax below.

Specify the namespace in an identifier or literal of either category national or
alphanumeric.

If you specify a namespace, but do not specify a namespace prefix (described
below), the namespace becomes the default namespace for the document. That is, the
namespace define on the root element applies by default to each element name in
the document, including the root element.

For example, consider the following data definitions and XML GENERATE statement:
01 Greeting.

05 msg pic x(80) value ’Hello, world!’.
01 NS pic x(20) value ’http://example’.

. . .
XML Generate Doc from Greeting

namespace is NS

The resulting XML document has a default namespace (http://example), as
follows:
<Greeting xmlns="http://example"><msg>Hello, world!</msg></Greeting>

If you do not specify a namespace, the element names in the generated XML
document are not in any namespace.

Optionally, you can code the NAMESPACE-PREFIX phrase to specify a prefix to be
applied to the start and end tag of each element in the generated document. You
can specify a prefix only if you have specified a namespace as described above.

When the XML GENERATE statement is executed, the prefix value must be a valid
XML name, but without the colon (:); see the related reference below about
namespaces for details. The value can have trailing spaces, which are removed
before the prefix is used.

Specify the namespace prefix in an identifier or literal of either category national or
alphanumeric.

It is recommended that the prefix be short, because it qualifies the start and end
tag of each element.

For example, consider the following data definitions and XML GENERATE statement:
01 Greeting.

05 msg pic x(80) value ’Hello, world!’.
01 NS pic x(20) value ’http://example’.
01 NP pic x(5) value ’pre’.

. . .
XML Generate Doc from Greeting

namespace is NS
namespace-prefix is NP

The resulting XML document has an explicit namespace (http://example), and the
prefix pre is applied to the start and end tag of the elements Greeting and msg, as
follows:
<pre:Greeting xmlns:pre="http://example"><pre:msg>Hello, world!</pre:msg></pre:Greeting>

574 Enterprise COBOL for z/OS, V5.2 Programming Guide

Optionally, you can code the NAME phrase to specify attribute and element names in
the generated XML document. The attribute and element names must be
alphanumeric or national literals and must be legal names according to the XML
1.0 standard.

For example, consider the following data structure and XML GENERATE statement:
01 Msg.

02 Msg-Severity pic 9 value 1.
02 Msg-Date pic 9999/99/99 value "2012/04/12".
02 Msg-Text pic X(50) value "Sell everything!".

01 Doc pic X(500).

XML Generate Doc from Msg
With attributes
Name of Msg is "Message"

Msg-Severity is "Severity"
Msg-Date is "Date"
Msg-Text is "Text"

End-XML

The resulting XML document is as follows:
<Message Severity="1" Date="2012/04/12" Text="Sell everything!"></Message>

Optionally, you can code the SUPPRESS phrase to specify whether individual data
items are generated based on whether or not they meet certain criteria.

For example, consider the following data structure and XML GENERATE statement to
suppress spaces and zeros:
01 G.

02 SensitiveInfo.
03 SSN pic x(11) value ’123-45-6789’.
03 HomeAddress pic x(50) value ’123 Main St, Anytown, USA’.

02 Aarray value spaces.
03 A pic AAA occurs 5.

02 Barray value spaces.
03 B pic XXX occurs 5.

02 Carray value zeros.
03 C pic 999 occurs 5.

Move ’abc’ to A(1)
Move 123 to C(3)
XML Generate Doc from G

Suppress SensitiveInfo
every nonnumeric element when space
every numeric element when zero

End-XML

The resulting XML document is as follows:
<G>

<Aarray><A>abc</Aarray>
<Carray><C>123</C></Carray>

</G>

Optionally, you can use the TYPE OF phrase to specify whether individual data
items are expressed as attributes, elements or content.

For example, consider the following data structure and XML GENERATE statement:
01 Msg.

02 Msg-Severity pic 9 value 1.
02 Msg-Date pic 9999/99/99 value "2012/04/12".
02 Msg-Text pic X(50) value "Sell everything!".

01 Doc pic X(500).
XML Generate Doc from Msg

With attributes

Chapter 29. Producing XML output 575

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

Type of Msg-Severity is attribute
Msg-Date is attribute
Msg-Text is element

End-XML

The resulting XML document is as follows:
<Msg Msg-Severity="1" Msg-Date="2012/04/12">

<Msg-Text>Sell everything!</Msg-Text></Msg>

In addition, you can specify either or both of the following phrases to receive
control after generation of the XML document:
v ON EXCEPTION, to receive control if an error occurs during XML generation
v NOT ON EXCEPTION, to receive control if no error occurs

You can end the XML GENERATE statement with the explicit scope terminator
END-XML. Code END-XML to nest an XML GENERATE statement that has the ON
EXCEPTION or NOT ON EXCEPTION phrase in a conditional statement.

XML generation continues until either the COBOL source record has been
transformed to XML or an error occurs. If an error occurs, the results are as
follows:
v The XML-CODE special register contains a nonzero exception code.
v Control is passed to the ON EXCEPTION phrase, if specified, otherwise to the end

of the XML GENERATE statement.

If no error occurs during XML generation, the XML-CODE special register contains
zero, and control is passed to the NOT ON EXCEPTION phrase if specified or to the
end of the XML GENERATE statement otherwise.

“Example: generating XML” on page 578

RELATED CONCEPTS

Uniform Resource Identifier (URI): Generic Syntax

RELATED TASKS

“Controlling the encoding of generated XML output”
“Handling XML GENERATE exceptions” on page 577
“Processing UTF-8 data” on page 141

RELATED REFERENCES

XML GENERATE statement (Enterprise COBOL Language Reference)
Extensible Markup Language (XML)
Namespaces in XML 1.0

Controlling the encoding of generated XML output
When you generate XML output by using the XML GENERATE statement, you can
control the encoding of the output by the category of the data item that receives
the output, and by identifying the code page using the WITH ENCODING phrase of
the XML GENERATE statement.

If you specify the WITH ENCODING codepage phrase to designate the coded character
set identifier (CCSID) of the output document, codepage must specify an unsigned
integer data item or unsigned integer literal that identifies one of the code pages
supported for COBOL XML processing as described in the related reference below
about the encoding of XML documents:

576 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/

v If the data item that receives the generated XML is of category national, the WITH
ENCODING phrase must specify 1200, the CCSID for Unicode UTF-16.

v If the receiving identifier is of category alphanumeric, the WITH ENCODING phrase
must specify CCSID 1208 or the CCSID of a supported EBCDIC code page.

If you do not code the WITH ENCODING phrase, the generated XML output is
encoded as shown in the table below.

Table 74. Encoding of generated XML if the ENCODING phrase is omitted

If you define the receiving XML
identifier as: The generated XML output is encoded in:

Alphanumeric The code page specified by the CODEPAGE
compiler option in effect when the source was
compiled

National UTF-16 big-endian (UTF-16BE, CCSID 1200)

A byte order mark is not generated.

For details about how data items are converted to XML and how the XML element
names and attributes names are formed from the COBOL data-names, see the
related reference below about the operation of the XML GENERATE statement.

RELATED REFERENCES

“CODEPAGE” on page 313
“The encoding of XML documents” on page 546
XML GENERATE statement (Enterprise COBOL Language Reference)
Operation of XML GENERATE (Enterprise COBOL Language Reference)

Handling XML GENERATE exceptions
When an error is detected during generation of XML output, an exception
condition exists. You can write code to check the XML-CODE special register, which
contains a numeric exception code that indicates the error type.

To handle errors, use either or both of the following phrases of the XML GENERATE
statement:
v ON EXCEPTION

v COUNT IN

If you code the ON EXCEPTION phrase in the XML GENERATE statement, control is
transferred to the imperative statement that you specify. You might code an
imperative statement, for example, to display the XML-CODE value. If you do not
code an ON EXCEPTION phrase, control is transferred to the end of the XML GENERATE
statement.

When an error occurs, one problem might be that the data item that receives the
XML output is not large enough. In that case, the XML output is not complete, and
the XML-CODE special register contains error code 400.

You can examine the generated XML output by doing these steps:
1. Code the COUNT IN phrase in the XML GENERATE statement.

The count field that you specify holds a count of the XML character encoding
units that are filled during XML generation. If you define the XML output as

Chapter 29. Producing XML output 577

national, the count is in UTF-16 character encoding units; for all other
encodings (including for UTF-8), the count is in bytes.

2. Use the count field as a reference modification length to refer to the substring
of the receiving data item that contains the XML characters that were generated
until the point when the error occurred.
For example, if XML-OUTPUT is the data item that receives the XML output, and
XML-CHAR-COUNT is the count field, then XML-OUTPUT(1:XML-CHAR-COUNT)
references the XML output.

Use the contents of XML-CODE to determine what corrective action to take. For a list
of the exceptions that can occur during XML generation, see the related reference
below.

RELATED TASKS

“Referring to substrings of data items” on page 111

RELATED REFERENCES

“XML GENERATE exceptions” on page 710
XML-CODE (Enterprise COBOL Language Reference)

Example: generating XML
The following example simulates the building of a purchase order in a group data
item, and generates an XML version of that purchase order.

Program XGFX uses XML GENERATE to produce XML output in elementary data item
xmlPO from the source record, group data item purchaseOrder. Elementary data
items in the source record are converted to character format as necessary, and the
characters are inserted as the values of XML attributes whose names are derived
from the data-names in the source record.

XGFX calls program Pretty, which uses the XML PARSE statement with processing
procedure p to format the XML output with new lines and indentation so that the
XML content can more easily be verified.

Program XGFX
Identification division.

Program-id. XGFX.
Data division.
Working-storage section.
01 numItems pic 99 global.
01 purchaseOrder global.

05 orderDate pic x(10).
05 shipTo.

10 country pic xx value ’US’.
10 name pic x(30).
10 street pic x(30).
10 city pic x(30).
10 state pic xx.
10 zip pic x(10).

05 billTo.
10 country pic xx value ’US’.
10 name pic x(30).
10 street pic x(30).
10 city pic x(30).
10 state pic xx.
10 zip pic x(10).

05 orderComment pic x(80).
05 items occurs 0 to 20 times depending on numItems.

578 Enterprise COBOL for z/OS, V5.2 Programming Guide

10 item.
15 partNum pic x(6).
15 productName pic x(50).
15 quantity pic 99.
15 USPrice pic 999v99.
15 shipDate pic x(10).
15 itemComment pic x(40).

01 numChars comp pic 999.
01 xmlPO pic x(999).

Procedure division.
m.
Move 20 to numItems
Move spaces to purchaseOrder

Move ’1999-10-20’ to orderDate

Move ’US’ to country of shipTo
Move ’Alice Smith’ to name of shipTo
Move ’123 Maple Street’ to street of shipTo
Move ’Mill Valley’ to city of shipTo
Move ’CA’ to state of shipTo
Move ’90952’ to zip of shipTo

Move ’US’ to country of billTo
Move ’Robert Smith’ to name of billTo
Move ’8 Oak Avenue’ to street of billTo
Move ’Old Town’ to city of billTo
Move ’PA’ to state of billTo
Move ’95819’ to zip of billTo
Move ’Hurry, my lawn is going wild!’ to orderComment

Move 0 to numItems
Call ’addFirstItem’
Call ’addSecondItem’
Move space to xmlPO
Xml generate xmlPO from purchaseOrder count in numChars

with xml-declaration with attributes
namespace ’http://www.example.com’ namespace-prefix ’po’

Call ’pretty’ using xmlPO value numChars
Goback
.

Identification division.
Program-id. ’addFirstItem’.

Procedure division.
Add 1 to numItems
Move ’872-AA’ to partNum(numItems)
Move ’Lawnmower’ to productName(numItems)
Move 1 to quantity(numItems)
Move 148.95 to USPrice(numItems)
Move ’Confirm this is electric’ to itemComment(numItems)
Goback.

End program ’addFirstItem’.

Identification division.
Program-id. ’addSecondItem’.

Procedure division.
Add 1 to numItems
Move ’926-AA’ to partNum(numItems)
Move ’Baby Monitor’ to productName(numItems)
Move 1 to quantity(numItems)
Move 39.98 to USPrice(numItems)
Move ’1999-05-21’ to shipDate(numItems)
Goback.

End program ’addSecondItem’.

End program XGFX.

Chapter 29. Producing XML output 579

Program Pretty
Process xmlparse(xmlss), codepage(37)
Identification division.

Program-id. Pretty.
Data division.
Working-storage section.
01 prettyPrint.

05 pose pic 999.
05 posd pic 999.
05 depth pic 99.
05 inx pic 999.
05 elementName pic x(30).
05 indent pic x(40).
05 buffer pic x(998).
05 lastitem pic 9.

88 unknown value 0.
88 xml-declaration value 1.
88 element value 2.
88 attribute value 3.
88 charcontent value 4.

Linkage section.
1 doc.
2 pic x occurs 16384 times depending on len.
1 len comp-5 pic 9(9).

Procedure division using doc value len.
m.
Move space to prettyPrint
Move 0 to depth
Move 1 to posd pose
Xml parse doc processing procedure p
Goback
.

p.
Evaluate xml-event

When ’VERSION-INFORMATION’
String ’<?xml version="’ xml-text ’"’ delimited by size

into buffer with pointer posd
Set xml-declaration to true

When ’ENCODING-DECLARATION’
String ’ encoding="’ xml-text ’"’ delimited by size

into buffer with pointer posd
When ’STANDALONE-DECLARATION’
String ’ standalone="’ xml-text ’"’ delimited by size

into buffer with pointer posd
When ’START-OF-ELEMENT’
Evaluate true

When xml-declaration
String ’?>’ delimited by size into buffer

with pointer posd
Set unknown to true
Perform printline
Move 1 to posd

When element
String ’>’ delimited by size into buffer

with pointer posd
When attribute
String ’">’ delimited by size into buffer

with pointer posd
End-evaluate
If elementName not = space

Perform printline
End-if
Move xml-text to elementName
Add 1 to depth
Move 1 to pose
Set element to true

580 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

If xml-namespace-prefix = space
String ’<’ xml-text delimited by size

into buffer with pointer pose
Else

String ’<’ xml-namespace-prefix ’:’ xml-text
delimited by size into buffer with pointer pose

End-if
Move pose to posd

When ’ATTRIBUTE-NAME’
If element

String ’ ’ delimited by size into buffer
with pointer posd

Else
String ’" ’ delimited by size into buffer

with pointer posd
End-if
If xml-namespace-prefix = space

String xml-text ’="’ delimited by size into buffer
with pointer posd

Else
String xml-namespace-prefix ’:’ xml-text ’="’

delimited by size into buffer with pointer posd
End-if
Set attribute to true

When ’NAMESPACE-DECLARATION’
If element

String ’ ’ delimited by size into buffer
with pointer posd

Else
String ’" ’ delimited by size into buffer

with pointer posd
End-if
If xml-namespace-prefix = space

String ’xmlns="’ xml-namespace delimited by size
into buffer with pointer posd

Else
String ’xmlns:’ xml-namespace-prefix ’="’ xml-namespace

delimited by size into buffer with pointer posd
End-if
Set attribute to true

When ’ATTRIBUTE-CHARACTERS’
String xml-text delimited by size into buffer

with pointer posd
When ’ATTRIBUTE-CHARACTER’
String xml-text delimited by size into buffer

with pointer posd
When ’CONTENT-CHARACTERS’
Evaluate true

When element
String ’>’ delimited by size into buffer

with pointer posd
When attribute

String ’">’ delimited by size into buffer
with pointer posd

End-evaluate
String xml-text delimited by size into buffer

with pointer posd
Set charcontent to true

When ’CONTENT-CHARACTER’
Evaluate true

When element
String ’>’ delimited by size into buffer

with pointer posd
When attribute

String ’">’ delimited by size into buffer
with pointer posd

End-evaluate

Chapter 29. Producing XML output 581

String xml-text delimited by size into buffer
with pointer posd

Set charcontent to true
When ’END-OF-ELEMENT’
Move space to elementName
Evaluate true

When element
String ’/>’ delimited by size into buffer

with pointer posd
When attribute
String ’"/>’ delimited by size into buffer

with pointer posd
When other
If xml-namespace-prefix = space
String ’</’ xml-text ’>’ delimited by size

into buffer with pointer posd
Else
String ’</’ xml-namespace-prefix ’:’ xml-text ’>’

delimited by size into buffer with pointer posd
End-if

End-evaluate
Set unknown to true
Perform printline
Subtract 1 from depth
Move 1 to posd

When other
Continue

End-evaluate
.

printline.
Compute inx = function max(0 2 * depth - 2) + posd - 1
If inx > 120

compute inx = 117 - function max(0 2 * depth - 2)
If depth > 1
Display indent(1:2 * depth - 2) buffer(1:inx) ’...’

Else
Display buffer(1:inx) ’...’

End-if
Else

If depth > 1
Display indent(1:2 * depth - 2) buffer(1:posd - 1)

Else
Display buffer(1:posd - 1)

End-if
End-if
.

End program Pretty.

Output from program XGFX
<?xml version="1.0" encoding="IBM-037"?>
<po:purchaseOrder xmlns:po="http://www.example.com" orderDate="1999-10-20" orderComment="Hurry, my lawn is going wild!">
<po:shipTo country="US" name="Alice Smith" street="123 Maple Street" city="Mill Valley" state="CA" zip="90952"/>
<po:billTo country="US" name="Robert Smith" street="8 Oak Avenue" city="Old Town" state="PA" zip="95819"/>
<po:items>
<po:item partNum="872-AA" productName="Lawnmower" quantity="1" USPrice="148.95" shipDate=" " itemComment="Confirm...

</po:items>
<po:items>
<po:item partNum="926-AA" productName="Baby Monitor" quantity="1" USPrice="39.98" shipDate="1999-05-21" itemComme...

</po:items>
</po:purchaseOrder>

RELATED TASKS

Chapter 28, “Processing XML input,” on page 527

582 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
Operation of XML GENERATE (Enterprise COBOL Language Reference)

Enhancing XML output
It might happen that the information that you want to express in XML format
already exists in a group item in the DATA DIVISION, but you are unable to use that
item directly to generate an XML document because of one or more factors.

For example:
v In addition to the required data, the item has subordinate data items that

contain values that are irrelevant to the XML output document.
v The names of the required data items are unsuitable for external presentation,

and are possibly meaningful only to programmers.
v The required data items are broken up into too many components, and should

be output as the content of the containing group.

There are various ways that you can deal with such situations. One possible
technique is to define a new data item that has the appropriate characteristics, and
move the required data to the appropriate fields of this new data item. However,
this approach is somewhat laborious and requires careful maintenance to keep the
original and new data items synchronized.

A superior approach that addresses most such problems is to use the new optional
phrases of the XML GENERATE statement in order to:
v Provide more meaningful and appropriate names for the selected elementary

items and for the group items that contain them.
v Exclude irrelevant data items from the generated XML by suppressing them

based on their values.

The example that is referenced below shows a way to do so.

“Example: enhancing XML output”

RELATED REFERENCES

Operation of XML GENERATE (Enterprise COBOL Language Reference)

Example: enhancing XML output
The following example shows how you can modify XML output.

Consider the following data structure. The XML that is generated from the
structure suffers from several problems that can be corrected.
01 CDR-LIFE-BASE-VALUES-BOX.

15 CDR-LIFE-BASE-VAL-DATE PIC X(08).
15 CDR-LIFE-BASE-VALUE-LINE OCCURS 2 TIMES.

20 CDR-LIFE-BASE-DESC.
25 CDR-LIFE-BASE-DESC1 PIC X(15).
25 FILLER PIC X(01).
25 CDR-LIFE-BASE-LIT PIC X(08).
25 CDR-LIFE-BASE-DTE PIC X(08).

20 CDR-LIFE-BASE-PRICE.
25 CDR-LIFE-BP-SPACE PIC 9(08).
25 CDR-LIFE-BP-DASH PIC X.
25 CDR-LIFE-BP-SPACE1 PIC X(02).

20 CDR-LIFE-BASE-PRICE-ED REDEFINES

Chapter 29. Producing XML output 583

|
|

CDR-LIFE-BASE-PRICE PIC $$$.$$.
20 CDR-LIFE-BASE-QTY.

25 CDR-LIFE-QTY-SPACE PIC X(08).
25 CDR-LIFE-QTY-DASH PIC X.
25 CDR-LIFE-QTY-SPACE1 PIC X(03).
25 FILLER PIC X(02).

20 CDR-LIFE-BASE-VALUE PIC $$$9.99
BLANK WHEN ZERO.

15 CDR-LIFE-BASE-TOT-VALUE PIC X(15)

When this data structure is populated with some sample values, and XML is
generated directly from it and then formatted using program Pretty (shown in
“Example: generating XML” on page 578), the result is as follows:
<CDR-LIFE-BASE-VALUES-BOX>

<CDR-LIFE-BASE-VAL-DATE>01/02/03</CDR-LIFE-BASE-VAL-DATE>
<CDR-LIFE-BASE-VALUE-LINE>
<CDR-LIFE-BASE-DESC>

<CDR-LIFE-BASE-DESC1>First</CDR-LIFE-BASE-DESC1>
<CDR-LIFE-BASE-LIT> </CDR-LIFE-BASE-LIT>
<CDR-LIFE-BASE-DTE>01/01/01</CDR-LIFE-BASE-DTE>

</CDR-LIFE-BASE-DESC>
<CDR-LIFE-BASE-PRICE>

<CDR-LIFE-BP-SPACE>23</CDR-LIFE-BP-SPACE>
<CDR-LIFE-BP-DASH>.</CDR-LIFE-BP-DASH>
<CDR-LIFE-BP-SPACE1>00</CDR-LIFE-BP-SPACE1>

</CDR-LIFE-BASE-PRICE>
<CDR-LIFE-BASE-QTY>

<CDR-LIFE-QTY-SPACE>123</CDR-LIFE-QTY-SPACE>
<CDR-LIFE-QTY-DASH>.</CDR-LIFE-QTY-DASH>
<CDR-LIFE-QTY-SPACE1>000</CDR-LIFE-QTY-SPACE1>

</CDR-LIFE-BASE-QTY>
<CDR-LIFE-BASE-VALUE>$765.00</CDR-LIFE-BASE-VALUE>

</CDR-LIFE-BASE-VALUE-LINE>
<CDR-LIFE-BASE-VALUE-LINE>
<CDR-LIFE-BASE-DESC>

<CDR-LIFE-BASE-DESC1>Second</CDR-LIFE-BASE-DESC1>
<CDR-LIFE-BASE-LIT> </CDR-LIFE-BASE-LIT>
<CDR-LIFE-BASE-DTE>02/02/02</CDR-LIFE-BASE-DTE>

</CDR-LIFE-BASE-DESC>
<CDR-LIFE-BASE-PRICE>

<CDR-LIFE-BP-SPACE>34</CDR-LIFE-BP-SPACE>
<CDR-LIFE-BP-DASH>.</CDR-LIFE-BP-DASH>
<CDR-LIFE-BP-SPACE1>00</CDR-LIFE-BP-SPACE1>

</CDR-LIFE-BASE-PRICE>
<CDR-LIFE-BASE-QTY>

<CDR-LIFE-QTY-SPACE>234</CDR-LIFE-QTY-SPACE>
<CDR-LIFE-QTY-DASH>.</CDR-LIFE-QTY-DASH>
<CDR-LIFE-QTY-SPACE1>000</CDR-LIFE-QTY-SPACE1>

</CDR-LIFE-BASE-QTY>
<CDR-LIFE-BASE-VALUE>$654.00</CDR-LIFE-BASE-VALUE>

</CDR-LIFE-BASE-VALUE-LINE>
<CDR-LIFE-BASE-TOT-VALUE>Very high!</CDR-LIFE-BASE-TOT-VALUE>

</CDR-LIFE-BASE-VALUES-BOX>

This generated XML suffers from several problems:
v The element names are long and not very meaningful. There may also be an

XML schema that specifies required tag names.
v The XML schema may require some tag names that are COBOL reserved words

such as DATE/TIME
v Some fields that are elements should be attributes such as, CDR-LIFE-BASE-VAL-

DATE and CDR-LIFE-BASE-DESC1.
v There is unwanted data, for example, CDR-LIFE-BASE-LIT and

CDR-LIFE-BASE-DTE.

584 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Other required fields are split into too many subcomponents. For example,
CDR-LIFE-BASE-PRICE has three subcomponents for one amount.

These and other characteristics of the XML output can be remedied by using
additional phrases of the XML GENERATE statement as follows:
v Use the NAME OF phrase to provide appropriate tag or attribute names.
v Use the TYPE OF ... IS ATTRIBUTE phrase to select the fields which should be

XML attributes rather than elements.
v Use the TYPE OF ... IS CONTENT phrase to suppress tags for excessive

subcomponents.
v Use the SUPPRESS ... WHEN phrase to exclude fields that contain uninteresting

values.

Here is an example of the XML GENERATE statement to address those problems:
XML generate Doc from CDR-LIFE-BASE-VALUES-BOX

Count in tally
Name of

CDR-LIFE-BASE-VALUES-BOX
is ’Base_Values’

CDR-LIFE-BASE-VAL-DATE
is ’Date’

CDR-LIFE-BASE-DTE
is ’Date’

CDR-LIFE-BASE-VALUE-LINE
is ’BaseValueLine’

CDR-LIFE-BASE-DESC1
is ’Description’

CDR-LIFE-BASE-PRICE
is ’BasePrice’

CDR-LIFE-BASE-QTY
is ’BaseQuantity’

CDR-LIFE-BASE-VALUE
is ’BaseValue’

CDR-LIFE-BASE-TOT-VALUE
is ’TotalValue’

Type of
CDR-LIFE-BASE-VAL-DATE is attribute
CDR-LIFE-BASE-DESC1 is attribute
CDR-LIFE-BP-SPACE is content
CDR-LIFE-BP-DASH is content
CDR-LIFE-BP-SPACE1 is content
CDR-LIFE-QTY-SPACE is content
CDR-LIFE-QTY-DASH is content
CDR-LIFE-QTY-SPACE1 is content

Suppress every nonnumeric when space
every numeric when zero

The result of generating and formatting XML from the statement shown above is
more usable:
<Base_Values Date="01/02/03">

<BaseValueLine Description="First">
<Date>01/01/01</Date>
<BasePrice>23.00</BasePrice>
<BaseQuantity>123.000</BaseQuantity>
<BaseValue>$765.00</BaseValue>

</BaseValueLine>
<BaseValueLine Description="Second">
<Date>02/02/02</Date>
<BasePrice>34.00</BasePrice>
<BaseQuantity>234.000</BaseQuantity>

Chapter 29. Producing XML output 585

<BaseValue>$654.00</BaseValue>
</BaseValueLine>
<TotalValue>Very high!</TotalValue>

</Base_Values>

Note that the COBOL reserved word DATE can now be used as an XML tag name in
the output. Characters such as accented letters and period . that are illegal in
single-byte data names can also be used.

RELATED REFERENCES

Operation of XML GENERATE (Enterprise COBOL Language Reference)
REPLACE statement (Enterprise COBOL Language Reference)

586 Enterprise COBOL for z/OS, V5.2 Programming Guide

Part 6. Developing object-oriented programs

© Copyright IBM Corp. 1991, 2018 587

588 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 30. Writing object-oriented programs

When you write an object-oriented (OO) program, you have to determine what
classes you need and the methods and data that the classes need to do their work.

OO programs are based on objects (entities that encapsulate state and behavior) and
their classes, methods, and data. A class is a template that defines the state and the
capabilities of an object. Usually a program creates and works with multiple object
instances (or simply, instances) of a class, that is, multiple objects that are members
of that class. The state of each instance is stored in data known as instance data,
and the capabilities of each instance are called instance methods. A class can define
data that is shared by all instances of the class, known as factory or static data, and
methods that are supported independently of any object instance, known as factory
or static methods.

Using Enterprise COBOL, you can:
v Define classes, with methods and data implemented in COBOL.
v Create instances of Java and COBOL classes.
v Invoke methods on Java and COBOL objects.
v Write classes that inherit from Java classes or other COBOL classes.
v Define and invoke overloaded methods.

In Enterprise COBOL programs, you can call the services provided by the Java
Native Interface (JNI) to obtain Java-oriented capabilities in addition to the basic
OO capabilities available directly in the COBOL language.

In Enterprise COBOL classes, you can code CALL statements to interface with
procedural COBOL programs. Thus COBOL class definition syntax can be
especially useful for writing wrapper classes for procedural COBOL logic, enabling
existing COBOL code to be accessed from Java.

Java code can create instances of COBOL classes, invoke methods of these classes,
and can extend COBOL classes.

It is recommended that you develop and run OO COBOL programs and Java
programs in the z/OS UNIX environment.

Restrictions:

v COBOL class definitions and methods cannot contain EXEC SQL statements and
cannot be compiled using the SQL compiler option.

v COBOL class definitions and methods cannot contain EXEC SQLIMS statements
and cannot be compiled using the SQLIMS compiler option.

v COBOL programs that use object-oriented syntax for Java interoperability cannot
contain EXEC CICS statements, and cannot be run in CICS. They cannot be
compiled using the CICS compiler option.

“Example: accounts” on page 590

RELATED TASKS

“Defining a class” on page 592
“Defining a class instance method” on page 597

© Copyright IBM Corp. 1991, 2018 589

“Defining a client” on page 606
“Defining a subclass” on page 617
“Defining a factory section” on page 621
Chapter 16, “Compiling, linking, and running OO applications,” on page 291
Upgrading IBM COBOL source programs
(Enterprise COBOL Migration Guide)

RELATED REFERENCES

The Java Language Specification

Example: accounts
Consider the example of a bank in which customers can open accounts and make
deposits to and withdrawals from their accounts. You could represent an account
by a general-purpose class, called Account. Because there are many customers,
multiple instances of the Account class could exist simultaneously.

After you determine the classes that you need, the next step is to determine the
methods that the classes need to do their work. An Account class must provide the
following services:
v Open the account.
v Get the current balance.
v Deposit to the account.
v Withdraw from the account.
v Report account status.

The following methods for an Account class meet those needs:

init Open an account and assign it an account number.

getBalance
Return the current balance of the account.

credit Deposit a given sum to the account.

debit Withdraw a given sum from the account.

print Display account number and account balance.

As you design an Account class and its methods, you discover the need for the
class to keep some instance data. Typically, an Account object needs the following
instance data:
v Account number
v Account balance
v Customer information: name, address, home phone, work phone, social security

number, and so forth

To keep the example simple, however, it is assumed that the account number and
account balance are the only instance data that the Account class needs.

Diagrams are helpful when you design classes and methods. The following
diagram depicts a first attempt at a design of the Account class:

590 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

The words in parentheses in the diagrams are the names of the instance data, and
the words that follow a number and colon are the names of the instance methods.

The structure below shows how the classes relate to each other, and is known as
the inheritance hierarchy. The Account class inherits directly from the class
java.lang.Object.

Subclasses
In the account example, Account is a general-purpose class. However, a bank could
have many different types of accounts: checking accounts, savings accounts,
mortgage loans, and so forth, all of which have all the general characteristics of
accounts but could have additional characteristics not shared by all types of
accounts.

For example, a CheckingAccount class could have, in addition to the account
number and account balance that all accounts have, a check fee that applies to each
check written on the account. A CheckingAccount class also needs a method to
process checks (that is, to read the amount, debit the payer, credit the payee, and
so forth). So it makes sense to define CheckingAccount as a subclass of Account,
and to define in the subclass the additional instance data and instance methods
that the subclass needs.

As you design the CheckingAccount class, you discover the need for a class that
models checks. An instance of class Check needs, at a minimum, instance data for
payer, payee, and the check amount.

Many additional classes (and database and transaction-processing logic) would
need to be designed in a real-world OO account system, but have been omitted to
keep the example simple. The updated inheritance diagram is shown below.

Chapter 30. Writing object-oriented programs 591

A number and colon with no method-name following them indicate that the
method with that number is inherited from the superclass.

Multiple inheritance: You cannot use multiple inheritance in OO COBOL
applications. All classes that you define must have exactly one parent, and
java.lang.Object must be at the root of every inheritance hierarchy. The class
structure of any object-oriented system defined in an OO COBOL application is
thus a tree.

“Example: defining a method” on page 604

RELATED TASKS

“Defining a class”
“Defining a class instance method” on page 597
“Defining a subclass” on page 617

Defining a class
A COBOL class definition consists of an IDENTIFICATION DIVISION and ENVIRONMENT
DIVISION, followed by an optional factory definition and optional object definition,
followed by an END CLASS marker.

Table 75. Structure of class definitions

Section Purpose Syntax

IDENTIFICATION
DIVISION
(required)

Name the class. Provide
inheritance information
for it.

“CLASS-ID paragraph for defining a class”
on page 594 (required)
AUTHOR paragraph (optional)
INSTALLATION paragraph (optional)
DATE-WRITTEN paragraph (optional)
DATE-COMPILED paragraph (optional)

592 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 75. Structure of class definitions (continued)

Section Purpose Syntax

ENVIRONMENT
DIVISION
(required)

Describe the computing
environment. Relate
class-names used within
the class definition to the
corresponding external
class-names known
outside the compilation
unit.

CONFIGURATION SECTION (required)
“REPOSITORY paragraph for defining a
class” on page 594 (required)
SOURCE-COMPUTER paragraph (optional)
OBJECT-COMPUTER paragraph (optional)
SPECIAL-NAMES paragraph (optional)

Factory definition
(optional)

Define data to be shared
by all instances of the
class, and methods
supported independently
of any object instance.

IDENTIFICATION DIVISION.
FACTORY.
DATA DIVISION.
WORKING-STORAGE SECTION.

* (Factory data here)
PROCEDURE DIVISION.

* (Factory methods here)
END FACTORY.

Object definition
(optional)

Define instance data and
instance methods.

IDENTIFICATION DIVISION.
OBJECT.
DATA DIVISION.
WORKING-STORAGE SECTION.

* (Instance data here)
PROCEDURE DIVISION.

* (Instance methods here)
END OBJECT.

If you specify the SOURCE-COMPUTER, OBJECT-COMPUTER, or SPECIAL-NAMES paragraphs
in a class CONFIGURATION SECTION, they apply to the entire class definition
including all methods that the class introduces.

A class CONFIGURATION SECTION can consist of the same entries as a program
CONFIGURATION SECTION, except that a class CONFIGURATION SECTION cannot contain
an INPUT-OUTPUT SECTION. You define an INPUT-OUTPUT SECTION only in the
individual methods that require it rather than defining it at the class level.

As shown above, you define instance data and methods in the DATA DIVISION and
PROCEDURE DIVISION, respectively, within the OBJECT paragraph of the class
definition. In classes that require data and methods that are to be associated with
the class itself rather than with individual object instances, define a separate DATA
DIVISION and PROCEDURE DIVISION within the FACTORY paragraph of the class
definition.

Each COBOL class definition must be in a separate source file.

“Example: defining a class” on page 597

RELATED TASKS

“WORKING-STORAGE SECTION for defining class instance data” on page 596
“Defining a class instance method” on page 597
“Defining a subclass” on page 617
“Defining a factory section” on page 621
“Describing the computing environment” on page 5
Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Chapter 30. Writing object-oriented programs 593

RELATED REFERENCES

COBOL class definition structure (Enterprise COBOL Language Reference)

CLASS-ID paragraph for defining a class
Use the CLASS-ID paragraph in the IDENTIFICATION DIVISION to name a class and
provide inheritance information for it.
Identification Division. Required
Class-id. Account inherits Base. Required

Use the CLASS-ID paragraph to identify these classes:
v The class that you are defining (Account in the example above).
v The immediate superclass from which the class that you are defining inherits its

characteristics. The superclass can be implemented in Java or COBOL.
In the example above, inherits Base indicates that the Account class inherits
methods and data from the class known within the class definition as Base. It is
recommended that you use the name Base in your OO COBOL programs to refer
to java.lang.Object.

A class-name must use single-byte characters and must conform to the normal
rules of formation for a COBOL user-defined word.

Use the REPOSITORY paragraph in the CONFIGURATION SECTION of the ENVIRONMENT
DIVISION to associate the superclass name (Base in the example) with the name of
the superclass as it is known externally (java.lang.Object for Base). You can
optionally also specify the name of the class that you are defining (Account in the
example) in the REPOSITORY paragraph and associate it with its corresponding
external class-name.

You must derive all classes directly or indirectly from the java.lang.Object class.

RELATED TASKS

“REPOSITORY paragraph for defining a class”

RELATED REFERENCES

CLASS-ID paragraph (Enterprise COBOL Language Reference)
User-defined words (Enterprise COBOL Language Reference)

REPOSITORY paragraph for defining a class
Use the REPOSITORY paragraph to declare to the compiler that the specified words
are class-names when you use them within a class definition, and to optionally
relate the class-names to the corresponding external class-names (the class-names
as they are known outside the compilation unit).

External class-names are case sensitive and must conform to Java rules of
formation. For example, in the Account class definition you might code this:
Environment Division. Required
Configuration Section. Required
Repository. Required

Class Base is "java.lang.Object" Required
Class Account is "Account". Optional

The REPOSITORY paragraph entries indicate that the external class-names of the
classes referred to as Base and Account within the class definition are
java.lang.Object and Account, respectively.

594 Enterprise COBOL for z/OS, V5.2 Programming Guide

In the REPOSITORY paragraph, you must code an entry for each class-name that you
explicitly reference in the class definition. For example:
v Base
v A superclass from which the class that you are defining inherits
v The classes that you reference in methods within the class definition

In a REPOSITORY paragraph entry, you must specify the external class-name if the
name contains non-COBOL characters. You must also specify the external
class-name for any referenced class that is part of a Java package. For such a class,
specify the external class-name as the fully qualified name of the package,
followed by period (.), followed by the simple name of the Java class. For
example, the Object class is part of the java.lang package, so specify its external
name as java.lang.Object as shown above.

An external class-name that you specify in the REPOSITORY paragraph must be an
alphanumeric literal that conforms to the rules of formation for a fully qualified
Java class-name.

If you do not include the external class-name in a REPOSITORY paragraph entry, the
external class-name is formed from the class-name in the following manner:
v The class-name is converted to uppercase.
v Each hyphen is changed to zero.
v The first character, if a digit, is changed:

– 1-9 are changed to A-I.
– 0 is changed to J.

v Underscores are not changed.

In the example above, class Account is known externally as Account (in mixed
case) because the external name is spelled using mixed case.

You can optionally include in the REPOSITORY paragraph an entry for the class that
you are defining (Account in this example). You must include an entry for the class
that you are defining if the external class-name contains non-COBOL characters, or
to specify a fully package-qualified class-name if the class is to be part of a Java
package.

“Example: external class-names and Java packages”

RELATED TASKS

“Declaring arrays and strings for Java” on page 639

RELATED REFERENCES

REPOSITORY paragraph (Enterprise COBOL Language Reference)
The Java Language Specification (Identifiers)
The Java Language Specification (Packages)

Example: external class-names and Java packages
The following example shows how external class-names are determined from
entries in a REPOSITORY paragraph.

Chapter 30. Writing object-oriented programs 595

http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.8
http://java.sun.com/docs/books/jls/third_edition/html/packages.html

Environment division.
Configuration section.
Repository.

Class Employee is "com.acme.Employee"
Class JavaException is "java.lang.Exception"
Class Orders.

The local class-names (the class-names as used within the class definition), the Java
packages that contain the classes, and the associated external class-names are as
shown in the table below.

Local class-name Java package External class-name

Employee com.acme com.acme.Employee

JavaException java.lang java.lang.Exception

Orders (unnamed) ORDERS

The external class-name (the name after the class-name and optional IS in the
REPOSITORY paragraph entry) is composed of the fully qualified name of the
package (if any) followed by a period, followed by the simple name of the class.

RELATED TASKS

“REPOSITORY paragraph for defining a class” on page 594

RELATED REFERENCES

REPOSITORY paragraph (Enterprise COBOL Language Reference)

WORKING-STORAGE SECTION for defining class instance
data

Use the WORKING-STORAGE SECTION in the DATA DIVISION of the OBJECT paragraph to
describe the instance data that a COBOL class needs, that is, the data to be allocated
for each instance of the class.

The OBJECT keyword, which you must immediately precede with an
IDENTIFICATION DIVISION declaration, indicates the beginning of the definitions of
the instance data and instance methods for the class. For example, the definition of
the instance data for the Account class might look like this:
IDENTIFICATION DIVISION.
Object.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 AccountNumber pic 9(6).
01 AccountBalance pic S9(9) value zero.
. . .

End Object.

The instance data is allocated when an object instance is created, and exists until
garbage collection of the instance by the Java run time.

You can initialize simple instance data by using VALUE clauses as shown above. You
can initialize more complex instance data by coding customized methods to create
and initialize instances of classes.

COBOL instance data is equivalent to Java private nonstatic member data. No
other class or subclass (nor factory method in the same class, if any) can reference
COBOL instance data directly. Instance data is global to all instance methods that

596 Enterprise COBOL for z/OS, V5.2 Programming Guide

the OBJECT paragraph defines. If you want to make instance data accessible from
outside the OBJECT paragraph, define attribute (get or set) instance methods for
doing so.

The syntax of the WORKING-STORAGE SECTION for instance data definition is generally
the same as in a program, with these exceptions:
v You cannot use the EXTERNAL attribute.
v You can use the GLOBAL attribute, but it has no effect.

RELATED TASKS

“Creating and initializing instances of classes” on page 614
“Freeing instances of classes” on page 616
“Defining a factory method” on page 622
“Coding attribute (get and set) methods” on page 603

Example: defining a class
The following example shows a first attempt at the definition of the Account class,
excluding method definitions.
cbl dll,thread,pgmname(longmixed)
IDENTIFICATION DIVISION.
Class-id. Account inherits Base.
ENVIRONMENT DIVISION.
Configuration section.
Repository.

Class Base is "java.lang.Object"
Class Account is "Account".

*
IDENTIFICATION DIVISION.
Object.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 AccountNumber pic 9(6).
01 AccountBalance pic S9(9) value zero.

*
PROCEDURE DIVISION.

*
* (Instance method definitions here)
*
End Object.
*
End class Account.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
“Defining a client” on page 606

Defining a class instance method
Define COBOL instance methods in the PROCEDURE DIVISION of the OBJECT paragraph
of a class definition. An instance method defines an operation that is supported for
each object instance of a class.

A COBOL instance method definition consists of four divisions (like a COBOL
program), followed by an END METHOD marker.

Chapter 30. Writing object-oriented programs 597

Table 76. Structure of instance method definitions

Division Purpose Syntax

IDENTIFICATION
(required)

Name a method.
“METHOD-ID paragraph for defining a
class instance method” (required)

AUTHOR paragraph (optional)
INSTALLATION paragraph (optional)
DATE-WRITTEN paragraph (optional)
DATE-COMPILED paragraph (optional)

ENVIRONMENT
(optional)

Relate the file-names used
in a method to the
corresponding file-names
known to the operating
system.

“INPUT-OUTPUT SECTION for defining a
class instance method” on page 599
(optional)

DATA (optional) Define external files.
Allocate a copy of the
data.

“DATA DIVISION for defining a class
instance method” on page 599 (optional)

PROCEDURE
(optional)

Code the executable
statements to complete
the service provided by
the method.

“PROCEDURE DIVISION for defining a
class instance method” on page 600
(optional)

Definition: The signature of a method consists of the name of the method and the
number and type of its formal parameters. (You define the formal parameters of a
COBOL method in the USING phrase of the method's PROCEDURE DIVISION header.)

Within a class definition, you do not need to make each method-name unique, but
you do need to give each method a unique signature. (You overload methods by
giving them the same name but a different signature.)

COBOL instance methods are equivalent to Java public nonstatic methods.

“Example: defining a method” on page 604

RELATED TASKS

“PROCEDURE DIVISION for defining a class instance method” on page 600
“Overloading an instance method” on page 602
“Overriding an instance method” on page 601
“Invoking methods (INVOKE)” on page 610
“Defining a subclass instance method” on page 619
“Defining a factory method” on page 622

METHOD-ID paragraph for defining a class instance method
Use the METHOD-ID paragraph to name an instance method. Immediately precede
the METHOD-ID paragraph with an IDENTIFICATION DIVISION declaration to indicate
the beginning of the method definition.

For example, the definition of the credit method in the Account class begins like
this:
Identification Division.
Method-id. "credit".

598 Enterprise COBOL for z/OS, V5.2 Programming Guide

Code the method-name as an alphanumeric or national literal. The method-name is
processed in a case-sensitive manner and must conform to the rules of formation
for a Java method-name.

Other Java or COBOL methods or programs (that is, clients) use the method-name
to invoke a method.

RELATED TASKS

“Invoking methods (INVOKE)” on page 610
“Using national data (Unicode) in COBOL” on page 130

RELATED REFERENCES

The Java Language Specification (Meaning of method names)
The Java Language Specification (Identifiers)
METHOD-ID paragraph (Enterprise COBOL Language Reference)

INPUT-OUTPUT SECTION for defining a class instance method
The ENVIRONMENT DIVISION of an instance method can have only one section, the
INPUT-OUTPUT SECTION. This section relates the file-names used in a method
definition to the corresponding file-names as they are known to the operating
system.

For example, if the Account class defined a method that read information from a
file, the Account class might have an INPUT-OUTPUT SECTION that is coded like this:
Environment Division.
Input-Output Section.
File-Control.

Select account-file Assign AcctFile.

The syntax for the INPUT-OUTPUT SECTION of a method is the same as the syntax for
the INPUT-OUTPUT SECTION of a program.

RELATED TASKS

“Describing the computing environment” on page 5

RELATED REFERENCES

INPUT-OUTPUT section (Enterprise COBOL Language Reference)

DATA DIVISION for defining a class instance method
The DATA DIVISION of an instance method consists of any of the following four
sections: FILE SECTION, LOCAL-STORAGE SECTION, WORKING-STORAGE SECTION, and
LINKAGE SECTION.

FILE SECTION
The same as a program FILE SECTION, except that a method FILE SECTION
can define EXTERNAL files only.

LOCAL-STORAGE SECTION
A separate copy of the LOCAL-STORAGE data is allocated for each invocation
of the method, and is freed on return from the method. The method
LOCAL-STORAGE SECTION is similar to a program LOCAL-STORAGE SECTION.

If you specify the VALUE clause on a data item, the item is initialized to that
value on each invocation of the method.

WORKING-STORAGE SECTION
A single copy of the WORKING-STORAGE data is allocated. The data persists in

Chapter 30. Writing object-oriented programs 599

http://java.sun.com/docs/books/jls/third_edition/html/names.html#6.5.7
http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.8

its last-used state until the run unit ends. The same copy of the data is
used whenever the method is invoked, regardless of the invoking object or
thread. The method WORKING-STORAGE SECTION is similar to a program
WORKING-STORAGE SECTION.

If you specify the VALUE clause on a data item, the item is initialized to that
value on the first invocation of the method. You can specify the EXTERNAL
clause for the data items.

LINKAGE SECTION
The same as a program LINKAGE SECTION.

If you define a data item with the same name in both the DATA DIVISION of an
instance method and the DATA DIVISION of the OBJECT paragraph, a reference in the
method to that data-name refers only to the method data item. The method DATA
DIVISION takes precedence.

RELATED TASKS

“Describing the data” on page 11
“Sharing data by using the EXTERNAL clause” on page 501

RELATED REFERENCES

DATA DIVISION overview (Enterprise COBOL Language Reference)

PROCEDURE DIVISION for defining a class instance method
Code the executable statements to implement the service that an instance method
provides in the PROCEDURE DIVISION of the instance method.

You can code most COBOL statements in the PROCEDURE DIVISION of a method that
you can code in the PROCEDURE DIVISION of a program. You cannot, however, code
the following statements in a method:
v ENTRY

v EXIT PROGRAM

v The following obsolete elements of the 85 COBOL Standard:
– ALTER

– GOTO without a specified procedure-name
– SEGMENT-LIMIT

– USE FOR DEBUGGING

Additionally, because you must compile all COBOL class definitions with the
THREAD compiler option, you cannot use SORT or MERGE statements in a COBOL
method.

You can code the EXIT METHOD or GOBACK statement in an instance method to return
control to the invoking client. Both statements have the same effect. If you specify
the RETURNING phrase upon invocation of the method, the EXIT METHOD or GOBACK
statement returns the value of the data item to the invoking client.

An implicit EXIT METHOD is generated as the last statement in the PROCEDURE
DIVISION of each method.

You can specify STOP RUN in a method; doing so terminates the entire run unit
including all threads executing within it.

600 Enterprise COBOL for z/OS, V5.2 Programming Guide

You must terminate a method definition with an END METHOD marker. For example,
the following statement marks the end of the credit method:
End method "credit".

USING phrase for obtaining passed arguments: Specify the formal parameters to
a method, if any, in the USING phrase of the method's PROCEDURE DIVISION header.
You must specify that the arguments are passed BY VALUE. Define each parameter
as a level-01 or level-77 item in the method's LINKAGE SECTION. The data type of
each parameter must be one of the types that are interoperable with Java.

RETURNING phrase for returning a value: Specify the data item to be returned
as the method result, if any, in the RETURNING phrase of the method's PROCEDURE
DIVISION header. Define the data item as a level-01 or level-77 item in the method's
LINKAGE SECTION. The data type of the return value must be one of the types that
are interoperable with Java.

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 638
“Overriding an instance method”
“Overloading an instance method” on page 602
“Comparing and setting object references” on page 609
“Invoking methods (INVOKE)” on page 610
Chapter 16, “Compiling, linking, and running OO applications,” on page 291

RELATED REFERENCES

“THREAD” on page 366
The procedure division header (Enterprise COBOL Language Reference)

Overriding an instance method
An instance method that is defined in a subclass is said to override an inherited
instance method that would otherwise be accessible in the subclass if the two
methods have the same signature.

To override a superclass instance method m1 in a COBOL subclass, define an
instance method m1 in the subclass that has the same name and whose PROCEDURE
DIVISION USING phrase (if any) has the same number and type of formal
parameters as the superclass method has. (If the superclass method is implemented
in Java, you must code formal parameters that are interoperable with the data
types of the corresponding Java parameters.) When a client invokes m1 on an
instance of the subclass, the subclass method rather than the superclass method is
invoked.

For example, the Account class defines a method debit whose LINKAGE SECTION
and PROCEDURE DIVISION header look like this:
Linkage section.
01 inDebit pic S9(9) binary.
Procedure Division using by value inDebit.

If you define a CheckingAccount subclass and want it to have a debit method that
overrides the debit method defined in the Account superclass, define the subclass
method with exactly one input parameter also specified as pic S9(9) binary. If a
client invokes debit using an object reference to a CheckingAccount instance, the
CheckingAccount debit method (rather than the debit method in the Account
superclass) is invoked.

Chapter 30. Writing object-oriented programs 601

The presence or absence of a method return value and the data type of the return
value used in the PROCEDURE DIVISION RETURNING phrase (if any) must be identical
in the subclass instance method and the overridden superclass instance method.

An instance method must not override a factory method in a COBOL superclass
nor a static method in a Java superclass.

“Example: defining a method” on page 604

RELATED TASKS

“PROCEDURE DIVISION for defining a class instance method” on page 600
“Coding interoperable data types in COBOL and Java” on page 638
“Invoking methods (INVOKE)” on page 610
“Invoking overridden superclass methods” on page 614
“Defining a subclass” on page 617
“Hiding a factory or static method” on page 623

RELATED REFERENCES

The Java Language Specification (Inheritance, overriding, and hiding)

Overloading an instance method
Two methods that are supported in a class (whether defined in the class or
inherited from a superclass) are said to be overloaded if they have the same name
but different signatures.

You overload methods when you want to enable clients to invoke different
versions of a method, for example, to initialize data using different sets of
parameters.

To overload a method, define a method whose PROCEDURE DIVISION USING phrase
(if any) has a different number or type of formal parameters than an identically
named method that is supported in the same class. For example, the Account class
defines an instance method init that has exactly one formal parameter. The
LINKAGE SECTION and PROCEDURE DIVISION header of the init method look like this:
Linkage section.
01 inAccountNumber pic S9(9) binary.
Procedure Division using by value inAccountNumber.

Clients invoke this method to initialize an Account instance with a given account
number (and a default account balance of zero) by passing exactly one argument
that matches the data type of inAccountNumber.

But the Account class could define, for example, a second instance method init
that has an additional formal parameter that allows the opening account balance to
also be specified. The LINKAGE SECTION and PROCEDURE DIVISION header of this init
method could look like this:
Linkage section.
01 inAccountNumber pic S9(9) binary.
01 inBalance pic S9(9) binary.
Procedure Division using by value inAccountNumber

inBalance.

Clients could invoke either init method by passing arguments that match the
signature of the required method.

602 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.4.8

The presence or absence of a method return value does not have to be consistent in
overloaded methods, and the data type of the return value given in the PROCEDURE
DIVISION RETURNING phrase (if any) does not have to be identical in overloaded
methods.

You can overload factory methods in exactly the same way that you overload
instance methods.

The rules for overloaded method definition and resolution of overloaded method
invocations are based on the corresponding rules for Java.

RELATED TASKS

“Invoking methods (INVOKE)” on page 610
“Defining a factory method” on page 622

RELATED REFERENCES

The Java Language Specification (Overloading)

Coding attribute (get and set) methods
You can provide access to an instance variable X from outside the class in which X
is defined by coding accessor (get) and mutator (set) methods for X.

Instance variables in COBOL are private: the class that defines instance variables
fully encapsulates them, and only the instance methods defined in the same OBJECT
paragraph can access them directly. Normally a well-designed object-oriented
application does not need to access instance variables from outside the class.

COBOL does not directly support the concept of a public instance variable as
defined in Java and other object-oriented languages, nor the concept of a class
attribute as defined by CORBA. (A CORBA attribute is an instance variable that has
an automatically generated get method for accessing the value of the variable, and
an automatically generated set method for modifying the value of the variable if
the variable is not read-only.)

“Example: coding a get method”

RELATED TASKS

“WORKING-STORAGE SECTION for defining class instance data” on page 596
“Processing the data” on page 17

Example: coding a get method
The following example shows the definition in the Account class of an instance
method, getBalance, to return the value of the instance variable AccountBalance to
a client. getBalance and AccountBalance are defined in the OBJECT paragraph of the
Account class definition.
Identification Division.
Class-id. Account inherits Base.
* (ENVIRONMENT DIVISION not shown)
* (FACTORY paragraph not shown)
*
Identification division.
Object.
Data division.
WORKING-STORAGE SECTION.
01 AccountBalance pic S9(9) value zero.

* (Other instance data not shown)
*

Chapter 30. Writing object-oriented programs 603

http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.4.9

Procedure Division.
*

Identification Division.
Method-id. "getBalance".
Data division.
Linkage section.
01 outBalance pic S9(9) binary.

*
Procedure Division returning outBalance.

Move AccountBalance to outBalance.
End method "getBalance".

*
* (Other instance methods not shown)
End Object.
*
End class Account.

Example: defining a method
The following example adds to the previous example the instance method
definitions of the Account class, and shows the definition of the Java Check class.

(The previous example was “Example: defining a class” on page 597.)

Account class
cbl dll,thread,pgmname(longmixed)
Identification Division.
Class-id. Account inherits Base.
Environment Division.
Configuration section.
Repository.

Class Base is "java.lang.Object"
Class Account is "Account".

*
* (FACTORY paragraph not shown)
*
Identification division.
Object.
Data division.
Working-storage section.
01 AccountNumber pic 9(6).
01 AccountBalance pic S9(9) value zero.

*
Procedure Division.

*
* init method to initialize the account:

Identification Division.
Method-id. "init".
Data division.
Linkage section.
01 inAccountNumber pic S9(9) binary.
Procedure Division using by value inAccountNumber.

Move inAccountNumber to AccountNumber.
End method "init".

*
* getBalance method to return the account balance:

Identification Division.
Method-id. "getBalance".
Data division.
Linkage section.
01 outBalance pic S9(9) binary.
Procedure Division returning outBalance.

Move AccountBalance to outBalance.
End method "getBalance".

*
* credit method to deposit to the account:

604 Enterprise COBOL for z/OS, V5.2 Programming Guide

Identification Division.
Method-id. "credit".
Data division.
Linkage section.
01 inCredit pic S9(9) binary.
Procedure Division using by value inCredit.

Add inCredit to AccountBalance.
End method "credit".

*
* debit method to withdraw from the account:

Identification Division.
Method-id. "debit".
Data division.
Linkage section.
01 inDebit pic S9(9) binary.
Procedure Division using by value inDebit.

Subtract inDebit from AccountBalance.
End method "debit".

*
* print method to display formatted account number and balance:

Identification Division.
Method-id. "print".
Data division.
Local-storage section.
01 PrintableAccountNumber pic ZZZZZZ999999.
01 PrintableAccountBalance pic $$$$,$$$,$$9CR.
Procedure Division.

Move AccountNumber to PrintableAccountNumber
Move AccountBalance to PrintableAccountBalance
Display " Account: " PrintableAccountNumber
Display " Balance: " PrintableAccountBalance.

End method "print".
*
End Object.
*
End class Account.

Check class
/**
* A Java class for check information
*/
public class Check {

private CheckingAccount payer;
private Account payee;
private int amount;

public Check(CheckingAccount inPayer, Account inPayee, int inAmount) {
payer=inPayer;
payee=inPayee;
amount=inAmount;

}

public int getAmount() {
return amount;

}

public Account getPayee() {
return payee;

}
}

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Chapter 30. Writing object-oriented programs 605

Defining a client
A program or method that requests services from one or more methods in a class
is called a client of that class.

In a COBOL or Java client, you can:
v Create object instances of Java and COBOL classes.
v Invoke instance methods on Java and COBOL objects.
v Invoke COBOL factory methods and Java static methods.

In a COBOL client, you can also call services provided by the Java Native Interface
(JNI).

A COBOL client program consists of the usual four divisions:

Table 77. Structure of COBOL clients

Division Purpose Syntax

IDENTIFICATION
(required)

Name a client. Code as usual, except that a client program
must be:

v Recursive (declared RECURSIVE in the
PROGRAM-ID paragraph)

v Thread-enabled (compiled with the
THREAD option, and conforming to the
coding guidelines for threaded
applications)

ENVIRONMENT
(required)

Describe the computing
environment. Relate
class-names used in the
client to the
corresponding external
class-names known
outside the compilation
unit.

CONFIGURATION SECTION (required)
“REPOSITORY paragraph for defining a
client” on page 607 (required)

DATA (optional) Describe the data that the
client needs.

“DATA DIVISION for defining a client” on
page 608 (optional)

PROCEDURE
(optional)

Create instances of classes,
manipulate object
reference data items, and
invoke methods.

Code using INVOKE, IF, and SET statements.

Because you must compile all COBOL programs that contain object-oriented syntax
or that interoperate with Java with the THREAD compiler option, you cannot use the
following language elements in a COBOL client:
v SORT or MERGE statements
v Nested programs

Any programs that you compile with the THREAD compiler option must be
recursive. You must specify the RECURSIVE clause in the PROGRAM-ID paragraph of
each OO COBOL client program.

“Example: defining a client” on page 616

606 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
Chapter 27, “Preparing COBOL programs for multithreading,” on page 517
Chapter 31, “Communicating with Java methods,” on page 633
“Coding interoperable data types in COBOL and Java” on page 638
“Creating and initializing instances of classes” on page 614
“Comparing and setting object references” on page 609
“Invoking methods (INVOKE)” on page 610
“Invoking factory or static methods” on page 624

RELATED REFERENCES

“THREAD” on page 366

REPOSITORY paragraph for defining a client
Use the REPOSITORY paragraph to declare to the compiler that the specified words
are class-names when you use them in a COBOL client, and to optionally relate the
class-names to the corresponding external class-names (the class-names as they are
known outside the compilation unit).

External class-names are case sensitive, and must conform to Java rules of
formation. For example, in a client program that uses the Account and Check
classes you might code this:
Environment division. Required
Configuration section. Required

Source-Computer. IBM-390.
Object-Computer. IBM-390.

Repository. Required
Class Account is "Account"
Class Check is "Check".

The REPOSITORY paragraph entries indicate that the external class-names of the
classes referred to as Account and Check within the client are Account and Check,
respectively.

In the REPOSITORY paragraph, you must code an entry for each class-name that you
explicitly reference in the client. In a REPOSITORY paragraph entry, you must specify
the external class-name if the name contains non-COBOL characters.

You must specify the external class-name for any referenced class that is part of a
Java package. For such a class, specify the external class-name as the fully qualified
name of the package, followed by period (.), followed by the simple name of the
Java class.

An external class-name that you specify in the REPOSITORY paragraph must be an
alphanumeric literal that conforms to the rules of formation for a fully qualified
Java class-name.

If you do not include the external class-name in a REPOSITORY paragraph entry, the
external class-name is formed from the class-name in the same manner as it is
when an external class-name is not included in a REPOSITORY paragraph entry in a
class definition. In the example above, class Account and class Check are known
externally as Account and Check (in mixed case), respectively, because the external
names are spelled using mixed case.

The SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL-NAMES paragraphs of the
CONFIGURATION SECTION are optional.

Chapter 30. Writing object-oriented programs 607

RELATED TASKS

“REPOSITORY paragraph for defining a class” on page 594

RELATED REFERENCES

REPOSITORY paragraph (Enterprise COBOL Language Reference)
The Java Language Specification (Identifiers)
The Java Language Specification (Packages)

DATA DIVISION for defining a client
You can use any of the sections of the DATA DIVISION to describe the data that the
client needs.
Data Division.
Local-storage section.
01 anAccount usage object reference Account.
01 aCheckingAccount usage object reference CheckingAccount.
01 aCheck usage object reference Check.
01 payee usage object reference Account.
. . .

Because a client references classes, it needs one or more special data items called
object references, that is, references to instances of those classes. All requests to
instance methods require an object reference to an instance of a class in which the
method is supported (that is, either defined or available by inheritance). You code
object references to refer to instances of Java classes using the same syntax as you
use to refer to instances of COBOL classes. In the example above, the phrase usage
object reference indicates an object reference data item.

All four object references in the code above are called typed object references
because a class-name appears after the OBJECT REFERENCE phrase. A typed object
reference can refer only to an instance of the class named in the OBJECT REFERENCE
phrase or to one of its subclasses. Thus anAccount can refer to instances of the
Account class or one of its subclasses, but cannot refer to instances of any other
class. Similarly, aCheck can refer only to instances of the Check class or any
subclasses that it might have.

Another type of object reference, not shown above, does not have a class-name
after the OBJECT REFERENCE phrase. Such a reference is called a universal object
reference, which means that it can refer to instances of any class. Avoid coding
universal object references, because they are interoperable with Java in only very
limited circumstances (when used in the RETURNING phrase of the INVOKE
class-name NEW . . . statement).

You must define, in the REPOSITORY paragraph of the CONFIGURATION SECTION,
class-names that you use in the OBJECT REFERENCE phrase.

RELATED TASKS

“Choosing LOCAL-STORAGE or WORKING-STORAGE” on page 609
“Coding interoperable data types in COBOL and Java” on page 638
“Invoking methods (INVOKE)” on page 610
“REPOSITORY paragraph for defining a client” on page 607

RELATED REFERENCES

RETURNING phrase (Enterprise COBOL Language Reference)

608 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.8
http://java.sun.com/docs/books/jls/third_edition/html/packages.html

Choosing LOCAL-STORAGE or WORKING-STORAGE
You can in general use the WORKING-STORAGE SECTION to define working data that a
client program needs. However, if the program could simultaneously run on
multiple threads, you might instead want to define the data in the LOCAL-STORAGE
SECTION.

Each thread has access to a separate copy of LOCAL-STORAGE data but shares access
to a single copy of WORKING-STORAGE data. If you define the data in the
WORKING-STORAGE SECTION, you need to synchronize access to the data or ensure
that no two threads can access it simultaneously.

RELATED TASKS

Chapter 27, “Preparing COBOL programs for multithreading,” on page 517

Comparing and setting object references
You can compare object references by coding conditional statements or a call to the
JNI service IsSameObject, and you can set object references by using the SET
statement.

For example, code either IF statement below to check whether the object reference
anAccount refers to no object instance:
If anAccount = Null . . .
If anAccount = Nulls . . .

You can code a call to IsSameObject to check whether two object references, object1
and object2, refer to the same object instance or whether each refers to no object
instance. To ensure that the arguments and return value are interoperable with
Java and to establish addressability to the callable service, code the following data
definitions and statements before the call to IsSameObject:
Local-storage Section.
. . .
01 is-same Pic X.

88 is-same-false Value X’00’.
88 is-same-true Value X’01’ Through X’FF’.

Linkage Section.
Copy JNI.

Procedure Division.
Set Address Of JNIEnv To JNIEnvPtr
Set Address Of JNINativeInterface To JNIEnv
Call IsSameObject Using By Value JNIEnvPtr object1 object2

Returning is-same
If is-same-true . . .

Within a method you can check whether an object reference refers to the object
instance on which the method was invoked by coding a call to IsSameObject that
compares the object reference and SELF.

You can instead invoke the Java equals method (inherited from java.lang.Object) to
determine whether two object references refer to the same object instance.

You can make an object reference refer to no object instance by using the SET
statement. For example:
Set anAccount To Null.

You can also make one object reference refer to the same instance as another object
reference does by using the SET statement. For example:
Set anotherAccount To anAccount.

Chapter 30. Writing object-oriented programs 609

This SET statement causes anotherAccount to refer to the same object instance as
anAccount does. If the receiver (anotherAccount) is a universal object reference, the
sender (anAccount) can be either a universal or a typed object reference. If the
receiver is a typed object reference, the sender must be a typed object reference
bound to the same class as the receiver or to one of its subclasses.

Within a method you can make an object reference refer to the object instance on
which the method was invoked by setting it to SELF. For example:
Set anAccount To Self.

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 638
“Accessing JNI services” on page 633

RELATED REFERENCES

The Java Native Interface (IsSameObject)

Invoking methods (INVOKE)
In a Java client, you can create object instances of classes that were implemented in
COBOL and invoke methods on those objects using standard Java syntax. In a
COBOL client, you can invoke methods that are defined in Java or COBOL classes
by coding the INVOKE statement.
Invoke Account "createAccount"

using by value 123456
returning anAccount

Invoke anAccount "credit" using by value 500.

The first example INVOKE statement above uses the class-name Account to invoke a
method called createAccount. This method must be either defined or inherited in
the Account class, and must be one of the following types:
v A Java static method
v A COBOL factory method

The phrase using by value 123456 indicates that 123456 is an input argument to
the method, and is passed by value. The input argument 123456 and the returned
data item anAccount must conform to the definition of the formal parameters and
return type, respectively, of the (possibly overloaded) createAccount method.

The second INVOKE statement uses the returned object reference anAccount to
invoke the instance method credit, which is defined in the Account class. The
input argument 500 must conform to the definition of the formal parameters of the
(possibly overloaded) credit method.

Code the name of the method to be invoked either as a literal or as an identifier
whose value at run time matches the method-name in the signature of the target
method. The method-name must be an alphanumeric or national literal or a
category alphabetic, alphanumeric, or national data item, and is interpreted in a
case-sensitive manner.

When you code an INVOKE statement using an object reference (as in the second
example statement above), the statement begins with one of the following two
forms:
Invoke objRef "literal-name" . . .
Invoke objRef identifier-name . . .

610 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://download.oracle.com/javase/1.5.0/docs/guide/jni/spec/functions.html#wp16514

When the method-name is an identifier, you must define the object reference
(objRef) as USAGE OBJECT REFERENCE with no specified type, that is, as a universal
object reference.

If an invoked method is not supported in the class to which the object reference
refers, a severity-3 Language Environment condition is raised at run time unless
you code the ON EXCEPTION phrase in the INVOKE statement.

You can use the optional scope terminator END-INVOKE with the INVOKE statement.

The INVOKE statement does not set the RETURN-CODE special register.

RELATED TASKS

“USING phrase for passing arguments”
“RETURNING phrase for obtaining a returned value” on page 613
“PROCEDURE DIVISION for defining a class instance method” on page 600
“Coding interoperable data types in COBOL and Java” on page 638
“Invoking overridden superclass methods” on page 614
“Invoking factory or static methods” on page 624

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

USING phrase for passing arguments
If you pass arguments to a method, specify the arguments in the USING phrase of
the INVOKE statement. Code the data type of each argument so that it conforms to
the type of the corresponding formal parameter in the intended target method.

Table 78. Conformance of arguments in a COBOL client

Programming
language of the
target method

Is the argument
an object
reference?

Then code the DATA
DIVISION definition of
the argument as: Restriction

COBOL No The same as the
definition of the
corresponding formal
parameter

Java No Interoperable with the
corresponding Java
parameter

COBOL or Java Yes An object reference that is
typed to the same class as
the corresponding
parameter in the target
method

In a COBOL client (unlike
in a Java client), the class
of an argument cannot be
a subclass of the class of
the corresponding
parameter.

See the example referenced below for a way to make an object-reference argument
conform to the type of a corresponding formal parameter by using the SET
statement or the REDEFINES clause.

“Example: passing conforming object-reference arguments from a COBOL client”
on page 612

If the target method is overloaded, the data types of the arguments are used to
select from among the methods that have the same name.

Chapter 30. Writing object-oriented programs 611

You must specify that the arguments are passed BY VALUE. In other words, the
arguments are not affected by any change to the corresponding formal parameters
in the invoked method.

The data type of each argument must be one of the types that are interoperable
with Java.

RELATED TASKS

“PROCEDURE DIVISION for defining a class instance method” on page 600
“Overloading an instance method” on page 602
“Coding interoperable data types in COBOL and Java” on page 638
“Passing data” on page 491

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)
SET statement (Enterprise COBOL Language Reference)
REDEFINES clause (Enterprise COBOL Language Reference)

Example: passing conforming object-reference arguments from a
COBOL client
The following example shows a way to make an object-reference argument in a
COBOL client conform to the expected class of the corresponding formal parameter
in an invoked method.

Class C defines a method M that has one parameter, a reference to an object of
class java.lang.Object:
. . .
Class-id. C inherits Base.
. . .
Repository.

Class Base is "java.lang.Object"
Class JavaObject is "java.lang.Object".

Identification division.
Factory.
. . .
Procedure Division.
Identification Division.
Method-id. "M".
Data division.
Linkage section.
01 obj object reference JavaObject.
Procedure Division using by value obj.
. . .

To invoke method M, a COBOL client must pass an argument that is a reference to
an object of class java.lang.Object. The client below defines a data item aString,
which cannot be passed as an argument to M because aString is a reference to an
object of class java.lang.String. The client first uses a SET statement to assign
aString to a data item, anObj, that is a reference to an object of class
java.lang.Object. (This SET statement is legal because java.lang.String is a subclass
of java.lang.Object.) The client then passes anObj as the argument to M.
. . .
Repository.

Class jstring is "java.lang.String"
Class JavaObject is "java.lang.Object".

Data division.
Local-storage section.
01 aString object reference jstring.
01 anObj object reference JavaObject.
*

612 Enterprise COBOL for z/OS, V5.2 Programming Guide

Procedure division.
. . . (statements here assign a value to aString)
Set anObj to aString
Invoke C "M"
using by value anObj

Instead of using a SET statement to obtain anObj as a reference to an object of class
java.lang.Object, the client could define aString and anObj with the REDEFINES
clause as follows:
. . .
01 aString object reference jstring.
01 anObj redefines aString object reference JavaObject.

After the client assigns a value to data item aString (that is, a valid reference to an
object of class java.lang.String), anObj can be passed as the argument to M. For an
example of the use of the REDEFINES clause to obtain argument conformance, see
the example referenced below.

“Example: J2EE client written in COBOL” on page 644

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 638
“PROCEDURE DIVISION for defining a class instance method” on page 600

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)
SET statement (Enterprise COBOL Language Reference)
REDEFINES clause (Enterprise COBOL Language Reference)

RETURNING phrase for obtaining a returned value
If a data item is to be returned as the method result, specify the item in the
RETURNING phrase of the INVOKE statement. Define the returned item in the DATA
DIVISION of the client.

The item that you specify in the RETURNING phrase of the INVOKE statement must
conform to the type returned by the target method, as shown in the table below.

Table 79. Conformance of the returned data item in a COBOL client

Programming
language of the
target method

Is the returned item
an object reference?

Then code the DATA DIVISION definition of
the returned item as:

COBOL No The same as the definition of the RETURNING
item in the target method

Java No Interoperable with the returned Java data
item

COBOL or Java Yes An object reference that is typed to the
same class as the object reference that is
returned by the target method

In all cases, the data type of the returned value must be one of the types that are
interoperable with Java.

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 638

Chapter 30. Writing object-oriented programs 613

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

Invoking overridden superclass methods
Sometimes within a class you need to invoke an overridden superclass method
instead of invoking a method that has the same signature and is defined in the
current class.

For example, suppose that the CheckingAccount class overrides the debit instance
method defined in its immediate superclass, Account. You could invoke the
Account debit method within a method in the CheckingAccount class by coding
this statement:
Invoke Super "debit" Using By Value amount.

You would define amount as PIC S9(9) BINARY to match the signature of the debit
methods.

The CheckingAccount class overrides the print method that is defined in the
Account class. Because the print method has no formal parameters, a method in
the CheckingAccount class could invoke the superclass print method with this
statement:
Invoke Super "print".

The keyword SUPER indicates that you want to invoke a superclass method rather
than a method in the current class. (SUPER is an implicit reference to the object used
in the invocation of the currently executing method.)

“Example: accounts” on page 590

RELATED TASKS

“Overriding an instance method” on page 601

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

Creating and initializing instances of classes
Before you can use the instance methods that are defined in a Java or COBOL
class, you must first create an instance of the class.

To create a new instance of class class-name and to obtain a reference object-reference
to the created object, code a statement of the following form, where object-reference
is defined in the DATA DIVISION of the client:
INVOKE class-name NEW . . . RETURNING object-reference

When you code the INVOKE . . . NEW statement within a method, and the use of
the returned object reference is not limited to the duration of the method
invocation, you must convert the returned object reference to a global reference by
calling the JNI service NewGlobalRef:
Call NewGlobalRef using by value JNIEnvPtr object-reference

returning object-reference

If you do not call NewGlobalRef, the returned object reference is only a local
reference, which means that it is automatically freed after the method returns.

614 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Instantiating Java classes”
“Instantiating COBOL classes”
“Accessing JNI services” on page 633
“Managing local and global references” on page 636
“DATA DIVISION for defining a client” on page 608
“Invoking methods (INVOKE)” on page 610
“Coding interoperable data types in COBOL and Java” on page 638

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

Instantiating Java classes
To instantiate a Java class, invoke any parameterized constructor that the class
supports by coding the USING phrase in the INVOKE . . . NEW statement
immediately before the RETURNING phrase, passing BY VALUE the number and types
of arguments that match the signature of the constructor.

The data type of each argument must be one of the types that are interoperable
with Java. To invoke the default (parameterless) constructor, omit the USING phrase.

For example, to create an instance of the Check class, initialize its instance data,
and obtain reference aCheck to the Check instance created, you could code this
statement in a COBOL client:
Invoke Check New

using by value aCheckingAccount, payee, 125
returning aCheck

RELATED TASKS

“Invoking methods (INVOKE)” on page 610
“Coding interoperable data types in COBOL and Java” on page 638

RELATED REFERENCES

VALUE clause (Enterprise COBOL Language Reference)
INVOKE statement (Enterprise COBOL Language Reference)

Instantiating COBOL classes
To instantiate a COBOL class, you can specify either a typed or universal object
reference in the RETURNING phrase of the INVOKE . . . NEW statement. However,
you cannot code the USING phrase: the instance data is initialized as specified in the
VALUE clauses in the class definition.

Thus the INVOKE . . . NEW statement is useful for instantiating COBOL classes that
have only simple instance data. For example, the following statement creates an
instance of the Account class, initializes the instance data as specified in VALUE
clauses in the WORKING-STORAGE SECTION of the OBJECT paragraph of the Account
class definition, and provides reference outAccount to the new instance:
Invoke Account New returning outAccount

To make it possible to initialize COBOL instance data that cannot be initialized
using VALUE clauses alone, when designing a COBOL class you must define a
parameterized creation method in the FACTORY paragraph and a parameterized
initialization method in the OBJECT paragraph:
1. In the parameterized factory creation method, do these steps:

Chapter 30. Writing object-oriented programs 615

a. Code INVOKE class-name NEW RETURNING objectRef to create an instance of
class-name and to give initial values to the instance data items that have
VALUE clauses.

b. Invoke the parameterized initialization method on the instance (objectRef),
passing BY VALUE the arguments that were supplied to the factory method.

2. In the initialization method, code logic to complete the instance data
initialization using the values supplied through the formal parameters.

To create an instance of the COBOL class and properly initialize it, the client
invokes the parameterized factory method, passing BY VALUE the required
arguments. The object reference returned to the client is a local reference. If the
client code is within a method, and the use of the returned object reference is not
limited to the duration of that method, the client code must convert the returned
object reference to a global reference by calling the JNI service NewGlobalRef.

“Example: defining a factory (with methods)” on page 625

RELATED TASKS

“Accessing JNI services” on page 633
“Managing local and global references” on page 636
“Invoking methods (INVOKE)” on page 610
“Defining a factory section” on page 621

RELATED REFERENCES

VALUE clause (Enterprise COBOL Language Reference)
INVOKE statement (Enterprise COBOL Language Reference)

Freeing instances of classes
You do not need to take any action to free individual object instances of any class.
No syntax is available for doing so. The Java runtime system automatically
performs garbage collection, that is, it reclaims the memory for objects that are no
longer in use.

There could be times, however, when you need to explicitly free local or global
references to objects within a native COBOL client in order to permit garbage
collection of the referenced objects to occur.

RELATED TASKS

“Managing local and global references” on page 636

Example: defining a client
The following example shows a small client program of the Account class.

The program does this:
v Invokes a factory method createAccount to create an Account instance with a

default balance of zero
v Invokes the instance method credit to deposit $500 to the new account
v Invokes the instance method print to display the account status

(The Account class was shown in “Example: defining a method” on page 604.)
cbl dll,thread,pgmname(longmixed)
Identification division.
Program-id. "TestAccounts" recursive.
Environment division.

616 Enterprise COBOL for z/OS, V5.2 Programming Guide

Configuration section.
Repository.

Class Account is "Account".
Data Division.
* Working data is declared in LOCAL-STORAGE instead of
* WORKING-STORAGE so that each thread has its own copy:
Local-storage section.
01 anAccount usage object reference Account.
*
Procedure division.
Test-Account-section.

Display "Test Account class"
* Create account 123456 with 0 balance:

Invoke Account "createAccount"
using by value 123456
returning anAccount

* Deposit 500 to the account:
Invoke anAccount "credit" using by value 500
Invoke anAccount "print"
Display space

*
Stop Run.

End program "TestAccounts".

“Example: defining a factory (with methods)” on page 625

RELATED TASKS

“Defining a factory method” on page 622
“Invoking factory or static methods” on page 624
Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Defining a subclass
You can make a class (called a subclass, derived class, or child class) a
specialization of another class (called a superclass, base class, or parent class).

A subclass inherits the methods and instance data of its superclasses, and is related
to its superclasses by an is-a relationship. For example, if subclass P inherits from
superclass Q, and subclass Q inherits from superclass S, then an instance of P is an
instance of Q and also (by transitivity) an instance of S. An instance of P inherits
the methods and data of Q and S.

Using subclasses has several advantages:
v Reuse of code: Through inheritance, a subclass can reuse methods that already

exist in a superclass.
v Specialization: In a subclass you can add new methods to handle cases that the

superclass does not handle. You can also add new data items that the superclass
does not need.

v Change in action: A subclass can override a method that it inherits from a
superclass by defining a method of the same signature as that in the superclass.
When you override a method, you might make only a few minor changes or
completely change what the method does.

Restriction: You cannot use multiple inheritance in your COBOL programs. Each
COBOL class that you define must have exactly one immediate superclass that is
implemented in Java or COBOL, and each class must be derived directly or
indirectly from java.lang.Object. The semantics of inheritance are as defined by
Java.

Chapter 30. Writing object-oriented programs 617

The structure and syntax of a subclass definition are identical to those of a class
definition: Define instance data and methods in the DATA DIVISION and PROCEDURE
DIVISION, respectively, within the OBJECT paragraph of the subclass definition. In
subclasses that require data and methods that are to be associated with the
subclass itself rather than with individual object instances, define a separate DATA
DIVISION and PROCEDURE DIVISION within the FACTORY paragraph of the subclass
definition.

COBOL instance data is private. A subclass can access the instance data of a
COBOL superclass only if the superclass defines attribute (get or set) instance
methods for doing so.

“Example: accounts” on page 590
“Example: defining a subclass (with methods)” on page 620

RELATED TASKS

“Defining a class” on page 592
“Overriding an instance method” on page 601
“Coding attribute (get and set) methods” on page 603
“Defining a subclass instance method” on page 619
“Defining a factory section” on page 621

RELATED REFERENCES

The Java Language Specification (Inheritance, overriding, and hiding)
COBOL class definition structure (Enterprise COBOL Language Reference)

CLASS-ID paragraph for defining a subclass
Use the CLASS-ID paragraph to name the subclass and indicate from which
immediate Java or COBOL superclass it inherits its characteristics.
Identification Division. Required
Class-id. CheckingAccount inherits Account. Required

In the example above, CheckingAccount is the subclass being defined.
CheckingAccount inherits all the methods of the class known within the subclass
definition as Account. CheckingAccount methods can access Account instance data
only if the Account class provides attribute (get or set) methods for doing so.

You must specify the name of the immediate superclass in the REPOSITORY
paragraph in the CONFIGURATION SECTION of the ENVIRONMENT DIVISION. You can
optionally associate the superclass name with the name of the class as it is known
externally. You can also specify the name of the subclass that you are defining
(here, CheckingAccount) in the REPOSITORY paragraph and associate it with its
corresponding external class-name.

RELATED TASKS

“CLASS-ID paragraph for defining a class” on page 594
“Coding attribute (get and set) methods” on page 603
“REPOSITORY paragraph for defining a subclass”

REPOSITORY paragraph for defining a subclass
Use the REPOSITORY paragraph to declare to the compiler that the specified words
are class-names when you use them within a subclass definition, and to optionally
relate the class-names to the corresponding external class-names (the class-names
as they are known outside the compilation unit).

618 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.4.8

For example, in the CheckingAccount subclass definition, these REPOSITORY
paragraph entries indicate that the external class-names of the classes referred to as
CheckingAccount, Check, and Account within the subclass definition are
CheckingAccount, Check, and Account, respectively.
Environment Division. Required
Configuration Section. Required
Repository. Required

Class CheckingAccount is "CheckingAccount" Optional
Class Check is "Check" Required
Class Account is "Account". Required

In the REPOSITORY paragraph, you must code an entry for each class-name that you
explicitly reference in the subclass definition. For example:
v A user-defined superclass from which the subclass that you are defining inherits
v The classes that you reference in methods within the subclass definition

The rules for coding REPOSITORY paragraph entries in a subclass are identical to
those for coding REPOSITORY paragraph entries in a class.

RELATED TASKS

“REPOSITORY paragraph for defining a class” on page 594

RELATED REFERENCES

REPOSITORY paragraph (Enterprise COBOL Language Reference)

WORKING-STORAGE SECTION for defining subclass instance
data

Use the WORKING-STORAGE SECTION in the DATA DIVISION of the subclass OBJECT
paragraph to describe any instance data that the subclass needs in addition to the
instance data defined in its superclasses. Use the same syntax that you use to
define instance data in a class.

For example, the definition of the instance data for the CheckingAccount subclass
of the Account class might look like this:
IDENTIFICATION DIVISION.
Object.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CheckFee pic S9(9) value 1.
. . .
End Object.

RELATED TASKS

“WORKING-STORAGE SECTION for defining class instance data” on page 596

Defining a subclass instance method
A subclass inherits the methods of its superclasses. In a subclass definition, you
can override any instance method that the subclass inherits by defining an instance
method with the same signature as the inherited method. You can also define new
methods that the subclass needs.

The structure and syntax of a subclass instance method are identical to those of a
class instance method. Define subclass instance methods in the PROCEDURE DIVISION
of the OBJECT paragraph of the subclass definition.

“Example: defining a subclass (with methods)” on page 620

Chapter 30. Writing object-oriented programs 619

RELATED TASKS

“Defining a class instance method” on page 597
“Overriding an instance method” on page 601
“Overloading an instance method” on page 602

Example: defining a subclass (with methods)
The following example shows the instance method definitions for the
CheckingAccount subclass of the Account class.

The processCheck method invokes the Java instance methods getAmount and
getPayee of the Check class to get the check data. It invokes the credit and debit
instance methods inherited from the Account class to credit the payee and debit
the payer of the check.

The print method overrides the print instance method defined in the Account
class. It invokes the overridden print method to display account status, and also
displays the check fee. CheckFee is an instance data item defined in the subclass.

(The Account class was shown in “Example: defining a method” on page 604.)

CheckingAccount class (subclass of Account)
cbl dll,thread,pgmname(longmixed)
Identification Division.
Class-id. CheckingAccount inherits Account.
Environment Division.
Configuration section.
Repository.

Class CheckingAccount is "CheckingAccount"
Class Check is "Check"
Class Account is "Account".

*
* (FACTORY paragraph not shown)
*
Identification division.
Object.
Data division.
Working-storage section.
01 CheckFee pic S9(9) value 1.
Procedure Division.

*
* processCheck method to get the check amount and payee,
* add the check fee, and invoke inherited methods debit
* to debit the payer and credit to credit the payee:

Identification Division.
Method-id. "processCheck".
Data division.
Local-storage section.
01 amount pic S9(9) binary.
01 payee usage object reference Account.
Linkage section.
01 aCheck usage object reference Check.

*
Procedure Division using by value aCheck.

Invoke aCheck "getAmount" returning amount
Invoke aCheck "getPayee" returning payee
Invoke payee "credit" using by value amount
Add checkFee to amount
Invoke self "debit" using by value amount.

End method "processCheck".
*
* print method override to display account status:

Identification Division.

620 Enterprise COBOL for z/OS, V5.2 Programming Guide

Method-id. "print".
Data division.
Local-storage section.
01 printableFee pic $$,$$$,$$9.
Procedure Division.

Invoke super "print"
Move CheckFee to printableFee
Display " Check fee: " printableFee.

End method "print".
*
End Object.
*
End class CheckingAccount.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
“Invoking methods (INVOKE)” on page 610
“Overriding an instance method” on page 601
“Invoking overridden superclass methods” on page 614

Defining a factory section
Use the FACTORY paragraph in a class definition to define data and methods that
are to be associated with the class itself rather than with individual object
instances.

COBOL factory data is equivalent to Java private static data. A single copy of the
data is instantiated for the class and is shared by all object instances of the class.
You most commonly use factory data when you want to gather data from all the
instances of a class. For example, you could define a factory data item to keep a
running total of the number of instances of the class that are created.

COBOL factory methods are equivalent to Java public static methods. The methods
are supported by the class independently of any object instance. You most
commonly use factory methods to customize object creation when you cannot use
VALUE clauses alone to initialize instance data.

By contrast, you use the OBJECT paragraph in a class definition to define data that
is created for each object instance of the class, and methods that are supported for
each object instance of the class.

A factory definition consists of three divisions, followed by an END FACTORY
statement:

Table 80. Structure of factory definitions

Division Purpose Syntax

IDENTIFICATION
(required)

Identify the start of the
factory definition.

IDENTIFICATION DIVISION.
FACTORY.

DATA (optional) Describe data that is
allocated once for the
class (as opposed to data
allocated for each instance
of a class).

“WORKING-STORAGE SECTION for
defining factory data” on page 622
(optional)

PROCEDURE
(optional)

Define factory methods. Factory method definitions: “Defining a
factory method” on page 622

Chapter 30. Writing object-oriented programs 621

“Example: defining a factory (with methods)” on page 625

RELATED TASKS

“Defining a class” on page 592
“Instantiating COBOL classes” on page 615
“Wrapping procedure-oriented COBOL programs” on page 630
“Structuring OO applications” on page 630

WORKING-STORAGE SECTION for defining factory data
Use the WORKING-STORAGE SECTION in the DATA DIVISION of the FACTORY paragraph
to describe the factory data that a COBOL class needs, that is, statically allocated
data to be shared by all object instances of the class.

The FACTORY keyword, which you must immediately precede with an
IDENTIFICATION DIVISION declaration, indicates the beginning of the definitions of
the factory data and factory methods for the class. For example, the definition of
the factory data for the Account class might look like this:
IDENTIFICATION DIVISION.
Factory.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NumberOfAccounts pic 9(6) value zero.
. . .
End Factory.

You can initialize simple factory data by using VALUE clauses as shown above.

COBOL factory data is equivalent to Java private static data. No other class or
subclass (nor instance method in the same class, if any) can reference COBOL
factory data directly. Factory data is global to all factory methods that the FACTORY
paragraph defines. If you want to make factory data accessible from outside the
FACTORY paragraph, define factory attribute (get or set) methods for doing so.

RELATED TASKS

“Coding attribute (get and set) methods” on page 603
“Instantiating COBOL classes” on page 615

Defining a factory method
Define COBOL factory methods in the PROCEDURE DIVISION of the FACTORY paragraph
of a class definition. A factory method defines an operation that is supported by a
class independently of any object instance of the class. COBOL factory methods are
equivalent to Java public static methods.

You typically define factory methods for classes whose instances require complex
initialization, that is, to values that you cannot assign by using VALUE clauses alone.
Within a factory method you can invoke instance methods to initialize the instance
data. A factory method cannot directly access instance data.

You can code factory attribute (get and set) methods to make factory data
accessible from outside the FACTORY paragraph, for example, to make the data
accessible from instance methods in the same class or from a client program. For
example, the Account class could define a factory method getNumberOfAccounts
to return the current tally of the number of accounts.

You can use factory methods to wrap procedure-oriented COBOL programs so that
they are accessible from Java programs. You can code a factory method called main

622 Enterprise COBOL for z/OS, V5.2 Programming Guide

to enable you to run an OO application by using the java command, and to
structure your applications in keeping with standard Java practice. See the related
tasks for details.

In defining factory methods, you use the same syntax that you use to define
instance methods. A COBOL factory method definition consists of four divisions
(like a COBOL program), followed by an END METHOD marker:

Table 81. Structure of factory method definitions

Division Purpose Syntax

IDENTIFICATION
(required)

Same as for a class
instance method

Same as for a class instance method
(required)

ENVIRONMENT
(optional)

Same as for a class
instance method

Same as for a class instance method

DATA (optional) Same as for a class
instance method

Same as for a class instance method

PROCEDURE
(optional)

Same as for a class
instance method

Same as for a class instance method

Within a class definition, you do not need to make each factory method-name
unique, but you do need to give each factory method a unique signature. You can
overload factory methods in exactly the same way that you overload instance
methods. For example, the CheckingAccount subclass provides two versions of the
factory method createCheckingAccount: one that initializes the account to have a
default balance of zero, and one that allows the opening balance to be passed in.
Clients can invoke either createCheckingAccount method by passing arguments
that match the signature of the intended method.

If you define a data item with the same name in both the DATA DIVISION of a
factory method and the DATA DIVISION of the FACTORY paragraph, a reference in the
method to that data-name refers only to the method data item. The method DATA
DIVISION takes precedence.

“Example: defining a factory (with methods)” on page 625

RELATED TASKS

“Structuring OO applications” on page 630
“Wrapping procedure-oriented COBOL programs” on page 630
“Instantiating COBOL classes” on page 615
“Defining a class instance method” on page 597
“Coding attribute (get and set) methods” on page 603
“Overloading an instance method” on page 602
“Hiding a factory or static method”
“Invoking factory or static methods” on page 624
“Using object-oriented COBOL and Java under IMS” on page 458

Hiding a factory or static method
A factory method defined in a subclass is said to hide an inherited COBOL or Java
method that would otherwise be accessible in the subclass if the two methods have
the same signature.

To hide a superclass factory method f1 in a COBOL subclass, define a factory
method f1 in the subclass that has the same name and whose PROCEDURE DIVISION
USING phrase (if any) has the same number and type of formal parameters as the

Chapter 30. Writing object-oriented programs 623

superclass method has. (If the superclass method is implemented in Java, you must
code formal parameters that are interoperable with the data types of the
corresponding Java parameters.) When a client invokes f1 using the subclass name,
the subclass method rather than the superclass method is invoked.

The presence or absence of a method return value and the data type of the return
value used in the PROCEDURE DIVISION RETURNING phrase (if any) must be identical
in the subclass factory method and the hidden superclass method.

A factory method must not hide an instance method in a Java or COBOL
superclass.

“Example: defining a factory (with methods)” on page 625

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 638
“Overriding an instance method” on page 601
“Invoking methods (INVOKE)” on page 610

RELATED REFERENCES

The Java Language Specification (Inheritance, overriding, and hiding)
The procedure division header (Enterprise COBOL Language Reference)

Invoking factory or static methods
To invoke a COBOL factory method or Java static method in a COBOL method or
client program, code the class-name as the first operand of the INVOKE statement.

For example, a client program could invoke one of the overloaded
CheckingAccount factory methods called createCheckingAccount to create a
checking account with account number 777777 and an opening balance of $300 by
coding this statement:
Invoke CheckingAccount "createCheckingAccount"

using by value 777777 300
returning aCheckingAccount

To invoke a factory method from within the same class in which you define the
factory method, you also use the class-name as the first operand in the INVOKE
statement.

Code the name of the method to be invoked either as a literal or as an identifier
whose value at run time is the method-name. The method-name must be an
alphanumeric or national literal or a category alphabetic, alphanumeric, or national
data item, and is interpreted in a case-sensitive manner.

If an invoked method is not supported in the class that you name in the INVOKE
statement, a severity-3 Language Environment condition is raised at run time
unless you code the ON EXCEPTION phrase in the INVOKE statement.

The conformance requirements for passing arguments to a COBOL factory method
or Java static method in the USING phrase, and receiving a return value in the
RETURNING phrase, are the same as those for invoking instance methods.

“Example: defining a factory (with methods)” on page 625

RELATED TASKS

“Invoking methods (INVOKE)” on page 610

624 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://java.sun.com/docs/books/jls/third_edition/html/classes.html#8.4.8

“Using national data (Unicode) in COBOL” on page 130
“Coding interoperable data types in COBOL and Java” on page 638

RELATED REFERENCES

INVOKE statement (Enterprise COBOL Language Reference)

Example: defining a factory (with methods)
The following example updates the previous examples to show the definition of
factory data and methods.

These updates are shown:
v The Account class adds factory data and a parameterized factory method,

createAccount, which allows an Account instance to be created using an account
number that is passed in.

v The CheckingAccount subclass adds factory data and an overloaded
parameterized factory method, createCheckingAccount. One implementation of
createCheckingAccount initializes the account with a default balance of zero, and
the other allows the opening balance to be passed in. Clients can invoke either
method by passing arguments that match the signature of the required method.

v The TestAccounts client invokes the services provided by the factory methods of
the Account and CheckingAccount classes, and instantiates the Java Check class.

v The output from the TestAccounts client program is shown.

(The previous examples were “Example: defining a method” on page 604,
“Example: defining a client” on page 616, and “Example: defining a subclass (with
methods)” on page 620.)

You can also find the complete source code for this example in the
cobol/demo/oosample subdirectory in the z/OS UNIX file system. Typically the
complete path for the source is /usr/lpp/cobol/demo/oosample. You can use the
makefile there to compile and link the code.

Account class
cbl dll,thread,pgmname(longmixed)
Identification Division.
Class-id. Account inherits Base.
Environment Division.
Configuration section.
Repository.

Class Base is "java.lang.Object"
Class Account is "Account".

*
Identification division.
Factory.
Data division.
Working-storage section.
01 NumberOfAccounts pic 9(6) value zero.

*
Procedure Division.

*
* createAccount method to create a new Account
* instance, then invoke the OBJECT paragraph’s init
* method on the instance to initialize its instance data:

Identification Division.
Method-id. "createAccount".
Data division.
Linkage section.
01 inAccountNumber pic S9(6) binary.
01 outAccount object reference Account.

Chapter 30. Writing object-oriented programs 625

* Facilitate access to JNI services:
Copy JNI.

Procedure Division using by value inAccountNumber
returning outAccount.

* Establish addressability to JNI environment structure:
Set address of JNIEnv to JNIEnvPtr
Set address of JNINativeInterface to JNIEnv
Invoke Account New returning outAccount
Invoke outAccount "init" using by value inAccountNumber
Add 1 to NumberOfAccounts.

End method "createAccount".
*
End Factory.
*
Identification division.
Object.
Data division.
Working-storage section.
01 AccountNumber pic 9(6).
01 AccountBalance pic S9(9) value zero.

*
Procedure Division.

*
* init method to initialize the account:

Identification Division.
Method-id. "init".
Data division.
Linkage section.
01 inAccountNumber pic S9(9) binary.
Procedure Division using by value inAccountNumber.

Move inAccountNumber to AccountNumber.
End method "init".

*
* getBalance method to return the account balance:

Identification Division.
Method-id. "getBalance".
Data division.
Linkage section.
01 outBalance pic S9(9) binary.
Procedure Division returning outBalance.

Move AccountBalance to outBalance.
End method "getBalance".

*
* credit method to deposit to the account:

Identification Division.
Method-id. "credit".
Data division.
Linkage section.
01 inCredit pic S9(9) binary.
Procedure Division using by value inCredit.

Add inCredit to AccountBalance.
End method "credit".

*
* debit method to withdraw from the account:

Identification Division.
Method-id. "debit".
Data division.
Linkage section.
01 inDebit pic S9(9) binary.
Procedure Division using by value inDebit.

Subtract inDebit from AccountBalance.
End method "debit".

*
* print method to display formatted account number and balance:

Identification Division.
Method-id. "print".
Data division.

626 Enterprise COBOL for z/OS, V5.2 Programming Guide

Local-storage section.
01 PrintableAccountNumber pic ZZZZZZ999999.
01 PrintableAccountBalance pic $$$$,$$$,$$9CR.
Procedure Division.

Move AccountNumber to PrintableAccountNumber
Move AccountBalance to PrintableAccountBalance
Display " Account: " PrintableAccountNumber
Display " Balance: " PrintableAccountBalance.

End method "print".
*
End Object.
*
End class Account.

CheckingAccount class (subclass of Account)
cbl dll,thread,pgmname(longmixed)
Identification Division.
Class-id. CheckingAccount inherits Account.
Environment Division.
Configuration section.
Repository.

Class CheckingAccount is "CheckingAccount"
Class Check is "Check"
Class Account is "Account".

*
Identification division.
Factory.
Data division.
Working-storage section.
01 NumberOfCheckingAccounts pic 9(6) value zero.

*
Procedure Division.

*
* createCheckingAccount overloaded method to create a new
* CheckingAccount instance with a default balance, invoke
* inherited instance method init to initialize the account
* number, and increment factory data tally of checking accounts:

Identification Division.
Method-id. "createCheckingAccount".
Data division.
Linkage section.
01 inAccountNumber pic S9(6) binary.
01 outCheckingAccount object reference CheckingAccount.

* Facilitate access to JNI services:
Copy JNI.

Procedure Division using by value inAccountNumber
returning outCheckingAccount.

* Establish addressability to JNI environment structure:
Set address of JNIEnv to JNIEnvPtr
Set address of JNINativeInterface to JNIEnv
Invoke CheckingAccount New returning outCheckingAccount
Invoke outCheckingAccount "init"
using by value inAccountNumber

Add 1 to NumberOfCheckingAccounts.
End method "createCheckingAccount".

*
* createCheckingAccount overloaded method to create a new
* CheckingAccount instance, invoke inherited instance methods
* init to initialize the account number and credit to set the
* balance, and increment factory data tally of checking accounts:

Identification Division.
Method-id. "createCheckingAccount".
Data division.
Linkage section.
01 inAccountNumber pic S9(6) binary.
01 inInitialBalance pic S9(9) binary.
01 outCheckingAccount object reference CheckingAccount.

Chapter 30. Writing object-oriented programs 627

Copy JNI.
Procedure Division using by value inAccountNumber

inInitialBalance
returning outCheckingAccount.

Set address of JNIEnv to JNIEnvPtr
Set address of JNINativeInterface to JNIEnv
Invoke CheckingAccount New returning outCheckingAccount
Invoke outCheckingAccount "init"

using by value inAccountNumber
Invoke outCheckingAccount "credit"

using by value inInitialBalance
Add 1 to NumberOfCheckingAccounts.

End method "createCheckingAccount".
*
End Factory.
*
Identification division.
Object.
Data division.
Working-storage section.
01 CheckFee pic S9(9) value 1.
Procedure Division.

*
* processCheck method to get the check amount and payee,
* add the check fee, and invoke inherited methods debit
* to debit the payer and credit to credit the payee:

Identification Division.
Method-id. "processCheck".
Data division.
Local-storage section.
01 amount pic S9(9) binary.
01 payee usage object reference Account.
Linkage section.
01 aCheck usage object reference Check.
Procedure Division using by value aCheck.

Invoke aCheck "getAmount" returning amount
Invoke aCheck "getPayee" returning payee
Invoke payee "credit" using by value amount
Add checkFee to amount
Invoke self "debit" using by value amount.

End method "processCheck".
*
* print method override to display account status:

Identification Division.
Method-id. "print".
Data division.
Local-storage section.
01 printableFee pic $$,$$$,$$9.
Procedure Division.

Invoke super "print"
Move CheckFee to printableFee
Display " Check fee: " printableFee.

End method "print".
*
End Object.
*
End class CheckingAccount.

Check class
/**
* A Java class for check information
*/
public class Check {

private CheckingAccount payer;
private Account payee;
private int amount;

628 Enterprise COBOL for z/OS, V5.2 Programming Guide

public Check(CheckingAccount inPayer, Account inPayee, int inAmount) {
payer=inPayer;
payee=inPayee;
amount=inAmount;

}

public int getAmount() {
return amount;

}

public Account getPayee() {
return payee;

}
}

TestAccounts client program
cbl dll,thread,pgmname(longmixed)
Identification division.
Program-id. "TestAccounts" recursive.
Environment division.
Configuration section.
Repository.

Class Account is "Account"
Class CheckingAccount is "CheckingAccount"
Class Check is "Check".

Data Division.
* Working data is declared in Local-storage
* so that each thread has its own copy:
Local-storage section.
01 anAccount usage object reference Account.
01 aCheckingAccount usage object reference CheckingAccount.
01 aCheck usage object reference Check.
01 payee usage object reference Account.
*
Procedure division.
Test-Account-section.

Display "Test Account class"
* Create account 123456 with 0 balance:

Invoke Account "createAccount"
using by value 123456
returning anAccount

* Deposit 500 to the account:
Invoke anAccount "credit" using by value 500
Invoke anAccount "print"
Display space

*
Display "Test CheckingAccount class"

* Create checking account 777777 with balance of 300:
Invoke CheckingAccount "createCheckingAccount"
using by value 777777 300
returning aCheckingAccount

* Set account 123456 as the payee:
Set payee to anAccount

* Initialize check for 125 to be paid by account 777777 to payee:
Invoke Check New
using by value aCheckingAccount, payee, 125
returning aCheck

* Debit the payer, and credit the payee:
Invoke aCheckingAccount "processCheck"
using by value aCheck

Invoke aCheckingAccount "print"
Invoke anAccount "print"

*
Stop Run.

End program "TestAccounts".

Chapter 30. Writing object-oriented programs 629

Output produced by the TestAccounts client program
Test Account class
Account: 123456
Balance: $500

Test CheckingAccount class
Account: 777777
Balance: $174
Check fee: $1
Account: 123456
Balance: $625

RELATED TASKS

“Creating and initializing instances of classes” on page 614
“Defining a factory method” on page 622
“Invoking factory or static methods” on page 624
Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Wrapping procedure-oriented COBOL programs
A wrapper is a class that provides an interface between object-oriented code and
procedure-oriented code. Factory methods provide a convenient means for writing
wrappers for existing procedural COBOL code to make it accessible from Java
programs.

To wrap COBOL code, do these steps:
1. Create a simple COBOL class that contains a FACTORY paragraph.
2. In the FACTORY paragraph, code a factory method that uses a CALL statement to

call the procedural program.

A Java program can invoke the factory method by using a static method invocation
expression, thus invoking the COBOL procedural program.

RELATED TASKS

“Defining a class” on page 592
“Defining a factory section” on page 621
“Defining a factory method” on page 622

Structuring OO applications
You can structure applications that use object-oriented COBOL syntax in one of
three ways.

An OO application can begin with:
v A COBOL program, which can have any name.

Under z/OS UNIX, you can run the application by specifying the name of the
linked module (which should match the program name) at the command
prompt. You can also bind the program as a module in a PDSE and run it in JCL
using the EXEC PGM statement.

v A Java class definition that contains a method called main. Declare main as
public, static, and void, with a single parameter of type String[].
You can run the application with the java command, specifying the name of the
class that contains main, and zero or more strings as command-line arguments.

v A COBOL class definition that contains a factory method called main. Declare
main with no RETURNING phrase and a single USING parameter, an object reference

630 Enterprise COBOL for z/OS, V5.2 Programming Guide

to a class that is an array with elements of type java.lang.String. (Thus main is in
effect public, static, and void, with a single parameter of type String[].)
You can run the application with the java command, specifying the name of the
class that contains main, and zero or more strings as command-line arguments.
Structure an OO application this way if you want to:
– Run the application by using the java command.
– Run the application in an environment where applications must start with the

main method of a Java class (such as a Java dependent region).
– Follow standard Java programming practice.
“Examples: COBOL applications that run using the java command”

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
“Defining a factory method” on page 622
“Declaring arrays and strings for Java” on page 639
Chapter 22, “Developing COBOL programs for IMS,” on page 453

Examples: COBOL applications that run using the java
command

The following examples show COBOL class definitions that contain a factory
method called main.

In each case, main has no RETURNING phrase and has a single USING parameter, an
object reference to a class that is an array with elements of type java.lang.String.
You can run these applications by using the java command.

Displaying a message
cbl dll,thread
Identification Division.
Class-id. CBLmain inherits Base.
Environment Division.
Configuration section.
Repository.

Class Base is "java.lang.Object"
Class stringArray is "jobjectArray:java.lang.String"
Class CBLmain is "CBLmain".

*
Identification Division.
Factory.
Procedure division.

*
Identification Division.
Method-id. "main".
Data division.
Linkage section.
01 SA usage object reference stringArray.
Procedure division using by value SA.

Display " >> COBOL main method entered"
.

End method "main".
End factory.
End class CBLmain.

Echoing the input strings
cbl dll,thread,pgmname(longmixed),ssrange
Identification Division.
Class-id. Echo inherits Base.
Environment Division.

Chapter 30. Writing object-oriented programs 631

Configuration section.
Repository.

Class Base is "java.lang.Object"
Class stringArray is "jobjectArray:java.lang.String"
Class jstring is "java.lang.String"
Class Echo is "Echo".

*
Identification Division.
Factory.
Procedure division.

*
Identification Division.
Method-id. "main".
Data division.
Local-storage section.
01 SAlen pic s9(9) binary.
01 I pic s9(9) binary.
01 SAelement object reference jstring.
01 SAelementlen pic s9(9) binary.
01 Sbuffer pic X(65535).
01 P pointer.
Linkage section.
01 SA object reference stringArray.
Copy "JNI.cpy" suppress.
Procedure division using by value SA.

Set address of JNIEnv to JNIEnvPtr
Set address of JNINativeInterface to JNIEnv
Call GetArrayLength using by value JNIEnvPtr SA

returning SAlen
Display "Input string array length: " SAlen
Display "Input strings:"
Perform varying I from 0 by 1 until I = SAlen

Call GetObjectArrayElement
using by value JNIEnvPtr SA I
returning SAelement

Call "GetStringPlatformLength"
using by value JNIEnvPtr

SAelement
address of SAelementlen
0

Call "GetStringPlatform"
using by value JNIEnvPtr

SAelement
address of Sbuffer
length of Sbuffer
0

Display Sbuffer(1:SAelementlen)
End-perform
.

End method "main".
End factory.
End class Echo.

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
“Defining a factory method” on page 622
Chapter 31, “Communicating with Java methods,” on page 633

632 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 31. Communicating with Java methods

To achieve interlanguage interoperability with Java, you need to follow certain
rules and guidelines for using services in the Java Native Interface (JNI), coding
data types, and compiling COBOL programs.

You can invoke methods that are written in Java from COBOL programs, and you
can invoke methods that are written in COBOL from Java programs. You need to
code COBOL object-oriented language for basic Java object capabilities. For
additional Java capabilities, you can call JNI services.

Because Java programs might be multithreaded and use asynchronous signals,
compile COBOL programs with the THREAD option.

“Example: J2EE client written in COBOL” on page 644

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
“Accessing JNI services”
“Sharing data with Java” on page 637
Chapter 30, “Writing object-oriented programs,” on page 589
Chapter 27, “Preparing COBOL programs for multithreading,” on page 517

RELATED REFERENCES

JDK 5.0 Documentation

Accessing JNI services
The Java Native Interface (JNI) provides many callable services that you can use
when you develop applications that mix COBOL and Java. To facilitate access to
these services, copy JNI.cpy into the LINKAGE SECTION of your COBOL program.

The JNI.cpy copybook contains these definitions:
v COBOL data definitions that correspond to the Java JNI types
v JNINativeInterface, the JNI environment structure that contains function pointers

for accessing the callable service functions

You obtain the JNI environment structure by two levels of indirection from the JNI
environment pointer, as the following illustration shows:

JNIEnvPtr

pointer pointer

pointer

pointer

Private per-

thread data

...

JNI function

JNI function

JNI function

Use the special register JNIEnvPtr to reference the JNI environment pointer to
obtain the address for the JNI environment structure. JNIEnvPtr is implicitly

© Copyright IBM Corp. 1991, 2018 633

http://download.oracle.com/javase/1.5.0/docs/

defined as USAGE POINTER; do not use it as a receiving data item. Before you
reference the contents of the JNI environment structure, you must code the
following statements to establish its addressability:
Linkage section.
COPY JNI
. . .
Procedure division.

Set address of JNIEnv to JNIEnvPtr
Set address of JNINativeInterface to JNIEnv
. . .

The code above sets the addresses of the following items:
v JNIEnv, a pointer data item that JNI.cpy provides. JNIEnvPtr is the COBOL

special register that contains the environment pointer.
v JNINativeInterface, the COBOL group structure that JNI.cpy contains. This

structure maps the JNI environment structure, which contains an array of
function pointers for the JNI callable services.

After you code the statements above, you can access the JNI callable services with
CALL statements that reference the function pointers. You can pass the JNIEnvPtr
special register as the first argument to the services that require the environment
pointer, as shown in the following example:
01 InputArrayObj usage object reference jlongArray.
01 ArrayLen pic S9(9) comp-5.
. . .

Call GetArrayLength using by value JNIEnvPtr InputArrayObj
returning ArrayLen

Important: Pass all arguments to the JNI callable services by value.

Some JNI callable services require a Java class-object reference as an argument. To
obtain a reference to the class object that is associated with a class, use one of the
following JNI callable services:
v GetObjectClass
v FindClass

Restriction: The JNI environment pointer is thread specific. Do not pass it from
one thread to another.

RELATED TASKS

“Managing local and global references” on page 636
“Handling Java exceptions”
“Coding interoperable data types in COBOL and Java” on page 638
“Defining a client” on page 606

RELATED REFERENCES

Appendix E, “JNI.cpy copybook,” on page 731
The Java Native Interface

Handling Java exceptions
Use JNI services to throw and catch Java exceptions.

Throwing an exception: Use one of the following services to throw a Java
exception from a COBOL method:
v Throw

634 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://download.oracle.com/javase/1.5.0/docs/guide/jni/

v ThrowNew

You must make the thrown object an instance of a subclass of java.lang.Throwable.

The Java virtual machine (JVM) does not recognize and process the thrown
exception until the method that contains the call has completed and returned to
the JVM.

Catching an exception: After you invoke a method that might have thrown a Java
exception, you can do these steps:
1. Test whether an exception occurred.
2. If an exception occurred, process the exception.
3. Clear the exception, if clearing is appropriate.

Use the following JNI services:
v ExceptionOccurred
v ExceptionCheck
v ExceptionDescribe
v ExceptionClear

To do error analysis, use the methods supported by the exception object that is
returned. This object is an instance of the java.lang.Throwable class.

“Example: handling Java exceptions”

Example: handling Java exceptions
The following example shows the use of JNI services for catching an exception
from Java and the use of the printStackTrace method of java.lang.Throwable for
error analysis.
Repository.

Class JavaException is "java.lang.Exception".
. . .
Local-storage section.
01 ex usage object reference JavaException.
Linkage section.
COPY "JNI.cpy".
. . .
Procedure division.

Set address of JNIEnv to JNIEnvPtr
Set address of JNINativeInterface to JNIEnv
. . .
Invoke anObj "someMethod"
Perform ErrorCheck

. . .
ErrorCheck.

Call ExceptionOccurred
using by value JNIEnvPtr
returning ex

If ex not = null then
Call ExceptionClear using by value JNIEnvPtr
Display "Caught an unexpected exception"
Invoke ex "printStackTrace"
Stop run

End-if

Chapter 31. Communicating with Java methods 635

Managing local and global references
The Java virtual machine tracks the object references that you use in native
methods, such as COBOL methods. This tracking ensures that the objects are not
prematurely released during garbage collection.

There are two classes of such references:

Local references
Local references are valid only while the method that you invoke runs.
Automatic freeing of the local references occurs after the native method
returns.

Global references
Global references remain valid until you explicitly delete them. You can
create global references from local references by using the JNI service
NewGlobalRef.

The following object references are always local:
v Object references that are received as method parameters
v Object references that are returned as the method RETURNING value from a

method invocation
v Object references that are returned by a call to a JNI function
v Object references that you create by using the INVOKE . . . NEW statement

You can pass either a local reference or a global reference as an object reference
argument to a JNI service.

You can code methods to return either local or global references as RETURNING
values. However, in either case, the reference that is received by the invoking
program is a local reference.

You can pass either local or global references as USING arguments in a method
invocation. However, in either case, the reference that is received by the invoked
method is a local reference.

Local references are valid only in the thread in which you create them. Do not pass
them from one thread to another.

RELATED TASKS

“Accessing JNI services” on page 633
“Deleting, saving, and freeing local references”

Deleting, saving, and freeing local references
You can manually delete local references at any point within a method. Save local
references only in object references that you define in the LOCAL-STORAGE SECTION
of a method.

Use a SET statement to convert a local reference to a global reference if you want to
save a reference in any of these data items:
v An object instance variable
v A factory variable
v A data item in the WORKING-STORAGE SECTION of a method

Otherwise, an error occurs. These storage areas persist when a method returns;
therefore a local reference is no longer valid.

636 Enterprise COBOL for z/OS, V5.2 Programming Guide

In most cases you can rely on the automatic freeing of local references that occurs
when a method returns. However, in some cases you should explicitly free a local
reference within a method by using the JNI service DeleteLocalRef. Here are two
situations where explicit freeing is appropriate:
v In a method you access a large object, thereby creating a local reference to the

object. After extensive computations, the method returns. Free the large object if
you do not need it for the additional computations, because the local reference
prevents the object from being released during garbage collection.

v You create a large number of local references in a method, but do not use all of
them at the same time. Because the Java virtual machine requires space to keep
track of each local reference, you should free those that you no longer need.
Freeing the local references helps prevent the system from running out of
memory.
For example, in a COBOL method you loop through a large array of objects,
retrieve the elements as local references, and operate on one element at each
iteration. You can free the local reference to the array element after each
iteration.

Use the following callable services to manage local references and global
references.

Table 82. JNI services for local and global references

Service Input arguments Return value Purpose

NewGlobalRef v The JNI environment
pointer

v A local or global object
reference

The global reference, or
NULL if the system is out of
memory

To create a new global
reference to the object that
the input object reference
refers to

DeleteGlobalRef v The JNI environment
pointer

v A global object reference

None To delete a global reference
to the object that the input
object reference refers to

DeleteLocalRef v The JNI environment
pointer

v A local object reference

None To delete a local reference
to the object that the input
object reference refers to

RELATED TASKS

“Accessing JNI services” on page 633

Java access controls

The Java access modifiers protected and private are not enforced when you use
the Java Native Interface. Therefore a COBOL program could invoke a protected or
private Java method that is not invocable from a Java client. This usage is not
recommended.

Sharing data with Java
You can share the COBOL data types that have Java equivalents. (Some COBOL
data types have Java equivalents, but others do not.)

Share data items with Java in these ways:
v Pass them as arguments in the USING phrase of an INVOKE statement.
v Receive them as parameters in the USING phrase from a Java method.

Chapter 31. Communicating with Java methods 637

v Receive them as the RETURNING value in an INVOKE statement.
v Return them as the value in the RETURNING phrase of the PROCEDURE DIVISION

header in a COBOL method.

To pass or receive arrays and strings, declare them as object references:
v Declare an array as an object reference that contains an instance of one of the

special array classes.
v Declare a string as an object reference that contains an instance of the jstring

class.

RELATED TASKS

“Coding interoperable data types in COBOL and Java”
“Declaring arrays and strings for Java” on page 639
“Manipulating Java arrays” on page 640
“Manipulating Java strings” on page 642
“Invoking methods (INVOKE)” on page 610
Chapter 25, “Sharing data,” on page 491

Coding interoperable data types in COBOL and Java
Your COBOL program can use only certain data types when communicating with
Java.

Table 83. Interoperable data types in COBOL and Java

Primitive Java data
type Corresponding COBOL data type

boolean1 PIC X followed by exactly two condition-names of this form:

level-number data-name PIC X.
88 data-name-false value X’00’.
88 data-name-true value X’01’ through X’FF’.

byte1 Single-byte alphanumeric: PIC X or PIC A

short USAGE BINARY, COMP, COMP-4, or COMP-5, with PICTURE clause of the
form S9(n), where 1<=n<=4

int USAGE BINARY, COMP, COMP-4, or COMP-5, with PICTURE clause of the
form S9(n), where 5<=n<=9

long USAGE BINARY, COMP, COMP-4, or COMP-5, with PICTURE clause of the
form S9(n), where 10<=n<=18

float2 USAGE COMP-1

double2 USAGE COMP-2

char Single-character elementary national: PIC N USAGE NATIONAL.
(Cannot be a national group.)

class types (object
references)

USAGE OBJECT REFERENCE class-name

1. You must distinguish boolean from byte, because they each correspond to PIC X. PIC X
is interpreted as boolean only if you define an argument or a parameter with the two
condition-names as shown. Otherwise, a PIC X data item is interpreted as the Java byte
type.

2. Java floating-point data is formatted according to the IEEE Standard for Binary Floating
Point Arithmetic. Enterprise COBOL, however, uses hexadecimal floating-point
representation. When you pass floating-point arguments by using an INVOKE statement,
or you receive floating-point data from a Java method, the arguments and data are
automatically converted as needed.

638 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Using national data (Unicode) in COBOL” on page 130

Declaring arrays and strings for Java
When you communicate with Java, declare arrays by using the special array
classes, and declare strings by using jstring. Code the COBOL data types shown in
the table below.

Table 84. Interoperable arrays and strings in COBOL and Java

Java data type Corresponding COBOL data type

boolean[] object reference jbooleanArray

byte[] object reference jbyteArray

short[] object reference jshortArray

int[] object reference jintArray

long[] object reference jlongArray

char[] object reference jcharArray

Object[] object reference jobjectArray

String object reference jstring

To use one of these classes for interoperability with Java, you must code an entry
in the REPOSITORY paragraph. For example:
Configuration section.
Repository.

Class jbooleanArray is "jbooleanArray".

The REPOSITORY paragraph entry for an object array type must specify an external
class-name in one of these forms:
"jobjectArray"
"jobjectArray:external-classname-2"

In the first case, the REPOSITORY entry specifies an array class in which the elements
of the array are objects of type java.lang.Object. In the second case, the REPOSITORY
entry specifies an array class in which the elements of the array are objects of type
external-classname-2. Code a colon as the separator between the specification of the
jobjectArray type and the external class-name of the array elements.

The following example shows both cases. In the example, oa defines an array of
elements that are objects of type java.lang.Object. aDepartment defines an array of
elements that are objects of type com.acme.Employee.
Environment Division.
Configuration Section.
Repository.

Class jobjectArray is "jobjectArray"
Class Employee is "com.acme.Employee"
Class Department is "jobjectArray:com.acme.Employee".

. . .
Linkage section.
01 oa usage object reference jobjectArray.
01 aDepartment usage object reference Department.
. . .
Procedure division using by value aDepartment.
. . .

“Examples: COBOL applications that run using the java command” on page 631

Chapter 31. Communicating with Java methods 639

The following Java array types are currently not supported for interoperation with
COBOL programs.

Table 85. Noninteroperable array types in COBOL and Java

Java data type Corresponding COBOL data type

float[] object reference jfloatArray

double[] object reference jdoubleArray

RELATED TASKS

“REPOSITORY paragraph for defining a class” on page 594

Manipulating Java arrays
To represent an array in a COBOL program, code a group item that contains a
single elementary item that is of the data type that corresponds to the Java type of
the array. Specify an OCCURS or OCCURS DEPENDING ON clause that is appropriate for
the array.

For example, the following code specifies a structure to receive 500 or fewer
integer values from a jlongArray object:
01 longArray.

02 X pic S9(10) comp-5 occurs 1 to 500 times depending on N.

To operate on objects of the special Java-array classes, call the services that the JNI
provides. You can use services to access and set individual elements of an array
and for the following purposes, using the services cited:

Table 86. JNI array services

Service Input arguments Return value Purpose

GetArrayLength v The JNI environment pointer

v The array object reference

The array length as
a binary fullword
integer

To get the number of
elements in a Java
array object

NewBooleanArray,
NewByteArray, NewCharArray,
NewShortArray, NewIntArray,
NewLongArray

v The JNI environment pointer

v The number of elements in the
array, as a binary fullword
integer

The array object
reference, or NULL if
the array cannot be
constructed

To create a new Java
array object

GetBooleanArrayElements,
GetByteArrayElements,
GetCharArrayElements,
GetShortArrayElements,
GetIntArrayElements,
GetLongArrayElements

v The JNI environment pointer

v The array object reference

v A pointer to a boolean item. If
the pointer is not null, the
boolean item is set to true if a
copy of the array elements was
made. If a copy was made, the
corresponding
ReleasexxxArrayElements service
must be called if changes are to
be written back to the array
object.

A pointer to the
storage buffer

To extract the array
elements from a Java
array into a storage
buffer. The services
return a pointer to the
storage buffer, which
you can use as the
address of a COBOL
group data item
defined in the LINKAGE
SECTION.

640 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 86. JNI array services (continued)

Service Input arguments Return value Purpose

ReleaseBooleanArrayElements,
ReleaseByteArrayElements,
ReleaseCharArrayElements,
ReleaseShortArrayElements,
ReleaseIntArrayElements,
ReleaseLongArrayElements

v The JNI environment pointer

v The array object reference

v A pointer to the storage buffer

v The release mode, as a binary
fullword integer. See Java JNI
documentation for details.
(Recommendation: Specify 0 to
copy back the array content and
free the storage buffer.)

None; the storage
for the array is
released.

To release the storage
buffer that contains
elements that have
been extracted from a
Java array, and
conditionally map the
updated array values
back into the array
object

NewObjectArray v The JNI environment pointer

v The number of elements in the
array, as a binary fullword
integer

v An object reference for the array
element class

v An object reference for the initial
element value. All array elements
are set to this value.

The array object
reference, or NULL if
the array cannot be
constructed1

To create a new Java
object array

GetObjectArrayElement v The JNI environment pointer

v The array object reference

v An array element index, as a
binary fullword integer using
origin zero

An object reference2 To return the element
at a given index within
an object array

SetObjectArrayElement v The JNI environment pointer

v The array object reference

v The array element index, as a
binary fullword integer using
origin zero

v The object reference for the new
value

None3 To set an element
within an object array

1. NewObjectArray throws an exception if the system runs out of memory.

2. GetObjectArrayElement throws an exception if the index is not valid.

3. SetObjectArrayElement throws an exception if the index is not valid or if the new value is not a subclass of the
element class of the array.

“Examples: COBOL applications that run using the java command” on page 631
“Example: processing a Java integer array”

RELATED TASKS

“Coding interoperable data types in COBOL and Java” on page 638
“Declaring arrays and strings for Java” on page 639
“Accessing JNI services” on page 633

Example: processing a Java integer array
The following example shows the use of the Java-array classes and JNI services to
process a Java integer array in COBOL.
cbl thread,dll
Identification division.
Class-id. OOARRAY inherits Base.

Chapter 31. Communicating with Java methods 641

Environment division.
Configuration section.
Repository.

Class Base is "java.lang.Object"
Class jintArray is "jintArray".

Identification division.
Object.
Procedure division.
Identification division.
Method-id. "ProcessArray".
Data Division.
Local-storage section.
01 intArrayPtr pointer.
01 intArrayLen pic S9(9) comp-5.
Linkage section.

COPY JNI.
01 inIntArrayObj usage object reference jintArray.
01 intArrayGroup.

02 X pic S9(9) comp-5
occurs 1 to 1000 times depending on intArrayLen.

Procedure division using by value inIntArrayObj.
Set address of JNIEnv to JNIEnvPtr
Set address of JNINativeInterface to JNIEnv

Call GetArrayLength
using by value JNIEnvPtr inIntArrayObj
returning intArrayLen

Call GetIntArrayElements
using by value JNIEnvPtr inIntArrayObj 0
returning IntArrayPtr

Set address of intArrayGroup to intArrayPtr

* . . . process the array elements X(I) . . .

Call ReleaseIntArrayElements
using by value JNIEnvPtr inIntArrayObj intArrayPtr 0.

End method "ProcessArray".
End Object.
End class OOARRAY.

Manipulating Java strings
COBOL represents Java String data in Unicode. To represent a Java String in a
COBOL program, declare the string as an object reference of the jstring class. Then
use JNI services to set or extract COBOL alphanumeric or national (Unicode) data
from the object.

Services for Unicode: Use the following standard services to convert between
jstring object references and COBOL USAGE NATIONAL data items. Use these services
for applications that you intend to be portable between the workstation and the
mainframe. Access these services by using function pointers in the
JNINativeInterface environment structure.

Table 87. Services that convert between jstring references and national data

Service Input arguments Return value

NewString1
v The JNI environment pointer

v A pointer to a Unicode string, such
as a COBOL national data item

v The number of characters in the
string; binary fullword

jstring object reference

642 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 87. Services that convert between jstring references and national data (continued)

Service Input arguments Return value

GetStringLength v The JNI environment pointer

v A jstring object reference

The number of Unicode characters in the jstring
object reference; binary fullword

GetStringChars1
v The JNI environment pointer

v A jstring object reference

v A pointer to a boolean data item, or
NULL

v A pointer to the array of Unicode characters
extracted from the jstring object, or NULL if the
operation fails. The pointer is valid until it is
released with ReleaseStringChars.

v If the pointer to the boolean data item is not
null, the boolean value is set to true if a copy is
made of the string and to false if no copy is
made.

ReleaseStringChars v The JNI environment pointer

v A jstring object reference

v A pointer to the array of Unicode
characters that was returned from
GetStringChars

None; the storage for the array is released.

1. This service throws an exception if the system runs out of memory.

Services for EBCDIC: Use the following z/OS services, an extension of the JNI, to
convert between jstring object references and COBOL alphanumeric data (PIC
X(n)).

Table 88. Services that convert between jstring references and alphanumeric data

Service Input arguments Return value

NewStringPlatform v The JNI environment pointer

v Pointer to the null-terminated EBCDIC
character string that you want to convert
to a jstring object

v Pointer to the jstring object reference in
which you want the result

v Pointer to the Java encoding name for the
string, represented as a null-terminated
EBCDIC character string1

Return code as a binary fullword
integer:

0 Success.

-1 Malformed input or illegal
input character.

-2 Unsupported encoding; the
jstring object reference pointer
is set to NULL.

GetStringPlatformLength v The JNI environment pointer

v jstring object reference for which you want
the length

v Pointer to a binary fullword integer for the
result

v Pointer to the Java encoding name for the
string, represented as a null-terminated
EBCDIC character string1

Return code as a binary fullword
integer:

0 Success.

-1 Malformed input or illegal
input character.

-2 Unsupported encoding; the
jstring object reference pointer
is set to NULL.

Returns, in the third argument, the
needed length in bytes of the output
buffer to hold the converted Java
string, including the terminating null
byte referenced by the second
argument.

Chapter 31. Communicating with Java methods 643

Table 88. Services that convert between jstring references and alphanumeric data (continued)

Service Input arguments Return value

GetStringPlatform v The JNI environment pointer

v jstring object reference that you want to
convert to a null-terminated string

v Pointer to the output buffer in which you
want the converted string

v Length of the output buffer as a binary
fullword integer

v Pointer to the Java encoding name for the
string, represented as a null-terminated
EBCDIC character string1

Return code as a binary fullword
integer:

0 Success.

-1 Malformed input or illegal
input character.

-2 Unsupported encoding; the
output string is set to a null
string.

-3 Conversion buffer is full.

1. If the pointer is NULL, the encoding from the Java file.encoding property is used.

These EBCDIC services are packaged as a DLL that is part of your IBM Java
Software Development Kit. For details about the services, see jni_convert.h in the
IBM Java Software Development Kit.

Use CALL literal statements to call the services. The calls are resolved through the
libjvm.x DLL side file, which you must include in the link step of any COBOL
program that uses object-oriented language.

For example, the following code creates a Java String object from the EBCDIC
string 'MyConverter'. (This code fragment is from the J2EE client program, which
is shown in full in “Example: J2EE client written in COBOL.”)
Move z"MyConverter" to stringBuf
Call "NewStringPlatform"

using by value JNIEnvPtr
address of stringBuf
address of jstring1
0

returning rc

If the EBCDIC services are the only JNI services that you call from a COBOL
program, you do not need to copy the JNI.cpy copybook. You also do not need to
establish addressability with the JNI environment pointer.

Services for UTF-8: The Java Native Interface also provides services for conversion
between jstring object references and UTF-8 strings. These services are not
recommended for use in COBOL programs due to the difficulty in handling UTF-8
character strings on the z/OS platform.

RELATED TASKS

“Accessing JNI services” on page 633
“Coding interoperable data types in COBOL and Java” on page 638
“Declaring arrays and strings for Java” on page 639
“Using national data (Unicode) in COBOL” on page 130
Chapter 16, “Compiling, linking, and running OO applications,” on page 291

Example: J2EE client written in COBOL
The following example shows a COBOL client program that can access enterprise
beans that run on a J2EE-compliant EJB server.

644 Enterprise COBOL for z/OS, V5.2 Programming Guide

The COBOL client is equivalent to the J2EE client program in the Getting Started
section of the Java 2 Enterprise Edition Developer's Guide. For your convenience in
comparing implementations, the second example shows the equivalent Java client
from the guide. (The enterprise bean is the Java implementation of the simple
currency-converter enterprise bean, and is in the same guide.)

You can find an alternate version of the Java enterprise bean and client code in The
Java EE 5 Tutorial, referenced below.

COBOL client (ConverterClient.cbl)
Process pgmname(longmixed),dll,thread

* Demo J2EE client written in COBOL. *
* *
* Based on the sample J2EE client written in Java, which is *
* given in the "Getting Started" chapter of "The Java(TM) 2 *
* Enterprise Edition Developer’s Guide." *
* *
* The client: *
* - Locates the home interface of a session enterprise bean *
* (a simple currency converter bean) *
* - Creates an enterprise bean instance *
* - Invokes a business method (currency conversion) *

Identification division.
Program-id. "ConverterClient" is recursive.
Environment Division.
Configuration section.
Repository.

Class InitialContext is "javax.naming.InitialContext"
Class PortableRemoteObject

is "javax.rmi.PortableRemoteObject"
Class JavaObject is "java.lang.Object"
Class JavaClass is "java.lang.Class"
Class JavaException is "java.lang.Exception"
Class jstring is "jstring"
Class Converter is "Converter"
Class ConverterHome is "ConverterHome".

Data division.
Working-storage section.
01 initialCtx object reference InitialContext.
01 obj object reference JavaObject.
01 classObj object reference JavaClass.
01 ex object reference JavaException.
01 currencyConverter object reference Converter.
01 home object reference ConverterHome.
01 homeObject redefines home object reference JavaObject.
01 jstring1 object reference jstring.
01 stringBuf pic X(500) usage display.
01 len pic s9(9) comp-5.
01 rc pic s9(9) comp-5.
01 amount comp-2.
Linkage section.

Copy JNI.
Procedure division.

Set address of JNIenv to JNIEnvPtr
Set address of JNINativeInterface to JNIenv

* Create JNDI naming context. *

Invoke InitialContext New returning initialCtx
Perform JavaExceptionCheck

Chapter 31. Communicating with Java methods 645

* Create a jstring object for the string "MyConverter" for use *
* as argument to the lookup method. *

Move z"MyConverter" to stringBuf
Call "NewStringPlatform"

using by value JNIEnvPtr
address of stringBuf
address of jstring1
0

returning rc
If rc not = zero then

Display "Error occurred creating jstring object"
Stop run

End-if

* Use the lookup method to obtain a reference to the home *
* object bound to the name "MyConverter". (This is the JNDI *
* name specified when deploying the J2EE application.) *

Invoke initialCtx "lookup" using by value jstring1
returning obj

Perform JavaExceptionCheck

* Narrow the home object to be of type ConverterHome. *
* First obtain class object for the ConverterHome class, by *
* passing the null-terminated ASCII string "ConverterHome" to *
* the FindClass API. Then use this class object as the *
* argument to the static method "narrow". *

Move z"ConverterHome" to stringBuf
Call "__etoa"

using by value address of stringBuf
returning len

If len = -1 then
Display "Error occurred on ASCII conversion"
Stop run

End-if
Call FindClass

using by value JNIEnvPtr
address of stringBuf

returning classObj
If classObj = null

Display "Error occurred locating ConverterHome class"
Stop run

End-if
Invoke PortableRemoteObject "narrow"

using by value obj
classObj

returning homeObject
Perform JavaExceptionCheck

* Create the ConverterEJB instance and obtain local object *
* reference for its remote interface *

Invoke home "create" returning currencyConverter
Perform JavaExceptionCheck

* Invoke business methods *

Invoke currencyConverter "dollarToYen"
using by value +100.00E+0
returning amount

646 Enterprise COBOL for z/OS, V5.2 Programming Guide

Perform JavaExceptionCheck

Display amount

Invoke currencyConverter "yenToEuro"
using by value +100.00E+0
returning amount

Perform JavaExceptionCheck

Display amount

* Remove the object and return. *

Invoke currencyConverter "remove"
Perform JavaExceptionCheck

Goback
.

* Check for thrown Java exceptions *

JavaExceptionCheck.

Call ExceptionOccurred using by value JNIEnvPtr
returning ex

If ex not = null then
Call ExceptionClear using by value JNIEnvPtr
Display "Caught an unexpected exception"
Invoke ex "printStackTrace"
Stop run

End-if
.

End program "ConverterClient".

Java client (ConverterClient.java)
/*
*
* Copyright 2000 Sun Microsystems, Inc. All Rights Reserved.
*
* This software is the proprietary information of Sun Microsystems, Inc.
* Use is subject to license terms.
*
*/

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

import Converter;
import ConverterHome;

public class ConverterClient {

public static void main(String[] args) {
try {

Context initial = new InitialContext();
Object objref = initial.lookup("MyConverter");

ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(objref,

ConverterHome.class);

Converter currencyConverter = home.create();

double amount = currencyConverter.dollarToYen(100.00);

Chapter 31. Communicating with Java methods 647

System.out.println(String.valueOf(amount));
amount = currencyConverter.yenToEuro(100.00);
System.out.println(String.valueOf(amount));

currencyConverter.remove();

} catch (Exception ex) {
System.err.println("Caught an unexpected exception!");
ex.printStackTrace();

}
}

}

RELATED TASKS

Chapter 16, “Compiling, linking, and running OO applications,” on page 291
WebSphere for z/OS: Applications
Java 2 Enterprise Edition Developer's Guide (Getting Started)
The Java EE 5 Tutorial (Getting Started with Enterprise Beans)

648 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://publib.boulder.ibm.com/epubs/pdf/bbo5c102.pdf
http://download.oracle.com/javaee/1.2.1/devguide/html/Started.fm.html#7940
http://download.oracle.com/javaee/5/tutorial/doc/bnbnb.html

Part 7. Specialized processing

© Copyright IBM Corp. 1991, 2018 649

650 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 32. Interrupts and checkpoint/restart

When programs run for an extended period of time, interruptions might halt
processing before the end of a job. The checkpoint/restart functions of z/OS let an
interrupted program be restarted at the beginning of a job step or at a checkpoint
that you have set.

Because the checkpoint/restart functions cause a lot of extra processing, use them
only when you anticipate interruptions caused by machine malfunctions, input or
output errors, or intentional operator intervention.

The checkpoint routine starts from the COBOL program object that contains your
program. While your program is running, the checkpoint routine creates records at
points that you have designated using the COBOL RERUN clause. A checkpoint
record contains a snapshot of the information in the registers and main storage
when the program reached the checkpoint.

The restart routine restarts an interrupted program. You can perform a restart at
any time after the program was interrupted: either immediately (automatic restart),
or later (deferred restart).

RELATED TASKS

“Setting checkpoints”
“Restarting programs” on page 654
“Resubmitting jobs for restart” on page 657
z/OS DFSMS: Checkpoint/Restart

RELATED REFERENCES

“DD statements for defining checkpoint data sets” on page 653
“Messages generated during checkpoint” on page 654
“Formats for requesting deferred restart” on page 656

Setting checkpoints
To set checkpoints, use job control statements and use the RERUN clause in the
ENVIRONMENT DIVISION. Associate each RERUN clause with a particular COBOL file.

The RERUN clause indicates that a checkpoint record is to be written to a checkpoint
data set whenever a specified number of records in the COBOL file have been
processed or when END OF VOLUME is reached. You cannot use the RERUN clause with
files that are defined with the EXTERNAL attribute.

You can write checkpoint records from several COBOL files to one checkpoint data
set, but you must use a separate data set exclusively for checkpoint records. You
cannot embed checkpoint records in one of your program data sets.

Restrictions: A checkpoint data set must have sequential organization. You cannot
write checkpoints in VSAM data sets or in data sets that are allocated to
extended-format QSAM data sets. Also, a checkpoint cannot be taken if any
program in the run unit has an extended-format QSAM data set that is open.

Checkpoint records are written in the checkpoint data set defined by a DD
statement. In the DD statement, you also choose the checkpoint method:

© Copyright IBM Corp. 1991, 2018 651

Single (store single checkpoints)
Only one checkpoint record exists at any given time. After the first
checkpoint record is written, any succeeding checkpoint record overlays
the previous one.

This method is acceptable for most programs. You save space in the
checkpoint data set, and you can restart your program at the latest
checkpoint.

Multiple (store multiple contiguous checkpoints)
Checkpoints are recorded and numbered sequentially. Each checkpoint is
saved.

Use this method if you want to restart a program at a checkpoint other
than the latest one taken.

You must use the multiple checkpoint method for complete compliance with the 85
COBOL Standard.

Checkpoints during sort operations have the following requirements:
v If checkpoints are to be taken during a sort operation, add a DD statement for

SORTCKPT in the job control procedure for execution.
v You can take checkpoint records on ASCII-collated sorts, but the system-name that

indicates the checkpoint data set must not specify an ASCII file.

RELATED TASKS

“Using checkpoint/restart with DFSORT” on page 236
“Designing checkpoints”
“Testing for a successful checkpoint”

RELATED REFERENCES

“DD statements for defining checkpoint data sets” on page 653

Designing checkpoints
Design your checkpoints at critical points in your program so that data can be
easily reconstructed. Do not change the contents of files between the time of a
checkpoint and the time of the restart.

In a program that uses disk files, design the program so that you can identify
previously processed records. For example, consider a disk file that contains loan
records that are periodically updated for interest due. If a checkpoint is taken,
records are updated, and then the program is interrupted, you would want to test
that the records that are updated after the last checkpoint are not updated again
when the program is restarted. To do this, set up a date field in each record, and
update the field each time the record is processed. Then, after the restart, test the
field to determine whether the record was already processed.

For efficient repositioning of a print file, take checkpoints on the file only after
printing the last line of a page.

Testing for a successful checkpoint
After each input or output statement that issues a checkpoint, the RETURN-CODE
special register is updated with the return code from the checkpoint routine.
Therefore, you can test whether the checkpoint was successful and decide whether
conditions are right to allow a restart.

652 Enterprise COBOL for z/OS, V5.2 Programming Guide

If the return code is greater than 4, an error has occurred in the checkpoint. Check
the return code to prevent a restart that could cause incorrect output.

RELATED REFERENCES

z/OS DFSMS: Checkpoint/Restart (Return codes)

DD statements for defining checkpoint data sets
To define checkpoint data sets, use DD statements.

For tape:
//ddname DD DSNAME=data-set-name,
// [VOLUME=SER=volser,]UNIT=device-type,
// DISP=({NEW|MOD},PASS)

For direct-access devices:
//ddname DD DSNAME=data-set-name,
// [VOLUME=(PRIVATE,RETAIN,SER=volser),]
// UNIT=device-type,SPACE=(subparms),
// DISP=({NEW|MOD},PASS,KEEP)

ddname
Provides a link to the DD statement. The same as the ddname portion of the
assignment-name used in the COBOL RERUN clause.

data-set-name
Identifies the checkpoint data set to the restart procedure. The name given
to the data set used to record checkpoint records.

volser
Identifies the volume by serial number.

device-type
Identifies the device.

subparms
Specifies the amount of track space needed for the data set.

MOD Specifies the multiple contiguous checkpoint method.

NEW Specifies the single checkpoint method.

PASS Prevents deletion of the data set at successful completion of the job step,
unless the job step is the last in the job. If it is the last step, the data set is
deleted.

KEEP Keeps the data set if the job step abnormally ends.

“Examples: defining checkpoint data sets”

Examples: defining checkpoint data sets
The following examples show the JCL and COBOL coding you can use to define
checkpoint data sets.

Writing single checkpoint records, using tape:
//CHECKPT DD DSNAME=CHECK1,VOLUME=SER=ND0003,
// UNIT=TAPE,DISP=(NEW,KEEP),LABEL=(,NL)

. . .
ENVIRONMENT DIVISION.

. . .
RERUN ON CHECKPT EVERY

5000 RECORDS OF ACCT-FILE.

Chapter 32. Interrupts and checkpoint/restart 653

Writing single checkpoint records, using disk:
//CHEK DD DSNAME=CHECK2,
// VOLUME=(PRIVATE,RETAIN,SER=DB0030),
// UNIT=3380,DISP=(NEW,KEEP),SPACE=(CYL,5)

. . .
ENVIRONMENT DIVISION.

. . .
RERUN ON CHEK EVERY
20000 RECORDS OF PAYCODE.

RERUN ON CHEK EVERY
30000 RECORDS OF IN-FILE.

Writing multiple contiguous checkpoint records, using tape:
//CHEKPT DD DSNAME=CHECK3,VOLUME=SER=111111,
// UNIT=TAPE,DISP=(MOD,PASS),LABEL=(,NL)

. . .
ENVIRONMENT DIVISION.

. . .
RERUN ON CHEKPT EVERY
10000 RECORDS OF PAY-FILE.

Messages generated during checkpoint
The system checkpoint routine advises the operator of the status of the checkpoints
taken by displaying informative messages on the console.

Each time a checkpoint is successfully completed, a message is displayed that
associates the jobname (ddname, unit, volser) with the checkpoint taken (checkid).

The control program assigns checkid as an eight-character string. The first character
is the letter C, followed by a decimal number that indicates the checkpoint. For
example, the following message indicates the fourth checkpoint taken in the job
step:
checkid C0000004

Restarting programs
The system restart routine retrieves the information recorded in a checkpoint
record, restores the contents of main storage and all registers, and restarts the
program.

You can begin the restart routine in one of two ways:
v Automatically at the time an interruption stopped the program
v At a later time as a deferred restart

The RD parameter of the job control language determines the type of restart. You
can use the RD parameter on either the JOB or the EXEC statement. If coded on the
JOB statement, the parameter overrides any RD parameters on the EXEC statement.

To suppress both restart and writing checkpoints, code RD=NC.

Restriction: If you try to restart at a checkpoint taken by a COBOL program
during a SORT or MERGE operation, an error message is issued and the restart is
canceled. Only checkpoints taken by DFSORT are valid.

Data sets that have the SYSOUT parameter coded in their DD statements are handled
in various ways depending on the type of restart.

654 Enterprise COBOL for z/OS, V5.2 Programming Guide

If the checkpoint data set is multivolume, include in the VOLUME parameter the
sequence number of the volume on which the checkpoint entry was written. If the
checkpoint data set is on a 7-track tape with nonstandard labels or no labels, the
SYSCHK DD statement must contain DCB=(TRTCH=C,. . .).

RELATED TASKS

“Using checkpoint/restart with DFSORT” on page 236
“Requesting automatic restart”
“Requesting deferred restart”

Requesting automatic restart
Automatic restart occurs only at the latest checkpoint taken. If no checkpoint was
taken before interruption, automatic restart occurs at the beginning of the job step.

Whenever automatic restart is to occur, the system repositions all devices except
unit-record devices.

If you want automatic restart, code RD=R or RD=RNC:
v RD=R indicates that restart is to occur at the latest checkpoint. Code the RERUN

clause for at least one data set in the program in order to record checkpoints. If
no checkpoint is taken before interruption, restart occurs at the beginning of the
job step.

v RD=RNC indicates that no checkpoint is to be written, and that any restart is to
occur at the beginning of the job step. In this case, RERUN clauses are
unnecessary; if any are present, they are ignored.

If you omit the RD parameter, the CHKPT macro instruction remains active, and
checkpoints can be taken during processing. If an interrupt occurs after the first
checkpoint, automatic restart will occur.

To restart automatically, a program must satisfy the following conditions:
v In the program you must request restart by using the RD parameter or by taking

a checkpoint.
v An abend that terminated the job must return a code that allows restart.
v The operator must authorize the restart.

“Example: requesting a step restart” on page 657

Requesting deferred restart
Deferred restart can occur at any checkpoint, not necessarily the latest one taken.
You can restart your program at a checkpoint other than at the beginning of the job
step.

When a deferred restart has been successfully completed, the system displays a
message on the console stating that the job has been restarted. Control is then
given to your program.

If you want deferred restart, code the RD parameter as RD=NR. This form of the
parameter suppresses automatic restart but allows a checkpoint record to be
written provided that a RERUN clause was coded.

Request a deferred restart by using the RESTART parameter on the JOB card and a
SYSCHK DD statement to identify the checkpoint data set. If a SYSCHK DD statement is
present in a job and the JOB statement does not contain the RESTART parameter, the

Chapter 32. Interrupts and checkpoint/restart 655

SYSCHK DD statement is ignored. If a RESTART parameter without the CHECKID
subparameter is included in a job, a SYSCHK DD statement must not appear before
the first EXEC statement for the job.

“Example: restarting a job at a specific checkpoint step” on page 657

RELATED REFERENCES

“Formats for requesting deferred restart”

Formats for requesting deferred restart
The formats for the RESTART parameter of the JOB statement and the SYSCHK DD
statements are as shown below.
//jobname JOB MSGLEVEL=1,RESTART=(request[,checkid])
//SYSCHK DD DSNAME=data-set-name,
// DISP=OLD[,UNIT=device-type,
// VOLUME=SER=volser]

MSGLEVEL=1 (or MSGLEVEL=(1,y))
MSGLEVEL is required.

RESTART=(request,[checkid])
Identifies the particular checkpoint at which restart is to occur.

request
Takes one of the following forms:

* Indicates restart at the beginning of the job.

stepname
Indicates restart at the beginning of a job step.

stepname.procstep
Indicates restart at a procedure step within the job step.

checkid
Identifies the checkpoint where restart is to occur.

SYSCHK
The ddname used to identify a checkpoint data set to the control program.
The SYSCHK DD statement must immediately precede the first EXEC
statement of the resubmitted job, and must follow any JOBLIB statement.

data-set-name
Identifies the checkpoint data set. It must be the same name that
was used when the checkpoint was taken.

device-type and volser
Identify the device type and the serial number of the volume that
contains the checkpoint data set.

“Example: requesting a deferred restart”

Example: requesting a deferred restart
This example shows JCL to restart the GO step of an IGYWCLG procedure at
checkpoint identifier (CHECKID) C0000003.
//jobname JOB MSGLEVEL=1,RESTART=(stepname.GO,C0000003)
//SYSCHK DD DSNAME=CHEKPT,
// DISP=OLD[,UNIT=3380,VOLUME=SER=111111]

. . .

656 Enterprise COBOL for z/OS, V5.2 Programming Guide

Resubmitting jobs for restart
When you resubmit a job for restart, be careful with any DD statements that might
affect the execution of the restarted job step. The restart routine uses information
from DD statements in the resubmitted job to reset files for use after restart.

If you want a data set to be deleted at the end of a job step, give it a conditional
disposition of PASS or KEEP (rather than DELETE). This disposition allows the data
set to be available if an interruption forces a restart. If you want to restart a job at
the beginning of a step, you must first discard any data set created (defined as NEW
in a DD statement) in the previous run, or change the DD statement to mark the data
set as OLD.

The system automatically repositions input data sets that are on tape or disk.

“Example: resubmitting a job for a step restart”
“Example: resubmitting a job for a checkpoint restart” on page 658

Example: restarting a job at a specific checkpoint step
This example shows a sequence of job control statements for restarting a job at a
specific step.
//PAYROLL JOB MSGLEVEL=1,REGION=80K,
// RESTART=(STEP1,CHECKPT4)
//JOBLIB DD DSNAME=PRIV.LIB3,DISP=OLD
//SYSCHK DD DSNAME=CHKPTLIB,
// [UNIT=TAPE,VOL=SER=456789,]
// DISP=(OLD,KEEP)
//STEP1 EXEC PGM=PROG4,TIME=5

Example: requesting a step restart
This example shows the use of the RD parameter, which requests step restart for
any abnormally terminated job step.
//J1234 JOB 386,SMITH,MSGLEVEL=1,RD=R
//S1 EXEC PGM=MYPROG
//INDATA DD DSNAME=INVENT[,UNIT=TAPE],DISP=OLD,
// [VOLUME=SER=91468,]
// LABEL=RETPD=14
//REPORT DD SYSOUT=A
//WORK DD DSNAME=T91468,DISP=(,,KEEP),
// UNIT=SYSDA,SPACE=(3000,(5000,500)),
// VOLUME=(PRIVATE,RETAIN,,6)
//DDCKPNT DD UNIT=TAPE,DISP=(MOD,PASS,CATLG),
// DSNAME=C91468,LABEL=(,NL)

The DDCKPNT DD statement defines a checkpoint data set. For this step, after a RERUN
clause is performed, only automatic checkpoint restart can occur unless a CHKPT
cancel is issued.

Example: resubmitting a job for a step restart
This example shows the changes that you might make to the JCL before you
resubmit a job for step restart.
//J3412 JOB 386,SMITH,MSGLEVEL=1,RD=R,RESTART=*
//S1 EXEC PGM=MYPROG
//INDATA DD DSNAME=INVENT[,UNIT=TAPE],DISP=OLD,
// [VOLUME=SER=91468,]LABEL=RETPD=14
//REPORT DD SYSOUT=A
//WORK DD DSNAME=S91468,
// DISP=(,,KEEP),UNIT=SYSDA,

Chapter 32. Interrupts and checkpoint/restart 657

// SPACE=(3000,(5000,500)),
// VOLUME=(PRIVATE,RETAIN,,6)
//DDCHKPNT DD UNIT=TAPE,DISP=(MOD,PASS,CATLG),
// DSNAME=R91468,LABEL=(,NL)

The following changes were made in the example above:
v The job name has been changed (from J1234 to J3412) to distinguish the original

job from the restarted job.
v The RESTART parameter has been added to the JOB statement, and indicates that

restart is to begin with the first job step.
v The WORK DD statement was originally assigned a conditional disposition of KEEP

for this data set:
– If the step terminated normally in the previous run of the job, the data set

was deleted, and no changes need to be made to this statement.
– If the step abnormally terminated, the data set was kept. In that case, define a

new data set (S91468 instead of T91468, as shown), or change the status of the
data set to OLD before resubmitting the job.

v A new data set (R91468 instead of C91468) has also been defined as the
checkpoint data set.

“Example: requesting a step restart” on page 657

Example: resubmitting a job for a checkpoint restart
This example shows the changes that you might make to JCL before you resubmit
a job for checkpoint restart.
//J3412 JOB 386,SMITH,MSGLEVEL=1,RD=R,
// RESTART=(*,C0000002)
//SYSCHK DD DSNAME=C91468,DISP=OLD
//S1 EXEC PGM=MYPROG
//INDATA DD DSNAME=INVENT,UNIT=TAPE,DISP=OLD,
// VOLUME=SER=91468,LABEL=RETPD=14
//REPORT DD SYSOUT=A
//WORK DD DSNAME=T91468,DISP=(,,KEEP),
// UNIT=SYSDA,SPACE=(3000,(5000,500)),
// VOLUME=(PRIVATE,RETAIN,,6)
//DDCKPNT DD UNIT=TAPE,DISP=(MOD,KEEP,CATLG),
// DSNAME=C91468,LABEL=(,NL)

The following changes were made in the example above:
v The job name has been changed (from J1234 to J3412) to distinguish the original

job from the restarted job.
v The RESTART parameter has been added to the JOB statement, and indicates that

restart is to begin with the first step at the checkpoint entry named C0000002.
v The DD statement DDCKPNT was originally assigned a conditional disposition of

CATLG for the checkpoint data set:
– If the step terminated normally in the previous run of the job, the data set

was kept. In that case, the SYSCHK DD statement must contain all of the
information necessary for retrieving the checkpoint data set.

– If the job abnormally terminated, the data set was cataloged. In that case, the
only parameters required on the SYSCHK DD statement are DSNAME and DISP as
shown.

If a checkpoint is taken in a job that is running when V=R is specified, the job
cannot be restarted until adequate nonpageable dynamic storage becomes
available.

658 Enterprise COBOL for z/OS, V5.2 Programming Guide

Part 8. Improving performance and productivity

© Copyright IBM Corp. 1991, 2018 659

660 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 33. Tuning your program

When a program is comprehensible, you can assess its performance. A tangled
control flow makes a program difficult to understand and maintain, and inhibits
the optimization of its code.

To improve the performance of your program, examine at least these aspects:
v Underlying algorithms: For best performance, using sound algorithms is

essential. For example:
– A sophisticated algorithm for sorting a million items might be hundreds of

thousands of times faster than a simple algorithm.
– If the program frequently accesses data, reduce the number of steps to access

the data.
v Data structures: Using data structures that are appropriate for the algorithms is

essential.

You can write programs that result in better generated code sequences and use
system services more efficiently. These additional aspects can affect performance:
v Coding techniques: Use a programming style that enables the optimizer to

choose efficient data types and handle tables efficiently.
v Optimization: You can optimize code by using the OPTIMIZE compiler option.
v Compiler options and USE FOR DEBUGGING ON ALL PROCEDURES: Some compiler

options and language affect program efficiency.
v Runtime environment: Consider your choice of runtime options.
v Running under CICS, IMS, or VSAM: Heeding various tips can help make these

programs run more efficiently.

RELATED CONCEPTS

“Optimization” on page 667
Enterprise COBOL Version 4 Performance Tuning

RELATED TASKS

“Using an optimal programming style”
“Choosing efficient data types” on page 662
“Handling tables efficiently” on page 664
“Optimizing your code” on page 667
“Choosing compiler features to enhance performance” on page 668
“Running efficiently with CICS, IMS, or VSAM” on page 672
Language Environment Programming Guide (Specifying runtime options)

RELATED REFERENCES

“Performance-related compiler options” on page 669
Language Environment Programming Guide (Storage performance considerations)

Using an optimal programming style
The coding style you use can affect how the optimizer handles your code. You can
improve optimization by using structured programming techniques, factoring
expressions, using symbolic constants, and grouping constant and duplicate
computations.

© Copyright IBM Corp. 1991, 2018 661

RELATED TASKS

“Using structured programming”
“Factoring expressions”
“Using symbolic constants”

Using structured programming
Using structured programming statements, such as EVALUATE and inline PERFORM,
makes your program more comprehensible and generates a more linear control
flow. As a result, the optimizer can operate over larger regions of the program,
which gives you more efficient code.

Use top-down programming constructs. Out-of-line PERFORM statements are a
natural means of doing top-down programming. Out-of-line PERFORM statements
can often be as efficient as inline PERFORM statements, because the optimizer can
simplify or remove the linkage code.

Avoid using the following constructs:
v ALTER statements
v Explicit GO TO statements
v PERFORM procedures that involve irregular control flow (such as preventing

control from passing to the end of the procedure and returning to the PERFORM
statement)

Factoring expressions
By factoring expressions in your programs, you can potentially eliminate a lot of
unnecessary computation.

For example, the first block of code below is more efficient than the second block
of code:
MOVE ZERO TO TOTAL
PERFORM VARYING I FROM 1 BY 1 UNTIL I = 10

COMPUTE TOTAL = TOTAL + ITEM(I)
END-PERFORM
COMPUTE TOTAL = TOTAL * DISCOUNT

MOVE ZERO TO TOTAL
PERFORM VARYING I FROM 1 BY 1 UNTIL I = 10

COMPUTE TOTAL = TOTAL + ITEM(I) * DISCOUNT
END-PERFORM

The optimizer does not factor expressions.

Using symbolic constants
To have the optimizer recognize a data item as a constant throughout the program,
initialize it with a VALUE clause and do not change it anywhere in the program.

If you pass a data item to a subprogram BY REFERENCE, the optimizer treats it as an
external data item and assumes that it is changed at every subprogram call.

Choosing efficient data types
Using the SYNCHRONIZED clause can produce more efficient code.

662 Enterprise COBOL for z/OS, V5.2 Programming Guide

Consistent data types can reduce the need for conversions during operations on
data items. You can also improve program performance by carefully determining
when to use fixed-point and floating-point data types.

RELATED CONCEPTS

“Formats for numeric data” on page 47

RELATED TASKS

“Choosing efficient computational data items”
“Using consistent data types”
“Making arithmetic expressions efficient” on page 664
“Making exponentiations efficient” on page 664

Choosing efficient computational data items
When you use a data item mainly for arithmetic or as a subscript, code USAGE
BINARY on the data description entry for the item. The operations for manipulating
binary data are faster than those for manipulating decimal data.

However, if a fixed-point arithmetic statement has intermediate results with a large
precision (number of significant digits), the compiler uses decimal arithmetic
anyway, after converting the operands to packed-decimal form. For fixed-point
arithmetic statements, the compiler normally uses binary arithmetic for simple
computations with binary operands if the precision is eight or fewer digits. Above
18 digits, the compiler always uses decimal arithmetic. With a precision of nine to
18 digits, the compiler uses either form.

To produce the most efficient code for a BINARY data item, ensure that it has:
v A sign (an S in its PICTURE clause)
v Eight or fewer digits

For a data item that is larger than eight digits or is used with DISPLAY or NATIONAL
data items, use PACKED-DECIMAL. The code generated for PACKED-DECIMAL data items
can be as fast as that for BINARY data items in some cases, especially if the
statement is complicated or specifies rounding.

To produce the most efficient code for a PACKED-DECIMAL data item, ensure that it
has:
v A sign (an S in its PICTURE clause)
v An odd number of digits (9s in the PICTURE clause), so that it occupies an exact

number of bytes without a half byte left over
v 15 or fewer digits in the PICTURE specification on ARCH(7) machines. If a

PACKED-DECIMAL data item has more than 31 digits, library routines are used. For
a PACKED-DECIMAL data item with 16-31 digits on ARCH (8) or higher level
machines, the compiler uses instructions that are more efficient than library calls,
but not as fast as if the data item has 15 or fewer digits.

Using consistent data types
In operations on operands of different types, one of the operands must be
converted to the same type as the other. Each conversion requires several
instructions. For example, one of the operands might need to be scaled to give it
the appropriate number of decimal places.

You can largely avoid conversions by using consistent data types and by giving
both operands the same usage and also appropriate PICTURE specifications. That is,

Chapter 33. Tuning your program 663

you should ensure that two numbers to be compared, added, or subtracted not
only have the same usage but also the same number of decimal places (9s after the
V in the PICTURE clause).

Making arithmetic expressions efficient
Computation of arithmetic expressions that are evaluated in floating point is most
efficient when the operands need little or no conversion. Use operands that are
COMP-1 or COMP-2 to produce the most efficient code.

Define integer items as BINARY or PACKED-DECIMAL with nine or fewer digits to
afford quick conversion to floating-point data. Also, conversion from a COMP-1 or
COMP-2 item to a fixed-point integer with nine or fewer digits, without SIZE ERROR
in effect, is efficient when the value of the COMP-1 or COMP-2 item is less than
1,000,000,000.

Making exponentiations efficient
Use floating point for exponentiations for large exponents to achieve faster
evaluation and more accurate results.

For example, the first statement below is computed more quickly and accurately
than the second statement:
COMPUTE fixed-point1 = fixed-point2 ** 100000.E+00

COMPUTE fixed-point1 = fixed-point2 ** 100000

A floating-point exponent causes floating-point arithmetic to be used to compute
the exponentiation.

Using VOLATILE clauses efficiently
Optimization of data items that are defined with the VOLATILE clause is
significantly restricted. Therefore, use the VOLATILE clause only when appropriate.

In particular, it is important to understand that when the VOLATILE clause is used
on a group item, the compiler treats all data items subordinate to the group item
as volatile, and all higher-level group items that contain the volatile group item are
treated as volatile, too. If a particular member of a group needs to be treated as
volatile, specify the VOLATILE clause on the data description entry for that item
only, where possible.

At present, the primary reason to use the VOLATILE clause is for data items that are
set or referenced inside an LE condition handler but are defined outside the LE
condition handler program. The VOLATILE clause guarantees that such items are
handled correctly by the optimizer. For more information on when to use VOLATILE,
see VOLATILE clause in the Enterprise COBOL Language Reference.

Handling tables efficiently
You can use several techniques to improve the efficiency of table-handling
operations, and to influence the optimizer. The return for your efforts can be
significant, particularly when table-handling operations are a major part of an
application.

The following two guidelines affect your choice of how to refer to table elements:
v Use indexing rather than subscripting.

664 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|
|

|
|
|
|
|
|

|
|
|
|
|

Although the compiler can eliminate duplicate indexes and subscripts, the
original reference to a table element is more efficient with indexes (even if the
subscripts were BINARY). The value of an index has the element size factored into
it, whereas the value of a subscript must be multiplied by the element size when
the subscript is used. The index already contains the displacement from the start
of the table, and this value does not have to be calculated at run time. However,
subscripting might be easier to understand and maintain.

v Use relative indexing.
Relative index references (that is, references in which an unsigned numeric
literal is added to or subtracted from the index-name) are executed at least as
fast as direct index references, and sometimes faster. There is no merit in
keeping alternative indexes with the offset factored in.

Whether you use indexes or subscripts, the following coding guidelines can help
you get better performance:
v Specify the element length so that it matches that of related tables.

When you index or subscript tables, it is most efficient if all the tables have the
same element length. That way, the stride for the last dimension of the tables is
the same, and the optimizer can reuse the rightmost index or subscript
computed for one table. If both the element lengths and the number of
occurrences in each dimension are equal, then the strides for dimensions other
than the last are also equal, resulting in greater commonality between their
subscript computations. The optimizer can then reuse indexes or subscripts other
than the rightmost.

v Avoid errors in references by coding index and subscript checks into your
program.
If you need to validate indexes and subscripts, it might be faster to code your
own checks than to use the SSRANGE compiler option.

You can also improve the efficiency of tables by using these guidelines:
v Use binary data items for all subscripts.

When you use subscripts to address a table, use a BINARY signed data item with
eight or fewer digits. In some cases, using four or fewer digits for the data item
might also improve processing time.

v Use binary data items for variable-length table items.
For tables with variable-length items, you can improve the code for OCCURS
DEPENDING ON (ODO). To avoid unnecessary conversions each time the
variable-length items are referenced, specify BINARY for OCCURS . . . DEPENDING
ON objects.

v Use fixed-length data items whenever possible.
Copying variable-length data items into a fixed-length data item before a period
of high-frequency use can reduce some of the overhead associated with using
variable-length data items.

v Organize tables according to the type of search method used.
If the table is searched sequentially, put the data values most likely to satisfy the
search criteria at the beginning of the table. If the table is searched using a
binary search algorithm, put the data values in the table sorted alphabetically on
the search key field.

RELATED CONCEPTS

“Optimization of table references” on page 666

Chapter 33. Tuning your program 665

RELATED TASKS

“Referring to an item in a table” on page 70
“Choosing efficient data types” on page 662

RELATED REFERENCES

“SSRANGE” on page 361

Optimization of table references
The COBOL compiler optimizes table references in several ways.

For the table element reference ELEMENT(S1 S2 S3), where S1, S2, and S3 are
subscripts, the compiler evaluates the following expression:
comp_s1 * d1 + comp_s2 * d2 + comp_s3 * d3 + base_address

Here comp_s1 is the value of S1 after conversion to binary, comp-s2 is the value of
S2 after conversion to binary, and so on. The strides for each dimension are d1, d2,
and d3. The stride of a given dimension is the distance in bytes between table
elements whose occurrence numbers in that dimension differ by 1 and whose other
occurrence numbers are equal. For example, the stride d2 of the second dimension
in the above example is the distance in bytes between ELEMENT(S1 1 S3) and
ELEMENT(S1 2 S3).

Index computations are similar to subscript computations, except that no
multiplication needs to be done. Index values have the stride factored into them.
They involve loading the indexes into registers, and these data transfers can be
optimized, much as the individual subscript computation terms are optimized.

Optimization of variable-length items
A group item that contains a subordinate OCCURS DEPENDING ON data item has a
variable length. The program must perform special code every time a
variable-length data item is referenced.

Because this code is out-of-line, it might interrupt optimization. Furthermore, the
code to manipulate variable-length data items is much less efficient than that for
fixed-size data items and can significantly increase processing time. For instance,
the code to compare or move a variable-length data item might involve calling a
library routine and is much slower than the same code for fixed-length data items.

Comparison of direct and relative indexing
Relative index references are as fast as or faster than direct index references.

The direct indexing in ELEMENT (I5, J3, K2) requires this preprocessing:
SET I5 TO I
SET I5 UP BY 5
SET J3 TO J
SET J3 DOWN BY 3
SET K2 TO K
SET K2 UP BY 2

This processing makes the direct indexing less efficient than the relative indexing
in ELEMENT (I + 5, J - 3, K + 2).

RELATED CONCEPTS

“Optimization” on page 667

666 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Handling tables efficiently” on page 664

Optimizing your code
When your program is ready for final testing, specify the OPTIMIZE(1|2) compiler
option so that the tested code and the production code are identical.

If you frequently run a program without recompiling it during development, you
might also want to use OPTIMIZE(1|2). However, if you recompile frequently, the
overhead for OPTIMIZE(1|2) might outweigh its benefits unless you are using the
assembler language expansion (LIST compiler option) to fine-tune the program.

For unit-testing a program, you will probably find it easier to debug code that has
not been optimized.

To see how the optimizer works on a program, compile it with different levels of
optimization and compare the generated code. (Use the LIST compiler option to
request the assembler listing of the generated code.)

RELATED CONCEPTS

“Optimization”

RELATED REFERENCES

“LIST” on page 334
“OPTIMIZE” on page 346

Optimization
To improve the efficiency of the generated code, you can use the OPTIMIZE(1) or
OPTIMIZE(2) compiler option.

OPTIMIZE(1) causes the COBOL optimizer to do the following optimizations:
v Eliminate unnecessary transfers of control and inefficient branches, including

those generated by the compiler that are not evident from looking at the source
program.

v Simplify the compiled code for a PERFORM statement. The compiler replicates the
PERFORM a number of times to avoid linkage code.

v Eliminate duplicate computations (such as subscript computations and repeated
statements) that have no effect on the results of the program.

v Eliminate constant computations by performing them when the program is
compiled.

v Eliminate constant conditional expressions.
v Aggregate moves of contiguous items (such as those that often occur with the

use of MOVE CORRESPONDING) into a single move. Both the source and target must
be contiguous for the moves to be aggregated.

v Delete from the program, and identify with a warning message, code that can
never be performed (unreachable code elimination).

v Discard unreferenced data items from the DATA DIVISION, and suppress
generation of code to initialize these data items to their VALUE clauses. (The
optimizer takes this action only when you use the STGOPT option.)

OPTIMIZE(2) causes the COBOL optimizer to do further optimizations:
v Simplify operations more aggressively and schedule instructions.

Chapter 33. Tuning your program 667

v Do interblock optimizations such as global value propagation and loop invariant
code motion.

Contained program procedure integration
In contained program procedure integration, the contained program code replaces
a CALL to a contained program. The resulting program runs faster without the
overhead of CALL linkage and with more linear control flow.

Program size: If several CALL statements call contained programs and these
programs replace each such statement, the containing program can become large.
The optimizer then chooses the next best optimization for the CALL statement.

RELATED CONCEPTS

“Optimization of table references” on page 666
“PERFORM procedure integration”

RELATED REFERENCES

“OPTIMIZE” on page 346

PERFORM procedure integration
PERFORM procedure integration is the process whereby a PERFORM statement is
replaced by its performed procedures. The advantage is that the resulting program
runs faster without the overhead of PERFORM linkage and with more orderly control
flow.

Program size: If the performed procedures are invoked by several PERFORM
statements and replace each such statement, the program could become large. The
optimizer limits this increase, after which it no longer integrates these procedures.

Choosing compiler features to enhance performance
Your choice of performance-related compiler options and your use of the USE FOR
DEBUGGING ON ALL PROCEDURES statement can affect how well your program is
optimized.

You might have a customized system that requires certain options for optimum
performance. Do these steps:
1. To see what your system defaults are, get a short listing for any program and

review the listed option settings.
2. Determine which options are fixed as nonoverridable at your installation by

checking with your system programmer.
3. For the options not fixed at installation, select performance-related options for

compiling your programs.
Important: Confer with your system programmer about how to tune COBOL
programs. Doing so will ensure that the options you choose are appropriate for
programs at your site.

Another compiler feature to consider is the USE FOR DEBUGGING ON ALL PROCEDURES
statement. It can greatly affect the compiler optimizer. The ON ALL PROCEDURES
option generates extra code at each transfer to a procedure name. Although very
useful for debugging, it can make the program significantly larger and inhibit
optimization substantially.

Although COBOL allows segmentation language, you will not improve storage
allocation by using it, because COBOL does not perform overlay.

668 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED CONCEPTS

“Optimization” on page 667

RELATED TASKS

“Optimizing your code” on page 667
“Getting listings” on page 395

RELATED REFERENCES

“Performance-related compiler options”

Performance-related compiler options
In the table below you can see a description of the purpose of each option, its
performance advantages and disadvantages, and usage notes where applicable.

Table 89. Performance-related compiler options

Compiler option Purpose
Performance
advantages

Performance
disadvantages Usage notes

AFP(NOVOLATILE)

(see “AFP” on
page 307)

To control the
compiler usage of the
Additional Floating
Point (AFP) registers
that are provided by
z/Architecture
processors

AFP(NOVOLATILE) lets the
compiler generate more
efficient code sequences
for programs with
floating point
operations.

None Poorly behaved assembler code
might not adhere to the standard
calling convention and might fail to
correctly preserve values in Floating
Point registers. With
AFP(NOVOLATILE), COBOL programs
can safely call such routines.

ARCH

(see “ARCH” on
page 307)

To specify the
machine architecture
for which the
executable program
instructions are to be
generated

If you specify a higher
ARCH level, the machine
generates code that uses
newer and faster
instructions instead of
the sequences of
common instructions.

None Your application might abend if it
runs on a processor with an
architecture level lower than that
specified for the ARCH option.

ARITH(EXTEND)

(see “ARITH” on
page 309)

To increase the
maximum number of
digits allowed for
decimal numbers

None ARITH(EXTEND) causes
some degradation in
performance for all
decimal data types
because of larger
intermediate results.

The amount of degradation that you
experience depends directly on the
amount of decimal data that you use.

AWO

(see “AWO” on
page 310)

To get optimum use
of buffer and device
space for QSAM files

Can result in
performance savings,
because this option
results in fewer calls to
data management
services to handle input
and output

None If you use AWO, the APPLY WRITE-ONLY
clause is in effect for all QSAM files
in the program that have V-mode
records.

BLOCK0

(see “BLOCK0”
on page 310)

To take advantage of
system-determined
block size for QSAM
output files

Can result in enhanced
processing speed and
minimized storage
requirements for QSAM
output files

None If you use BLOCK0, a BLOCK CONTAINS
0 clause is activated for all QSAM
files in the program that specify
neither BLOCK CONTAINS nor
RECORDING MODE U in the file
description entry.

DATA(31)

(see “DATA” on
page 318)

To have DFSMS
allocate QSAM
buffers above the 16
MB line (by using the
RENT and DATA(31)
compiler options)

Because
extended-format QSAM
data sets can require
many buffers, allocating
the buffers in
unrestricted storage
avoids virtual storage
constraint problems.

None On a z/OS system with DFSMS, if
your application processes striped
extended-format QSAM data sets,
use the RENT and DATA(31) compiler
options to have the input-output
buffers for your QSAM files allocated
from storage above the 16 MB line.

Chapter 33. Tuning your program 669

Table 89. Performance-related compiler options (continued)

Compiler option Purpose
Performance
advantages

Performance
disadvantages Usage notes

DYNAM

(see “DYNAM”
on page 323)

To have subprograms
(called through the
CALL statement)
dynamically loaded
at run time

Subprograms are easier
to maintain, because the
application does not
have to be link-edited
again if a subprogram is
changed.

There is a slight
performance penalty,
because the call must
go through a
Language
Environment routine.

To free virtual storage that is no
longer needed, issue the CANCEL
statement.

FASTSRT

(see “FASTSRT”
on page 327)

To specify that the
IBM DFSORT product
(or equivalent) will
handle all of the
input and output

Eliminates the overhead
of returning to
Enterprise COBOL after
each record is processed

None FASTSRT is recommended if direct
work files are used for the sort work
files. Not all sorts are eligible for this
option.

HGPR

(see “HGPR” on
page 331)

To control the
compiler usage of the
64-bit registers
provided by
z/Architecture
processors.

If you specify
HGPR(NOPRESERVE), the
compiler omits
preserving the
high-halves of the 64-bit
GPRs that a program is
using, which improves
performance.

None If your program modifies and does
not save the high-halves of the
registers, but calling programs
depend on the unchanged values, the
application might give incorrect
results.
Exception: It does not apply if the
caller of this program is Enterprise
COBOL, Enterprise PL/I or z/OS XL
C/C++ programs.

MAXPCF

(see “MAXPCF”
on page 336)

To reduce
optimization in
programs that require
excessive compilation
time or excessive
storage requirements
because of large sizes
or complexity.

None If you specify
MAXPCF(n) and n is not
zero, when the
program complexity
factor exceeds n, any
specification of
OPTIMIZE(1) or
OPTIMIZE(2) is reset
to OPTIMIZE(0), and a
warning message is
generated.

None

NUMPROC(PFD)

(see
“NUMPROC” on
page 343)

To have invalid sign
processing bypassed
for numeric
operations

Generates significantly
more efficient code for
numeric comparisons

For most references
to COMP-3 and
DISPLAY numeric data
items, NUMPROC(PFD)
inhibits extra code
from being generated
to "fix up" signs. This
extra code might also
inhibit some other
types of
optimizations. The
extra code is
generated with
NUMPROC(NOPFD).

If you use NUMPROC(PFD), the
compiler assumes and requires that
all decimal items contain the
preferred sign values and bypasses
the sign "fix-up" process. However,
because not all external data files
contain the proper signs for COMP-3
or DISPLAY numeric data, and
programs might use REDEFINES,
group moves, or parameter passing
in ways that do not ensure preferred
signs, the NUMPROC(PFD) might not be
appropriate for many programs.

OPTIMIZE(0|1|2)

(see “OPTIMIZE”
on page 346)

To optimize
generated code for
better performance

Generally results in
more efficient runtime
code

Longer compile time:
OPTIMIZE(1|2)
requires more
processing time for
compiles than
OPTIMIZE(0).

OPTIMIZE(0) is generally used during
program development when frequent
compiles are needed; it also allows
for symbolic debugging. For
production runs, OPTIMIZE(1|2) is
recommended.

STGOPT

(see “STGOPT”
on page 362)

To optimize storage
allocation in DATA
DIVISION

Generally results in less
storage usage

None STGOPT deletes unused data items,
which might be undesirable in the
case of time stamps or data items
that are used only as markers for
dump reading.

RENT

(see “RENT” on
page 352)

To generate a
reentrant program

Enables the program to
be placed in shared
storage (LPA/ELPA) for
faster execution

Generates additional
code to ensure that
the program is
reentrant

None

670 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 89. Performance-related compiler options (continued)

Compiler option Purpose
Performance
advantages

Performance
disadvantages Usage notes

RMODE(ANY)

(see “RMODE”
on page 353)

To let the program be
loaded anywhere

None None None

SSRANGE

(see “SSRANGE”
on page 361)

To verify that all table
references and
reference
modification
expressions are in
proper bounds

SSRANGE generates
additional code for
verifying table
references. Using
NOSSRANGE causes that
code not to be
generated.

With SSRANGE
specified, checks for
valid ranges do affect
compiler
performance.

In general, if you need to verify the
table references only a few times
instead of at every reference, coding
your own checks might be faster
than using SSRANGE. For
performance-sensitive applications,
NOSSRANGE is recommended.

TEST

(see “TEST” on
page 364)

To get full debugging
capability when using
Debug Tool and to
get a symbolic dump
of the data items in
CEEDUMP. You can also
get a symbolic dump
of the data items in
CEEDUMP with
NOTEST(DWARF).

None Some reduction in
optimization occurs
when the TEST option
is used. More
reduction in
optimization occurs
when the EJPD
suboption of TEST is
used.

For production runs, using NOTEST or
TEST(NOEJPD) is recommended.

If during a production run, you want
a symbolic dump of the data items in
a formatted dump if the program
abends, compile using TEST or with
NOTEST(DWARF).

THREAD

(see “THREAD”
on page 366)

To enable programs
for execution in a
Language
Environment enclave
that has multiple
POSIX threads or
PL/I tasks

None There is a slight
performance penalty
because of the
overhead of
serialization logic.

A slight performance penalty occurs
in either a threaded or nonthreaded
environment.

TRUNC(OPT)

(see “TRUNC” on
page 368)

To avoid having code
generated to truncate
the receiving fields of
arithmetic operations

Does not generate extra
code and generally
improves performance

Both TRUNC(BIN) and
TRUNC(STD) generate
extra code whenever
a BINARY data item is
changed. TRUNC(BIN)
is usually the slowest
of these options.

TRUNC(STD) conforms to the 85
COBOL Standard, but TRUNC(BIN)
and TRUNC(OPT) do not. With
TRUNC(OPT), the compiler assumes
that the data conforms to the PICTURE
and USAGE specifications. TRUNC(OPT)
is recommended where possible.

RELATED CONCEPTS

“Optimization” on page 667
“Storage and its addressability” on page 39

RELATED TASKS

“Generating a list of compiler messages” on page 280
“Evaluating performance” on page 672
“Optimizing buffer and device space” on page 10
“Choosing compiler features to enhance performance” on page 668
“Improving sort performance with FASTSRT” on page 231
“Using striped extended-format QSAM data sets” on page 180
“Handling tables efficiently” on page 664

RELATED REFERENCES

“Sign representation of zoned and packed-decimal data” on page 53
“Allocation of buffers for QSAM files” on page 181
Chapter 17, “Compiler options,” on page 301
“Conflicting compiler options” on page 304

Chapter 33. Tuning your program 671

Evaluating performance
Fill in the following worksheet to help you evaluate the performance of your
program. If you answer yes to each question, you are probably improving the
performance.

In thinking about the performance tradeoff, be sure you understand the function of
each option as well as the performance advantages and disadvantages. You might
prefer function over increased performance in many instances.

Table 90. Performance-tuning worksheet

Compiler option Consideration Yes?

ARCH Do you use the highest architecture level possible for all
environments in which your programs will run? For
example, if the lowest level architecture you have
including your disaster recovery machines is z10™, are
you using ARCH(8)?

AWO Do you use the AWO option when possible?

BLOCK0 Do you use BLOCK0 for QSAM files?

DATA When you use QSAM striped data sets, do you use the
RENT and DATA(31) options? Is the program object AMODE
31? Are you running with ALL31(ON)?

DYNAM Can you use NODYNAM? Consider the performance
tradeoffs.

FASTSRT When you use direct work files for the sort work files,
did you use the FASTSRT option?

NUMPROC Do you use NUMPROC(PFD) when possible?

OPTIMIZE Do you use a non-zero OPTIMIZE level for production
runs?

SSRANGE Do you use NOSSRANGE for production runs?

TEST Do you use NOTEST or TEST(NOEJPD) for production runs?

TRUNC Do you use TRUNC(OPT) when possible?

ZONEDATA Do you use ZONEDATA(PFD) when possible?

RELATED CONCEPTS

“Storage and its addressability” on page 39

RELATED TASKS

“Choosing compiler features to enhance performance” on page 668

RELATED REFERENCES

“Performance-related compiler options” on page 669

Running efficiently with CICS, IMS, or VSAM
You can improve performance for online programs running under CICS or IMS, or
programs that use VSAM, by following these tips.

CICS: If your application runs under CICS, convert EXEC CICS LINK commands to
COBOL CALL statements to improve transaction response time.

672 Enterprise COBOL for z/OS, V5.2 Programming Guide

|||

IMS: If your application runs under IMS, preloading the application program and
the library routines can help reduce the overhead of loading and searching. It can
also reduce the input-output activity.

For better system performance, use the RENT compiler option and preload the
applications and library routines when possible. You can also use the Language
Environment library routine retention (LRR) function to improve performance in
IMS/TM regions.

VSAM: When you use VSAM files, increase the number of data buffers for
sequential access or index buffers for random access. Also, select a control interval
size (CISZ) that is appropriate for the application. A smaller CISZ results in faster
retrieval for random processing at the expense of inserts. A larger CISZ is more
efficient for sequential processing.

For better performance, access the records sequentially and avoid using multiple
alternate indexes when possible. If you use alternate indexes, access method
services builds them more efficiently than the AIXBLD runtime option.

RELATED TASKS

“Coding COBOL programs to run under CICS” on page 429
Chapter 22, “Developing COBOL programs for IMS,” on page 453
“Improving VSAM performance” on page 209
Language Environment Customization

RELATED REFERENCES

Language Environment Programming Guide (Specifying runtime options)

Choosing static or dynamic calls
If you can arrange your modules, and the programs that frequently call each other
are in one module, static calls are faster than dynamic calls.

For more information, see “Performance considerations of static and dynamic calls”
on page 481.

RELATED CONCEPTS

“Performance considerations of static and dynamic calls” on page 481

Chapter 33. Tuning your program 673

674 Enterprise COBOL for z/OS, V5.2 Programming Guide

Chapter 34. Simplifying coding

You can use coding techniques to improve your productivity. By using the COPY
statement, the format 2 SORT statement, COBOL intrinsic functions, and Language
Environment callable services, you can avoid repetitive coding and having to code
many arithmetic calculations or other complex tasks.

If your program contains frequently used code sequences (such as blocks of
common data items, input-output routines, error routines, or even entire COBOL
programs), write the code sequences once and put them in a COBOL copy library.
You can use the COPY statement to retrieve these code sequences and have them
included in your program at compile time. Using copybooks in this manner
eliminates repetitive coding.

To sort a table, you can use the format 2 SORT statement to simplify coding. It
provides a much simpler way compared to the format 1 SORT statement.

COBOL provides various capabilities for manipulating strings and numbers. These
capabilities can help you simplify your coding.

The Language Environment date and time callable services store dates as fullword
binary integers and store time stamps as long (64-bit) floating-point values. These
formats let you do arithmetic calculations on date and time values simply and
efficiently. You do not need to write special subroutines that use services outside
the language library to perform such calculations.

RELATED TASKS

“Using numeric intrinsic functions” on page 57
“Using math-oriented callable services” on page 59
“Using date callable services” on page 60
“Eliminating repetitive coding”
“Converting data items (intrinsic functions)” on page 116
“Evaluating data items (intrinsic functions)” on page 119
“Using Language Environment callable services” on page 677

RELATED REFERENCES

“Using the format 2 SORT statement to sort a table” on page 681

Eliminating repetitive coding
To include stored source statements in a program, use the COPY statement in any
program division and at any code sequence level. You can nest COPY statements to
any depth.

To specify more than one copy library, use either multiple system definitions or a
combination of multiple definitions and the IN/OF phrase (IN/OF library-name):

MVS batch
Use JCL to concatenate data sets in your SYSLIB DD statement.
Alternatively, define multiple DD statements and use the IN/OF phrase of
the COPY statement.

© Copyright IBM Corp. 1991, 2018 675

|

|
|

|
|

|

TSO Use the ALLOCATE command to concatenate data sets for SYSLIB.
Alternatively, issue multiple ALLOCATE statements and use the IN/OF phrase
of the COPY statement.

z/OS UNIX
Use the SYSLIB environment variable to define multiple paths to your
copybooks. Alternatively, use multiple environment variables and use the
IN/OF phrase of the COPY statement.

For example:
COPY MEMBER1 OF COPYLIB

If you omit this qualifying phrase, the default is SYSLIB.

COPY and debugging line: In order for the text copied to be treated as debug lines,
for example, as if there were a D inserted in column 7, put the D on the first line of
the COPY statement. A COPY statement cannot itself be a debugging line; if it
contains a D, and WITH DEBUGGING mode is not specified, the COPY statement is
nevertheless processed.

“Example: using the COPY statement”

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 381

Example: using the COPY statement
These examples show how you can use the COPY statement to include library text
in a program.

Suppose the library entry CFILEA consists of the following FD entries:
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE-OUT.

01 FILE-OUT PIC X(120).

You can retrieve the text-name CFILEA by using the COPY statement in a source
program as follows:
FD FILEA

COPY CFILEA.

The library entry is copied into your program, and the resulting program listing
looks like this:
FD FILEA

COPY CFILEA.
C BLOCK CONTAINS 20 RECORDS
C RECORD CONTAINS 120 CHARACTERS
C LABEL RECORDS ARE STANDARD
C DATA RECORD IS FILE-OUT.
C 01 FILE-OUT PIC X(120).

In the compiler source listing, the COPY statement prints on a separate line. C
precedes copied lines.

Assume that a copybook with the text-name DOWORK is stored by using the
following statements:

676 Enterprise COBOL for z/OS, V5.2 Programming Guide

COMPUTE QTY-ON-HAND = TOTAL-USED-NUMBER-ON-HAND
MOVE QTY-ON-HAND to PRINT-AREA

To retrieve the copybook identified as DOWORK, code:
paragraph-name.

COPY DOWORK.

The statements that are in the DOWORK procedure will follow paragraph-name.

If you use the EXIT compiler option to provide a LIBEXIT module, your results
might differ from those shown here.

Note: To save compile time, you might group related items in a copybook, but not
necessarily have a single large copybook with unrelated items in it.

RELATED TASKS

“Eliminating repetitive coding” on page 675

RELATED REFERENCES

Chapter 18, “Compiler-directing statements,” on page 381

Using Language Environment callable services
Language Environment callable services make many types of programming tasks
easier. You call them by using the CALL statement.

Language Environment services help you with the following tasks:
v Handling conditions

The Language Environment condition-handling facilities enable COBOL
applications to react to unexpected errors. You can use language constructs or
runtime options to select the level at which to handle each condition. For
example, you can handle a particular error in your COBOL program, let
Language Environment take care of it, or have the operating system handle it.
In support of Language Environment condition handling, COBOL provides
procedure-pointer data items.

v Managing dynamic storage
These services enable you to get, free, and reallocate storage. You can also create
your own storage pools.

v Calculating dates and times
If you use the date and time services, you can get the current local time and
date in several formats, and perform date and time conversions. Two callable
services, CEEQCEN and CEESCEN, provide a predictable way to handle
two-digit years, such as 91 for 1991 or 09 for 2009.

v Making math calculations
Calculations that are easy to perform with mathematical callable services include
logarithmic, exponential, trigonometric, square root, and integer functions.
COBOL also supports a set of intrinsic functions that include some of the same
mathematical and date functions as those provided by the callable services. The
Language Environment callable services and intrinsic functions provide
equivalent results, with a few exceptions. You should be familiar with these
differences before deciding which to use.

v Handling messages

Chapter 34. Simplifying coding 677

Message-handling services include services for getting, dispatching, and
formatting messages. Messages for non-CICS applications can be directed to files
or printers. CICS messages are directed to a CICS transient data queue.
Language Environment splits messages to accommodate the record length of the
destination, and presents messages in the correct national language such as
Japanese or English.

v Supporting national languages
These services make it easy for your applications to support the language that
application users want. You can set the language and country, and obtain default
date, time, number, and currency formats. For example, you might want dates to
appear as 23 June 09 or as 6,23,09.

v General services such as starting Debug Tool and obtaining a Language
Environment formatted dump
Debug Tool provides advanced debugging functions for COBOL applications,
including both batch and interactive debugging of CICS programs. Debug Tool
enables you to debug a COBOL application from the host or, in conjunction with
the Debug Perspective of Rational Developer for System z, from a
Windows-based workstation.
Depending on the options that you select, the Language Environment formatted
dump might contain the names and values of data items, and information about
conditions, program tracebacks, control blocks, storage, and files. All Language
Environment dumps have a common, well-labeled, easy-to-read format.

“Example: Language Environment callable services” on page 680

RELATED CONCEPTS

“Sample list of Language Environment callable services”

RELATED TASKS

“Using numeric intrinsic functions” on page 57
“Using math-oriented callable services” on page 59
“Using date callable services” on page 60
“Calling Language Environment services” on page 679
“Using procedure and function pointers” on page 487

Sample list of Language Environment callable services
The following table shows some examples of the callable services that are available
with Language Environment. Many more services are available than those listed.

Table 91. Language Environment callable services

Function type Service Purpose

Condition
handling

CEEHDLR To register a user condition handler

CEESGL To raise or signal a condition

CEEMRCR To indicate where the program will resume running after
the condition handler has finished

Dynamic storage CEEGTST To get storage

CEECZST To change the size of a previously allocated storage block

CEEFRST To free storage

678 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 91. Language Environment callable services (continued)

Function type Service Purpose

Date and time CEECBLDY To convert a string that represents a date into COBOL
integer date format, which represents a date as the
number of days since 31 December 1600

CEEQCEN,
CEESCEN

To query and set the Language Environment century
window, which is valuable when a program uses two
digits to express a year

CEEGMTO To calculate the difference between the local system time
and Greenwich Mean Time

CEELOCT To get the current local time in your choice of three
formats

Math CEESIABS To calculate the absolute value of an integer

CEESSNWN To calculate the nearest whole number for a
single-precision floating-point number

CEESSCOS To calculate the cosine of an angle

Message
handling

CEEMOUT To dispatch a message

CEEMGET To retrieve a message

National
language support

CEE3LNG To change or query the current national language

CEE3CTY To change or query the current national country

CEE3MCS To obtain the default currency symbol for a given
country

General CEE3DMP To obtain a Language Environment formatted dump

CEETEST To start a debugging tool, such as Debug Tool

RELATED REFERENCES

Language Environment Programming Reference

Calling Language Environment services
To invoke a Language Environment service, use a CALL statement with the correct
parameters for that service. Define the variables for the CALL statement in the DATA
DIVISION with the definitions that are required by that service.
77 argument comp-1.
77 feedback-code pic x(12) display.
77 result comp-1.
. . .
CALL "CEESSSQT" using argument, feedback-code, result

In the example above, Language Environment service CEESSSQT calculates the
value of the square root of the variable argument and returns this value in the
variable result.

You can choose whether to specify the feedback code parameter. If you specify it,
the value returned in feedback-code indicates whether the service completed
successfully. If you specify OMITTED instead of the feedback code, and the service is
not successful, a Language Environment condition is automatically signaled to the
Language Environment condition manager. You can handle such a condition by
recovery logic implemented in a user-written condition handler, or let the default
Language Environment processing for unhandled conditions occur. In either case,
you avoid having to write logic to check the feedback code explicitly after each
call.

Chapter 34. Simplifying coding 679

If you call a Language Environment callable service and specify OMITTED for the
feedback code, the RETURN-CODE special register is set to 0 if the service is
successful. It is not altered if the service is unsuccessful. If you do not specify
OMITTED for the feedback code, the RETURN-CODE special register is always set to 0
regardless of whether the service completed successfully.

“Example: Language Environment callable services”

RELATED CONCEPTS

Language Environment Programming Guide (General callable services)

RELATED REFERENCES

Language Environment Programming Reference (General callable services)
CALL statement (Enterprise COBOL Language Reference)

Example: Language Environment callable services
This example shows a COBOL program that uses the Language Environment
services CEEDAYS and CEEDATE to format and display a date from the results of
a COBOL ACCEPT statement.

Using CEEDAYS and CEEDATE reduces the coding that would be required
without Language Environment.
ID DIVISION.
PROGRAM-ID. HOHOHO.
**
* FUNCTION: DISPLAY TODAY’S DATE IN THE FOLLOWING FORMAT: *
* WWWWWWWWW, MMMMMMMM DD, YYYY *
* *
* For example: TUESDAY, SEPTEMBER 15, 2009 *
* *
**
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHRDATE.

05 CHRDATE-LENGTH PIC S9(4) COMP VALUE 10.
05 CHRDATE-STRING PIC X(10).

01 PICSTR.
05 PICSTR-LENGTH PIC S9(4) COMP.
05 PICSTR-STRING PIC X(80).

*
77 LILIAN PIC S9(9) COMP.
77 FORMATTED-DATE PIC X(80).
*
PROCEDURE DIVISION.

* USE LANGUAGE ENVIRONMENT CALLABLE SERVICES TO PRINT OUT *
* TODAY’S DATE FROM COBOL ACCEPT STATEMENT. *

ACCEPT CHRDATE-STRING FROM DATE.
*

MOVE "YYMMDD" TO PICSTR-STRING.
MOVE 6 TO PICSTR-LENGTH.
CALL "CEEDAYS" USING CHRDATE , PICSTR , LILIAN , OMITTED.

*
MOVE " WWWWWWWWWZ, MMMMMMMMMZ DD, YYYY " TO PICSTR-STRING.
MOVE 50 TO PICSTR-LENGTH.
CALL "CEEDATE" USING LILIAN , PICSTR , FORMATTED-DATE ,

OMITTED.
*

DISPLAY "******************************".

680 Enterprise COBOL for z/OS, V5.2 Programming Guide

DISPLAY FORMATTED-DATE.
DISPLAY "******************************".

*
STOP RUN.

Using the format 2 SORT statement to sort a table
It is recommended to use the format 2 SORT statement to sort a table. It provides
the following benefits when compared to the format 1 SORT statement.

Table 92. Comparison of format 1 and format 2 SORT statements

Characteristics Format 1 SORT statements Format 2 SORT statements

Can be used to sort a file or
a table

Yes No, it is for tables only

Requires DFSORT or
equivalent sorting program

Yes No

Supported in CICS Limited Yes

Supported in UNIX System
Services

No Yes

Supported in programs that
are compiled with the THREAD
option

No Yes

Table can be sorted by using
a single SORT statement,
which simplifies coding

No, it requires the SELECT
clauses, SD entries with
record descriptions, and
input and output procedures

Yes

Keys for sorting can be
specified as part of the table
definition, which can also be
used in the SEARCH ALL
statement

No, keys must be specified
in the SORT statement. If the
table is to be searched by
using SEARCH ALL as well, the
keys must also be
redundantly specified as part
of the table definition.

Yes, and it also supports
specifying keys in the SORT
statement if needed

Can filter or preprocess table
elements during the sorting
process

Yes, using input and output
procedures

No, all of the table elements
are passed to SORT as-is

Uses special registers that
include SORT-CONTROL,
SORT-CORE-SIZE,
SORT-FILE-SIZE,
SORT-MESSAGE,
SORT-MODE-SIZE, and
SORT-RETURN

Yes No

Chapter 34. Simplifying coding 681

|

|
|

||

|||

|
|
||

|
|
||

|||

|
|
||

|
|
|

||

|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

||

|
|

682 Enterprise COBOL for z/OS, V5.2 Programming Guide

Part 9. Appendixes

© Copyright IBM Corp. 1991, 2018 683

684 Enterprise COBOL for z/OS, V5.2 Programming Guide

Appendix A. Intermediate results and arithmetic precision

The compiler handles arithmetic statements as a succession of operations
performed according to operator precedence, and sets up intermediate fields to
contain the results of those operations. The compiler uses algorithms to determine
the number of integer and decimal places to reserve.

Intermediate results are possible in the following cases:
v In an ADD or SUBTRACT statement that contains more than one operand

immediately after the verb
v In a COMPUTE statement that specifies a series of arithmetic operations or multiple

result fields
v In an arithmetic expression contained in a conditional statement or in a

reference-modification specification
v In an ADD, SUBTRACT, MULTIPLY, or DIVIDE statement that uses the GIVING option

and multiple result fields
v In a statement that uses an intrinsic function as an operand
v In a statement that contains the ROUNDED phrase

“Example: calculation of intermediate results” on page 687

The precision of intermediate results depends on whether you compile using the
default option ARITH(COMPAT) (referred to as compatibility mode) or using
ARITH(EXTEND) (referred to as extended mode).

In compatibility mode, evaluation of arithmetic operations is unchanged from that
in releases of IBM COBOL before COBOL for OS/390 & VM Version 2 Release 2:
v A maximum of 30 digits is used for fixed-point intermediate results.
v Floating-point intrinsic functions return long-precision (64-bit) floating-point

results.
v Expressions that contain floating-point operands, fractional exponents, or

floating-point intrinsic functions are evaluated as if all operands that are not in
floating point are converted to long-precision floating point and floating-point
operations are used to evaluate the expression.

v Floating-point literals and external floating-point data items are converted to
long-precision floating point for processing.

In extended mode, evaluation of arithmetic operations has the following
characteristics:
v A maximum of 31 digits is used for fixed-point intermediate results.
v Floating-point intrinsic functions return extended-precision (128-bit)

floating-point results.
v Expressions that contain floating-point operands, fractional exponents, or

floating-point intrinsic functions are evaluated as if all operands that are not in
floating point are converted to extended-precision floating point and
floating-point operations are used to evaluate the expression.

v Floating-point literals and external floating-point data items are converted to
extended-precision floating point for processing.

© Copyright IBM Corp. 1991, 2018 685

|

RELATED CONCEPTS

“Formats for numeric data” on page 47
“Fixed-point contrasted with floating-point arithmetic” on page 62

RELATED REFERENCES

“Fixed-point data and intermediate results” on page 687
“Floating-point data and intermediate results” on page 692
“Arithmetic expressions in nonarithmetic statements” on page 693
“ARITH” on page 309

Terminology used for intermediate results
To understand this information about intermediate results, you need to understand
the following terminology.

i The number of integer places carried for an intermediate result. (If you use
the ROUNDED phrase, one more integer place might be carried for accuracy if
necessary.)

d The number of decimal places carried for an intermediate result. (If you
use the ROUNDED phrase, one more decimal place might be carried for
accuracy if necessary.)

dmax In a particular statement, the largest of the following items:
v The number of decimal places needed for the final result field or fields
v The maximum number of decimal places defined for any operand,

except divisors or exponents
v The outer-dmax for any function operand

inner-dmax
In reference to a function, the largest of the following items:
v The number of decimal places defined for any of its elementary

arguments
v The dmax for any of its arithmetic expression arguments
v The outer-dmax for any of its embedded functions

outer-dmax
The number of decimal places that a function result contributes to
operations outside of its own evaluation (for example, if the function is an
operand in an arithmetic expression, or an argument to another function).

op1 The first operand in a generated arithmetic statement (in division, the
divisor).

op2 The second operand in a generated arithmetic statement (in division, the
dividend).

i1 , i2 The number of integer places in op1 and op2, respectively.

d1 , d2
The number of decimal places in op1 and op2, respectively.

ir The intermediate result when a generated arithmetic statement or
operation is performed. (Intermediate results are generated either in
registers or storage locations.)

ir1 , ir2
Successive intermediate results. (Successive intermediate results might have
the same storage location.)

686 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

ROUNDED phrase (Enterprise COBOL Language Reference)

Example: calculation of intermediate results
The following example shows how the compiler performs an arithmetic statement
as a succession of operations, storing intermediate results as needed.
COMPUTE Y = A + B * C - D / E + F ** G

The result is calculated in the following order:
1. Exponentiate F by G yielding ir1.
2. Multiply B by C yielding ir2.
3. Divide E into D yielding ir3.
4. Add A to ir2 yielding ir4.
5. Subtract ir3 from ir4 yielding ir5.
6. Add ir5 to ir1 yielding Y.

RELATED TASKS

“Using arithmetic expressions” on page 57

RELATED REFERENCES

“Terminology used for intermediate results” on page 686

Fixed-point data and intermediate results
The compiler determines the number of integer and decimal places in an
intermediate result.

Addition, subtraction, multiplication, and division
The following table shows the precision theoretically possible as the result of
addition, subtraction, multiplication, or division.

Operation Integer places Decimal places

+ or - (i1 or i2) + 1, whichever is greater d1 or d2, whichever is greater

* i1 + i2 d1 + d2

/ i2 + d1 (d2 - d1) or dmax, whichever is
greater

You must define the operands of any arithmetic statements with enough decimal
places to obtain the accuracy you want in the final result.

The following table shows the number of places the compiler carries for
fixed-point intermediate results of arithmetic operations that involve addition,
subtraction, multiplication, or division in compatibility mode (that is, when the
default compiler option ARITH(COMPAT) is in effect):

Value of i + d Value of d
Value of i +
dmax Number of places carried for ir

<30 or =30 Any value Any value i integer and d decimal places

Appendix A. Intermediate results and arithmetic precision 687

Value of i + d Value of d
Value of i +
dmax Number of places carried for ir

>30 <dmax or =dmax Any value 30-d integer and d decimal places

>dmax <30 or =30 i integer and 30-i decimal places

>30 30-dmax integer and dmax decimal
places

The following table shows the number of places the compiler carries for
fixed-point intermediate results of arithmetic operations that involve addition,
subtraction, multiplication, or division in extended mode (that is, when the compiler
option ARITH(EXTEND) is in effect):

Value of i + d Value of d
Value of i +
dmax Number of places carried for ir

<31 or =31 Any value Any value i integer and d decimal places

>31 <dmax or =dmax Any value 31-d integer and d decimal places

>dmax <31 or =31 i integer and 31-i decimal places

>31 31-dmax integer and dmax decimal
places

Exponentiation

Exponentiation is represented by the expression op1 ** op2. Based on the
characteristics of op2, the compiler handles exponentiation of fixed-point numbers
in one of three ways:
v When op2 is expressed with decimals, floating-point instructions are used.
v When op2 is an integral literal or constant, the value d is computed as

d = d1 * |op2|

and the value i is computed based on the characteristics of op1:
– When op1 is a data-name or variable,

i = i1 * |op2|

– When op1 is a literal or constant, i is set equal to the number of integers in
the value of op1 ** |op2|.

In compatibility mode (compilation using ARITH(COMPAT)), the compiler having
calculated i and d takes the action indicated in the table below to handle the
intermediate results ir of the exponentiation.

Value of i + d Other conditions Action taken

<30 Any i integer and d decimal places are carried for ir.

=30 op1 has an odd
number of digits.

i integer and d decimal places are carried for ir.

op1 has an even
number of digits.

Same action as when op2 is an integral data-name or
variable (shown below). Exception: for a 30-digit
integer raised to the power of literal 1, i integer and
d decimal places are carried for ir.

>30 Any Same action as when op2 is an integral data-name or
variable (shown below)

688 Enterprise COBOL for z/OS, V5.2 Programming Guide

In extended mode (compilation using ARITH(EXTEND)), the compiler having
calculated i and d takes the action indicated in the table below to handle the
intermediate results ir of the exponentiation.

Value of i + d Other conditions Action taken

<31 Any i integer and d decimal places are carried for ir.

=31 or >31 Any Same action as when op2 is an integral data-name or
variable (shown below). Exception: for a 31-digit
integer raised to the power of literal 1, i integer and
d decimal places are carried for ir.

If op2 is negative, the value of 1 is then divided by the result produced by the
preliminary computation. The values of i and d that are used are calculated
following the division rules for fixed-point data already shown above.

v When op2 is an integral data-name or variable, dmax decimal places and 30-dmax
(compatibility mode) or 31-dmax (extended mode) integer places are used. op1 is
multiplied by itself (|op2| - 1) times for nonzero op2.
If op2 is equal to 0, the result is 1. Division-by-0 and exponentiation SIZE ERROR
conditions apply.

Fixed-point exponents with more than nine significant digits are always truncated
to nine digits. If the exponent is a literal or constant, an E-level compiler diagnostic
message is issued; otherwise, an informational message is issued at run time.

“Example: exponentiation in fixed-point arithmetic”

RELATED REFERENCES

“Terminology used for intermediate results” on page 686
“Truncated intermediate results” on page 690
“Binary data and intermediate results” on page 690
“Floating-point data and intermediate results” on page 692
“Intrinsic functions evaluated in fixed-point arithmetic” on page 690
“ARITH” on page 309
SIZE ERROR phrases (Enterprise COBOL Language Reference)

Example: exponentiation in fixed-point arithmetic
The following example shows how the compiler performs an exponentiation to a
nonzero integer power as a succession of multiplications, storing intermediate
results as needed.
COMPUTE Y = A ** B

If B is equal to 4, the result is computed as shown below. The values of i and d that
are used are calculated according to the multiplication rules for fixed-point data
and intermediate results (referred to below).
1. Multiply A by A yielding an internal intermediate result iir1.
2. Multiply iir1 by A yielding an internal intermediate result iir2.
3. Multiply iir2 by A yielding an internal intermediate result iir3.
4. Move iir3 to ir4.

ir4 has dmax decimal places. Because B is positive, ir4 is moved to Y. If B were
equal to -4, however, an additional fifth step would be performed:

5. Divide ir4 into 1 yielding ir5.

ir5 has dmax decimal places, and would then be moved to Y.

Appendix A. Intermediate results and arithmetic precision 689

|

|

|

|

|
|

|

Note: The internal intermediate results (iir1, iir2, and iir3) obtained by the internal
library routine performing the exponential calculation in steps 1, 2, and 3 above do
not use the same decimal precision as ir4 and ir5 above. Instead, those
intermediate results are much more precise, ensuring the most accurate result
possible in ir4 or ir5.

RELATED REFERENCES

“Terminology used for intermediate results” on page 686
“Fixed-point data and intermediate results” on page 687

Truncated intermediate results
Whenever the number of digits in an intermediate result exceeds 30 in
compatibility mode or 31 in extended mode, the compiler truncates to 30
(compatibility mode) or 31 (extended mode) digits and issues a warning. If
truncation occurs at run time, a message is issued and the program continues
running.

If you want to avoid the truncation of intermediate results that can occur in
fixed-point calculations, use floating-point operands (COMP-1 or COMP-2) instead.

RELATED CONCEPTS

“Formats for numeric data” on page 47

RELATED REFERENCES

“Fixed-point data and intermediate results” on page 687
“ARITH” on page 309

Binary data and intermediate results
If an operation that involves binary operands requires intermediate results longer
than 18 digits, the compiler converts the operands to internal decimal before
performing the operation. If the result field is binary, the compiler converts the
result from internal decimal to binary.

Binary operands are most efficient when intermediate results will not exceed nine
digits.

RELATED REFERENCES

“Fixed-point data and intermediate results” on page 687
“ARITH” on page 309

Intrinsic functions evaluated in fixed-point arithmetic
The compiler determines the inner-dmax and outer-dmax values for an intrinsic
function from the characteristics of the function.

Integer functions
Integer intrinsic functions return an integer; thus their outer-dmax is always zero.
For those integer functions whose arguments must all be integers, the inner-dmax is
thus also always zero.

The following table summarizes the inner-dmax and the precision of the function
result.

690 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|
|
|
|

Function Inner-dmax Digit precision of function result

DATE-OF-INTEGER 0 8

DATE-TO-YYYYMMDD 0 8

DAY-OF-INTEGER 0 7

DAY-TO-YYYYDDD 0 7

FACTORIAL 0 30 in compatibility mode, 31 in extended mode

INTEGER-OF-DATE 0 7

INTEGER-OF-DAY 0 7

LENGTH n/a 9

MOD 0 min(i1 i2)

ORD n/a 3

ORD-MAX 9

ORD-MIN 9

YEAR-TO-YYYY 0 4

INTEGER For a fixed-point argument: one more digit than in
the argument. For a floating-point argument: 30 in
compatibility mode, 31 in extended mode.

INTEGER-PART For a fixed-point argument: same number of digits
as in the argument. For a floating-point argument: 30
in compatibility mode, 31 in extended mode.

Mixed functions
A mixed intrinsic function is a function whose result type depends on the type of
its arguments. A mixed function is fixed point if all of its arguments are numeric
and none of its arguments is floating point. (If any argument of a mixed function is
floating point, the function is evaluated with floating-point instructions and returns
a floating-point result.) When a mixed function is evaluated with fixed-point
arithmetic, the result is integer if all of the arguments are integer; otherwise, the
result is fixed point.

For the mixed functions MAX, MIN, RANGE, REM, and SUM, the outer-dmax is always
equal to the inner-dmax (and both are thus zero if all the arguments are integer). To
determine the precision of the result returned for these functions, apply the rules
for fixed-point arithmetic and intermediate results (as referred to below) to each
step in the algorithm.

MAX

1. Assign the first argument to the function result.
2. For each remaining argument, do the following steps:

a. Compare the algebraic value of the function result with the
argument.

b. Assign the greater of the two to the function result.

MIN

1. Assign the first argument to the function result.
2. For each remaining argument, do the following steps:

a. Compare the algebraic value of the function result with the
argument.

b. Assign the lesser of the two to the function result.

Appendix A. Intermediate results and arithmetic precision 691

RANGE

1. Use the steps for MAX to select the maximum argument.
2. Use the steps for MIN to select the minimum argument.
3. Subtract the minimum argument from the maximum.
4. Assign the difference to the function result.

REM

1. Divide argument one by argument two.
2. Remove all noninteger digits from the result of step 1.
3. Multiply the result of step 2 by argument two.
4. Subtract the result of step 3 from argument one.
5. Assign the difference to the function result.

SUM

1. Assign the value 0 to the function result.
2. For each argument, do the following steps:

a. Add the argument to the function result.
b. Assign the sum to the function result.

RELATED REFERENCES

“Terminology used for intermediate results” on page 686
“Fixed-point data and intermediate results” on page 687
“Floating-point data and intermediate results”
“ARITH” on page 309

Floating-point data and intermediate results
If any operation in an arithmetic expression is computed in floating-point
arithmetic, the entire expression is computed as if all operands were converted to
floating point and the operations were performed using floating-point instructions.

Floating-point instructions are used to compute an arithmetic expression if any of
the following conditions is true of the expression:
v A receiver or operand is COMP-1, COMP-2, external floating point, or a

floating-point literal.
v An exponent contains decimal places.
v An exponent is an expression that contains an exponentiation or division

operator, and dmax is greater than zero.
v An intrinsic function is a floating-point function.

In compatibility mode, if an expression is computed in floating-point arithmetic,
the precision used to evaluate the arithmetic operations is determined as follows:
v Single precision is used if all receivers and operands are COMP-1 data items and

the expression contains no multiplication or exponentiation operations.
v In all other cases, long precision is used.

Whenever long-precision floating point is used for one operation in an arithmetic
expression, all operations in the expression are computed as if long floating-point
instructions were used.

In extended mode, if an expression is computed in floating-point arithmetic, the
precision used to evaluate the arithmetic operations is determined as follows:

692 Enterprise COBOL for z/OS, V5.2 Programming Guide

v Single precision is used if all receivers and operands are COMP-1 data items and
the expression contains no multiplication or exponentiation operations.

v Long precision is used if all receivers and operands are COMP-1 or COMP-2 data
items, at least one receiver or operand is a COMP-2 data item, and the expression
contains no multiplication or exponentiation operations.

v In all other cases, extended precision is used.

Whenever extended-precision floating point is used for one operation in an
arithmetic expression, all operations in the expression are computed as if
extended-precision floating-point instructions were used.

Alert: If a floating-point operation has an intermediate result field in which
exponent overflow occurs, the job is abnormally terminated.

Exponentiations evaluated in floating-point arithmetic
In compatibility mode, floating-point exponentiations are always evaluated using
long floating-point arithmetic. In extended mode, floating-point exponentiations
are always evaluated using extended-precision floating-point arithmetic.

The value of a negative number raised to a fractional power is undefined in
COBOL. For example, (-2) ** 3 is equal to -8, but (-2) ** (3.000001) is undefined.
When an exponentiation is evaluated in floating point and there is a possibility
that the result is undefined, the exponent is evaluated at run time to determine if it
has an integral value. If not, a diagnostic message is issued.

Intrinsic functions evaluated in floating-point arithmetic
In compatibility mode, floating-point intrinsic functions always return a long
(64-bit) floating-point value. In extended mode, floating-point intrinsic functions
always return an extended-precision (128-bit) floating-point value.

Mixed functions that have at least one floating-point argument are evaluated using
floating-point arithmetic.

RELATED REFERENCES

“Terminology used for intermediate results” on page 686
“ARITH” on page 309

Arithmetic expressions in nonarithmetic statements
Arithmetic expressions can appear in contexts other than arithmetic statements. For
example, you can use an arithmetic expression with the IF or EVALUATE statement.

In such statements, the rules for intermediate results with fixed-point data and for
intermediate results with floating-point data apply, with the following changes:
v Abbreviated IF statements are handled as though the statements were not

abbreviated.
v In an explicit relation condition where at least one of the comparands is an

arithmetic expression, dmax is the maximum number of decimal places for any
operand of either comparand, excluding divisors and exponents. The rules for
floating-point arithmetic apply if any of the following conditions is true:
– Any operand in either comparand is COMP-1, COMP-2, external floating point,

or a floating-point literal.
– An exponent contains decimal places.

Appendix A. Intermediate results and arithmetic precision 693

– An exponent is an expression that contains an exponentiation or division
operator, and dmax is greater than zero.

For example:
IF operand-1 = expression-1 THEN . . .

If operand-1 is a data-name defined to be COMP-2, the rules for floating-point
arithmetic apply to expression-1 even if it contains only fixed-point operands,
because it is being compared to a floating-point operand.

v When the comparison between an arithmetic expression and another data item
or arithmetic expression does not use a relational operator (that is, there is no
explicit relation condition), the arithmetic expression is evaluated without regard
to the attributes of its comparand. For example:
EVALUATE expression-1

WHEN expression-2 THRU expression-3
WHEN expression-4
. . .

END-EVALUATE

In the statement above, each arithmetic expression is evaluated in fixed-point or
floating-point arithmetic based on its own characteristics.

RELATED CONCEPTS

“Fixed-point contrasted with floating-point arithmetic” on page 62

RELATED REFERENCES

“Terminology used for intermediate results” on page 686
“Fixed-point data and intermediate results” on page 687
“Floating-point data and intermediate results” on page 692
IF statement (Enterprise COBOL Language Reference)
EVALUATE statement (Enterprise COBOL Language Reference)
Conditional expressions (Enterprise COBOL Language Reference)

694 Enterprise COBOL for z/OS, V5.2 Programming Guide

Appendix B. Converting double-byte character set (DBCS)
data

The Language Environment service routines IGZCA2D and IGZCD2A were
intended for converting alphanumeric data items that contain DBCS data to and
from pure DBCS data items in order to reliably perform operations such as STRING,
UNSTRING, and reference modification.

These service routines continue to be provided for compatibility; however, using
national data items and the national conversion operations is now recommended
instead for this purpose.

The service routines do not support a code-page argument and are not sensitive to
the code page specified by the CODEPAGE compiler option. The DBCS compiler option
does not affect their operation.

RELATED TASKS

“Converting to or from national (Unicode) representation” on page 137
“Processing alphanumeric data items that contain DBCS data” on page 152

RELATED REFERENCES

“DBCS notation”
“Alphanumeric to DBCS data conversion (IGZCA2D)”
“DBCS to alphanumeric data conversion (IGZCD2A)” on page 698
“CODEPAGE” on page 313

DBCS notation
The symbols shown below are used in the DBCS data conversion examples to
describe DBCS items.

Symbols Meaning

< and > Shift-out (SO) and shift-in (SI), respectively

D0, D1, D2, . . ., Dn Any DBCS character except for double-byte EBCDIC
characters that correspond to single-byte EBCDIC
characters

.A, .B, .C, . . . Any double-byte EBCDIC character that corresponds
to a single-byte EBCDIC character. The period (.)
represents the value X'42'.

A single letter, such as A, B, or s Any single-byte EBCDIC character

Alphanumeric to DBCS data conversion (IGZCA2D)
The Language Environment IGZCA2D service routine converts alphanumeric data
that contains double-byte characters to pure DBCS data.

IGZCA2D syntax
To use the IGZCA2D service routine, pass the following four parameters to the
routine by using the CALL statement:

© Copyright IBM Corp. 1991, 2018 695

parameter-1
The sending field for the conversion, handled as an alphanumeric data
item.

parameter-2
The receiving field for the conversion, handled as a DBCS data item.

You cannot use reference modification with parameter-2.

parameter-3
The number of bytes in parameter-1 to be converted.

It can be the LENGTH OF special register of parameter-1, or a 4-byte USAGE IS
BINARY data item containing the number of bytes of parameter-1 to be
converted. Shift codes count as 1 byte each.

parameter-4
The number of bytes in parameter-2 that will receive the converted data.

It can be the LENGTH OF special register of parameter-2, or a 4-byte USAGE IS
BINARY data item containing the number of bytes of parameter-2 to receive
the converted data.

Usage notes

v You can pass parameter-1, parameter-3, and parameter-4 to the routine BY
REFERENCE or BY CONTENT, but you must pass parameter-2 BY REFERENCE.

v The compiler does not perform syntax checking on these parameters. Ensure that
the parameters are correctly set and passed in the CALL statement to the
conversion routine. Otherwise, results are unpredictable.

v When creating parameter-2 from parameter-1, IGZCA2D makes these changes:
– Removes the shift codes, leaving the DBCS data unchanged
– Converts the single-byte (nonspace) EBCDIC character X'nn' to a character

represented by X'42nn'
– Converts the single-byte space (X'40') to DBCS space (X'4040'), instead of

X'4240'
v IGZCA2D does not change the contents of parameter-1, parameter-3, or

parameter-4.
v The valid range for the contents of parameter-3 and for the contents of

parameter-4 is 1 to 134,217,727.

“Example: IGZCA2D” on page 697

RELATED REFERENCES

“IGZCA2D return codes”

IGZCA2D return codes
IGZCA2D sets the RETURN-CODE special register to reflect the status of the conversion.

Table 93. IGZCA2D return codes

Return code Explanation

0 parameter-1 was converted and the results were placed in parameter-2.

2 parameter-1 was converted and the results were placed in parameter-2.
parameter-2 was padded on the right with DBCS spaces.

4 parameter-1 was converted and the results were placed in parameter-2. The
DBCS data placed in parameter-2 was truncated on the right.

696 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 93. IGZCA2D return codes (continued)

Return code Explanation

6 parameter-1 was converted and the results were placed in parameter-2. A
single-byte character in the range X'00' to X'3F' or X'FF' was encountered.
The valid single-byte character was converted into an out-of-range DBCS
character.

8 parameter-1 was converted and the results were placed in parameter-2. A
single-byte character in the range X'00' to X'3F' or X'FF' was encountered.
The valid single-byte character was converted into an out-of-range DBCS
character.

parameter-2 was padded on the right with DBCS spaces.

10 parameter-1 was converted and the results were placed in parameter-2. A
single-byte character in the range X'00' to X'3F' or X'FF' was encountered.
The valid single-byte character was converted into an out-of-range DBCS
character.

The DBCS data in parameter-2 was truncated on the right.

12 An odd number of bytes was found between paired shift codes in
parameter-1. No conversion occurred.

13 Unpaired or nested shift codes were found in parameter-1. No conversion
occurred.

14 parameter-1 and parameter-2 were overlapping. No conversion occurred.

15 The value provided for parameter-3 or parameter-4 was out of range. No
conversion occurred.

16 An odd number of bytes was coded in parameter-4. No conversion
occurred.

Example: IGZCA2D
This example CALL statement converts the alphanumeric data in alpha-item to
DBCS data. The results of the conversion are placed in dbcs-item.
CALL "IGZCA2D" USING BY REFERENCE alpha-item dbcs-item

BY CONTENT LENGTH OF alpha-item LENGTH OF dbcs-item

Suppose the contents of alpha-item and dbcs-item and the lengths before the
conversion are:
alpha-item = AB<D1D2D3>CD
dbcs-item = D4D5D6D7D8D9D0

LENGTH OF alpha-item = 12
LENGTH OF dbcs-item = 14

Then after the conversion, alpha-item and dbcs-item will contain:
alpha-item = AB<D1D2D3>CD
dbcs-item = .A.BD1D2D3.C.D

The content of the RETURN-CODE register is 0.

RELATED REFERENCES

“DBCS notation” on page 695

Appendix B. Converting double-byte character set (DBCS) data 697

DBCS to alphanumeric data conversion (IGZCD2A)
The Language Environment IGZCD2A routine converts pure DBCS data to
alphanumeric data that can contain double-byte characters.

IGZCD2A syntax
To use the IGZCD2A service routine, pass the following four parameters to the
routine using the CALL statement:

parameter-1
The sending field for the conversion, handled as a DBCS data item.

parameter-2
The receiving field for the conversion, handled as an alphanumeric data
item.

parameter-3
The number of bytes in parameter-1 to be converted.

It can be the LENGTH OF special register of parameter-1, or a 4-byte USAGE IS
BINARY data item containing the number of bytes of parameter-1 to be
converted.

parameter-4
The number of bytes in parameter-2 that will receive the converted data.

It can be the LENGTH OF special register of parameter-2, or a 4-byte USAGE IS
BINARY data item containing the number of bytes of parameter-2 to receive
the converted data. Shift codes count as 1 byte each.

Usage notes

v You can pass parameter-1, parameter-3, and parameter-4 to the routine BY
REFERENCE or BY CONTENT, but you must pass parameter-2 BY REFERENCE.

v The compiler does not perform syntax checking on these parameters. Ensure that
the parameters are correctly set and passed to the conversion routine. Otherwise,
results are unpredictable.

v When creating parameter-2 from parameter-1, IGZCD2A makes these changes:
– Inserts shift codes around DBCS characters that do not correspond to

single-byte EBCDIC characters
– Converts DBCS characters to single-byte characters when the DBCS characters

correspond to single-byte EBCDIC characters
– Converts the DBCS space (X'4040') to a single-byte space (X'40')

v IGZCD2A does not change the contents of parameter-1, parameter-3, or
parameter-4.

v If the converted data contains double-byte characters, shift codes are counted in
the length of parameter-2.

v The valid range for the contents of parameter-3 and for the contents of
parameter-4 is 1 to 134,217,727.

“Example: IGZCD2A” on page 699

RELATED REFERENCES

“IGZCD2A return codes” on page 699

698 Enterprise COBOL for z/OS, V5.2 Programming Guide

IGZCD2A return codes
IGZCD2A sets the RETURN-CODE special register to reflect the status of the conversion.

Table 94. IGZCD2A return codes

Return code Explanation

0 parameter-1 was converted and the results were placed in parameter-2.

2 parameter-1 was converted and the results were placed in parameter-2.
parameter-2 was padded on the right with single-byte spaces.

4 parameter-1 was converted and the results were placed in parameter-2.
parameter-2 was truncated on the right.1

14 parameter-1 and parameter-2 were overlapping. No conversion occurred.

15 The value of parameter-3 or parameter-4 was out of range. No conversion
occurred.

16 An odd number of bytes was coded in parameter-3. No conversion
occurred.

1. If a truncation occurs within the DBCS characters, the truncation is on an even-byte
boundary and a shift-in (SI) is inserted. If necessary, the alphanumeric data is padded
with a single-byte space after the shift-in.

Example: IGZCD2A
This example CALL statement converts the DBCS data in dbcs-item to alphanumeric
data with double-byte characters. The results of the conversion are placed in
alpha-item.
CALL "IGZCD2A" USING BY REFERENCE dbcs-item alpha-item

BY CONTENT LENGTH OF dbcs-item LENGTH OF alpha-item

Suppose the contents of dbcs-item and alpha-item and the lengths before the
conversion are:
dbcs-item = .A.BD1D2D3.C.D
alpha-item = ssssssssssss

LENGTH OF dbcs-item = 14
LENGTH OF alpha-item = 12

Then after the conversion, dbcs-item and alpha-item will contain:
dbcs-item = .A.BD1D2D3.C.D
alpha-item = AB<D1D2D3>CD

The content of the RETURN-CODE register is 0.

RELATED REFERENCES

“DBCS notation” on page 695

Appendix B. Converting double-byte character set (DBCS) data 699

700 Enterprise COBOL for z/OS, V5.2 Programming Guide

Appendix C. XML reference material

The following information describes the XML exception codes that might be
returned during XML parsing or XML generation.

RELATED REFERENCES

“XML PARSE exceptions with XMLPARSE(XMLSS) in effect”
“XML PARSE exceptions with XMLPARSE(COMPAT) in effect” on page 703
“XML GENERATE exceptions” on page 710
XML specification

XML PARSE exceptions with XMLPARSE(XMLSS) in effect
When the z/OS XML System Services parser passes control to your processing
procedure for an exception event, the XML-CODE special register contains the
exception code, which is formed from a return code and a reason code.

The return code and reason code are each a halfword binary value. The exception
code is the concatenation of those two values: the return code in the high-order
halfword, and the reason code in the low-order halfword.

The return codes and reason codes are documented as hexadecimal values in the
z/OS XML System Services User's Guide and Reference, referenced below, and in
Table 95 on page 702 below.

After most exception events, the parser does not continue processing; the value in
XML-CODE at the end of the XML PARSE statement is the original exception code set
by the parser.

When the processing procedure returns to the parser after the exception event,
control transfers to the statement specified in the ON EXCEPTION phrase, or to the
end of the XML PARSE statement if you did not code an ON EXCEPTION phrase.

Validation exceptions:

If you code an XML PARSE statement that contains the VALIDATING phrase, and the
z/OS XML System Services parser determines that the document is not valid, the
parser generates return code 24 (hexadecimal 18, XRC_NOT_VALID).

Exceptions that are unique to Enterprise COBOL:

Some exceptions are unique to Enterprise COBOL and thus are not documented in
the z/OS XML System Services User's Guide and Reference, for example, errors that
occur during XML schema retrieval. The return code for exceptions with reason
codes in the hexadecimal range 800 to 899 is 4 (hexadecimal 0004, XRC_WARNING).
For other exceptions, the return code is 16 (hexadecimal 0010, XRC_FATAL). The
exception code (the value in special register XML-CODE), is formed from this return
code concatenated with one of the reason codes shown in the following table.

© Copyright IBM Corp. 1991, 2018 701

|
|

|

|

http://www.w3.org/TR/xml

Table 95. Reason codes for XML PARSE exceptions that are unique to Enterprise
COBOL

Reason code
(hexadecimal) Description

700 VALIDATING WITH FILE is not supported under CICS.

701 The optimized XML schema that was read in was too short, or the file
was empty.

702 The file identifier for the schema was not a ddname or
environment-variable name.

703 The DSN value contained a space character in a position where a space is
not allowed.

704 The DSN value specified a temporary data set.

705 The PATH value contained an unescaped space character.

706 The PATH value contained a path name that was not an absolute path.

707 Memory allocation for the XML schema buffer failed.

708 The environment variable was null or contained only spaces.

709 The environment variable contained an invalid keyword.

710 The DSN value contained an invalid character after the member name.

711 The DSN value did not specify a member name.

712 The DSN value did not specify a data set name, or parentheses were not
specified correctly.

713 The PATH value did not specify a path name, or parentheses were not
specified correctly.

714 The DSN value contained an extra parenthesis.

715 The PATH value contained an extra parenthesis.

716 The DSN value was missing the closing parenthesis.

717 The PATH value was missing the closing parenthesis.

718 The DSN value contained an escape character.

720 A character reference for an unrepresentable character was not resolved.

721 An unrepresentable character reference in the document type declaration
is not supported.

800 The attribute name used an undeclared prefix.

801 The START-OF-ELEMENT name used an undeclared prefix. (The
END-OF-ELEMENT name must match, so using the same undeclared prefix
does not cause another exception.)

900 Internal error. Report the error to your service representative.

For any of the reason codes except 900, correct the error and then retry your
program.

RELATED CONCEPTS

“XML-CODE” on page 535
“XML events” on page 534

RELATED TASKS

“Handling XML PARSE exceptions” on page 552

702 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)
XML PARSE statement (Enterprise COBOL Language Reference)
z/OS XML System Services User's Guide and Reference

XML PARSE exceptions with XMLPARSE(COMPAT) in effect
When an exception event occurs, the XML parser that is provided with the
Enterprise COBOL library sets special register XML-CODE to a value that identifies
the exception. Depending on the value in XML-CODE, the parser might or might not
be able to continue processing after the exception, as detailed in the information
referenced below.

RELATED REFERENCES

“XML PARSE exceptions that allow continuation”
“XML PARSE exceptions that do not allow continuation” on page 707

XML PARSE exceptions that allow continuation
If the XMLPARSE(COMPAT) compiler option is in effect, whether the XML parser can
continue processing after an exception event depends upon the value of the
exception code.

The parser can continue processing if the exception code, which is in special
register XML-CODE, is within one of the following ranges:
v 1 - 99
v 100,001 - 165,535

The following table describes each exception, and identifies the actions that the
parser takes if you request that it continue after the exception. Some of the
descriptions use the following terms:
v Actual document encoding

v Document encoding declaration

For definitions of the terms, see the related concept about XML input document
encoding.

Table 96. XML PARSE exceptions that allow continuation

Exception
code
(decimal) Description Parser action on continuation

1 The parser found an invalid
character while scanning white
space outside element content.

For further information about
white space, see the related
concept about XML input
document encoding.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

2 The parser found an invalid
start of a processing
instruction, element, comment,
or document type declaration
outside element content.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

Appendix C. XML reference material 703

|

|

|
|
|
|
|

|
|
|

|

|
|
|

|
|

|

|

|
|
|

|

|

|
|

||

|
|
|||

||
|
|

|
|
|
|

|
|
|
|
|
|

||
|
|
|
|

|
|
|
|
|
|

Table 96. XML PARSE exceptions that allow continuation (continued)

Exception
code
(decimal) Description Parser action on continuation

3 The parser found a duplicate
attribute name.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

4 The parser found the markup
character '<' in an attribute
value.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

5 The start and end tag names of
an element did not match.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

6 The parser found an invalid
character in element content.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

7 The parser found an invalid
start of an element, comment,
processing instruction, or
CDATA section in element
content.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

8 The parser found in element
content the CDATA closing
character sequence ']]>' without
the matching opening character
sequence '<![CDATA['.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

9 The parser found an invalid
character in a comment.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

10 The parser found in a comment
the character sequence '--' (two
hyphens) not followed by '>'.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

704 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|
|
|||

||
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

||
|
|
|
|

|
|
|
|
|
|

||
|
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

Table 96. XML PARSE exceptions that allow continuation (continued)

Exception
code
(decimal) Description Parser action on continuation

11 The parser found an invalid
character in a processing
instruction data segment.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

12 The XML declaration was not
at the beginning of the
document.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

13 The parser found an invalid
digit in a hexadecimal character
reference (of the form
�).

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

14 The parser found an invalid
digit in a decimal character
reference (of the form &#dddd;).

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

15 The encoding declaration value
in the XML declaration did not
begin with lowercase or
uppercase A through Z.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

16 A character reference did not
refer to a legal XML character.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

17 The parser found an invalid
character in an entity reference
name.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

18 The parser found an invalid
character in an attribute value.

The parser continues detecting errors until
it reaches the end of the document or
encounters an error that does not allow
continuation. The parser does not signal
any further normal events, except for the
END-OF-DOCUMENT event.

Appendix C. XML reference material 705

|

|
|
|||

||
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|

Table 96. XML PARSE exceptions that allow continuation (continued)

Exception
code
(decimal) Description Parser action on continuation

70 The actual document encoding
was EBCDIC, and the CODEPAGE
compiler option specified a
supported EBCDIC code page,
but the document encoding
declaration did not specify a
supported EBCDIC code page.

The parser uses the encoding specified by
theCODEPAGE compiler option.

71 The actual document encoding
was EBCDIC, and the
document encoding declaration
specified a supported EBCDIC
encoding, but the CODEPAGE
compiler option did not specify
a supported EBCDIC code
page.

The parser uses the encoding specified by
the document encoding declaration.

72 The actual document encoding
was EBCDIC, the CODEPAGE
compiler option did not specify
a supported EBCDIC code
page, and the document did
not contain an encoding
declaration.

The parser uses EBCDIC code page 1140
(USA, Canada, . . . Euro Country Extended
Code Page).

73 The actual document encoding
was EBCDIC, but neither the
CODEPAGE compiler option nor
the document encoding
declaration specified a
supported EBCDIC code page.

The parser uses EBCDIC code page 1140
(USA, Canada, . . . Euro Country Extended
Code Page).

82 The actual document encoding
was ASCII, but the document
did not contain an encoding
declaration.

The parser uses ASCII code page 819
(ISO-8859-1 Latin 1/Open Systems).

83 The actual document encoding
was ASCII, but the document
encoding declaration did not
specify code page 813, 819, or
920.

The parser uses ASCII code page 819
(ISO-8859-1 Latin 1/Open Systems).

92 The document data item was
alphanumeric, but the actual
document encoding was
Unicode UTF-16.

The parser uses code page 1200 (Unicode
UTF-16).

100,001 -
165,535

The CODEPAGE compiler option
and the document encoding
declaration specified different
supported EBCDIC code pages.
XML-CODE contains the code
page CCSID for the encoding
declaration plus 100,000.

If you set XML-CODE to zero before
returning from the EXCEPTION event, the
parser uses the encoding specified by the
CODEPAGE compiler option. If you set
XML-CODE to the CCSID for the document
encoding declaration (by subtracting
100,000), the parser uses this encoding.

706 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|
|
|||

||
|
|
|
|
|
|

|
|

||
|
|
|
|
|
|
|

|
|

||
|
|
|
|
|
|

|
|
|

||
|
|
|
|
|

|
|
|

||
|
|
|

|
|

||
|
|
|
|

|
|

||
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

RELATED CONCEPTS

“XML-CODE” on page 535
“XML input document encoding” on page 547

RELATED TASKS

“Handling XML PARSE exceptions” on page 552

RELATED REFERENCES

“XMLPARSE” on page 373 (compiler option)

XML PARSE exceptions that do not allow continuation
If the XMLPARSE(COMPAT) compiler option is in effect, the XML parser cannot
continue processing if any of the exceptions described below occurs.

No further events are returned from the parser for any of these exceptions even if
the processing procedure sets XML-CODE to zero before passing control back to the
parser. The parser transfers control to the statement in the ON EXCEPTION phrase, if
specified, otherwise to the end of the XML PARSE statement.

Table 97. XML PARSE exceptions that do not allow continuation (for XMLPARSE(COMPAT))

Exception
code (decimal) Description

100 The parser reached the end of the document while scanning the start of
the XML declaration.

101 The parser reached the end of the document while looking for the end of
the XML declaration.

102 The parser reached the end of the document while looking for the root
element.

103 The parser reached the end of the document while looking for the version
information in the XML declaration.

104 The parser reached the end of the document while looking for the version
information value in the XML declaration.

106 The parser reached the end of the document while looking for the
encoding declaration value in the XML declaration.

108 The parser reached the end of the document while looking for the
standalone declaration value in the XML declaration.

109 The parser reached the end of the document while scanning an attribute
name.

110 The parser reached the end of the document while scanning an attribute
value.

111 The parser reached the end of the document while scanning a character
reference or entity reference in an attribute value.

112 The parser reached the end of the document while scanning an empty
element tag.

113 The parser reached the end of the document while scanning the root
element name.

114 The parser reached the end of the document while scanning an element
name.

115 The parser reached the end of the document while scanning character data
in element content.

Appendix C. XML reference material 707

|
|
|

|
|

|
|

|

|
|

|
|
|
|

||

|
||

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

Table 97. XML PARSE exceptions that do not allow continuation (for
XMLPARSE(COMPAT)) (continued)

Exception
code (decimal) Description

116 The parser reached the end of the document while scanning a processing
instruction in element content.

117 The parser reached the end of the document while scanning a comment or
CDATA section in element content.

118 The parser reached the end of the document while scanning a comment in
element content.

119 The parser reached the end of the document while scanning a CDATA
section in element content.

120 The parser reached the end of the document while scanning a character
reference or entity reference in element content.

121 The parser reached the end of the document while scanning after the close
of the root element.

122 The parser found a possible invalid start of a document type declaration.

123 The parser found a second document type declaration.

124 The first character of the root element name was not a letter, '_', or ':'.

125 The first character of the first attribute name of an element was not a
letter, '_', or ':'.

126 The parser found an invalid character either in or following an element
name.

127 The parser found a character other than '=' following an attribute name.

128 The parser found an invalid attribute value delimiter.

130 The first character of an attribute name was not a letter, '_', or ':'.

131 The parser found an invalid character either in or following an attribute
name.

132 An empty element tag was not terminated by a '>' following the '/'.

133 The first character of an element end tag name was not a letter, '_', or ':'.

134 An element end tag name was not terminated by a '>'.

135 The first character of an element name was not a letter, '_', or ':'.

136 The parser found an invalid start of a comment or CDATA section in
element content.

137 The parser found an invalid start of a comment.

138 The first character of a processing instruction target name was not a letter,
'_', or ':'.

139 The parser found an invalid character in or following a processing
instruction target name.

140 A processing instruction was not terminated by the closing character
sequence '?>'.

141 The parser found an invalid character following '&' in a character
reference or entity reference.

142 The version information was not present in the XML declaration.

143 'version' in the XML declaration was not followed by '='.

144 The version declaration value in the XML declaration is either missing or
improperly delimited.

708 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|
||

||
|

||
|

||
|

||
|

||
|

||
|

||

||

||

||
|

||
|

||

||

||

||
|

||

||

||

||

||
|

||

||
|

||
|

||
|

||
|

||

||

||
|

Table 97. XML PARSE exceptions that do not allow continuation (for
XMLPARSE(COMPAT)) (continued)

Exception
code (decimal) Description

145 The version information value in the XML declaration specified a bad
character, or the start and end delimiters did not match.

146 The parser found an invalid character following the version information
value closing delimiter in the XML declaration.

147 The parser found an invalid attribute instead of the optional encoding
declaration in the XML declaration.

148 'encoding' in the XML declaration was not followed by '='.

149 The encoding declaration value in the XML declaration is either missing
or improperly delimited.

150 The encoding declaration value in the XML declaration specified a bad
character, or the start and end delimiters did not match.

151 The parser found an invalid character following the encoding declaration
value closing delimiter in the XML declaration.

152 The parser found an invalid attribute instead of the optional standalone
declaration in the XML declaration.

153 standalone in the XML declaration was not followed by =.

154 The standalone declaration value in the XML declaration is either missing
or improperly delimited.

155 The standalone declaration value was neither 'yes' nor 'no' only.

156 The standalone declaration value in the XML declaration specified a bad
character, or the start and end delimiters did not match.

157 The parser found an invalid character following the standalone
declaration value closing delimiter in the XML declaration.

158 The XML declaration was not terminated by the proper character sequence
'?>', or contained an invalid attribute.

159 The parser found the start of a document type declaration after the end of
the root element.

160 The parser found the start of an element after the end of the root element.

315 The actual document encoding was UTF-16 little-endian, which the parser
does not support on this platform.

316 The actual document encoding was UCS4, which the parser does not
support.

317 The parser cannot determine the document encoding. The document
might be damaged.

318 The actual document encoding was UTF-8, which the parser does not
support.

320 The document data item was national, but the actual document encoding
was EBCDIC.

321 The document data item was national, but the actual document encoding
was ASCII.

500 - 599 Internal error. Report the error to your service representative.

RELATED CONCEPTS

“XML-CODE” on page 535

Appendix C. XML reference material 709

|
|

|
||

||
|

||
|

||
|

||

||
|

||
|

||
|

||
|

||

||
|

||

||
|

||
|

||
|

||
|

||

||
|

||
|

||
|

||
|

||
|

||
|

||
|

|
|

RELATED TASKS

“Handling XML PARSE exceptions” on page 552

XML GENERATE exceptions
One of several exception codes might be returned in the XML-CODE special register
during XML generation. If one of these exceptions occurs, control is passed to the
statement in the ON EXCEPTION phrase, or to the end of the XML GENERATE statement
if you did not code an ON EXCEPTION phrase.

Table 98. XML GENERATE exceptions

Exception
code (decimal) Description

400 The receiver was too small to contain the generated XML document. The
COUNT IN data item, if specified, contains the count of character positions
that were actually generated.

401 A DBCS data-name contained a character that, when converted to
Unicode, was not valid in an XML element or attribute name.

402 The first character of a DBCS data-name, when converted to Unicode, was
not valid as the first character of an XML element or attribute name.

403 The value of an OCCURS DEPENDING ON variable exceeded 16,777,215.

410 The CCSID page specified by the CODEPAGE compiler option is not
supported for conversion to Unicode.

411 The CCSID specified by the CODEPAGE compiler option is not a supported
single-byte EBCDIC CCSID.

414 The CCSID specified for the XML document was invalid or was not
supported.

415 The receiver was national, but the encoding specified for the document
was not UTF-16.

416 The XML namespace identifier contained invalid XML characters.

417 Element character content or an attribute value contained characters that
are illegal in XML content. XML generation has continued, with the
element tag name or the attribute name prefixed with 'hex.' and the
original data value represented in the document in hexadecimal.

Any TYPE IS CONTENT specification is ignored, and the item is treated
as an element.

418 Substitution characters were generated by encoding conversion.

419 The XML namespace prefix was invalid.

420 The receiver was alphanumeric and the input included national or DBCS
data or names, but the encoding specified for the document was not 1208.

600-699 Internal error. Report the error to your service representative.

RELATED TASKS

“Handling XML GENERATE exceptions” on page 577

710 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|

|
|

||
|

Appendix D. EXIT compiler option

You can use the EXIT compiler option to provide user-supplied modules in place of
various compiler functions. For details about processing of each exit module, error
handling for exit modules, or using the EXIT option with CICS, SQL and SQLIMS
statements, see the following topics.

RELATED TASKS

“Using the user-exit work area”
“Calling from exit modules” on page 712
Using the EXIT compiler option with CICS, SQL and
SQLIMS statements

RELATED REFERENCES

“EXIT” on page 324
“Processing of INEXIT” on page 712
“Processing of LIBEXIT” on page 713
“Processing of PRTEXIT” on page 716
“Processing of ADEXIT” on page 717
“Processing of MSGEXIT” on page 719
“Error handling for exit modules” on page 727

Using the user-exit work area
When you use one of the user exits, the compiler provides a work area in which
you can save the address of GETMAIN storage obtained by the exit module. Having
such a work area lets the module be reentrant.

The user-exit work area consists of 6 fullwords that reside on a fullword boundary.
These fullwords are initialized to binary zeros before the first exit routine is
invoked. The address of the work area is passed to the exit module in a parameter
list. After initialization, the compiler makes no further reference to the work area.

The words in the user-exit work area are used by the individual exit modules as
shown in the following table.

Table 99. Layout of the user-exit work area

Word number Used by module:

1 INEXIT

2 LIBEXIT

3 PRTEXIT

4 ADEXIT

5 (Reserved)

6 MSGEXIT

RELATED REFERENCES

“Processing of INEXIT” on page 712
“Processing of LIBEXIT” on page 713

© Copyright IBM Corp. 1991, 2018 711

“Processing of PRTEXIT” on page 716
“Processing of ADEXIT” on page 717
“Processing of MSGEXIT” on page 719

Calling from exit modules
To call COBOL programs or library routines within your exit modules, use
standard COBOL linkage. You need to be aware of the register conventions in
order to trace the call chain correctly.

When a call is made to a program or to a routine in an exit module, the registers
are set up as follows:

R1 Points to the parameter list passed to the called program or library routine

R13 Points to the register save area provided by the calling program or routine

R14 Holds the return address of the calling program or routine

R15 Holds the address of the called program or routine

Exit modules must have RMODE attribute 24 and AMODE attribute ANY.

RELATED CONCEPTS

“Storage and its addressability” on page 39

Processing of INEXIT
The INEXIT exit module is used to read source code from a user-supplied program
object in place of SYSIN.

Table 100. INEXIT processing

Action by compiler Action by exit module

Loads the exit module (mod1) during
initialization

Calls the exit module with an OPEN
operation code (op code)

Prepares its source for processing. Passes the
status of the OPEN request back to the
compiler.

Calls the exit module with a GET op code
when a source statement is needed

Returns either the address and length of the
next statement or the end-of-data indication
(if no more source statements exist)

Calls the exit module with a CLOSE op code
when the end-of-data is presented

Releases any resources that are related to its
output

INEXIT parameters
The compiler uses 10 parameters, passed by reference, to communicate with the
exit module. The return code, data length, and data parameters are set by the exit
module for return to the compiler; the other items are passed from the compiler to
the exit module.

712 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 101. INEXIT parameters

Parameter
number Parameter item Description of item

1 User-exit type Halfword that identifies which user exit is to perform
the operation.

1=INEXIT

2 Operation code Halfword that indicates the type of operation:

v 0=OPEN

v 1=CLOSE

v 2=GET

3 Return code Fullword, set by the exit module, that indicates the
success of the requested operation:

v 0=Operation was successful

v 4=End-of-data

v 12=Operation failed

4 User-exit work area Six-fullword work area provided by the compiler for
use by the user-exit module.

First word: for use by INEXIT

5 Data length Fullword, set by the exit module, that specifies the
length of the record being returned by the GET
operation (must be 80)

6 Data or str1 Fullword, set by the exit module, that contains the
address of the record in a user-owned buffer, for the
GET operation.

str1 applies only to OPEN. The first halfword (on a
halfword boundary) contains the length of the string,
followed by the string.

7 Not used (Used only by LIBEXIT and MSGEXIT)

8 Not used (Used only by LIBEXIT)

9 Not used (Used only by LIBEXIT)

10 Not used (Used only by LIBEXIT)

RELATED TASKS

“Using the user-exit work area” on page 711
“Calling from exit modules” on page 712
Using the EXIT compiler option with CICS, SQL and
SQLIMS statements

Processing of LIBEXIT
The LIBEXIT exit module is used in place of the SYSLIB, or library-name, data set.
Calls are made to the module by the compiler to obtain copybooks whenever COPY
or BASIS statements are encountered.

Table 102. LIBEXIT processing

Action by compiler Action by exit module

Loads the exit module (mod2)
during initialization

Appendix D. EXIT compiler option 713

Table 102. LIBEXIT processing (continued)

Action by compiler Action by exit module

Calls the exit module with an
OPEN operation code (op code)

Prepares the specified library-name for processing.
Passes the status of the OPEN request to the
compiler.

Calls the exit module with a FIND
op code if the library-name was
successfully opened

Establishes positioning at the requested text-name (or
basis-name) in the specified library-name; this place
becomes the active copybook. Passes an appropriate
return code to the compiler when positioning is
complete.

Calls the exit module with a GET
op code

Passes the compiler either the length and address of
the record to be copied from the active copybook or
the end-of-data indicator

Calls the exit module with a
CLOSE op code when the
end-of-data is presented

Releases any resources that are related to its input

Processing of LIBEXIT with nested COPY statements
Any record from the active copybook can contain a COPY statement. (However,
nested COPY statements cannot contain the REPLACING phrase, and a COPY statement
with the REPLACING phrase cannot contain nested COPY statements.)

You cannot make recursive calls to text-name. That is, a copybook can be named
only once in a set of nested COPY statements until the end-of-data for that
copybook is reached.

The following table shows how the processing of LIBEXIT changes when there are
one or more valid COPY statements that are not nested.

Table 103. LIBEXIT processing with nonnested COPY statements

Action by compiler Action by exit module

Loads the exit module (mod2)
during initialization

Calls the exit module with an
OPEN operation code (op
code)

Prepares the specified library-name for processing. Passes
the status of the OPEN request to the compiler.

Calls the exit module with a
FIND op code if the
library-name was successfully
opened

Establishes positioning at the requested text-name (or
basis-name) in the specified library-name; this place
becomes the active copybook. Passes an appropriate
return code to the compiler when positioning is complete.

Calls the exit module with a
FIND op code if the
library-name was successfully
opened

Reestablishes positioning at the previous active copybook.
Passes an appropriate return code to the compiler when
positioning is complete.

Calls the exit module with a
GET op code. Verifies that the
same record was passed.

Passes the compiler the same record as was passed
previously from this copybook. After verification, passes
either the length and address of the record to be copied
from the active copybook or the end-of-data indicator.

Calls the exit module with a
CLOSE op code when the
end-of-data is presented

Releases any resources that are related to its input

714 Enterprise COBOL for z/OS, V5.2 Programming Guide

The following table shows how the processing of LIBEXIT changes when the
compiler encounters a valid nested COPY statement.

Table 104. LIBEXIT processing with nested COPY statements

Action by compiler Action by exit module

If the requested library-name
from the nested COPY statement
was not previously opened,
calls the exit module with an
OPEN op code

Pushes its control information about the active copybook
onto a stack. Completes the requested action (OPEN). The
newly requested text-name (or basis-name) becomes the
active copybook.

Calls the exit module with a
FIND op code for the
requested new text-name

Pushes its control information about the active copybook
onto a stack. Completes the requested action (FIND). The
newly requested text-name (or basis-name) becomes the
active copybook.

Calls the exit module with a
GET op code

Passes the compiler either the length and address of the
record to be copied from the active copybook or the
end-of-data indicator. At end-of-data, pops its control
information from the stack.

LIBEXIT parameters
The compiler uses 10 parameters, passed by reference, to communicate with the
exit module. The return code, data length, and data parameters are set by the exit
module for return to the compiler; the other items are passed from the compiler to
the exit module.

Table 105. LIBEXIT parameters

Parameter
number Parameter item Description of item

1 User-exit type Halfword that identifies which user exit is to perform
the operation.

2=LIBEXIT

2 Operation code Halfword that indicates the type of operation:

v 0=OPEN

v 1=CLOSE

v 2=GET

v 4=FIND

3 Return code Fullword, set by the exit module, that indicates the
success of the requested operation:

v 0=Operation was successful

v 4=End-of-data

v 12=Operation failed

4 User-exit work area Six-fullword work area provided by the compiler for
use by the user-exit module.

Second word: for use by LIBEXIT

5 Data length Fullword, set by the exit module, that specifies the
length of the record being returned by the GET
operation (must be 80)

Appendix D. EXIT compiler option 715

Table 105. LIBEXIT parameters (continued)

Parameter
number Parameter item Description of item

6 Data or str2 Fullword, set by the exit module, that contains the
address of the record in a user-owned buffer, for the
GET operation.

str2 applies only to OPEN. The first halfword (on a
halfword boundary) contains the length of the string,
followed by the string.

7 System library-name Eight-character area that contains the library-name from
the COPY statement. Processing and conversion rules
for a program-name are applied. Padded with blanks
if required. Applies to OPEN, CLOSE, and FIND.

8 System text-name Eight-character area that contains the text-name from
the COPY statement (basis-name from BASIS statement).
Processing and conversion rules for a program-name are
applied. Padded with blanks if required. Applies only
to FIND.

9 Library-name Thirty-character area that contains the full library-name
from the COPY statement. Padded with blanks if
required, and used as is (not folded to uppercase).
Applies to OPEN, CLOSE, and FIND.

10 Text-name Thirty-character area that contains the full text-name
from the COPY statement. Padded with blanks if
required, and used as is (not folded to uppercase).
Applies only to FIND.

RELATED TASKS

“Using the user-exit work area” on page 711
“Calling from exit modules” on page 712
Using the EXIT compiler option with CICS, SQL and
SQLIMS statements

Processing of PRTEXIT
The PRTEXIT exit module is used in place of the SYSPRINT data set.

Table 106. PRTEXIT processing

Action by compiler Action by exit module

Loads the exit module (mod3) during
initialization

Calls the exit module with an OPEN
operation code (op code)

Prepares its output destination for
processing. Passes the status of the OPEN
request to the compiler.

Calls the exit modules with a PUT op code
when a line is to be printed, supplying the
address and length of the record that is to be
printed

Passes the status of the PUT request to the
compiler by a return code. The first byte of
the record to be printed contains an ANSI
printer control character.

Calls the exit module with a CLOSE op code
when the end-of-data is presented

Releases any resources that are related to its
output destination

716 Enterprise COBOL for z/OS, V5.2 Programming Guide

PRTEXIT parameters
The compiler uses 10 parameters, passed by reference, to communicate with the
exit module. The return code, data length, and data buffer parameters are set by
the exit module for return to the compiler; the other items are passed from the
compiler to the exit module.

Table 107. PRTEXIT parameters

Parameter
number Parameter item Description of item

1 User-exit type Halfword that identifies which user exit is to perform
the operation.

3=PRTEXIT

2 Operation code Halfword that indicates the type of operation:

v 0=OPEN

v 1=CLOSE

v 3=PUT

3 Return code Fullword, set by the exit module, that indicates the
success of the requested operation:

v 0=Operation was successful

v 12=Operation failed

4 User-exit work area Six-fullword work area provided by the compiler for
use by the user-exit module.

Third word: for use by PRTEXIT

5 Data length Fullword that specifies the length of the record being
supplied by the PUT operation (the compiler sets this
value to 133)

6 Data buffer or str3 Data buffer where the compiler has placed the record
to be printed by the PUT operation.

str3 applies only to OPEN. The first halfword (on a
halfword boundary) contains the length of the string,
followed by the string.

7 Not used (Used only by LIBEXIT and MSGEXIT)

8 Not used (Used only by LIBEXIT)

9 Not used (Used only by LIBEXIT)

10 Not used (Used only by LIBEXIT)

RELATED TASKS

“Using the user-exit work area” on page 711
“Calling from exit modules” on page 712
Using the EXIT compiler option with CICS, SQL and
SQLIMS statements

Processing of ADEXIT
The ADEXIT module is called for each SYSADATA record immediately after the
record has been written out to the file.

To use an ADEXIT module, you must compile using the ADATA option to produce
SYSADATA output, and code the SYSADATA DD statement.

Appendix D. EXIT compiler option 717

Table 108. ADEXIT processing

Action by compiler Action by exit module

Loads the exit module (mod4) during
initialization

Calls the exit module with an OPEN
operation code (op code)

Prepares its output destination for
processing. Passes the status of the OPEN
request to the compiler.

Calls the exit module with a PUT op code
when the compiler has written a SYSADATA
record, supplying the address and length of
the SYSADATA record

Passes the status of the PUT request to the
compiler by a return code

Calls the exit module with a CLOSE op code
when the end-of-data is presented

Releases any resources

ADEXIT parameters
The compiler uses 10 parameters, passed by reference, to communicate with the
exit module. The return code, data length, and data buffer parameters are set by
the exit module for return to the compiler; the other items are passed from the
compiler to the exit module.

Table 109. ADEXIT parameters

Parameter
number Parameter item Description of item

1 User-exit type Halfword that identifies which user exit is to perform
the operation.

4=ADEXIT

2 Operation code Halfword that indicates the type of operation:

v 0=OPEN

v 1=CLOSE

v 3=PUT

3 Return code Fullword, set by the exit module, that indicates the
success of the requested operation:

v 0=Operation was successful

v 12=Operation failed

4 User-exit work area Six-fullword work area provided by the compiler for
use by the user-exit module.

Fourth word: for use by ADEXIT

5 Data length Fullword that specifies the length of the record being
supplied by the PUT operation

6 Data buffer or str4 Fullword that contains the address of the data buffer
where the compiler has placed the record to be
printed by the PUT operation.

str4 applies only to OPEN. The first halfword (on a
halfword boundary) contains the length of the string,
followed by the string.

7 Not used (Used only by LIBEXIT and MSGEXIT)

8 Not used (Used only by LIBEXIT)

9 Not used (Used only by LIBEXIT)

718 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 109. ADEXIT parameters (continued)

Parameter
number Parameter item Description of item

10 Not used (Used only by LIBEXIT)

RELATED TASKS

“Using the user-exit work area” on page 711
“Calling from exit modules” on page 712
Using the EXIT compiler option with CICS, SQL and
SQLIMS statements

RELATED REFERENCES

“ADATA” on page 305

Processing of MSGEXIT
The MSGEXIT module is used to customize compiler diagnostic messages and FIPS
messages. The module can customize a message either by changing its severity or
suppressing it.

If the MSGEXIT module assigns a severity to a FIPS message, the message is
converted into a diagnostic message. (The message is shown in the summary of
diagnostic messages in the listing.)

A MSGEXIT summary at the end of the compiler listing shows how many
messages were changed in severity and how many messages were suppressed.

Table 110. MSGEXIT processing

Action by compiler Action by exit module

Loads the exit module (mod5)
during initialization

Calls the exit module with an
OPEN operation code (op code)

Optionally processes str5 and passes the status of the
OPEN request to the compiler

Calls the exit module with a
MSGSEV operation code (op code)
when the compiler is about to issue
a diagnostic message or FIPS
message

One of the following actions:

v Indicates no customization of the message (by
setting return code to 0)

v Specifies a new severity for (or suppression of) the
message, and sets return code to 4

v Indicates that the operation failed (by setting
return code to 12)

Calls the exit module with a
CLOSE op code

Optionally frees storage and passes the status of the
CLOSE request to the compiler

Deletes the exit module (mod5)
during compiler termination

MSGEXIT parameters
The compiler uses 10 parameters, passed by reference, to communicate with the
exit module. The return code and user-requested severity parameters are set by the
exit module for return to the compiler; the other items are passed from the
compiler to the exit module.

Appendix D. EXIT compiler option 719

Table 111. MSGEXIT parameters

Parameter
number Parameter item Description of item

1 User-exit type Halfword that identifies which user exit is to perform
the operation.

6=MSGEXIT

2 Operation code Halfword that indicates the type of operation:

v 0=OPEN

v 1=CLOSE

v 5=MSGSEV: customize message severity

3 Return code Fullword, set by the exit module, that indicates the
success of the requested operation.

For op code MSGSEV:

v 0=Message not customized

v 4=Message found and customized

v 12=Operation failed

4 User-exit work area Six-fullword work area provided by the compiler for
use by the user-exit module.

Sixth word: for use by MSGEXIT

5 Not used (Used by the other exits)

6 Message exit data Three-halfword area (on a halfword boundary).

v First halfword: the message number of the message
to be customized

v Second halfword: for a diagnostic message, the
default severity; for a FIPS message, the FIPS
category as a numeric code

v Third halfword: the user-requested severity for the
message (-1 to indicate suppression)

7 str5 First halfword (on a halfword boundary): the length of
the string, followed by the string

8 Not used (Used only by LIBEXIT)

9 Not used (Used only by LIBEXIT)

10 Not used (Used only by LIBEXIT)

“Example: MSGEXIT user exit” on page 723

RELATED TASKS

“Using the user-exit work area” on page 711
“Calling from exit modules” on page 712
“Customizing compiler-message severities”
Using the EXIT compiler option with CICS, SQL and
SQLIMS statements

Customizing compiler-message severities
To change the severities of compiler messages or suppress compiler messages
(including FIPS messages), do the steps described below.
1. Code and compile a COBOL program named ERRMSG. The program needs only

a PROGRAM-ID paragraph, as described in the related task.

720 Enterprise COBOL for z/OS, V5.2 Programming Guide

2. Review the ERRMSG listing, which contains a complete list of compiler messages
with their message numbers, severities, and message text.

3. Decide which messages you want to customize.
To understand the customizations that are possible, see the related reference
about customizable compiler-message severities.

4. Code a MSGEXIT module to implement the customizations:
a. Verify that the operation-code parameter indicates message-severity

customization.
b. Check the two input values in the message-exit-data parameter: the message

number; and the default severity for a diagnostic message or the FIPS
category for a FIPS message.
The FIPS category is expressed as numeric code. For details, see the related
reference about customizable compiler-message severities.

c. For a message that you want to customize, set the user-requested severity in
the message-exit-data parameter to indicate either:
v A new message severity, by coding severity 0, 4, 8, or 12
v Message suppression, by coding severity -1

d. Set the return code to one of the following values:
v 0, to indicate that the message was not customized
v 4, to indicate that the message was found and customized
v 12, to indicate that the operation failed and that compilation should be

terminated
5. Compile and link your MSGEXIT module.
6. Add the data set that contains your MSGEXIT module to the compiler

concatenation by using a STEPLIB or JOBLIB DD statement.
7. Recompile program ERRMSG, but use compiler option EXIT(MSGEXIT(msgmod)),

where msgmod is the name of your MSGEXIT module.
8. Review the listing and check for:
v Updated message severities
v Suppressed messages (indicated by XX in place of the severity)
v Unsupported severity changes or unsupported message suppression

(indicated by a severity-U diagnostic message, and compiler termination with
return code 16)

RELATED TASKS

“Generating a list of compiler messages” on page 280

RELATED REFERENCES

“Severity codes for compiler diagnostic messages” on page 282
“Customizable compiler-message severities”
“Effect of message customization on compilation return code” on page 722
“Error handling for exit modules” on page 727

Customizable compiler-message severities
To customize compiler-message severities, you need to understand the possible
severities of compiler diagnostic messages, the levels or categories of FIPS
messages, and the permitted customizations of message severities.

The possible severity codes for compiler diagnostic messages are described in the
related reference about severity codes.

Appendix D. EXIT compiler option 721

The eight categories of FIPS (FLAGSTD) messages are shown in the following table.
The category of any given FIPS message is passed as a numeric code to the
MSGEXIT module. Those numeric codes are shown in the second column.

Table 112. FIPS (FLAGSTD) message categories

FIPS level or category Numeric code Description

D 81 Debug module level 1

E 82 Extension (IBM)

H 83 High level

I 84 Intermediate level

N 85 Segmentation module level 1

O 86 Obsolete elements

Q 87 High-level and obsolete elements

S 88 Segmentation module level 2

FIPS messages have an implied severity of zero (severity I).

Permitted message-severity customizations:

You can change the severity of a compiler message in the following ways:
v Severity-I and severity-W compiler diagnostic messages, and FIPS messages, can

be changed to have any severity from I through S.
Assigning a severity to a FIPS message converts the FIPS message to a
diagnostic message of the assigned severity.
As examples, you can:
– Lower an optimizer warning to severity I.
– Disallow REDEFINING a smaller item with a larger item by raising the severity

of message 1154.
– Disallow complex OCCURS DEPENDING ON by changing FIPS message 8235 from

a category-E FIPS message to a severity-S compiler diagnostic message.
v Severity-E messages can be raised to severity S, but not lowered to severity I or

W, because an error condition has occurred in the program.
v Severity-S and severity-U messages cannot be changed to have a different

severity.

You can request suppression of compiler messages as follows:
v I, W, and FIPS messages can be suppressed.
v E and S messages cannot be suppressed.

RELATED REFERENCES

“Severity codes for compiler diagnostic messages” on page 282
“FLAGSTD” on page 329
“Effect of message customization on compilation return code”

Effect of message customization on compilation return code
If you use a MSGEXIT module, the final return code from the compilation of a
program could be affected as described below.

If you change the severity of a message, the return code from the compilation
might also be changed. For example, if a compilation produces one diagnostic

722 Enterprise COBOL for z/OS, V5.2 Programming Guide

message, and it is a severity-E message, the compilation return code would
normally be 8. But if the MSGEXIT module changes the severity of that message to
severity S, then the return code from compilation would be 12.

If you suppress a message, the return code from the compilation is no longer
affected by the severity of that message. For example, if a compilation produces
one diagnostic message, and it is a severity-W message, the compilation return
code would normally be 4. But if the MSGEXIT module suppresses that message,
then the return code from compilation would be 0.

RELATED TASKS

“Customizing compiler-message severities” on page 720

RELATED REFERENCES

“Severity codes for compiler diagnostic messages” on page 282

Example: MSGEXIT user exit
The following example shows a MSGEXIT user-exit module that changes message
severities and suppresses messages.

For helpful tips about using a message-exit module, see the comments within the
code.

* IGYMSGXT - Sample COBOL program for MSGEXIT *

* Function: This is a SAMPLE user exit for the MSGEXIT *
* suboption of the EXIT compiler option. This exit *
* can be used to customize the severity of or *
* suppress compiler diagnostic messages and FIPS *
* messages. This example program includes several *
* sample customizations to show how customizations *
* are done. If you do not want the sample *
* customizations then either delete the unwanted *
* lines of code or comment them out with a comment *
* indicator in column 7 (*). *
* *

* *
* USAGE NOTE: To use this user exit program, make the *
* link-edited program object available to your *
* compiles that will use the MSGEXIT suboption of *
* the EXIT compiler option. Also, the name should *
* be changed, since IBM recommends that you avoid *
* having programs with names that start with IGY. *
* Sample steps to take: *
* 1) Make your customizations *
* 2) Change program name (E.G. MSGEXT) *
* 3) Compile and link into a data set *
* 4) Include that data set in your compile *
* JCL concatenation for the compile step. *
* If you link into USER.COBOLLIB: *
* *
* //COBOL.STEPLIB DD DSNAME=SYS1.SIGYCOMP,DISP=SHR *
* // DD DSNAME=USER.COBOLLIB,DISP=SHR *
* *

Id Division.
Program-Id. IGYMSGXT.
Data Division.

Working-Storage Section.

Appendix D. EXIT compiler option 723

* *
* Local variables. *
* *

77 EXIT-TYPEN PIC 9(4).
77 EXIT-DEFAULT-SEV-FIPS PIC X.

* *
* Definition of the User-Exit Parameter List, which is *
* passed from the COBOL compiler to the user-exit module. *
* *

Linkage Section.
01 EXIT-TYPE PIC 9(4) COMP.
01 EXIT-OPERATION PIC 9(4) COMP.
01 EXIT-RETURNCODE PIC 9(9) COMP.
01 EXIT-WORK-AREA.

02 EXIT-WORK-AREA-PTR OCCURS 6 POINTER.
01 EXIT-DUMMY POINTER.
01 EXIT-MESSAGE-PARMS.

02 EXIT-MESSAGE-NUM PIC 9(4) COMP.
02 EXIT-DEFAULT-SEV PIC 9(4) COMP.
02 EXIT-USER-SEV PIC S9(4) COMP.

01 EXIT-STRING.
02 EXIT-STR-LEN PIC 9(4) COMP.
02 EXIT-STR-TXT PIC X(64).

* *
* Begin PROCEDURE DIVISION *
* *
* Check parameters and perform the operation requested. *
* *

Procedure Division Using EXIT-TYPE EXIT-OPERATION
EXIT-RETURNCODE EXIT-WORK-AREA
EXIT-DUMMY EXIT-MESSAGE-PARMS
EXIT-STRING EXIT-DUMMY
EXIT-DUMMY EXIT-DUMMY.

Compute EXIT-RETURNCODE = 0

Evaluate TRUE

* Handle a bad invocation of this exit by the compiler. *
* This could happen if this routine was used for one of the *
* other EXITs, such as INEXIT, PRTEXIT or LIBEXIT. *

When EXIT-TYPE Not = 6
Move EXIT-TYPE to EXIT-TYPEN
Display ’**** Invalid exit routine identifier’
Display ’**** EXIT TYPE = ’ EXIT-TYPE
Compute EXIT-RETURNCODE = 16

* Handle the OPEN call to this exit by the compiler *
* Display the exit string (str5 in syntax diagram) from *
* the EXIT(MSGEXIT(’str5’,mod5)) option specification. *

724 Enterprise COBOL for z/OS, V5.2 Programming Guide

When EXIT-OPERATION = 0
* Display ’Opening MSGEXIT’
* If EXIT-STR-LEN Not Zero Then
* Display ’ str5 len = ’ EXIT-STR-LEN
* Display ’ str5 = ’ EXIT-STR-TXT(1:EXIT-STR-LEN)
* End-If

Continue

* Handle the CLOSE call to this exit by the compiler *

When EXIT-OPERATION = 1
* Display ’Closing MSGEXIT’

GOBACK

* Handle the customize message severity call to this exit *
* Display information about every customized severity. *

When EXIT-OPERATION = 5
* Display ’MSGEXIT called with MSGSEV’

If EXIT-MESSAGE-NUM < 8000 Then
Perform Error-Messages-Severity

Else
Perform FIPS-Messages-Severity

End-If

* If EXIT-RETURNCODE = 4 Then
* Display ’>>>> Customizing message ’ EXIT=MESSAGE-NUM
* ’ with new severity ’ EXIT-USER-SEV ’ <<<<’
* If EXIT-MESSAGE-NUM > 8000 Then
* Display ’FIPS sev =’ EXIT-DEFAULT-SEV-FIPS ’<<<<’
* End-If
* End-If

* Handle a bad invocation of this exit by the compiler *
* The compiler should not invoke this exit with EXIT-TYPE = 6 *
* and an opcode other than 0, 1, or 5. This should not happen *
* and IBM service should be contacted if it does. *

When Other
Display ’**** Invalid MSGEXIT routine operation ’
Display ’**** EXIT OPCODE = ’ EXIT-OPERATION
Compute EXIT-RETURNCODE = 16

End-Evaluate

Goback.

* ERROR MESSAGE PROCESSOR *

Error-Messages-Severity.

* Assume message severity will be customized...
Compute EXIT-RETURNCODE = 4

Evaluate EXIT-MESSAGE-NUM

* Change severity of message 1154(W) to 12 (’S’)
* This is the case of redefining a large item
* with a smaller item, IBM Req # MR0904063236

When(1154)
Compute EXIT-USER-SEV = 12

Appendix D. EXIT compiler option 725

* Change severity of messages 3188(W) and 3189(W)
* to 12 (’S’). This is to force a fix for all
* SEARCH ALL cases that might behave differently
* between COBOL compilers previous to Enterprise
* COBOL release V3R4 and later compilers such as
* Enterprise COBOL Version 4 Release 2.
* Another way to handle this migration is to analyze all of
* the warnings you get and then change them to I-level when
* the analysis is complete.

When(3188) When(3189)
Compute EXIT-USER-SEV = 12

* Message severity Not customized

When Other
Compute EXIT-RETURNCODE = 0

End-Evaluate
.

* FIPS MESSAGE PROCESSOR *

Fips-Messages-Severity.

* Assume message severity will be customized...
Compute EXIT-RETURNCODE = 4

* Convert numeric FIPS(FLAGSTD) ’category’ to character
* See the Programming Guide for decription of FIPS category

EVALUATE EXIT-DEFAULT-SEV
When 81
MOVE ’D’ To EXIT-DEFAULT-SEV-FIPS

When 82
MOVE ’E’ To EXIT-DEFAULT-SEV-FIPS

When 83
MOVE ’H’ To EXIT-DEFAULT-SEV-FIPS

When 84
MOVE ’I’ To EXIT-DEFAULT-SEV-FIPS

When 85
MOVE ’N’ To EXIT-DEFAULT-SEV-FIPS

When 86
MOVE ’O’ To EXIT-DEFAULT-SEV-FIPS

When 87
MOVE ’Q’ To EXIT-DEFAULT-SEV-FIPS

When 88
MOVE ’S’ To EXIT-DEFAULT-SEV-FIPS

When Other
Continue

End-Evaluate

* Example of using FIPS category to force coding
* restrictions. This is not a recommendation!
* Change severity of all OBSOLETE item FIPS
* messages to ’S’

* If EXIT-DEFAULT-SEV-FIPS = ’O’ Then
* Display ’>>>> Default customizing FIPS category ’
* EXIT-DEFAULT-SEV-FIPS ’ msg ’ EXIT-MESSAGE-NUM ’<<<<’
* Compute EXIT-USER-SEV = 12
* End-If

726 Enterprise COBOL for z/OS, V5.2 Programming Guide

Evaluate EXIT-MESSAGE-NUM

* Change severity of message 8062(O) to 8 (’E’)
* 8062 = GO TO without proc name

When(8062)
Compute EXIT-USER-SEV = 8

* Change severity of message 8193(E) to 0(’I’)
* 8193 = GOBACK

When(8193)
Compute EXIT-USER-SEV = 0

* Change severity of message 8235(E) to 8 (Error)
* to disallow Complex Occurs Depending On
* 8235 = Complex Occurs Depending On

When(8235)
Compute EXIT-USER-SEV = 08

* Change severity of message 8270(O) to -1 (Suppress)
* 8270 = SERVICE LABEL

When(8270)
Compute EXIT-USER-SEV = -1

* Message severity Not customized

When Other
* For the default set ’O’ to ’S’ case...
* If EXIT-USER-SEV = 12 Then
* Compute EXIT-RETURNCODE = 4
* Else

Compute EXIT-RETURNCODE = 0
* End-If

End-Evaluate
.

END PROGRAM IGYMSGXT.

Error handling for exit modules
The conditions described below can occur during processing of the user exits.

Exit load failure:

Message IGYSI5207-U is written to the operator if a LOAD request for any of the
user exits fails:
An error occurred while attempting to load user exit exit-name.

Exit open failure:

Message IGYSI5208-U is written to the operator if an OPEN request for any of the
user exits fails:
An error occurred while attempting to open user exit exit-name.

PRTEXIT PUT failure:

v Message IGYSI5203-U is written to the listing:

Appendix D. EXIT compiler option 727

A PUT request to the PRTEXIT user exit failed with return code nn.

v Message IGYSI5217-U is written to the operator:
An error occurred in PRTEXIT user exit exit-name. Compiler terminated.

SYSIN GET failures:

The following messages might be written to the listing:
v IGYSI5204-U:

The record address was not set by the exit-name user exit.

v IGYSI5205-U:
A GET request from the INEXIT user exit failed with return code nn.

v IGYSI5206-U:
The record length was not set by the exit-name user exit.

ADEXIT PUT failure:

v Message IGYSI5225-U is written to the operator:
An error occurred in ADEXIT user exit exit-name. Compiler terminated.

v Message IGYSI5226-U is written to the listing:
A PUT request to the ADEXIT user exit failed with return code nn.

MSGEXIT failures:

Customization failure: Message IGYPP5293-U is written to the listing if an
unsupported severity change or unsupported message suppression is attempted:
MSGEXIT user exit exit-name specified a message severity customization that is
not supported. The message number, default severity, and user-specified severity
were: mm, ds, us. Change MSGEXIT user exit exit-name to correct this error.

General failure: Message IGYPP5064-U is written to the listing if the MSGEXIT
module sets the return code to a nonzero value other than 4:
A call to the MSGEXIT user exit routine exit-name failed with return code nn.

In the MSGEXIT messages, the two characters PP indicate the phase of the
compiler that issued the message that resulted in a call to the MSGEXIT module.

RELATED TASKS

“Customizing compiler-message severities” on page 720

Using the EXIT compiler option with CICS, SQL and SQLIMS
statements

When you compile using suboptions of the EXIT compiler option, and your
program contains EXEC CICS, EXEC SQL, or EXEC SQLIMS statements, the actions that
you can take in the exit modules depend on whether you use the separate CICS
translator and DB2 precompiler, or the integrated CICS translator and DB2
coprocessor.

If the program contains EXEC SQLIMS statements, the actions that you can take in
the exit modules are the actions that are listed for the integrated translator.

The following table shows which actions you can take in the exit modules
depending on whether you use the integrated or separate translators.

728 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 113. Actions possible in exit modules for CICS, SQL and SQLIMS statements

Compile
with
suboption

Translated with
integrated or separate
CICS and DB2
translators? Possible actions Comments

INEXIT Integrated Can process EXEC CICS, EXEC SQL, and
EXEC SQLIMS statements in the INEXIT
module

The INEXIT module does not get
control of the COBOL statements that
are generated for the EXEC statements.

Separate Can process the COBOL statements
that are generated for the EXEC
statements in the INEXIT module

You can change the generated
statements in the INEXIT module, but
doing so is not supported by IBM.

LIBEXIT Integrated Can process in the LIBEXIT module
the statements that are brought in by
the EXEC SQL INCLUDE and EXEC
SQLIMS INCLUDE statements. Can
process EXEC CICS source statements
in the LIBEXIT module.

EXEC SQL INCLUDE and EXEC SQLIMS
INCLUDE statements are processed like
COBOL COPY statements.

Separate Can process the COBOL statements
that are generated for the EXEC CICS
statements in the LIBEXIT module

You can process the input statements
that are brought in by the EXEC SQL
INCLUDE and SQLIMS INCLUDE
statements only by using the INEXIT
suboption.

PRTEXIT Integrated Can process the EXEC CICS , EXEC SQL,
and EXEC SQLIMS source statements
from the SOURCE listing in the
PRTEXIT module

The PRTEXIT module does not have
access to the COBOL statements that
are generated.

Separate Can process the COBOL SOURCE
listing statements that are generated
for the EXEC statements in the
PRTEXIT module

ADEXIT Integrated Can process the EXEC CICS, EXEC SQL,
and EXEC SQLIMS source statements in
the ADEXIT module

The ADEXIT module does not have
access to the COBOL statements that
are generated.

Separate Can process the COBOL SYSADATA
statements that are generated for the
EXEC statements in the ADEXIT
module

MSGEXIT Integrated Can process CICS and DB2 messages
in the MSGEXIT module

Separate Cannot process CICS and DB2
messages in the MSGEXIT module

Messages from CICS are shown in the
separate CICS translator listing;
messages from DB2 are shown in the
DB2 precompiler listing.

RELATED CONCEPTS

“Integrated CICS translator” on page 435
“DB2 coprocessor” on page 441

RELATED TASKS

“Compiling with the CICS option” on page 433
“Compiling with the SQL option” on page 445

RELATED REFERENCES

“Processing of INEXIT” on page 712

Appendix D. EXIT compiler option 729

“Processing of LIBEXIT” on page 713
“Processing of PRTEXIT” on page 716
“Processing of ADEXIT” on page 717
“Processing of MSGEXIT” on page 719

730 Enterprise COBOL for z/OS, V5.2 Programming Guide

Appendix E. JNI.cpy copybook

This listing shows the JNI.cpy copybook, which you can use to access the Java
Native Interface (JNI) services from your COBOL programs.

JNI.cpy contains sample COBOL data definitions that correspond to the Java JNI
types, and contains JNINativeInterface, the JNI environment structure that contains
function pointers for accessing the JNI callable services.

JNI.cpy is in the z/OS UNIX file system in the include subdirectory of the COBOL
install directory (typically /usr/lpp/cobol/include). JNI.cpy is analogous to the
header file jni.h that C programmers use to access the JNI.

* COBOL declarations for Java native method interoperation *
* *
* To use the Java Native Interface callable services from a *
* COBOL program: *
* 1) Use a COPY statement to include this file into the *
* the Linkage Section of the program, e.g. *
* Linkage Section. *
* Copy JNI *
* 2) Code the following statements at the beginning of the *
* Procedure Division: *
* Set address of JNIEnv to JNIEnvPtr *
* Set address of JNINativeInterface to JNIEnv *

*
* Sample JNI type definitions in COBOL
*
*01 jboolean1 pic X.
* 88 jboolean1-true value X’01’ through X’FF’.
* 88 jboolean1-false value X’00’.
*
*01 jbyte1 pic X.
*
*01 jchar1 pic N usage national.
*
*01 jshort1 pic s9(4) comp-5.
*01 jint1 pic s9(9) comp-5.
*01 jlong1 pic s9(18) comp-5.
*
*01 jfloat1 comp-1.
*01 jdouble1 comp-2.
*
*01 jobject1 object reference.
*01 jclass1 object reference.
*01 jstring1 object reference jstring.
*01 jarray1 object reference jarray.
*
*01 jbooleanArray1 object reference jbooleanArray.
*01 jbyteArray1 object reference jbyteArray.
*01 jcharArray1 object reference jcharArray.
*01 jshortArray1 object reference jshortArray.
*01 jintArray1 object reference jintArray.
*01 jlongArray1 object reference jlongArray.
*01 floatArray1 object reference floatArray.
*01 jdoubleArray1 object reference jdoubleArray.
*01 jobjectArray1 object reference jobjectArray.

* Possible return values for JNI functions.

© Copyright IBM Corp. 1991, 2018 731

01 JNI-RC pic S9(9) comp-5.
* success

88 JNI-OK value 0.
* unknown error

88 JNI-ERR value -1.
* thread detached from the VM

88 JNI-EDETACHED value -2.
* JNI version error

88 JNI-EVERSION value -3.
* not enough memory

88 JNI-ENOMEM value -4.
* VM already created

88 JNI-EEXIST value -5.
* invalid arguments

88 JNI-EINVAL value -6.

* Used in ReleaseScalarArrayElements
01 releaseMode pic s9(9) comp-5.
88 JNI-COMMIT value 1.
88 JNI-ABORT value 2.

01 JNIenv pointer.

* JNI Native Method Interface - environment structure.
01 JNINativeInterface.
02 pointer.
02 pointer.
02 pointer.
02 pointer.
02 GetVersion function-pointer.
02 DefineClass function-pointer.
02 FindClass function-pointer.
02 FromReflectedMethod function-pointer.
02 FromReflectedField function-pointer.
02 ToReflectedMethod function-pointer.
02 GetSuperclass function-pointer.
02 IsAssignableFrom function-pointer.
02 ToReflectedField function-pointer.
02 Throw function-pointer.
02 ThrowNew function-pointer.
02 ExceptionOccurred function-pointer.
02 ExceptionDescribe function-pointer.
02 ExceptionClear function-pointer.
02 FatalError function-pointer.
02 PushLocalFrame function-pointer.
02 PopLocalFrame function-pointer.
02 NewGlobalRef function-pointer.
02 DeleteGlobalRef function-pointer.
02 DeleteLocalRef function-pointer.
02 IsSameObject function-pointer.
02 NewLocalRef function-pointer.
02 EnsureLocalCapacity function-pointer.
02 AllocObject function-pointer.
02 NewObject function-pointer.
02 NewObjectV function-pointer.
02 NewObjectA function-pointer.
02 GetObjectClass function-pointer.
02 IsInstanceOf function-pointer.
02 GetMethodID function-pointer.
02 CallObjectMethod function-pointer.
02 CallObjectMethodV function-pointer.
02 CallObjectMethodA function-pointer.
02 CallBooleanMethod function-pointer.
02 CallBooleanMethodV function-pointer.
02 CallBooleanMethodA function-pointer.
02 CallByteMethod function-pointer.
02 CallByteMethodV function-pointer.

732 Enterprise COBOL for z/OS, V5.2 Programming Guide

02 CallByteMethodA function-pointer.
02 CallCharMethod function-pointer.
02 CallCharMethodV function-pointer.
02 CallCharMethodA function-pointer.
02 CallShortMethod function-pointer.
02 CallShortMethodV function-pointer.
02 CallShortMethodA function-pointer.
02 CallIntMethod function-pointer.
02 CallIntMethodV function-pointer.
02 CallIntMethodA function-pointer.
02 CallLongMethod function-pointer.
02 CallLongMethodV function-pointer.
02 CallLongMethodA function-pointer.
02 CallFloatMethod function-pointer.
02 CallFloatMethodV function-pointer.
02 CallFloatMethodA function-pointer.
02 CallDoubleMethod function-pointer.
02 CallDoubleMethodV function-pointer.
02 CallDoubleMethodA function-pointer.
02 CallVoidMethod function-pointer.
02 CallVoidMethodV function-pointer.
02 CallVoidMethodA function-pointer.
02 CallNonvirtualObjectMethod function-pointer.
02 CallNonvirtualObjectMethodV function-pointer.
02 CallNonvirtualObjectMethodA function-pointer.
02 CallNonvirtualBooleanMethod function-pointer.
02 CallNonvirtualBooleanMethodV function-pointer.
02 CallNonvirtualBooleanMethodA function-pointer.
02 CallNonvirtualByteMethod function-pointer.
02 CallNonvirtualByteMethodV function-pointer.
02 CallNonvirtualByteMethodA function-pointer.
02 CallNonvirtualCharMethod function-pointer.
02 CallNonvirtualCharMethodV function-pointer.
02 CallNonvirtualCharMethodA function-pointer.
02 CallNonvirtualShortMethod function-pointer.
02 CallNonvirtualShortMethodV function-pointer.
02 CallNonvirtualShortMethodA function-pointer.
02 CallNonvirtualIntMethod function-pointer.
02 CallNonvirtualIntMethodV function-pointer.
02 CallNonvirtualIntMethodA function-pointer.
02 CallNonvirtualLongMethod function-pointer.
02 CallNonvirtualLongMethodV function-pointer.
02 CallNonvirtualLongMethodA function-pointer.
02 CallNonvirtualFloatMethod function-pointer.
02 CallNonvirtualFloatMethodV function-pointer.
02 CallNonvirtualFloatMethodA function-pointer.
02 CallNonvirtualDoubleMethod function-pointer.
02 CallNonvirtualDoubleMethodV function-pointer.
02 CallNonvirtualDoubleMethodA function-pointer.
02 CallNonvirtualVoidMethod function-pointer.
02 CallNonvirtualVoidMethodV function-pointer.
02 CallNonvirtualVoidMethodA function-pointer.
02 GetFieldID function-pointer.
02 GetObjectField function-pointer.
02 GetBooleanField function-pointer.
02 GetByteField function-pointer.
02 GetCharField function-pointer.
02 GetShortField function-pointer.
02 GetIntField function-pointer.
02 GetLongField function-pointer.
02 GetFloatField function-pointer.
02 GetDoubleField function-pointer.
02 SetObjectField function-pointer.
02 SetBooleanField function-pointer.
02 SetByteField function-pointer.
02 SetCharField function-pointer.
02 SetShortField function-pointer.

Appendix E. JNI.cpy copybook 733

02 SetIntField function-pointer.
02 SetLongField function-pointer.
02 SetFloatField function-pointer.
02 SetDoubleField function-pointer.
02 GetStaticMethodID function-pointer.
02 CallStaticObjectMethod function-pointer.
02 CallStaticObjectMethodV function-pointer.
02 CallStaticObjectMethodA function-pointer.
02 CallStaticBooleanMethod function-pointer.
02 CallStaticBooleanMethodV function-pointer.
02 CallStaticBooleanMethodA function-pointer.
02 CallStaticByteMethod function-pointer.
02 CallStaticByteMethodV function-pointer.
02 CallStaticByteMethodA function-pointer.
02 CallStaticCharMethod function-pointer.
02 CallStaticCharMethodV function-pointer.
02 CallStaticCharMethodA function-pointer.
02 CallStaticShortMethod function-pointer.
02 CallStaticShortMethodV function-pointer.
02 CallStaticShortMethodA function-pointer.
02 CallStaticIntMethod function-pointer.
02 CallStaticIntMethodV function-pointer.
02 CallStaticIntMethodA function-pointer.
02 CallStaticLongMethod function-pointer.
02 CallStaticLongMethodV function-pointer.
02 CallStaticLongMethodA function-pointer.
02 CallStaticFloatMethod function-pointer.
02 CallStaticFloatMethodV function-pointer.
02 CallStaticFloatMethodA function-pointer.
02 CallStaticDoubleMethod function-pointer.
02 CallStaticDoubleMethodV function-pointer.
02 CallStaticDoubleMethodA function-pointer.
02 CallStaticVoidMethod function-pointer.
02 CallStaticVoidMethodV function-pointer.
02 CallStaticVoidMethodA function-pointer.
02 GetStaticFieldID function-pointer.
02 GetStaticObjectField function-pointer.
02 GetStaticBooleanField function-pointer.
02 GetStaticByteField function-pointer.
02 GetStaticCharField function-pointer.
02 GetStaticShortField function-pointer.
02 GetStaticIntField function-pointer.
02 GetStaticLongField function-pointer.
02 GetStaticFloatField function-pointer.
02 GetStaticDoubleField function-pointer.
02 SetStaticObjectField function-pointer.
02 SetStaticBooleanField function-pointer.
02 SetStaticByteField function-pointer.
02 SetStaticCharField function-pointer.
02 SetStaticShortField function-pointer.
02 SetStaticIntField function-pointer.
02 SetStaticLongField function-pointer.
02 SetStaticFloatField function-pointer.
02 SetStaticDoubleField function-pointer.
02 NewString function-pointer.
02 GetStringLength function-pointer.
02 GetStringChars function-pointer.
02 ReleaseStringChars function-pointer.
02 NewStringUTF function-pointer.
02 GetStringUTFLength function-pointer.
02 GetStringUTFChars function-pointer.
02 ReleaseStringUTFChars function-pointer.
02 GetArrayLength function-pointer.
02 NewObjectArray function-pointer.
02 GetObjectArrayElement function-pointer.
02 SetObjectArrayElement function-pointer.
02 NewBooleanArray function-pointer.

734 Enterprise COBOL for z/OS, V5.2 Programming Guide

02 NewByteArray function-pointer.
02 NewCharArray function-pointer.
02 NewShortArray function-pointer.
02 NewIntArray function-pointer.
02 NewLongArray function-pointer.
02 NewFloatArray function-pointer.
02 NewDoubleArray function-pointer.
02 GetBooleanArrayElements function-pointer.
02 GetByteArrayElements function-pointer.
02 GetCharArrayElements function-pointer.
02 GetShortArrayElements function-pointer.
02 GetIntArrayElements function-pointer.
02 GetLongArrayElements function-pointer.
02 GetFloatArrayElements function-pointer.
02 GetDoubleArrayElements function-pointer.
02 ReleaseBooleanArrayElements function-pointer.
02 ReleaseByteArrayElements function-pointer.
02 ReleaseCharArrayElements function-pointer.
02 ReleaseShortArrayElements function-pointer.
02 ReleaseIntArrayElements function-pointer.
02 ReleaseLongArrayElements function-pointer.
02 ReleaseFloatArrayElements function-pointer.
02 ReleaseDoubleArrayElements function-pointer.
02 GetBooleanArrayRegion function-pointer.
02 GetByteArrayRegion function-pointer.
02 GetCharArrayRegion function-pointer.
02 GetShortArrayRegion function-pointer.
02 GetIntArrayRegion function-pointer.
02 GetLongArrayRegion function-pointer.
02 GetFloatArrayRegion function-pointer.
02 GetDoubleArrayRegion function-pointer.
02 SetBooleanArrayRegion function-pointer.
02 SetByteArrayRegion function-pointer.
02 SetCharArrayRegion function-pointer.
02 SetShortArrayRegion function-pointer.
02 SetIntArrayRegion function-pointer.
02 SetLongArrayRegion function-pointer.
02 SetFloatArrayRegion function-pointer.
02 SetDoubleArrayRegion function-pointer.
02 RegisterNatives function-pointer.
02 UnregisterNatives function-pointer.
02 MonitorEnter function-pointer.
02 MonitorExit function-pointer.
02 GetJavaVM function-pointer.
02 GetStringRegion function-pointer.
02 GetStringUTFRegion function-pointer.
02 GetPrimitiveArrayCritical function-pointer.
02 ReleasePrimitiveArrayCritical function-pointer.
02 GetStringCritical function-pointer.
02 ReleaseStringCritical function-pointer.
02 NewWeakGlobalRef function-pointer.
02 DeleteWeakGlobalRef function-pointer.
02 ExceptionCheck function-pointer.

RELATED TASKS

“Compiling OO applications under z/OS UNIX” on page 291
“Accessing JNI services” on page 633

Appendix E. JNI.cpy copybook 735

736 Enterprise COBOL for z/OS, V5.2 Programming Guide

Appendix F. COBOL SYSADATA file contents

When you use the ADATA compiler option, the compiler produces a file, the
SYSADATA file, that contains additional program data. You can use this file
instead of the compiler listing to extract information about the program. For
example, you can extract information about the program for symbolic debugging
tools or cross-reference tools.

“Example: SYSADATA” on page 739

RELATED REFERENCES

“ADATA” on page 305
“Compiler options that affect the SYSADATA file”
“SYSADATA record types” on page 738
“SYSADATA record descriptions” on page 740

Compiler options that affect the SYSADATA file
Several compiler options could affect the contents of the SYSADATA file.

COMPILE
NOCOMPILE(W|E|S) might stop compilation prematurely, resulting in the loss
of specific messages.

EXIT INEXIT prohibits identification of the compilation source file.

LANGUAGE
LANGUAGE controls the message text (Uppercase English, Mixed-Case
English, or Japanese). Selection of Japanese could result in DBCS characters
written to Error Identification records.

NUM NUM causes the compiler to use the contents of columns 1-6 in the source
records for line numbering, rather than using generated sequence numbers.
Any invalid (nonnumeric) or out-of-sequence numbers are replaced with a
number one higher than that of the previous record.

TEST TEST causes additional object text records to be created that also affect the
contents of the SYSADATA file.

The SYSADATA fields shown in the following table contain line numbers whose
contents differ depending on the NUM|NONUM setting.

Type Field Record

0020 AE_LINE External Symbol record

0030 ATOK_LINE Token record

0032 AF_STMT Source Error record

0038 AS_STMT Source record

0039 AS_REP_EXP_SLIN COPY REPLACING record

0039 AS_REP_EXP_ELIN COPY REPLACING record

0042 ASY_STMT Symbol record

0044 AX_DEFN Symbol Cross Reference record

0044 AX_STMT Symbol Cross Reference record

© Copyright IBM Corp. 1991, 2018 737

Type Field Record

0046 AN_STMT Nested Program record

The Type 0038 Source record contains two fields that relate to line numbers and
record numbers:
v AS_STMT contains the compiler line number in both the NUM and NONUM cases.
v AS_CUR_REC# contains the physical source record number.

These two fields can always be used to correlate the compiler line numbers, used
in all the above fields, with physical source record numbers.

The remaining compiler options have no direct effect on the SYSADATA file, but
might trigger generation of additional error messages associated with the specific
option, such as FLAGSTD or SSRANGE.

“Example: SYSADATA” on page 739

RELATED REFERENCES

“SYSADATA record types”
“COMPILE” on page 316
“EXIT” on page 324
“LANGUAGE” on page 333
“NUMBER” on page 340
“TEST” on page 364

SYSADATA record types
The SYSADATA file contains records classified into different record types. Each
type of record provides information about the COBOL program being compiled.

Each record consists of two parts:
v A 12-byte header section, which has the same structure for all record types, and

contains the record code that identifies the type of record
v A variable-length data section, which varies by record type

Table 114. SYSADATA record types

Record type What it does

“Job identification record: X'0000'” on page
743

Provides information about the environment
used to process the source data

“ADATA identification record: X'0001'” on
page 744

Provides common information about the
records in the SYSADATA file

“Compilation unit start | end record:
X'0002'” on page 744

Marks the beginning and ending of
compilation units in a source file

“Options record: X'0010'” on page 745 Describes the compiler options used for the
compilation

“External symbol record: X'0020'” on page
755

Describes all external names in the program,
definitions, and references

“Parse tree record: X'0024'” on page 755 Defines a node in the parse tree of the
program

“Token record: X'0030'” on page 771 Defines a source token

“Source error record: X'0032'” on page 785 Describes errors in source program statements

738 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 114. SYSADATA record types (continued)

Record type What it does

“Source record: X'0038'” on page 785 Describes a single source line

“COPY REPLACING record: X'0039'” on
page 786

Describes an instance of text replacement as a
result of a match of COPY. . .REPLACING
operand-1 with text in the copybook

“Symbol record: X'0042'” on page 787 Describes a single symbol defined in the
program. There is one symbol record for each
symbol defined in the program.

“Symbol cross-reference record: X'0044'” on
page 798

Describes references to a single symbol

“Nested program record: X'0046'” on page
799

Describes the name and nesting level of a
program

“Library record: X'0060'” on page 800 Describes the library files and members used
from each library

“Statistics record: X'0090'” on page 800 Describes the statistics about the compilation

“EVENTS record: X'0120'” on page 801 EVENTS records provide compatibility with
COBOL/370. The record format is identical
with that in COBOL/370, with the addition of
the standard ADATA header at the beginning
of the record and a field indicating the length
of the EVENTS record data.

Example: SYSADATA
The following sample shows part of the listing of a COBOL program. If this
COBOL program were compiled with the ADATA option, the records produced in
the associated data file would be in the sequence shown in the table below.
000001 IDENTIFICATION DIVISION. AD000020
000002 PROGRAM-ID. AD04202. AD000030
000003 ENVIRONMENT DIVISION. AD000040
000004 DATA DIVISION. AD000050
000005 WORKING-STORAGE SECTION. AD000060
000006 77 COMP3-FLD2 pic S9(3)v9. AD000070
000007 PROCEDURE DIVISION. AD000080
000008 STOP RUN.

Type Description

X'0120' EVENTS Timestamp record

X'0120' EVENTS Processor record

X'0120' EVENTS File-ID record

X'0120' EVENTS Program record

X'0001' ADATA Identification record

X'0000' Job Identification record

X'0010' Options record

X'0038' Source record for statement 1

X'0038' Source record for statement 2

X'0038' Source record for statement 3

X'0038' Source record for statement 4

X'0038' Source record for statement 5

Appendix F. COBOL SYSADATA file contents 739

Type Description

X'0038' Source record for statement 6

X'0038' Source record for statement 7

X'0038' Source record for statement 8

X'0020' External Symbol record for AD04202

X'0044' Symbol Cross Reference record for STOP

X'0044' Symbol Cross Reference record for COMP3-FLD2

X'0044' Symbol Cross Reference record for AD04202

X'0042' Symbol record for AD04202

X'0042' Symbol record for COMP3-FLD2

X'0090' Statistics record

X'0120' EVENTS FileEnd record

RELATED REFERENCES

“SYSADATA record descriptions”

SYSADATA record descriptions
The formats of the records written to the associated data file are shown in the
related references below.

In the fields described in each of the record types, these symbols occur:

C Indicates character (EBCDIC or ASCII) data

H Indicates 2-byte binary integer data

F Indicates 4-byte binary integer data

A Indicates 4-byte binary integer address and offset data

X Indicates hexadecimal (bit) data or 1-byte binary integer data

No boundary alignments are implied by any data type, and the implied lengths
above might be changed by the presence of a length indicator (Ln). All integer data
is in big-endian or little-endian format depending on the indicator bit in the header
flag byte. Big-endian format means that bit 0 is always the most significant bit and
bit n is the least significant bit. Little-endian refers to “byte-reversed” integers as
seen on Intel processors.

All undefined fields and unused values are reserved.

RELATED REFERENCES

“Common header section” on page 741
“Job identification record: X'0000'” on page 743
“ADATA identification record: X'0001'” on page 744
“Compilation unit start | end record: X'0002'” on page 744
“Options record: X'0010'” on page 745
“External symbol record: X'0020'” on page 755
“Parse tree record: X'0024'” on page 755
“Token record: X'0030'” on page 771
“Source error record: X'0032'” on page 785
“Source record: X'0038'” on page 785
“COPY REPLACING record: X'0039'” on page 786

740 Enterprise COBOL for z/OS, V5.2 Programming Guide

“Symbol record: X'0042'” on page 787
“Symbol cross-reference record: X'0044'” on page 798
“Nested program record: X'0046'” on page 799
“Library record: X'0060'” on page 800
“Statistics record: X'0090'” on page 800
“EVENTS record: X'0120'” on page 801

Common header section
The table below shows the format of the header section that is common for all
record types. For MVS and VSE, each record is preceded by a 4-byte RDW
(record-descriptor word) that is normally used only by access methods and
stripped off by download utilities.

Table 115. SYSADATA common header section

Field Size Description

Language code XL1
16 High Level Assembler

17 COBOL on all platforms

40 PL/I on supported platforms

Appendix F. COBOL SYSADATA file contents 741

Table 115. SYSADATA common header section (continued)

Field Size Description

Record type HL2 The record type, which can be any of the following ones:

X'0000'
Job Identification record1

X'0001'
ADATA Identification record

X'0002'
Compilation unit start/end record

X'0010'
Options record1

X'0020'
External Symbol record

X'0024'
Parse Tree record

X'0030'
Token record

X'0032'
Source Error record

X'0038'
Source record

X'0039'
COPY REPLACING record

X'0042'
Symbol record

X'0044'
Symbol Cross-Reference record

X'0046'
Nested Program record

X'0060'
Library record

X'0090'
Statistics record1

X'0120'
EVENTS record

Associated data
architecture level

XL1
3 Definition level for the header structure

Flag XL1
.... ..1.

ADATA record integers are in little-endian
(Intel) format

.... ...1
This record is continued in the next record

1111 11..
Reserved for future use

Associated data
record edition level

XL1 Used to indicate a new format for a specific record type,
usually 0

Reserved CL4 Reserved for future use

742 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 115. SYSADATA common header section (continued)

Field Size Description

Associated data field
length

HL2 The length in bytes of the data following the header

1. When a batch compilation (sequence of programs) is run with the ADATA option, there
will be multiple Job Identification, Options, and Statistics records for each compilation.

The mapping of the 12-byte header does not include the area used for the
variable-length record-descriptor word required by the access method on MVS and
VSE.

Job identification record: X'0000'
The following table shows the contents of the job identification record.

Table 116. SYSADATA job identification record

Field Size Description

Date CL8 The date of the compilation in the format YYYYMMDD

Time CL4 The time of the compilation in the format HHMM

Product number CL8 The product number of the compiler that produced the
associated data file

Product version CL8 The version number of the product that produced the
associated data file, in the form V.R.M

PTF level CL8 The PTF level number of the product that produced the
associated data file. (This field is blank if the PTF
number is not available.)

System ID CL24 The system identification of the system on which the
compilation was run

Job name CL8 The MVS job name of the compilation job

Step name CL8 The MVS step name of the compilation step

Proc step CL8 The MVS procedure step name of the compilation
procedure

Number of input
files1

HL2 The number of input files recorded in this record.

The following group of seven fields will occur n times
depending on the value in this field.

...Input file number HL2 The assigned sequence number of the file

...Input file name
length

HL2 The length of the following input file name

...Volume serial
number length

HL2 The length of the volume serial number

...Member name
length

HL2 The length of the member name

...Input file name CL(n) The name of the input file for the compilation

...Volume serial
number

CL(n) The volume serial number of the (first) volume on which
the input file resides

...Member name CL(n) Where applicable, the name of the member in the input
file

Appendix F. COBOL SYSADATA file contents 743

Table 116. SYSADATA job identification record (continued)

Field Size Description

1. Where the number of input files would exceed the record size for the associated data
file, the record is continued on the next record. The current number of input files (for
that record) is stored in the record, and the record is written to the associated data file.
The next record contains the rest of the input files. The count of the number of input
files is a count for the current record.

ADATA identification record: X'0001'
The following table shows the contents of the ADATA identification record.

Table 117. ADATA identification record

Field Size Description

Time (binary) XL8 Universal Time (UT) as a binary number of microseconds
since midnight Greenwich Mean Time, with the
low-order bit representing 1 microsecond. This time can
be used as a time-zone-independent time stamp.

On Windows and AIX systems, only bytes 5-8 of the field
are used as a fullword binary field that contains the time.

CCSID1 XL2 Coded Character Set Identifier

Character-set flags XL1
X'80' EBCDIC (IBM-037)

X'40' ASCII (IBM-1252)

Code-page name
length

XL2 Length of the code-page name that follows

Code-page name CL(n) Name of the code page

1. The appropriate CCS flag will always be set. If the CCSID is set to nonzero, the
code-page name length will be zero. If the CCSID is set to zero, the code-page name
length will be nonzero and the code-page name will be present.

Compilation unit start | end record: X'0002'
The following table shows the contents of the compilation unit start|end record.

Table 118. SYSADATA compilation unit start | end record

Field Size Description

Type HL2 Compilation unit type, which is one of the following
options:

X'0000' Start compilation unit

X'0001' End compilation unit

Reserved CL2 Reserved for future use

Reserved FL4 Reserved for future use

744 Enterprise COBOL for z/OS, V5.2 Programming Guide

Options record: X'0010'
The following table shows the contents of the options record.

Table 119. SYSADATA options record

Field Size Description

Option byte 0 XL1
1111 1111

Reserved for future use

Option byte 1 XL1
1...

Bit 1 = DECK, Bit 0 = NODECK

.1..
Bit 1 = ADATA, Bit 0 = NOADATA

..1.
Bit 1 = COLLSEQ(EBCDIC), Bit 0 =
COLLSEQ(LOCALE|BINARY) (Windows and AIX
only)

...1
Bit 1 = SEPOBJ, Bit 0 = NOSEPOBJ (Windows and
AIX only)

.... 1...
Bit 1 = NAME, Bit 0 = NONAME

.... .1..
Bit 1 = OBJECT, Bit 0 = NOOBJECT

.... ..1.
Bit 1 = SQL, Bit 0 = NOSQL

.... ...1
Bit 1 = CICS, Bit 0 = NOCICS

Option byte 2 XL1
1...

Bit 1 = OFFSET, Bit 0 = NOOFFSET

.1..
Bit 1 = MAP, Bit 0 = NOMAP

..1.
Bit 1 = LIST, Bit 0 = NOLIST

...1
Bit 1 = DBCSXREF, Bit 0 = NODBCSXREF

.... 1...
Bit 1 = XREF(SHORT), Bit 0 = not XREF(SHORT).
This flag should be used in combination with
the flag at bit 7. XREF(FULL) is indicated by this
flag being off and the flag at bit 7 being on.

.... .1..
Bit 1 = SOURCE, Bit 0 = NOSOURCE

.... ..1.
Bit 1 = VBREF, Bit 0 = NOVBREF

.... ...1
Bit 1 = XREF, Bit 0 = not XREF. See also flag at bit
4 above.

Appendix F. COBOL SYSADATA file contents 745

Table 119. SYSADATA options record (continued)

Field Size Description

Option byte 3 XL1
1...

Bit 1 = FLAG imbedded diagnostics level
specified (a value y is specified as in FLAG(x,y))

.1..
Bit 1 = FLAGSTD, Bit 0 = NOFLAGSTD

..1.
Bit 1 = NUM, Bit 0 = NONUM

...1
Bit 1 = SEQUENCE, Bit 0 = NOSEQUENCE

.... 1...
Bit 1 = SOSI, Bit 0 = NOSOSI (Windows and AIX
only)

.... .1..
Bit 1 = NSYMBOL(NATIONAL), Bit 0 =
NSYMBOL(DBCS)

.... ..1.
Bit 1 = PROFILE, Bit 0 = NOPROFILE (AIX only)

.... ...1
Bit 1 = WORD, Bit 0 = NOWORD

Option byte 4 XL1
1...

Bit 1 = ADV, Bit 0 = NOADV

.1..
Bit 1 = APOST, Bit 0 = QUOTE

..1.
Bit 1 = DYNAM, Bit 0 = NODYNAM

...1
Bit 1 = AWO, Bit 0 = NOAWO

.... 1...
Bit 1 = RMODE specified, Bit 0 = RMODE(AUTO)

.... .1..
Bit 1 = RENT, Bit 0 = NORENT

.... ..1.
Bit 1 = RES: this flag will always be set on for
COBOL.

.... ...1
Bit 1 = RMODE(24), Bit 0 = RMODE(ANY)

746 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 119. SYSADATA options record (continued)

Field Size Description

Option byte 5 XL1
1...

Bit 1 = SQLCCSID, Bit 0 = NOSQLCCSID

.1..
Bit 1 = OPT(1|2), Bit 0 = OPT(0)

..1.
Bit 1 = SQLIMS, Bit 0 = NOSQLIMS

...1
Bit 1 = DBCS, Bit 0 = NODBCS

.... 1...
Bit 1 = AFP(VOLATILE), Bit 0 = AFP(NOVOLATILE)

.... .1..
Bit 1 = SSRANGE, Bit 0 = NOSSRANGE

.... ..1.
Bit 1 = TEST, Bit 0 = NOTEST

.... ...1
Bit 1 = PROBE, Bit 0 = NOPROBE (Windows only)

Option byte 6 XL1
1...

Bit 1 = SRCFORMAT(EXTEND), Bit 0 =
SRCFORMAT(COMPAT)

..1.
Bit 1 = NUMPROC(PFD), Bit 0 = NUMPROC(NOPFD)

...1
Bit 1 = NUMCLS(ALT), Bit 0 = NUMCLS(PRIM)

.... .1..
Bit 1 = BINARY(S390), Bit 0 = BINARY(NATIVE)
(Windows and AIX only)

.... ..1.
Bit 1 = TRUNC(STD), Bit 0 = TRUNC(OPT)

.... ...1
Bit 1 = ZWB, Bit 0 = NOZWB

.1.. 1...
Reserved for future use

Option byte 7 XL1
1...

Bit 1 = ALOWCBL, Bit 0 = NOALOWCBL

.1..
Bit 1 = TERM, Bit 0 = NOTERM

..1.
Bit 1 = DUMP, Bit 0 = NODUMP

.... ..1.
Bit 1 = CURRENCY, Bit 0 = NOCURRENCY

...1 11.1
Reserved for future use

Appendix F. COBOL SYSADATA file contents 747

Table 119. SYSADATA options record (continued)

Field Size Description

Option byte 8 XL1
1...

Bit 1 = RULES, Bit 0 = NORULES

.1..
Bit 1 = OPTFILE, Bit 0 = not OPTFILE

..1.
Bit 1 = ADDR(64), Bit 0 = ADDR(32) (AIX only)

.... 1...
Bit 1 = BLOCK0, Bit 0 = NOBLOCK0

.... ..1.
Bit 1 = DISPSIGN(SEP), Bit 0 = DISPSIGN(COMPAT)

.... ...1
Bit 1 = STGOPT, Bit 0 = NOSTGOPT

1..1 .1..
Reserved for future use

Option byte 9 XL1
1...

Bit 1 = DATA(24), Bit 0 = DATA(31)

.1..
Bit 1 = FASTSRT, Bit 0 = NOFASTSRT

.... .1..
Bit 1 = THREAD, Bit 0 = NOTHREAD

..11 1.11
Reserved for future use

Option byte A XL1
1...

Bit 1 = HGPR(PRESERVE), Bit 0 =
HGPR(NOPRESERVE)

.1..
Bit 1 = XMLPARSE(XMLSS), Bit 0 =
XMLPARSE(COMPAT)

..1.
Bit 1 = MAP(DEC), Bit 0 = MAP(HEX)

...1 1...
Reserved for future use

.... .1..
Bit 1 = VSAMOPENFS(SUCC), BIT 0 =
VSAMOPENFS(COMPAT)

.... ..11
Reserved for future use

Option byte B XL1
1111 1111

Reserved for future use

748 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|

|
|
|

|
|

|
|

|
|
|

|
|

Table 119. SYSADATA options record (continued)

Field Size Description

Option byte C XL1
1...

Bit 1 = NCOLLSEQ(LOCALE) (Windows and AIX
only)

.1..
Reserved for future use

..1.
Bit 1 = INTDATE(LILIAN), Bit 0 = INTDATE(ANSI)

...1
Bit 1 = NCOLLSEQ(BINARY) (Windows and AIX
only)

.... 1...
Bit 1 = CHAR(EBCDIC), Bit 0 = CHAR(NATIVE)
(Windows and AIX only)

.... .1..
Bit 1 = FLOAT(HEX), Bit 0 = FLOAT(NATIVE)
(Windows and AIX only)

.... ..1.
Bit 1 = COLLSEQ(BINARY) (Windows and AIX
only)

.... ...1
Bit 1 = COLLSEQ(LOCALE) (Windows and AIX
only)

Option byte D XL1
1...

Bit 1 = DLL, Bit 0 = NODLL

.1..
Bit 1 = EXPORTALL, Bit 0 = NOEXPORTALL

..1.
Bit 1 = CODEPAGE

...1
Bit 1 = SOURCEFORMAT(EXTEND), Bit 0 =
SOURCEFORMAT(COMPAT) (Windows and AIX only)

.... ..1.
Bit 1 = WSCLEAR, Bit 0 = NOWSCLEAR (Windows
and AIX only)

.... ...1
Bit 1 = BEOPT, Bit 0 = NOBEOPT (Windows and
AIX only)

.... 11..
Reserved for future use

Appendix F. COBOL SYSADATA file contents 749

|
|
|

|
|

Table 119. SYSADATA options record (continued)

Field Size Description

Option byte E XL1
1.......

Bit 1 = VLR(COMPAT), Bit 0 = VLR(STANDARD)

.1..
Bit 1 = DIAGTRUNC, Bit 0 = NODIAGTRUNC

.... .1..
Bit 1 = LSTFILE(UTF-8), Bit 0 = LSTFILE(LOCALE)
(Windows and AIX only)

.... ..1.
Bit 1 = MDECK, Bit 0 = NOMDECK

.... ...1
Bit 1 = MDECK(NOCOMPILE)

..11 1...
Reserved for future use

Option byte F XL1
1...

Bit 1 = DIVIDE(S390), Bit 0 = DIVIDE(NATIVE)
(AIX Only)

.1..
Bit 1 = COPYRIGHT, Bit 0 = NOCOPYRIGHT

..1.
Bit 1 = QUALIFY(EXTEND), Bit 0 =
QUALIFY(COMPAT)

...1
Bit 1 = SERVICE, Bit 0 = NOSERVICE

.... 1...
Bit 1 = ZONEDATA(MIG)

.... .1..
Bit 1 = ZONEDATA(NOPFD)

.... ..1.
Bit 1 = NUMCHECK(ZON|PAC|BIN|ABD|MSG), Bit 0 =
NONUMCHECK

.... .111
Reserved for future use

Option byte G XL1
1...

Bit 1 = NUMCHECK(ZON), Bit 0 = NUMCHECK(NOZON)

.1..
Bit 1 = NUMCHECK(PAC), Bit 0 = NUMCHECK(NOPAC)

..1.
Bit 1 = NUMCHECK(BIN), Bit 0 = NUMCHECK(NOBIN)

...1
Bit 1 = NUMCHECK(MSG), Bit 0 = NUMCHECK(ABD)

.... 1...
Bit 1 = NUMCHECK(ZON(NOALPHNUM)), Bit 0 =
NUMCHECK(ZON(ALPHNUM))

.... .111
Reserved for future use

750 Enterprise COBOL for z/OS, V5.2 Programming Guide

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

||
|
|

|
|

|
|

|
|

|
|
|

|
|

Table 119. SYSADATA options record (continued)

Field Size Description

Flag level XL1
X'00' Flag(I)

X'04' Flag(W)

X'08' Flag(E)

X'0C' Flag(S)

X'10' Flag(U)

X'FF' Noflag

Imbedded diagnostic
level

XL1
X'00' Flag(I)

X'04' Flag(W)

X'08' Flag(E)

X'0C' Flag(S)

X'10' Flag(U)

X'FF' Noflag

FLAGSTD (FIPS)
specification

XL1
1...

Minimum

.1..
Intermediate

..1.
High

...1
IBM extensions

.... 1...
Level-1 segmentation

.... .1..
Level-2 segmentation

.... ..1.
Debugging

.... ...1
Obsolete

Reserved for flagging XL1
1111 1111

Reserved for future use

Compiler mode XL1
X'00' Unconditional Nocompile, Nocompile(I)

X'04' Nocompile(W)

X'08' Nocompile(E)

X'0C' Nocompile(S)

X'FF' Compile

Space value CL1

Appendix F. COBOL SYSADATA file contents 751

Table 119. SYSADATA options record (continued)

Field Size Description

Data for 3-valued
options

XL1
1...

NAME(ALIAS) specified

.1..
Reserved for future use

..1.
TRUNC(BIN) specified

...1 1111
Reserved for future use

TEST suboptions XL1
..1.

TEST(EJPD)

...1
TEST(SOURCE)

11.. 1111
Reserved for TEST suboptions

OUTDD name length HL2 Length of OUTDD name

RWT ID Length HL2 Length of Reserved Word Table identifier

LVLINFO CL8 User-specified LVLINFO data

PGMNAME suboptions XL1
1...

Bit 1 = PGMNAME(COMPAT)

.1..
Bit 1 = PGMNAME(LONGUPPER)

..1.
Bit 1 = PGMNAME(LONGMIXED)

...1 1111
Reserved for future use

Entry interface
suboptions

XL1
1...

Bit 1 = EntryInterface(System) (Windows only)

.1..
Bit 1 = EntryInterface(OptLink) (Windows only)

..11 1111
Reserved for future use

CALLINTERFACE
suboptions

XL1
1...

Bit 1 = CALLINTERFACE(DLL)

.1..
Bit 1 = CALLINTERFACE(DYNAMIC)

..11 1111
Reserved for future use

ARITH suboption XL1
1...

Bit 1 = ARITH(COMPAT)

.1..
Bit 1 = ARITH(EXTEND)

..11 1111
Reserved for future use

752 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

|
|

|
|

|
|

|
|

Table 119. SYSADATA options record (continued)

Field Size Description

DBCS Req FL4 DBCS XREF storage requirement

DBCS ORDPGM
length

HL2 Length of name of DBCS Ordering Program

DBCS ENCTBL
length

HL2 Length of name of DBCS Encode Table

DBCS ORD TYPE CL2 DBCS Ordering type

Reserved CL5 Reserved for future use

Optimize level XL1 Optimization level 0 <= n <= 2

Converted SO CL1 Converted SO hexadecimal value

Converted SI CL1 Converted SI hexadecimal value

Language ID CL2 This field holds the two-character abbreviation (one of
EN, UE, JA, or JP) from the LANGUAGE option.

Reserved CL8 Reserved for future use

INEXIT name length HL2 Length of SYSIN user-exit name

PRTEXIT name length HL2 Length of SYSPRINT user-exit name

LIBEXIT name length HL2 Length of Libraryuser-exit name

ADEXIT name length HL2 Length of ADATA user-exit name

CURROPT CL5 CURRENCY option value

ARCH XL1 ARCH level number

Reserved CL2 Reserved for future use

CODEPAGE HL2 CODEPAGE CCSID option value

Reserved CL50 Reserved for future use

LINECNT HL2 LINECOUNT value

Reserved CL2 Reserved for future use

BUFSIZE FL4 BUFSIZE option value

Reserved FL4 Reserved for future use

Phase residence bits
byte 1

XL1
1...

Bit 1 = IGYCLIBR in user region

.1..
Bit 1 = IGYCSCAN in user region

..1.
Bit 1 = IGYCDSCN in user region

...1
Bit 1 = IGYCGROU in user region

.... 1...
Bit 1 = IGYCPSCN in user region

.... .1..
Bit 1 = IGYCPANA in user region

.... ..1.
Bit 1 = IGYCFGEN in user region

.... ...1
Bit 1 = IGYCPGEN in user region

Appendix F. COBOL SYSADATA file contents 753

Table 119. SYSADATA options record (continued)

Field Size Description

Phase residence bits
byte 2

XL1
.1..

Bit 1 = IGYCLSTR in user region

..1.
Bit 1 = IGYCXREF in user region

...1
Bit 1 = IGYCDMAP in user region

.... ..1.
Bit 1 = IGYCDIAG in user region

.... ...1
Bit 1 = IGYCDGEN in user region

1... 11..
Reserved for future use

Phase residence bits
bytes 3 and 4

XL2 Reserved

Reserved CL8 Reserved for future use

OUTDD name CL(n) OUTDD name

RWT CL(n) Reserved word table identifier

DBCS ORDPGM CL(n) DBCS Ordering program name

DBCS ENCTBL CL(n) DBCS Encode table name

INEXIT name CL(n) SYSIN user-exit name

PRTEXIT name CL(n) SYSPRINT user-exit name

LIBEXIT name CL(n) Library user-exit name

ADEXIT name CL(n) ADATA user-exit name

754 Enterprise COBOL for z/OS, V5.2 Programming Guide

External symbol record: X'0020'
The following table shows the contents of the external symbol record.

Table 120. SYSADATA external symbol record

Field Size Description

Section type XL1
X’00’ PROGRAM-ID name (main entry point name)

X’01’ ENTRY name (secondary entry point name)

X’02’ External reference (referenced external entry
point)

X’04’ Not applicable for COBOL

X’05’ Not applicable for COBOL

X’06’ Not applicable for COBOL

X’0A’ Not applicable for COBOL

X’12’ Internal reference (referenced internal
subprogram)

X’C0’ External class-name (OO COBOL class
definition)

X’C1’ METHOD-ID name (OO COBOL method definition)

X’C6’ Method reference (OO COBOL method
reference)

X’FF’ Not applicable for COBOL

Types X'12', X'C0', X'C1' and X'C6' are for COBOL only.

Flags XL1 Not applicable for COBOL

Reserved HL2 Reserved for future use

Symbol-ID FL4 Symbol-ID of program that contains the reference (only
for types x'02' and x'12')

Line number FL4 Line number of statement that contains the reference
(only for types x'02' and x'12')

Section length FL4 Not applicable for COBOL

LD ID FL4 Not applicable for COBOL

Reserved CL8 Reserved for future use

External name length HL2 Number of characters in the external name

Alias name length HL2 Not applicable for COBOL

External name CL(n) The external name

Alias section name CL(n) Not applicable for COBOL

Parse tree record: X'0024'
The following table shows the contents of the parse tree record.

Table 121. SYSADATA parse tree record

Field Size Description

Node number FL4 The node number generated by the compiler, starting at
1

Appendix F. COBOL SYSADATA file contents 755

Table 121. SYSADATA parse tree record (continued)

Field Size Description

Node type HL2 The type of the node:

001 Program

002 Class

003 Method

101 IDENTIFICATION DIVISION

102 ENVIRONMENT DIVISION

103 DATA DIVISION

104 PROCEDURE DIVISION

105 End Program/Method/Class

201 Declaratives body

202 Nondeclaratives body

301 Section

302 Procedure section

401 Paragraph

402 Procedure paragraph

501 Sentence

502 File definition

503 Sort file definition

504 Program-name

505 Program attribute

508 ENVIRONMENT DIVISION clause

509 CLASS attribute

510 METHOD attribute

511 USE statement

601 Statement

602 Data description clause

603 Data entry

604 File description clause

605 Data entry name

606 Data entry level

607 EXEC entry

756 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 121. SYSADATA parse tree record (continued)

Field Size Description

701 EVALUATE subject phrase

702 EVALUATE WHEN phrase

703 EVALUATE WHEN OTHER phrase

704 SEARCH WHEN phrase

705 INSPECT CONVERTING phrase

706 INSPECT REPLACING phrase

707 INSPECT TALLYING phrase

708 PERFORM UNTIL phrase

709 PERFORM VARYING phrase

710 PERFORM AFTER phrase

711 Statement block

712 Scope terminator

713 INITIALIZE REPLACING phrase

714 EXEC CICS Command

720 DATA DIVISION phrase

801 Phrase

802 ON phrase

803 NOT phrase

804 THEN phrase

805 ELSE phrase

806 Condition

807 Expression

808 Relative indexing

809 EXEC CICS Option

810 Reserved word

811 INITIALIZE REPLACING category

Appendix F. COBOL SYSADATA file contents 757

Table 121. SYSADATA parse tree record (continued)

Field Size Description

901 Section or paragraph name

902 Identifier

903 Alphabet-name

904 Class-name

905 Condition-name

906 File-name

907 Index-name

908 Mnemonic-name

910 Symbolic-character

911 Literal

912 Function identifier

913 Data-name

914 Special register

915 Procedure reference

916 Arithmetic operator

917 All procedures

918 INITIALIZE literal (no tokens)

919 ALL literal or figcon

920 Keyword class test name

921 Reserved word at identifier level

922 Unary operator

923 Relational operator

1001 Subscript

1002 Reference modification

Node subtype HL2 The subtype of the node.

For Section type:

0001 CONFIGURATION Section

0002 INPUT-OUTPUT Section

0003 FILE SECTION

0004 WORKING-STORAGE SECTION

0005 LINKAGE SECTION

0006 LOCAL-STORAGE SECTION

0007 REPOSITORY Section

758 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For Paragraph type:

0001 PROGRAM-ID paragraph

0002 AUTHOR paragraph

0003 INSTALLATION paragraph

0004 DATE-WRITTEN paragraph

0005 SECURITY paragraph

0006 SOURCE-COMPUTER paragraph

0007 OBJECT-COMPUTER paragraph

0008 SPECIAL-NAMES paragraph

0009 FILE-CONTROL paragraph

0010 I-O-CONTROL paragraph

0011 DATE-COMPILED paragraph

0012 CLASS-ID paragraph

0013 METHOD-ID paragraph

0014 REPOSITORY paragraph

For ENVIRONMENT DIVISION clause type:

0001 WITH DEBUGGING MODE

0002 MEMORY-SIZE

0003 SEGMENT-LIMIT

0004 CURRENCY-SIGN

0005 DECIMAL POINT

0006 PROGRAM COLLATING SEQUENCE

0007 ALPHABET

0008 SYMBOLIC-CHARACTER

0009 CLASS

0010 ENVIRONMENT NAME

0011 SELECT

0012 XML-SCHEMA

Appendix F. COBOL SYSADATA file contents 759

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For data description clause type:

0001 BLANK WHEN ZERO

0002 DATA-NAME OR FILLER

0003 JUSTIFIED

0004 OCCURS

0005 PICTURE

0006 REDEFINES

0007 RENAMES

0008 SIGN

0009 SYNCHRONIZED

0010 USAGE

0011 VALUE

0012 VOLATILE

0023 GLOBAL

0024 EXTERNAL

760 Enterprise COBOL for z/OS, V5.2 Programming Guide

||

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For file description clause type:

0001 FILE STATUS

0002 ORGANIZATION

0003 ACCESS MODE

0004 RECORD KEY

0005 ASSIGN

0006 RELATIVE KEY

0007 PASSWORD

0008 PROCESSING MODE

0009 RECORD DELIMITER

0010 PADDING CHARACTER

0011 BLOCK CONTAINS

0012 RECORD CONTAINS

0013 LABEL RECORDS

0014 VALUE OF

0015 DATA RECORDS

0016 LINAGE

0017 ALTERNATE KEY

0018 LINES AT TOP

0019 LINES AT BOTTOM

0020 CODE-SET

0021 RECORDING MODE

0022 RESERVE

0023 GLOBAL

0024 EXTERNAL

0025 LOCK

Appendix F. COBOL SYSADATA file contents 761

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For Statement type:

0002 NEXT SENTENCE

0003 ACCEPT

0004 ADD

0005 ALTER

0006 CALL

0007 CANCEL

0008 CLOSE

0009 COMPUTE

0010 CONTINUE

0011 DELETE

0012 DISPLAY

0013 DIVIDE (INTO)

0113 DIVIDE (BY)

0014 ENTER

0015 ENTRY

0016 EVALUATE

0017 EXIT

0018 GO

0019 GOBACK

0020 IF

0021 INITIALIZE

0022 INSPECT

762 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 121. SYSADATA parse tree record (continued)

Field Size Description

0023 INVOKE

0024 MERGE

0025 MOVE

0026 MULTIPLY

0027 OPEN

0028 PERFORM

0029 READ

0030 READY

0031 RELEASE

0032 RESET

0033 RETURN

0034 REWRITE

0035 SEARCH

0036 SERVICE

0037 SET

0038 SORT

0039 START

0040 STOP

0041 STRING

0042 SUBTRACT

0043 UNSTRING

0044 EXEC SQL

0144 EXEC CICS

0045 WRITE

0046 XML

Appendix F. COBOL SYSADATA file contents 763

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For Phrase type:

0001 INTO

0002 DELIMITED

0003 INITIALIZE. . .REPLACING

0004 INSPECT. . .ALL

0005 INSPECT. . .LEADING

0006 SET. . .TO

0007 SET. . .UP

0008 SET. . .DOWN

0009 PERFORM. . .TIMES

0010 DIVIDE. . .REMAINDER

0011 INSPECT. . .FIRST

0012 SEARCH. . .VARYING

0013 MORE-LABELS

0014 SEARCH ALL

0015 SEARCH. . .AT END

0016 SEARCH. . .TEST INDEX

0017 GLOBAL

0018 LABEL

0019 DEBUGGING

0020 SEQUENCE

0021 Reserved for future use

0022 Reserved for future use

0023 Reserved for future use

0024 TALLYING

0025 Reserved for future use

0026 ON SIZE ERROR

0027 ON OVERFLOW

0028 ON ERROR

0029 AT END

0030 INVALID KEY

0031 END-OF-PAGE

0032 USING

764 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 121. SYSADATA parse tree record (continued)

Field Size Description

0033 BEFORE

0034 AFTER

0035 EXCEPTION

0036 CORRESPONDING

0037 Reserved for future use

0038 RETURNING

0039 GIVING

0040 THROUGH

0041 KEY

0042 DELIMITER

0043 POINTER

0044 COUNT

0045 METHOD

0046 PROGRAM

0047 INPUT

0048 OUTPUT

0049 I-O

0050 EXTEND

0051 RELOAD

0052 ASCENDING

0053 DESCENDING

0054 DUPLICATES

0055 NATIVE (USAGE)

0056 INDEXED

0057 FROM

0058 FOOTING

0059 LINES AT BOTTOM

0060 LINES AT TOP

0061 XML ENCODING

0062 XML GENERATE XML-DECLARATION

0063 XML GENERATE ATTRIBUTES

0064 XML GENERATE NAMESPACE

0065 XML PARSE PROCESSING

0066 XML PARSE VALIDATING

0067 XML GENERATE NAME

0068 XML GENERATE TYPE

0069 XML GENERATE SUPPRESS

Appendix F. COBOL SYSADATA file contents 765

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For Function identifier type:

0001 COS

0002 LOG

0003 MAX

0004 MIN

0005 MOD

0006 ORD

0007 REM

0008 SIN

0009 SUM

0010 TAN

0011 ACOS

0012 ASIN

0013 ATAN

0014 CHAR

0015 MEAN

0016 SQRT

0017 LOG10

0018 RANGE

0019 LENGTH

0020 MEDIAN

0021 NUMVAL

0022 RANDOM

0023 ANNUITY

0024 INTEGER

0025 ORD-MAX

0026 ORD-MIN

0027 REVERSE

0028 MIDRANGE

0029 NUMVAL-C

0030 VARIANCE

0031 FACTORIAL

0032 LOWER-CASE

766 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 121. SYSADATA parse tree record (continued)

Field Size Description

0033 UPPER-CASE

0034 CURRENT-DATE

0035 INTEGER-PART

0036 PRESENT-VALUE

0037 WHEN-COMPILED

0038 DAY-OF-INTEGER

0039 INTEGER-OF-DAY

0040 DATE-OF-INTEGER

0041 INTEGER-OF-DATE

0042 STANDARD-DEVIATION

0043 YEAR-TO-YYYY

0044 DAY-TO-YYYYDDD

0045 DATE-TO-YYYYMMDD

0049 DISPLAY-OF

0050 NATIONAL-OF

0051 UPOS

0052 UVALID

0053 UWIDTH

0054 ULENGTH

0055 USUBSTR

0056 USUPPLEMENTARY

For Special Register type:

0001 ADDRESS OF

0002 LENGTH OF

For Keyword Class Test Name type:

0001 ALPHABETIC

0002 ALPHABETIC-LOWER

0003 ALPHABETIC-UPPER

0004 DBCS

0005 KANJI

0006 NUMERIC

0007 NEGATIVE

0008 POSITIVE

0009 ZERO

Appendix F. COBOL SYSADATA file contents 767

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For Reserved Word type:

0001 TRUE

0002 FALSE

0003 ANY

0004 THRU

For Identifier, Data-name, Index-name, Condition-name
or Mnemonic-name type:

0001 REFERENCED

0002 CHANGED

0003 REFERENCED & CHANGED

For Initialize literal type:

0001 ALPHABETIC

0002 ALPHANUMERIC

0003 NUMERIC

0004 ALPHANUMERIC-EDITED

0005 NUMERIC-EDITED

0006 DBCS/EGCS

0007 NATIONAL

0008 NATIONAL-EDITED

For Procedure-name type:

0001 SECTION

0002 PARAGRAPH

768 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For Reserved word at identifier level type:

0001 ROUNDED

0002 TRUE

0003 ON

0004 OFF

0005 SIZE

0006 DATE

0007 DAY

0008 DAY-OF-WEEK

0009 TIME

0010 WHEN-COMPILED

0011 PAGE

0012 DATE YYYYMMDD

0013 DAY YYYYDDD

0014 Attribute

0015 Element

0016 Content

0017 Numeric

0018 Nonnumeric

0019 Every

0020 When

For Arithmetic Operator type:

0001 PLUS

0002 MINUS

0003 TIMES

0004 DIVIDE

0005 DIVIDE REMAINDER

0006 EXPONENTIATE

0007 NEGATE

Appendix F. COBOL SYSADATA file contents 769

Table 121. SYSADATA parse tree record (continued)

Field Size Description

For Relational Operator type:

0008 LESS

0009 LESS OR EQUAL

0010 EQUAL

0011 NOT EQUAL

0012 GREATER

0013 GREATER OR EQUAL

0014 AND

0015 OR

0016 CLASS CONDITION

0017 NOT CLASS CONDITION

Parent node number FL4 The node number of the parent of the node

Left sibling node
number

FL4 The node number of the left sibling of the node, if any. If
none, the value is zero.

Symbol ID FL4 The Symbol ID of the node, if it is a user-name of one of
the following types:

v Data entry

v Identifier

v File-name

v Index-name

v Procedure-name

v Condition-name

v Mnemonic-name

This value corresponds to the Symbol ID in a Symbol
(Type 42) record, except for procedure-names where it
corresponds to the Paragraph ID.

For all other node types this value is zero.

Section Symbol ID FL4 The Symbol ID of the section containing the node, if it is
a qualified paragraph-name reference. This value
corresponds to the Section ID in a Symbol (Type 42)
record.

For all other node types this value is zero.

First token number FL4 The number of the first token associated with the node

Last token number FL4 The number of the last token associated with the node

Reserved FL4 Reserved for future use

Flags CL1 Information about the node:

X'80' Reserved

X'40' Generated node, no tokens

Reserved CL3 Reserved for future use

770 Enterprise COBOL for z/OS, V5.2 Programming Guide

Token record: X'0030'
The compiler does not generate token records for any lines that are treated as
comment lines, which include, but are not limited to, items in the following list.
v Comment lines, which are source lines that have an asterisk (*) or a slash (/) in

column 7
v The following compiler-directing statements:

– *CBL (*CONTROL)
– BASIS

– COPY

– DELETE

– EJECT

– INSERT

– REPLACE

– SKIP1

– SKIP2

– SKIP3

– TITLE

v Debugging lines, which are source lines that have a D in column 7, if WITH
DEBUGGING MODE is not specified

Table 122. SYSADATA token record

Field Size Description

Token number FL4 The token number within the source file generated by
the compiler, starting at 1. Any copybooks have already
been included in the source.

Appendix F. COBOL SYSADATA file contents 771

Table 122. SYSADATA token record (continued)

Field Size Description

Token code HL2 The type of token (user-name, literal, reserved word, and
so forth).

For reserved words, the compiler reserved-word table
values are used.

For PICTURE strings, the special code 0000 is used.

For each piece (other than the last) of a continued token,
the special code 3333 is used.

Otherwise, the following codes are used:

0001 ACCEPT

0002 ADD

0003 ALTER

0004 CALL

0005 CANCEL

0007 CLOSE

0009 COMPUTE

0011 DELETE

0013 DISPLAY

0014 DIVIDE

0017 READY

0018 END-PERFORM

0019 ENTER

0020 ENTRY

0021 EXIT

0022 EXEC

EXECUTE

0023 GO

0024 IF

0025 INITIALIZE

0026 INVOKE

0027 INSPECT

0028 MERGE

0029 MOVE

772 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 122. SYSADATA token record (continued)

Field Size Description

0030 MULTIPLY

0031 OPEN

0032 PERFORM

0033 READ

0035 RELEASE

0036 RETURN

0037 REWRITE

0038 SEARCH

0040 SET

0041 SORT

0042 START

0043 STOP

0044 STRING

0045 SUBTRACT

0048 UNSTRING

0049 USE

0050 WRITE

0051 CONTINUE

0052 END-ADD

0053 END-CALL

0054 END-COMPUTE

0055 END-DELETE

0056 END-DIVIDE

0057 END-EVALUATE

0058 END-IF

0059 END-MULTIPLY

0060 END-READ

0061 END-RETURN

0062 END-REWRITE

0063 END-SEARCH

0064 END-START

0065 END-STRING

0066 END-SUBTRACT

0067 END-UNSTRING

0068 END-WRITE

0069 GOBACK

Appendix F. COBOL SYSADATA file contents 773

Table 122. SYSADATA token record (continued)

Field Size Description

0070 EVALUATE

0071 RESET

0072 SERVICE

0073 END-INVOKE

0074 END-EXEC

0075 XML

0076 END-XML

0099 FOREIGN-VERB

0101 DATA-NAME

0105 DASHED-NUM

0106 DECIMAL

0107 DIV-SIGN

0108 EQ

0109 EXPONENTIATION

0110 GT

0111 INTEGER

0112 LT

0113 LPAREN

0114 MINUS-SIGN

0115 MULT-SIGN

0116 NONUMLIT

0117 PERIOD

0118 PLUS-SIGN

0121 RPAREN

0122 SIGNED-INTEGER

0123 QUID

0124 COLON

0125 IEOF

0126 EGCS-LIT

0127 COMMA-SPACE

0128 SEMICOLON-SPACE

0129 PROCEDURE-NAME

0130 FLT-POINT-LIT

0131 Language Environment

774 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 122. SYSADATA token record (continued)

Field Size Description

0132 GE

0133 IDREF

0134 EXPREF

0136 CICS

0137 NEW

0138 NATIONAL-LIT

0200 ADDRESS

0201 ADVANCING

0202 AFTER

0203 ALL

0204 ALPHABETIC

0205 ALPHANUMERIC

0206 ANY

0207 AND

0208 ALPHANUMERIC-EDITED

0209 BEFORE

0210 BEGINNING

0211 FUNCTION

0212 CONTENT

0213 CORR

CORRESPONDING

0214 DAY

0215 DATE

0216 DEBUG-CONTENTS

0217 DEBUG-ITEM

0218 DEBUG-LINE

0219 DEBUG-NAME

0220 DEBUG-SUB-1

0221 DEBUG-SUB-2

0222 DEBUG-SUB-3

0223 DELIMITED

0224 DELIMITER

0225 DOWN

Appendix F. COBOL SYSADATA file contents 775

Table 122. SYSADATA token record (continued)

Field Size Description

0226 NUMERIC-EDITED

0227 XML-EVENT

0228 END-OF-PAGE

EOP

0229 EQUAL

0230 ERROR

0231 XML-NTEXT

0232 EXCEPTION

0233 EXTEND

0234 FIRST

0235 FROM

0236 GIVING

0237 GREATER

0238 I-O

0239 IN

0240 INITIAL

0241 INTO

0242 INVALID

0243 SQL

0244 LESS

0245 LINAGE-COUNTER

0246 XML-TEXT

0247 LOCK

0248 GENERATE

0249 NEGATIVE

0250 NEXT

0251 NO

0252 NOT

0253 NUMERIC

0254 KANJI

0255 OR

0256 OTHER

0257 OVERFLOW

0258 PAGE

0259 CONVERTING

776 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 122. SYSADATA token record (continued)

Field Size Description

0260 POINTER

0261 POSITIVE

0262 DBCS

0263 PROCEDURES

0264 PROCEED

0265 REFERENCES

0266 DAY-OF-WEEK

0267 REMAINDER

0268 REMOVAL

0269 REPLACING

0270 REVERSED

0271 REWIND

0272 ROUNDED

0273 RUN

0274 SENTENCE

0275 STANDARD

0276 RETURN-CODE

SORT-CORE-SIZE

SORT-FILE-SIZE

SORT-MESSAGE

SORT-MODE-SIZE

SORT-RETURN

TALLY

XML-CODE

0277 TALLYING

0278 SUM

0279 TEST

0280 THAN

0281 UNTIL

0282 UP

0283 UPON

0284 VARYING

0285 RELOAD

0286 TRUE

Appendix F. COBOL SYSADATA file contents 777

Table 122. SYSADATA token record (continued)

Field Size Description

0287 THEN

0288 RETURNING

0289 ELSE

0290 SELF

0291 SUPER

0292 WHEN-COMPILED

0293 ENDING

0294 FALSE

0295 REFERENCE

0296 NATIONAL-EDITED

0297 COM-REG

0298 ALPHABETIC-LOWER

0299 ALPHABETIC-UPPER

0301 REDEFINES

0302 OCCURS

0303 SYNC

SYNCHRONIZED

0304 MORE-LABELS

0305 JUST

JUSTIFIED

0306 SHIFT-IN

0307 BLANK

0308 VALUE

0309 COMP

COMPUTATIONAL

0310 COMP-1

COMPUTATIONAL-1

0311 COMP-3

COMPUTATIONAL-3

0312 COMP-2

COMPUTATIONAL-2

0313 COMP-4

COMPUTATIONAL-4

0314 DISPLAY-1

0315 SHIFT-OUT

778 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 122. SYSADATA token record (continued)

Field Size Description

0316 INDEX

0317 USAGE

0318 SIGN

0319 LEADING

0320 SEPARATE

0321 INDEXED

0322 LEFT

0323 RIGHT

0324 PIC

PICTURE

0325 VALUES

0326 GLOBAL

0327 EXTERNAL

0328 BINARY

0329 PACKED-DECIMAL

0330 EGCS

0331 PROCEDURE-POINTER

0332 COMP-5

COMPUTATIONAL-5

0333 FUNCTION-POINTER

0334 TYPE

0335 JNIENVPTR

0336 NATIONAL

0337 GROUP-USAGE

0342 VOLATILE

0401 HIGH-VALUE

HIGH-VALUES

0402 LOW-VALUE

LOW-VALUES

0403 QUOTE

QUOTES

0404 SPACE

SPACES

0405 ZERO

Appendix F. COBOL SYSADATA file contents 779

||

Table 122. SYSADATA token record (continued)

Field Size Description

0406 ZEROES

ZEROS

0407 NULL

NULLS

0501 BLOCK

0502 BOTTOM

0505 CHARACTER

0506 CODE

0507 CODE-SET

0514 FILLER

0516 FOOTING

0520 LABEL

0521 LENGTH

0524 LINAGE

0526 OMITTED

0531 RENAMES

0543 TOP

0545 TRAILING

0549 RECORDING

0601 INHERITS

0603 RECURSIVE

0701 ACCESS

0702 ALSO

0703 ALTERNATE

0704 AREA

AREAS

0705 ASSIGN

0707 COLLATING

0708 COMMA

0709 CURRENCY

0710 CLASS

0711 DECIMAL-POINT

0712 DUPLICATES

0713 DYNAMIC

0714 EVERY

780 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 122. SYSADATA token record (continued)

Field Size Description

0716 MEMORY

0717 MODE

0718 MODULES

0719 MULTIPLE

0720 NATIVE

0721 OFF

0722 OPTIONAL

0723 ORGANIZATION

0724 POSITION

0725 PROGRAM

0726 RANDOM

0727 RELATIVE

0728 RERUN

0729 RESERVE

0730 SAME

0731 SEGMENT-LIMIT

0732 SELECT

0733 SEQUENCE

0734 SEQUENTIAL

0736 SORT-MERGE

0737 STANDARD-1

0738 TAPE

0739 WORDS

0740 PROCESSING

0741 APPLY

0742 WRITE-ONLY

0743 COMMON

0744 ALPHABET

0745 PADDING

0746 SYMBOLIC

0747 STANDARD-2

0748 OVERRIDE

0750 PASSWORD

0751 XML-SCHEMA

Appendix F. COBOL SYSADATA file contents 781

Table 122. SYSADATA token record (continued)

Field Size Description

0801 ARE

IS

0802 ASCENDING

0803 AT

0804 BY

0805 CHARACTERS

0806 CONTAINS

0808 COUNT

0809 DEBUGGING

0810 DEPENDING

0811 DESCENDING

0812 DIVISION

0814 FOR

0815 ORDER

0816 INPUT

0817 REPLACE

0818 KEY

0819 LINE

LINES

0820 XML-INFORMATION

0821 OF

0822 ON

0823 OUTPUT

0825 RECORD

0826 RECORDS

0827 REEL

0828 SECTION

0829 SIZE

0830 STATUS

0831 THROUGH

THRU

0832 TIME

0833 TIMES

0834 TO

0836 UNIT

840 SQLIMS

782 Enterprise COBOL for z/OS, V5.2 Programming Guide

||

Table 122. SYSADATA token record (continued)

Field Size Description

0837 USING

0838 WHEN

0839 WITH

0840 SQLIMS

0901 PROCEDURE

0902 DECLARATIVES

0903 END

1001 DATA

1002 FILE

1003 FD

1004 SD

1005 WORKING-STORAGE

1006 LOCAL-STORAGE

1007 LINKAGE

1101 ENVIRONMENT

1102 CONFIGURATION

1103 SOURCE-COMPUTER

1104 OBJECT-COMPUTER

1105 SPECIAL-NAMES

1106 REPOSITORY

1107 INPUT-OUTPUT

1108 FILE-CONTROL

1109 I-O-CONTROL

1201 ID

IDENTIFICATION

1202 PROGRAM-ID

1203 AUTHOR

1204 INSTALLATION

1205 DATE-WRITTEN

1206 DATE-COMPILED

1207 SECURITY

1208 CLASS-ID

1209 METHOD-ID

1210 METHOD

1211 FACTORY

Appendix F. COBOL SYSADATA file contents 783

Table 122. SYSADATA token record (continued)

Field Size Description

1212 OBJECT

2020 TRACE

2046 SUPPRESS

3000 DATADEF

3001 F-NAME

3002 UPSI-SWITCH

3003 CONDNAME

3004 CONDVAR

3005 BLOB

3006 CLOB

3007 DBCLOB

3008 BLOB-LOCATOR

3009 CLOB-LOCATOR

3010 DBCLOB-LOCATOR

3011 BLOB-FILE

3012 CLOB-FILE

3013 DBCLOB-FILE

3014 DFHRESP

5001 PARSE

5002 AUTOMATIC

5003 PREVIOUS

5004 ENCODING

5005 NAMESPACE

5006 NAMESPACE-PREFIX

5007 XML-DECLARATION

5008 ATTRIBUTES

5009 VALIDATING

5010 UNBOUNDED

5011 ATTRIBUTE

5012 ELEMENT

5013 NONNUMERIC

5014 NAME

5015 CYCLE

5016 PARAGRAPH

9999 COBOL

Token length HL2 The length of the token

Token column FL4 The starting column number of the token in the source
listing

784 Enterprise COBOL for z/OS, V5.2 Programming Guide

||

||

||

Table 122. SYSADATA token record (continued)

Field Size Description

Token line FL4 The line number of the token in the source listing

Flags CL1 Information about the token:

X'80' Token is continued

X'40' Last piece of continued token

Note that for PICTURE strings, even if the source token is
continued, there will be only one Token record
generated. It will have a token code of 0000, the token
column and line of the first piece, the length of the
complete string, no continuation flags set, and the token
text of the complete string.

Reserved CL7 Reserved for future use

Token text CL(n) The actual token string

Source error record: X'0032'
The following table shows the contents of the source error record.

Table 123. SYSADATA source error record

Field Size Description

Statement number FL4 The statement number of the statement in error

Error identifier CL16 The error message identifier (left-justified and padded
with blanks)

Error severity HL2 The severity of the error

Error message length HL2 The length of the error message text

Line position XL1 The line position indicator provided in FIPS messages

Reserved CL7 Reserved for future use

Error message CL(n) The error message text

Source record: X'0038'
The following table shows the contents of the source record.

Table 124. SYSADATA source record

Field Size Description

Line number FL4 The listing line number of the source record

Input record number FL4 The input source record number in the current input file

Primary file number HL2 The input file's assigned sequence number if this record
is from the primary input file. (Refer to the Input file n
field in the Job identification record).

Library file number HL2 The library input file's assigned sequence number if this
record is from a COPY|BASIS input file. (Refer to the
Member File ID n field in the Library record.)

Reserved CL8 Reserved for future use

Parent record number FL4 The parent source record number. This will be the record
number of the COPY|BASIS statement.

Appendix F. COBOL SYSADATA file contents 785

Table 124. SYSADATA source record (continued)

Field Size Description

Parent primary file
number

HL2 The parent file's assigned sequence number if the parent
of this record is from the primary input file. (Refer to the
Input file n field in the Job Identification Record.)

Parent library
assigned file number

HL2 The parent library file's assigned sequence number if this
record's parent is from a COPY|BASIS input file. (Refer to
the COPY/BASIS Member File ID n field in the Library
record.)

Reserved CL8 Reserved for future use

Length of source
record

HL2 The length of the actual source record following

Reserved CL10 Reserved for future use

Source record CL(n)

COPY REPLACING record: X'0039'
One COPY REPLACING type record will be emitted each time a REPLACING action takes
place. That is, whenever operand-1 of the REPLACING phrase is matched with text in
the copybook, a COPY REPLACING TEXT record will be written.

The following table shows the contents of the COPY REPLACING record.

Table 125. SYSADATA COPY REPLACING record

Field Size Description

Starting line number
of replaced string

FL4 The listing line number of the start of the text that
resulted from REPLACING

Starting column
number of replaced
string

FL4 The listing column number of the start of the text that
resulted from REPLACING

Ending line number
of replaced string

FL4 The listing line number of the end of the text that
resulted from REPLACING

Ending column
number of replaced
string

FL4 The listing column number of the end of the text that
resulted from REPLACING

Starting line number
of original string

FL4 The source file line number of the start of the text that
was changed by REPLACING

Starting column
number of original
string

FL4 The source file column number of the start of the text
that was changed by REPLACING

Ending line number
of original string

FL4 The source file line number of the end of the text that
was changed by REPLACING

Ending column
number of original
string

FL4 The source file column number of the end of the text that
was changed by REPLACING

786 Enterprise COBOL for z/OS, V5.2 Programming Guide

Symbol record: X'0042'
The following table shows the contents of the symbol record.

Table 126. SYSADATA symbol record

Field Size Description

Symbol ID FL4 Unique ID of symbol

Line number FL4 The listing line number of the source record in which the
symbol is defined or declared

Level XL1 True level-number of symbol (or relative level-number of
a data item within a structure). For COBOL, this can be
in the range 01-49, 66 (for RENAMES items), 77, or 88 (for
condition items).

Qualification
indicator

XL1
X’00’ Unique name; no qualification needed.

X’01’ This data item needs qualification. The name is
not unique within the program. This field
applies only when this data item is not the
level-01 name.

Symbol type XL1
X’68’ Class-name (Class-ID)

X’58’ Method-name

X’40’ Data-name

X’20’ Procedure-name

X’10’ Mnemonic-name

X’08’ Program-name

X’81’ Reserved

The following ORed are into the above types, when
applicable:

X’04’ External

X’02’ Global

Appendix F. COBOL SYSADATA file contents 787

Table 126. SYSADATA symbol record (continued)

Field Size Description

Symbol attribute XL1
X’01’ Numeric

X’02’ Elementary character of one of these classes:

v Alphabetic

v Alphanumeric

v DBCS

v National

X’03’ Group

X’04’ Pointer

X’05’ Index data item

X’06’ Index-name

X’07’ Condition

X’0F’ File

X’10’ Sort file

X’17’ Class-name (repository)

X’18’ Object reference

X’19’ Currency-sign symbol

X’1A’ XML schema name

788 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 126. SYSADATA symbol record (continued)

Field Size Description

Clauses XL1 Clauses specified in symbol definition.

For symbols that have a symbol attribute of Numeric
(X’01’), Elementary character (X’02’), Group (X’03’),
Pointer (X’04’), Index data item (X’05’), or Object
reference (X’18’):

1...
Value

.1..
Indexed

..1.
Redefines

...1
Renames

.... 1...
Occurs

.... .1..
Has Occurs keys

.... ..1.
Occurs Depending On

.... ...1
Occurs in parent

For file types:

1...
Select

.1..
Assign

..1.
Rerun

...1
Same area

.... 1...
Same record area

.... .1..
Recording mode

.... ..1.
Reserved

.... ...1
Record

Appendix F. COBOL SYSADATA file contents 789

Table 126. SYSADATA symbol record (continued)

Field Size Description

For mnemonic-name symbols:

01 CSP

02 C01

03 C02

04 C03

05 C04

06 C05

07 C06

08 C07

09 C08

10 C09

11 C10

12 C11

13 C12

14 S01

15 S02

16 S03

17 S04

18 S05

19 CONSOLE

20 SYSIN|SYSIPT

22 SYSOUT|SYSLST|SYSLIST

24 SYSPUNCH|SYSPCH

26 UPSI-0

27 UPSI-1

28 UPSI-2

29 UPSI-3

30 UPSI-4

31 UPSI-5

32 UPSI-6

33 UPSI-7

34 AFP-5A

790 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 126. SYSADATA symbol record (continued)

Field Size Description

Data flags 1 XL1 For file types, and for symbols that have a symbol
attribute of Numeric (X’01’), Elementary character
(X’02’), Group (X’03’), Pointer (X’04’), Index data item
(X’05’), or Object reference (X’18’):

1...
Redefined

.1..
Renamed

..1.
Synchronized

...1
Implicitly redefined

.... 1...
Volatile

.... .1..
Implicit redefines

.... ..1.
FILLER

.... ...1
Level 77

Appendix F. COBOL SYSADATA file contents 791

|

Table 126. SYSADATA symbol record (continued)

Field Size Description

Data flags 2 XL1 For symbols that have a symbol attribute of Numeric
(X’01’):

1...
Binary

.1..
External floating point (of USAGE DISPLAY or
USAGE NATIONAL)

..1.
Internal floating point

...1
Packed

.... 1...
External decimal (of USAGE DISPLAY or USAGE
NATIONAL)

.... .1..
Scaled negative

.... ..1.
Numeric edited (of USAGE DISPLAY or USAGE
NATIONAL)

.... ...1
Reserved for future use

For symbols that have a symbol attribute of Elementary
character (X’02’) or Group (X’03’):

1...
Alphabetic

.1..
Alphanumeric

..1.
Alphanumeric edited

...1
Group contains its own ODO object

.... 1...
DBCS item

.... .1..
Group variable length

.... ..1.
EGCS item

.... ...1
EGCS edited

792 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 126. SYSADATA symbol record (continued)

Field Size Description

For file types:

1...
Object of ODO in record

.1..
Subject of ODO in record

..1.
Sequential access

...1
Random access

.... 1...
Dynamic access

.... .1..
Locate mode

.... ..1.
Record area

.... ...1
Reserved for future use

Data flags 3 XL1
1...

All records are the same length

.1..
Fixed length

..1.
Variable length

...1
Undefined

.... 1...
Spanned

.... .1..
Blocked

.... ..1.
Apply write only

.... ...1
Same sort merge area

Appendix F. COBOL SYSADATA file contents 793

Table 126. SYSADATA symbol record (continued)

Field Size Description

File organization and
attributes

XL1
1...

Physical sequential (on host, QSAM)

.1..
ASCII

..1.
Standard label

...1
User label

.... 1...
Sequential organization

.... .1..
Indexed organization

.... ..1.
Relative organization

.... ...1
Line sequential

USAGE clause FL1
X’00’ USAGE IS DISPLAY

X’01’ USAGE IS COMP-1

X’02’ USAGE IS COMP-2

X’03’ USAGE IS PACKED-DECIMAL or USAGE IS COMP-3

X’04’ USAGE IS BINARY, USAGE IS COMP, USAGE IS
COMP-4, or USAGE IS COMP-5

X’05’ USAGE IS DISPLAY-1

X’06’ USAGE IS POINTER

X’07’ USAGE IS INDEX

X’08’ USAGE IS PROCEDURE-POINTER

X’09’ USAGE IS OBJECT-REFERENCE

X’0A’ FUNCTION-POINTER

X’0B’ NATIONAL

Sign clause FL1
X’00’ No SIGN clause

X’01’ SIGN IS LEADING

X’02’ SIGN IS LEADING SEPARATE CHARACTER

X’03’ SIGN IS TRAILING

X’04’ SIGN IS TRAILING SEPARATE CHARACTER

Indicators FL1
X’01’ Has JUSTIFIED clause. Right-justified attribute is

in effect.

X’02’ Has BLANK WHEN ZERO clause.

794 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 126. SYSADATA symbol record (continued)

Field Size Description

Size FL4 The size of this data item. The actual number of bytes
this item occupies in storage. If a DBCS item, the number
is in bytes, not characters. For variable-length items, this
field will reflect the maximum size of storage reserved
for this item by the compiler. Also known as the "Length
attribute."

Precision FL1 The precision of a fixed or float data item

Scale FL1 The scale factor of a fixed data item. This is the number
of digits to the right of the decimal point.

Storage type FL1
00 Not applicable

01 Files

02 Working-Storage

03 Linkage Section

05 Special registers

07 Indexed by variable

10 UPSI switch

13 Variably located items

14 External data

15 Alphanumeric FUNC

16 Alphanumeric EVAL

17 Object data

19 Local-Storage

20 Factory data

21 XML-TEXT and XML-NTEXT

Date format FL1 Reserved for future use

Data flags 4 XL1 For symbols that have a symbol attribute of Numeric
(X’01’):

1...
Numeric national

For symbols that have a symbol attribute of Elementary
character (X’02’):

1...
National

.1..
National edited

For symbols that have a symbol attribute of Group
(X’03’):

1...
Group-Usage National

.1..
Unbounded length group

Appendix F. COBOL SYSADATA file contents 795

|
||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|

Table 126. SYSADATA symbol record (continued)

Field Size Description

Data flags 5 XL1 OCCURS flags:

1...
UNBOUNDED

Base locator Cell FL2 Base locator cell number

Symbol Identifier FL4 Number identifying the symbol

Structure
displacement

AL4 Offset of symbol within structure. This offset is set to 0
for variably located items.

Parent displacement AL4 Byte offset from immediate parent of the item being
defined.

Parent ID FL4 The symbol ID of the immediate parent of the item being
defined.

Redefined ID FL4 The symbol ID of the data item that this item redefines,
if applicable.

Start-renamed ID FL4 If this item is a level-66 item, the symbol ID of the
starting COBOL data item that this item renames. If not a
level-66 item, this field is set to 0.

End-renamed ID FL4 If this item is a level-66 item, the symbol ID of the
ending COBOL data item that this item renames. If not a
level-66 item, this field is set to 0.

Program-name
symbol ID

FL4 ID of the program-name of the program or the
class-name of the class where this symbol is defined.

OCCURS minimum

Paragraph ID

FL4 Minimum value for OCCURS

Proc-name ID for a paragraph-name

OCCURS maximum

Section ID

FL4 Maximum value for OCCURS

Proc-name ID for a section-name

Dimensions FL4 Number of dimensions

Case bit vector XL4 The case of the characters in the symbol name is
represented with one bit per character. Each bit has the
following meaning:
0 Uppercase
1 Lowercase

Bit 0 represents the case of the first character, bit 1
represents the case of the second character, and so forth.

Reserved CL8 Reserved for future use

Value pairs count HL2 Count of value pairs

Symbol name length HL2 Number of characters in the symbol name

796 Enterprise COBOL for z/OS, V5.2 Programming Guide

||

||

Table 126. SYSADATA symbol record (continued)

Field Size Description

Picture data length
for data-name

or

Assignment-name
length for file-name

HL2 Number of characters in the picture data; zero if symbol
has no associated PICTURE clause. (Length of the PICTURE
field.) Length represents the field as it is found in the
source input. This length does not represent the
expanded field for PICTURE items that contain a
replication factor. The maximum COBOL length for a
PICTURE string is 50 bytes. Zero in this field indicates no
PICTURE specified.

Number of characters in the external file-name if this is a
file-name. This is the DD name part of the
assignment-name. Zero if file-name and ASSIGN USING
specified.

Initial Value length
for data-name

External class-name
length for CLASS-ID

HL2 Number of characters in the symbol value; zero if
symbol has no initial value

Number of characters in the external class-name for
CLASS-ID

ODO symbol name
ID for data-name

ID of ASSIGN
data-name if
file-name

FL4 If data-name, ID of the ODO symbol name; zero if ODO
not specified

If file-name, Symbol-ID for ASSIGN USING data-name; zero
if ASSIGN TO specified

Keys count HL2 The number of keys defined

Index count HL2 Count of Index symbol IDs; zero if none specified

Symbol name CL(n)

Picture data string for
data-name

or

Assignment-name for
file-name

CL(n) The PICTURE character string exactly as the user types it
in. The character string includes all symbols, parentheses,
and replication factor.

The external file-name if this is a file-name. This is the DD
name part of the assignment-name.

Index ID list (n)FL4 ID of each index symbol name

Keys (n)XL8 This field contains data describing keys specified for an
array. The following three fields are repeated as many
times as specified in the 'Keys count' field.

...Key Sequence FL1 Ascending or descending indicator.

X’00’ DESCENDING

X’01’ ASCENDING

...Filler CL3 Reserved

...Key ID FL4 The symbol ID of the data item that is the key field in
the array

Initial Value data for
data-name

External class-name
for CLASS-ID

CL(n) This field contains the data specified in the INITIAL
VALUE clause for this symbol. The following four
subfields are repeated according to the count in the
'Value pairs count' field. The total length of the data in
this field is contained in the 'Initial value length' field.

The external class-name for CLASS-ID.

...1st value length HL2 Length of first value

Appendix F. COBOL SYSADATA file contents 797

Table 126. SYSADATA symbol record (continued)

Field Size Description

...1st value data CL(n) 1st value.

This field contains the literal (or figurative constant) as it
is specified in the VALUE clause in the source file. It
includes any beginning and ending delimiters, embedded
quotation marks, and SHIFT IN and SHIFT OUT
characters. If the literal spans multiple lines, the lines are
concatenated into one long string. If a figurative constant
is specified, this field contains the actual reserved word,
not the value associated with that word.

...2nd value length HL2 Length of second value, zero if not a THRU value pair

...2nd value data CL(n) 2nd value.

This field contains the literal (or figurative constant) as it
is specified in the VALUE clause in the source file. It
includes any beginning and ending delimiters, embedded
quotation marks, and SHIFT IN and SHIFT OUT
characters. If the literal spans multiple lines, the lines are
concatenated into one long string. If a figurative constant
is specified, this field contains the actual reserved word,
not the value associated with that word.

Symbol cross-reference record: X'0044'
The following table shows the contents of the symbol cross-reference record.

Table 127. SYSADATA symbol cross-reference record

Field Size Description

Symbol length HL2 The length of the symbol

Statement definition FL4 The statement number where the symbol is defined or
declared

For VERB XREF only:

Verb count - total number of references to this verb.

Number of
references1

HL2 The number of references in this record to the symbol
following

Cross-reference type XL1
X'01' Program

X'02' Procedure

X'03' Verb

X'04' Symbol or data-name

X'05' Method

X'06' Class

Reserved CL7 Reserved for future use

Symbol name CL(n) The symbol. Variable length.

798 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 127. SYSADATA symbol cross-reference record (continued)

Field Size Description

...Reference flag CL1 For symbol or data-name references:

C' ' Blank means reference only

C'M' Modification reference flag

For Procedure type symbol references:

C'A' ALTER (procedure-name)

C'D' GO TO (procedure-name) DEPENDING ON

C'E' End of range of (PERFORM) through
(procedure-name)

C'G' GO TO (procedure-name)

C'P' PERFORM (procedure-name)

C'T' (ALTER) TO PROCEED TO (procedure-name)

C'U' Use for debugging (procedure-name)

...Statement number XL4 The statement number on which the symbol or verb is
referenced

1. The reference flag field and the statement number field occur as many times as the
number of references field dictates. For example, if there is a value of 10 in the number
of references field, there will be 10 occurrences of the reference flag and statement
number pair for data-name, procedure, or program symbols, or 10 occurrences of the
statement number for verbs.

Where the number of references would exceed the record size for the SYSADATA file,
the record is continued on the next record. The continuation flag is set in the common
header section of the record.

Nested program record: X'0046'
The following table shows the contents of the nested program record.

Table 128. SYSADATA nested program record

Field Size Description

Statement definition FL4 The statement number where the symbol is defined or
declared

Nesting level XL1 Program nesting level

Program attributes XL1
1...

Initial

.1..
Common

..1.
PROCEDURE DIVISION using

...1 1111
Reserved for future use

Reserved XL1 Reserved for future use

Program-name length XL1 Length of the following field

Program-name CL(n) The program-name

Appendix F. COBOL SYSADATA file contents 799

Library record: X'0060'
The following table shows the contents of the SYSADATA library record.

Table 129. SYSADATA library record

Field Size Description

Number of members1 HL2 Count of the number of COPY/INCLUDE code members
described in this record

Library name length HL2 The length of the library name

Library volume
length

HL2 The length of the library volume ID

Concatenation
number

XL2 Concatenation number of the library

Library ddname
length

HL2 The length of the library ddname

Reserved CL4 Reserved for future use

Library name CL(n) The name of the library from which the COPY/INCLUDE
member was retrieved

Library volume CL(n) The volume identification of the volume where the
library resides

Library ddname CL(n) The ddname (or equivalent) used for this library

...COPY/BASIS member
file ID2

HL2 The library file ID of the name following

...COPY/BASIS name
length

HL2 The length of the name following

...COPY/BASIS name CL(n) The name of the COPY/BASIS member that has been used

1. If 10 COPY members are retrieved from a library, the "Number of members" field will
contain 10 and there will be 10 occurrences of the "COPY/BASIS member file ID" field,
the "COPY/BASIS name length" field, and the "COPY/BASIS name" field.

2. If COPY/BASIS members are retrieved from different libraries, a library record is written
to the SYSADATA file for each unique library.

Statistics record: X'0090'
The following table shows the contents of the statistics record.

Table 130. SYSADATA statistics record

Field Size Description

Source records FL4 The number of source records processed

DATA DIVISION
statements

FL4 The number of DATA DIVISION statements processed

PROCEDURE DIVISION
statements

FL4 The number of PROCEDURE DIVISION statements processed

Compilation number HL2 Batch compilation number

Error severity XL1 The highest error message severity

800 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 130. SYSADATA statistics record (continued)

Field Size Description

Flags XL1
1...

End of Job indicator

.1..
Class definition indicator

..11 1111
Reserved for future use

EOJ severity XL1 The maximum return code for the compile job

Program-name length XL1 The length of the program-name

Program-name CL(n) Program-name

EVENTS record: X'0120'
Events records are included in the ADATA file to provide compatibility with
previous levels of the compiler.

Events records are of the following types:
v Time stamp
v Processor
v File end
v Program
v File ID
v Error

Table 131. SYSADATA EVENTS TIMESTAMP record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this
halfword)

EVENTS record type
TIMESTAMP record

CL12 C'TIMESTAMP'

Blank separator CL1

Revision level XL1

Blank separator CL1

Date XL8 YYYYMMDD

Hour XL2 HH

Minutes XL2 MI

Seconds XL2 SS

Table 132. SYSADATA EVENTS PROCESSOR record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this
halfword)

Appendix F. COBOL SYSADATA file contents 801

Table 132. SYSADATA EVENTS PROCESSOR record layout (continued)

Field Size Description

EVENTS record type
PROCESSOR record

CL9 C'PROCESSOR'

Blank separator CL1

Revision level XL1

Blank separator CL1

Output file ID XL1

Blank separator CL1

Line-class indicator XL1

Table 133. SYSADATA EVENTS FILE END record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this
halfword)

EVENTS record type
FILE END record

CL7 C'FILEEND'

Blank separator CL1

Revision level XL1

Blank separator CL1

Input file ID XL1

Blank separator CL1

Expansion indicator XL1

Table 134. SYSADATA EVENTS PROGRAM record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this
halfword)

EVENTS record type
PROGRAM record

CL7 C'PROGRAM'

Blank separator CL1

Revision level XL1

Blank separator CL1

Output file ID XL1

Blank separator CL1

Program input record
number

XL1

Table 135. SYSADATA EVENTS FILE ID record layout

Field Size Description

Header CL12 Standard ADATA record header

802 Enterprise COBOL for z/OS, V5.2 Programming Guide

Table 135. SYSADATA EVENTS FILE ID record layout (continued)

Field Size Description

Record length HL2 Length of following EVENTS record data (excluding this
halfword)

EVENTS record type
FILE ID record

CL7 C'FILEID'

Blank separator CL1

Revision level XL1

Blank separator CL1

Input source file ID XL1 File ID of source file

Blank separator CL1

Reference indicator XL1

Blank separator CL1

Source file name
length

H2

Blank separator CL1

Source file name CL(n)

Table 136. SYSADATA EVENTS ERROR record layout

Field Size Description

Header CL12 Standard ADATA record header

Record length HL2 Length of following EVENTS record data (excluding this
halfword)

EVENTS record type
ERROR record

CL5 C'ERROR'

Blank separator CL1

Revision level XL1

Blank separator CL1

Input source file ID XL1 File ID of source file

Blank separator CL1

Annot class XL1 Annot-class message placement

Blank separator CL1

Error input record
number

XL10

Blank separator CL1

Error start line
number

XL10

Blank separator CL1

Error token start
number

XL1 Column number of error token start

Blank separator CL1

Error end line
number

XL10

Blank separator CL1

Appendix F. COBOL SYSADATA file contents 803

Table 136. SYSADATA EVENTS ERROR record layout (continued)

Field Size Description

Error token end
number

XL1 Column number of error token end

Blank separator CL1

Error message ID
number

XL9

Blank separator CL1

Error message
severity code

XL1

Blank separator CL1

Error message
severity level number

XL2

Blank separator CL1

Error message length HL3

Blank separator CL1

Error message text CL(n)

804 Enterprise COBOL for z/OS, V5.2 Programming Guide

Appendix G. Using sample programs

The sample programs, which are included on your product tape, demonstrate
many language elements and concepts of COBOL.

This information contains the following items:
v Overview of the programs, including program charts for two of the samples
v Format and sample of the input data
v Sample of reports produced
v Information about how to run the programs
v List of the language elements and concepts that are illustrated

Pseudocode and other comments about the programs are included in the program
prolog, which you can obtain in a program listing.

There are three sample programs:
v IGYTCARA is an example of using QSAM files and VSAM indexed files, and

shows how to use many COBOL intrinsic functions.
v IGYTCARB is an example of using IBM Interactive System Product Facility

(ISPF).
v IGYTSALE is an example of using several of the features of the Language

Environment callable services.

RELATED CONCEPTS

“IGYTCARA: batch application”
“IGYTCARB: interactive program” on page 809
“IGYTSALE: nested program application” on page 812

IGYTCARA: batch application
A company that has several local offices wants to establish employee carpools.
Application IGYTCARA validates the transaction-file entries (QSAM sequential file
processing) and updates a master file (VSAM indexed file processing).

This batch application does two tasks:
v Produces reports of employees who can share rides from the same home

location to the same work location
v Updates the carpool data:

– Adds data for new employees
– Changes information for participating employees
– Deletes employee records
– Lists update requests that are not valid

The following diagram shows the parts of the application and how they are
organized:

© Copyright IBM Corp. 1991, 2018 805

RELATED TASKS

“Preparing to run IGYTCARA” on page 808

RELATED REFERENCES

“Input data for IGYTCARA”
“Report produced by IGYTCARA” on page 807
“Language elements and concepts that are illustrated” on page 819

Input data for IGYTCARA
As input to the program, the company collected information from interested
employees, coded the information, and produced an input file. Here is an example
of the format of the input file (spaces between fields are left out, as they would be
in your input file) with an explanation of each item.

1. Transaction code
2. Shift
3. Home code

806 Enterprise COBOL for z/OS, V5.2 Programming Guide

4. Work code
5. Commuter name
6. Home address
7. Home phone
8. Work phone
9. Home location code

10. Work location code
11. Driving status code

This sample below shows a section of the input file:
A10111ROBERTS AB1021 CRYSTAL COURTSAN FRANCISCOCA9990141555501904155551387H1W1D
A20212KAHN DE789 EMILY LANE SAN FRANCISCOCA9992141555518904155552589H2W2D
P48899 99ASDFG0005557890123ASDFGHJ T
R10111ROBERTS AB1221 CRYSTAL COURTSAN FRANCISCOCA9990141555501904155551387H1W1D
A20212KAHN DE789 EMILY LANE SAN FRANCISCOCA9992141555518904155552589H2W2D
D20212KAHN DE
D20212KAHN DE
A20212KAHN DE789 EMILY LANE SAN FRANCISCOCA9992141555518904155552589H2W2D
A10111BONNICK FD1025 FIFTH AVENUE SAN FRANCISCOCA9990541555595904155557895H8W3
A10111PETERSON SW435 THIRD AVENUE SAN FRANCISCOCA9990541555546904155553717H3W4

. . .

Report produced by IGYTCARA
The following sample shows the first page of the output report produced by
IGYTCARA. Your actual output might vary slightly in appearance, depending on
your system.
1REPORT #: IGYTCAR1 COMMUTER FILE UPDATE LIST PAGE #: 1
-PROGRAM #: IGYTCAR1 RUN TIME: 01:40 RUN DATE: 11/24/2003
-==

| RE-| SHIFT | | | | |STA-|
TRANS|CORD|HOME CODE| COMMUTER | HOME | HOME PHONE | HOME LOCATION JUNCTION |TUS | TRANS. ERROR
CODE |TYPE|WORK CODE| NAME | ADDRESS | WORK PHONE | WORK LOCATION JUNCTION |CODE|
==
A NEW 1 01 11 ROBERTS AB 1021 CRYSTAL COURT (415) 555-0190 RODNEY/CRYSTAL D

SAN FRANCISCO CA 99901 (415) 555-1387 BAYFAIR PLAZA
--
A NEW 2 02 12 KAHN DE 789 EMILY LANE (415) 555-1890 COYOTE D

SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE
--
P 4 88 99 (000) 555-7890 HOME CODE ’ ’ NOT FOUND. T

99 ASDFG (123) ASD-FGHJ WORK CODE ’ ’ NOT FOUND. TRANSACT. CODE
SHIFT CODE
HOME LOC. CODE
WORK LOC. CODE
LAST NAME
INITIALS
ADDRESS
CITY
STATE CODE
ZIPCODE
HOME PHONE
WORK PHONE
HOME JUNCTION
WORK JUNCTION
DRIVING STATUS

--
R OLD 1 01 11 ROBERTS AB 1021 CRYSTAL COURT (415) 555-0190 RODNEY/CRYSTAL D

SAN FRANCISCO CA 99901 (415) 555-1387 BAYFAIR PLAZA
NEW 1 01 11 ROBERTS AB 1221 CRYSTAL COURT (415) 555-0190 RODNEY/CRYSTAL D

SAN FRANCISCO CA 99901 (415) 555-1387 BAYFAIR PLAZA
--
A 2 02 12 KAHN DE 789 EMILY LANE (415) 555-1890 COYOTE D

SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE DUPLICATE REC.
--
D OLD 2 02 12 KAHN DE 789 EMILY LANE (415) 555-1890 COYOTE D

SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE
--
D 2 02 12 KAHN DE REC. NOT FOUND

--
A NEW 2 02 12 KAHN DE 789 EMILY LANE (415) 555-1890 COYOTE D

SAN FRANCISCO CA 99921 (415) 555-2589 14TH STREET/166TH AVENUE
--
A NEW 1 01 11 BONNICK FD 1025 FIFTH AVENUE (415) 555-9590 RODNEY

SAN FRANCISCO CA 99905 (415) 555-7895 17TH FREEWAY SAN LEANDRO
--
A NEW 1 01 11 PETERSON SW 435 THIRD AVENUE (415) 555-4690 RODNEY/THIRD AVENUE

Appendix G. Using sample programs 807

Preparing to run IGYTCARA
All files required by the IGYTCARA program (IGYTCARA, IGYTCODE, and
IGYTRANX) are supplied on the product installation tape. These files are located
in the IGY.V5R1M0.SIGYSAMP data set.

Data-set and procedure names might be changed at installation time. Check with
your system programmer to verify these names.

Do not change these options on the CBL statement in the source file for
IGYTCARA:
v NOADV

v NODYNAM

v NONAME

v NONUMBER

v QUOTE

v SEQUENCE

With these options in effect, the program will not cause any diagnostic messages to
be issued. You can use the sequence number string in the source file to search for
the language elements used.

RELATED CONCEPTS

“IGYTCARA: batch application” on page 805

RELATED TASKS

“Running IGYTCARA”

RELATED REFERENCES

“Input data for IGYTCARA” on page 806
“Report produced by IGYTCARA” on page 807
“Language elements and concepts that are illustrated” on page 819

Running IGYTCARA
The following procedure compiles, link-edits, and runs the IGYTCARA program. If
you want only to compile or only to compile and link-edit the program, you must
change the IGYWCLG cataloged procedure.

To run IGYTCARA under z/OS, use JCL to define a VSAM cluster and compile the
program. Insert the information specific to your system and installation
(accounting information, volume serial number, unit name, cluster prefix) in the
fields that are shown in lowercase letters. These examples use the name
IGYTCAR.MASTFILE; you can use another name if you want to.
1. Use this JCL to create the required VSAM cluster:

//CREATE JOB (acct-info),’IGYTCAR CREATE VSAM’,MSGLEVEL=(1,1),
// TIME=(0,29)
//CREATE EXEC PGM=IDCAMS
//VOL1 DD VOL=SER=your-volume-serial,UNIT=your-unit,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
DELETE your-prefix.IGYTCAR.MASTFILE -

FILE(VOL1) -
PURGE

DEFINE CLUSTER -
(NAME(your-prefix.IGYTCAR.MASTFILE) -
VOLUME(your-volume-serial) -
FILE(VOL1) -

808 Enterprise COBOL for z/OS, V5.2 Programming Guide

INDEXED -
RECSZ(80 80) -
KEYS(16 0) -
CYLINDERS(2))

/*

To remove any existing cluster, a DELETE is issued before the VSAM cluster is
created.

2. Use the following JCL to compile, link-edit, and run the IGYTCARA program:
//IGYTCARA JOB (acct-info),’IGYTCAR’,MSGLEVEL=(1,1),TIME=(0,29)
//TEST EXEC IGYWCLG
//COBOL.SYSLIB DD DSN=IGY.V5R1M0.SIGYSAMP,DISP=SHR
//COBOL.SYSIN DD DSN=IGY.V5R1M0.SIGYSAMP(IGYTCARA),DISP=SHR
//GO.SYSOUT DD SYSOUT=A
//GO.COMMUTR DD DSN=your-prefix.IGYTCAR.MASTFILE,DISP=SHR
//GO.LOCCODE DD DSN=IGY.V5R1M0.SIGYSAMP(IGYTCODE),DISP=SHR
//GO.UPDTRANS DD DSN=IGY.V5R1M0.SIGYSAMP(IGYTRANX),DISP=SHR
//GO.UPDPRINT DD SYSOUT=A,DCB=BLKSIZE=133
//

RELATED TASKS

Chapter 10, “Processing VSAM files,” on page 185

RELATED REFERENCES

“Compile, link-edit, and run procedure (IGYWCLG)” on page 259

IGYTCARB: interactive program
IGYTCARB contains an interactive program for entering carpool data by using IBM
Interactive System Productivity Facility (ISPF) to invoke Dialog Manager and
Enterprise COBOL. IGYTCARB creates a file that can be used as input for a
carpool listing or matching program such as IGYTCARA.

The input data for IGYTCARB is the same as that for IGYTCARA. IGYTCARB lets
you append to the information in your input file by using an ISPF panel. An
example of the panel used by IGYTCARB is shown below:
--------------------------- CARPOOL DATA ENTRY -------------------------------

New Data Entry Previous Entry
Type =======> - A, R, or D A
Shift ======> - 1, 2, or 3 1
Home Code ==> -- 2 Chars 01
Work Code ==> -- 2 Chars 11
Name =======> --------- 9 Chars POPOWICH
Initials ===> -- 2 Chars AD
Address ====> ------------------ 18 Chars 134 SIXTH AVENUE
City =======> ------------- 13 Chars SAN FRANCISCO
State ======> -- 2 Chars CA
Zip Code ===> ----- 5 Chars 99903
Home Phone => ---------- 10 Chars 4155553390
Work Phone => ---------- 10 Chars 4155557855
Home Jnc code > -- 2 Chars H3
Work Jnc Code > -- 2 Chars W7
Commuter Stat > - D, R or blank

RELATED TASKS

“Preparing to run IGYTCARB” on page 810

Appendix G. Using sample programs 809

Preparing to run IGYTCARB
Run the IGYTCARB program under Interactive System Productivity Facility (ISPF).
All files required by IGYTCARB (IGYTCARB, IGYTRANB, and IGYTPNL) are
supplied on the product installation tape in the IGY.V5R1M0.SIGYSAMP data set.

Data-set names and procedure-names might be changed at installation time. Check
with your system programmer to verify the names.

Do not change the following options in the CBL statement in the source file for
IGYTCARB:
v NONUMBER

v QUOTE

v SEQUENCE

With these options in effect, the program will not cause any diagnostic messages to
be issued. You can use the sequence number string in the source file to search for
language elements.

RELATED CONCEPTS

“IGYTCARB: interactive program” on page 809

RELATED TASKS

“Running IGYTCARB”

RELATED REFERENCES

“Language elements and concepts that are illustrated” on page 819

Running IGYTCARB
The following procedure compiles, link-edits, and runs the IGYTCARB program. If
you want only to compile or only to compile and link-edit the program, you must
change the procedure.

To run IGYTCARB under z/OS, do the following steps:
1. Using the ISPF editor, change the ISPF/PDF Primary Option Panel (ISR@PRIM)

or some other panel to include the IGYTCARB invocation. Panel ISR@PRIM is
in your site's PDF panel data set (normally ISRPLIB).
The following example shows an ISR@PRIM panel modified, in two identified
locations, to include the IGYTCARB invocation. If you add or change an option
in the upper portion of the panel definition, you must also add or change the
corresponding line on the lower portion of the panel.
%---------------------- ISPF/PDF PRIMARY OPTION PANEL ------------------------
%OPTION ===>_ZCMD +
% +USERID - &ZUSER
% 0 +ISPF PARMS - Specify terminal and user parameters +TIME - &ZTIME
% 1 +BROWSE - Display source data or output listings +TERMINAL - &ZTERM
% 2 +EDIT - Create or change source data +PF KEYS - &ZKEYS
% 3 +UTILITIES - Perform utility functions
% 4 +FOREGROUND - Invoke language processors in foreground
% 5 +BATCH - Submit to batch for language processing
% 6 +COMMAND - Enter TSO or Workstation commands
% 7 +DIALOG TEST - Perform dialog testing
% 8 +LM UTILITIES- Perform library management utility functions
% C +IGYTCARB - Run IGYTCARB UPDATE TRANSACTION PROGRAM (1)
% T +TUTORIAL - Display information about ISPF/PDF
% X +EXIT - Terminate using console, log, and list defaults
%
%

810 Enterprise COBOL for z/OS, V5.2 Programming Guide

+Enter%END+command to terminate ISPF.
%
)INIT

.HELP = ISR00003
&ZPRIM = YES /* ALWAYS A PRIMARY OPTION MENU */
&ZHTOP = ISR00003 /* TUTORIAL TABLE OF CONTENTS */
&ZHINDEX = ISR91000 /* TUTORIAL INDEX - 1ST PAGE */
VPUT (ZHTOP,ZHINDEX) PROFILE

)PROC
&Z1 = TRUNC(&ZCMD,1)
IF (&Z1 ¬sym.= ’.’)
&ZSEL = TRANS(TRUNC (&ZCMD,’.’)

0,’PANEL(ISPOPTA)’
1,’PGM(ISRBRO) PARM(ISRBRO01)’
2,’PGM(ISREDIT) PARM(P,ISREDM01)’
3,’PANEL(ISRUTIL)’
4,’PANEL(ISRFPA)’
5,’PGM(ISRJB1) PARM(ISRJPA) NOCHECK’
6,’PGM(ISRPCC)’
7,’PGM(ISRYXDR) NOCHECK’
8,’PANEL(ISRLPRIM)’
C,’PGM(IGYTCARB)’ (2)
T,’PGM(ISPTUTOR) PARM(ISR00000)’

’ ’,’ ’
X,’EXIT’
*,’?’)

&ZTRAIL = .TRAIL
IF (&Z1 = ’.’) .msg = ISPD141

)END

As indicated by (1) in this example, you add IGYTCARB to the upper portion
of the panel by entering:
% C +IGYTCARB - Run IGYTCARB UPDATE TRANSACTION PROGRAM

You add the corresponding line on the lower portion of the panel, indicated by
(2), by entering:
C,’PGM(IGYTCARB)’

2. Place ISR@PRIM (or your other modified panel) and IGYTPNL in a library and
make this library the first library in the ISPPLIB concatenation.

3. Comment sequence line IB2200 and uncomment sequence line IB2210 in
IGYTCARB. (The OPEN EXTEND verb is supported under z/OS.)

4. Compile and link-edit IGYTCARB and place the resulting program object in
your LOADLIB.

5. Allocate ISPLLIB by using the following command:
ALLOCATE FILE(ISPLLIB) DATASET(DSN1, SYS1.COBLIB, DSN2) SHR REUSE

Here DSN1 is the library name of the LOADLIB from step 4. DSN2 is your
installed ISPLLIB.

6. Allocate the input and output data sets by using the following command:
ALLOCATE FILE(UPDTRANS) DA(’IGY.V5R1M0.SIGYSAMP(IGYTRANB)’) SHR REUSE

7. Allocate ISPPLIB by using the following command:
ALLOCATE FILE(ISPPLIB) DATASET(DSN3, DSN4) SHR REUSE

Here DSN3 is the library containing the modified panels. DSN4 is the ISPF panel
library.

8. Invoke IGYTCARB by using your modified panel.

RELATED REFERENCES

ISPF Dialog Developer's Guide and Reference

Appendix G. Using sample programs 811

IGYTSALE: nested program application
Application IGYTSALE tracks product sales and sales commissions for a
sporting-goods distributor.

This nested program application does the following tasks:
1. Keeps a record of the product line, customers, and number of salespeople. This

data is stored in a file called IGYTABLE.
2. Maintains a file that records valid transactions and transaction errors. All

transactions that are not valid are flagged, and the results are printed in a
report. Transactions to be processed are in a file called IGYTRANA.

3. Processes transactions and report sales by location.
4. Records an individual's sales performance and commission, and prints the

results in a report.
5. Reports the sale and shipment dates in local time and UTC (Universal Time

Coordinate), and calculates the response time.

The following diagram shows the parts of the application as a hierarchy:

The following diagram shows how the parts are nested:

812 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED TASKS

“Preparing to run IGYTSALE” on page 818

RELATED REFERENCES

“Input data for IGYTSALE”
“Reports produced by IGYTSALE” on page 815
“Language elements and concepts that are illustrated” on page 819

Input data for IGYTSALE
As input to our program, the distributor collected information about its customers,
salespeople, and products, coded the information, and produced an input file.

This input file, called IGYTABLE, is loaded into three separate tables for use
during transaction processing. The format of the file is as follows, with an
explanation of the items below:

1. Record type
2. Customer code
3. Customer name
4. Product code

Appendix G. Using sample programs 813

5. Product description
6. Product unit price
7. Salesperson number
8. Salesperson name
9. Date of hire

10. Commission rate

The value of field 1 (C, P, or S) determines the format of the input record. The
following sample shows a section of IGYTABLE:
S1111Edyth Phillips 062484042327
S1122Chuck Morgan 052780084425
S1133Art Tung 022882061728
S1144Billy Jim Bob 010272121150
S1155Chris Preston 122083053377
S1166Al Willie Roz 111276100000
P01Footballs 0000620
P02Football Equipment 0032080
P03Football Uniform 0004910
P04Basketballs 0002220
P05Basketball Rim/Board0008830
P06Basketball Uniform 0004220
C01L. A. Sports
C02Gear Up
C03Play Outdoors
C04Sports 4 You
C05Sports R US
C06Stay Active
C07Sport Shop
C08Stay Sporty
C09Hot Sports
C10The Sportsman
C11Playing Ball
C12Sports Play
. . .

In addition, the distributor collected information about sales transactions. Each
transaction represents an individual salesperson's sales to a particular customer.
The customer can purchase from one to five items during each transaction. The
transaction information is coded and put into an input file, called IGYTRANA. The
format of this file is as follows, with an explanation of the items below:

1. Sales order number
2. Invoiced items (number of different items ordered)
3. Date of sale (year month day hour minutes seconds)
4. Sales area
5. Salesperson number
6. Customer code
7. Date of shipment (year month day hour minutes seconds)
8. Product code
9. Quantity sold

814 Enterprise COBOL for z/OS, V5.2 Programming Guide

Fields 8 and 9 occur one to eight times depending on the number of different items
ordered (field 2). The following sample shows a section of IGYTRANA:
A00001119900227010101CNTRL VALLEY11442019900228259999
A00004119900310100530CNTRL VALLEY11441019900403150099
A00005119900418222409CNTRL VALLEY11441219900419059900
A00006119900523151010CNTRL VALLEY11442019900623250004

419990324591515SAN DIEGO 11615 60200132200110522045100
B11114419901111003301SAN DIEGO 11661519901114260200132200110522041100
A00007119901115003205CNTRL VALLEY11332019901117120023
C00125419900118101527SF BAY AREA 11331519900120160200112200250522145111
B11116419901201132013SF BAY AREA 11331519901203060200102200110522045102
B11117319901201070833SAN Diego 1165661990120333020o132200120522041100
B11118419901221191544SAN DIEGO 11661419901223160200142200130522040300
B11119419901210211544SAN DIEGO 11221219901214060200152200160522050500
B11120419901212000816SAN DIEGO 11220419901213150200052200160522040100
B11121419901201131544SAN DIEGO 11330219901203120200112200140522250100
B11122419901112073312SAN DIEGO 11221019901113100200162200260522250100
B11123919901110123314SAN DIEGO 11660919901114260200270500110522250100140010
B11124219901313510000SAN DIEGO 116611 1 0200042200120a22141100
B11125419901215012510SAN DIEGO 11661519901216110200162200130522141111
B11126119901111000034SAN DIEGO 11331619901113260022
B11127119901110154100SAN DIEGO 11221219901113122000
B11128419901110175001SAN DIEGO 11661519901113260200132200160521041104
. . .

Reports produced by IGYTSALE
The figures referenced below are samples of IGYTSALE output.

The program records the following data in reports:
v Transaction errors
v Sales by product and area
v Individual sales performance and commissions
v Response time between the sale date and the date the sold products are shipped

Your output might vary slightly in appearance, depending on your system.

“Example: IGYTSALE transaction errors”
“Example: IGYTSALE sales analysis by product by area” on page 816
“Example: IGYTSALE sales and commissions” on page 817
“Example: IGYTSALE response time from sale to ship” on page 817

Example: IGYTSALE transaction errors
The following sample of IGYTSALE output shows transaction errors in the last
column.
Day of Report: Tuesday C O B O L S P O R T S 11/24/2003 03:12 Page: 1

Invalid Edited Transactions
Sales Inv. Sales Sales Sales Cust. Product And Quantity Sold Ship
Order Items Time Stamp Area Pers Code Date Stamp
----- ----- -------------- ----------- ----- ----- ------------------------- ------------

4 19990324591515 SAN DIEGO 116 15 60200132200110522045100 Error Descriptions
-Sales order number is missing
-Date of sale time stamp is invalid
-Salesperson number not numeric
-Product code not in product-table
-Date of ship time stamp is invalid

B11117 3 19901201070833 SAN Diego 1165 66 33020o132200120522041100 19901203 Error Descriptions
-Sales area not in area-table
-Salesperson not in sales-per-table
-Customer code not in customer-table
-Product code not in product-table
-Quantity sold not numeric

B11123 9 19901110123314 SAN DIEGO 1166 09 260200270500110522250100140010 19901114 Error Descriptions
-Invoiced items is invalid
-Product and quantity not checked
-Date of ship time stamp is invalid

B11124 2 19901313510000 SAN DIEGO 1166 11 1 0200042200120a22141100 Error Descriptions
-Date of sale time stamp is invalid
-Product code is invalid
-Date of ship time stamp is invalid

133 81119110000 LOS ANGELES 1166 10 040112110210160321251104 Error Descriptions

Appendix G. Using sample programs 815

-Sales order number is invalid
-Invoiced items is invalid
-Date of sale time stamp is invalid
-Product and quantity not checked
-Date of ship time stamp is invalid

C11133 4 1990111944 1166 10 040112110210160321251104 Error Descriptions
-Date of sale time stamp is invalid
-Sales area is missing
-Date of ship time stamp is invalid

C11138 4 19901117091530 LOS ANGELES 1155 113200102010260321250004 19901119 Error Descriptions
-Customer code is invalid

D00009 9 19901201222222 CNTRL COAST 115 19 141 1131221 19901202 Error Descriptions
-Invoiced items is invalid

Example: IGYTSALE sales analysis by product by area
The following sample of IGYTSALE output shows sales by product and area.
Day of Report: Tuesday C O B O L S P O R T S 11/24/2003 03:12 Page: 1

Sales Analysis By Product By Area
Areas of Sale

| | CNTRL COAST | CNTRL VALLEY | LOS ANGELES | NORTH COAST | SAN DIEGO | SF BAY AREA | |
| Product Codes | | | | | | | Product Totals |
==
Product Number 04							
Basketballs							
Units Sold			433		2604	5102	8139
Unit Price			22.20		22.20	22.20	
Amount of Sale			$9,612.60		$57,808.80	$113,264.40	$180,685.80
--
Product Number 05							
Basketball Rim/Board							
Units Sold		9900	2120	11	2700		14731
Unit Price		88.30	88.30	88.30	88.30		
Amount of Sale		$874,170.00	$187,196.00	$971.30	$238,410.00		$1,300,747.30
--
Product Number 06							
Basketball Uniform							
Units Sold				990	200	200	1390
Unit Price				42.20	42.20	42.20	
Amount of Sale				$41,778.00	$8,440.00	$8,440.00	$58,658.00
--
Product Number 10							
Baseball Cage							
Units Sold	45		3450	16	200	3320	7031
Unit Price	890.00		890.00	890.00	890.00	890.00	
Amount of Sale	$40,050.00		$3,070,500.00	$14,240.00	$178,000.00	$2,954,800.00	$6,257,590.00
--
Product Number 11							
Baseball Uniform							
Units Sold	10003		3578		2922	2746	19249
Unit Price	45.70		45.70		45.70	45.70	
Amount of Sale	$457,137.10		$163,514.60		$133,535.40	$125,492.20	$879,679.30
--
Product Number 12							
Softballs							
Units Sold	10	137	2564	13	2200	22	4946
Unit Price	1.40	1.40	1.40	1.40	1.40	1.40	
Amount of Sale	$14.00	$191.80	$3,589.60	$18.20	$3,080.00	$30.80	$6,924.40
--
Product Number 13							
Softball Bats							
Units Sold	3227		3300	1998	5444	99	14068
Unit Price	12.60		12.60	12.60	12.60	12.60	
Amount of Sale	$40,660.20		$41,580.00	$25,174.80	$68,594.40	$1,247.40	$177,256.80
--
Product Number 14							
Softball Gloves							
Units Sold	1155		136	3119	3833	5152	13395
Unit Price	12.00		12.00	12.00	12.00	12.00	
Amount of Sale	$13,860.00		$1,632.00	$37,428.00	$45,996.00	$61,824.00	$160,740.00
--
Product Number 15							
Softball Cage							
Units Sold	997	99	2000		2400		5496
Unit Price	890.00	890.00	890.00		890.00		
Amount of Sale	$887,330.00	$88,110.00	$1,780,000.00		$2,136,000.00		$4,891,440.00
--
Product Number 16							
Softball Uniform							
Units Sold	44		465	16	6165	200	6890
Unit Price	45.70		45.70	45.70	45.70	45.70	
Amount of Sale	$2,010.80		$21,250.50	$731.20	$281,740.50	$9,140.00	$314,873.00
--
Product Number 25							
RacketBalls							
Units Sold	1001	10003	1108	8989	200	522	21823
Unit Price	0.60	0.60	0.60	0.60	0.60	0.60	
Amount of Sale	$600.60	$6,001.80	$664.80	$5,393.40	$120.00	$313.20	$13,093.80
--
Product Number 26							
Racketball Rackets							
Units Sold	21		862	194	944	31	2052
Unit Price	12.70		12.70	12.70	12.70	12.70	
Amount of Sale	$266.70		$10,947.40	$2,463.80	$11,988.80	$393.70	$26,060.40
--
==
| Total Units Sold | 16503 | 20139 | 20016 | 15346 | 29812 | 17394 * 119210 *
| Total Sales |$1,441,929.40 | $968,473.60 |$5,290,487.50 | $128,198.70 |$3,163,713.90 |$3,274,945.70 * $14,267,748.80 *

816 Enterprise COBOL for z/OS, V5.2 Programming Guide

Example: IGYTSALE sales and commissions
The following sample of IGYTSALE output shows sales performance and
commissions by salesperson.
Day of Report: Tuesday C O B O L S P O R T S 11/24/2003 03:12 Page: 1

Sales and Commission Report
Salesperson: Billy Jim Bob
Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned
-------------------- --------- -------- -------------- -------- ----------- -----------
Sports Stop 3 10117 $6,161.40 2.25% $138.63 $746.45
The Sportsman 1 99 $88,110.00 5.06% $4,458.36 $10,674.52
Sports Play 1 9900 $874,170.00 7.59% $66,349.50 $105,905.69

--------- -------- -------------- ----------- -----------
Totals: 5 20116 $968,441.40 $70,946.49 $117,326.66
Salesperson: Willie Al Roz
Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned
-------------------- --------- -------- -------------- -------- ----------- -----------
Winners Club 4 13998 $1,572,775.90 7.59% $119,373.69 $157,277.59
Winning Sports 1 3222 $48,777.20 3.38% $1,648.66 $4,877.72
The Sportsman 1 1747 $27,415.50 3.38% $926.64 $2,741.55
Play Outdoors 1 2510 $18,579.60 3.38% $627.99 $1,857.96

--------- -------- -------------- ----------- -----------
Totals: 7 21477 $1,667,548.20 $122,576.98 $166,754.82
Salesperson: Art Tung
Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned
-------------------- --------- -------- -------------- -------- ----------- -----------
Sports Stop 1 23 $32.20 2.25% $.72 $1.98
Winners Club 2 16057 $2,274,885.00 7.59% $172,663.77 $140,424.10
Gear Up 1 3022 $107,144.00 7.59% $8,132.22 $6,613.78
Sports Club 1 22 $279.40 2.25% $6.28 $17.24
Sports Fans Shop 1 1044 $20,447.30 3.38% $691.11 $1,262.17
L. A. Sports 1 1163 $979,198.10 7.59% $74,321.13 $60,443.94

--------- -------- -------------- ----------- -----------
Totals: 7 21331 $3,381,986.00 $255,815.23 $208,763.21
Salesperson: Chuck Morgan
Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned
-------------------- --------- -------- -------------- -------- ----------- -----------
Sports Play 3 7422 $3,817,245.40 7.59% $289,728.92 $322,270.94
Sports 4 You 1 3022 $398,335.40 7.59% $30,233.65 $33,629.46
The Sportsman 1 3022 $285,229.40 7.59% $21,648.91 $24,080.49
Sports 4 Winners 1 1100 $68,509.40 5.06% $3,466.57 $5,783.90
Sports Club 1 12027 $1,324,256.10 7.59% $100,511.03 $111,800.32

--------- -------- -------------- ----------- -----------
Totals: 7 26593 $5,893,575.70 $445,589.08 $497,565.11
Salesperson: Chris Preston
Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned
-------------------- --------- -------- -------------- -------- ----------- -----------
Playing Ball 1 5535 $1,939,219.10 7.59% $147,186.72 $103,509.69
Play Sports 1 5675 $225,130.80 7.59% $17,087.42 $12,016.80
Winners Club 1 631 $14,069.70 2.25% $316.56 $750.99
The Jock Shop 1 2332 $28,716.60 3.38% $970.62 $1,532.80

--------- -------- -------------- ----------- -----------
Totals: 4 14173 $2,207,136.20 $165,561.32 $117,810.28
Salesperson: Edyth Phillips
Customers: Number of Products Total for Discount Discount Commission

Orders Ordered Order (if any) Amount Earned
-------------------- --------- -------- -------------- -------- ----------- -----------
Sports Play 2 3575 $92,409.90 5.06% $4,675.94 $3,911.43
Winning Sports 1 11945 $56,651.40 5.06% $2,866.56 $2,397.88

--------- -------- -------------- ----------- -----------
Totals: 3 15520 $149,061.30 $7,542.50 $6,309.31

Grand Totals: 33 119210 $14,267,748.80 $1,068,031.60 $1,114,529.39

Example: IGYTSALE response time from sale to ship
The following sample of IGYTSALE output shows response time between the sale
date in the United States and the date the sold products are shipped to Europe.
Day of Report: Monday COBOL SPORTS 11/24/2003 03:12 Page: 1

Response Time from USA Sale to European Ship
Prod Units Sale Date/Time(PST) Ship Date Ship Response Time
Code Sold YYYYMMDD HHMMSS YYYYMMDD Day Days
---- ----- -------- ------ -------- ---- -------------
25 9999 19900226 010101 19900228 WED .95
15 99 19900310 100530 19900403 TUE 23.57
05 9900 19900418 222409 19900419 THU .06
25 4 19900523 151010 19900623 SAT 30.36
04 1100 19901110 003301 19901114 WED 2.97
12 23 19901114 003205 19901117 SAT 1.97

Appendix G. Using sample programs 817

14 5111 19900118 101527 19900120 SAT 1.57
04 5102 19901201 132013 19901203 MON 1.44
04 300 19901221 191544 19901223 SUN 1.19
05 500 19901210 211544 19901214 FRI 3.11
04 100 19901211 000816 19901213 THU .99
25 100 19901201 131544 19901203 MON 1.44
25 100 19901112 073312 19901113 TUE .68
14 1111 19901214 012510 19901216 SUN .94
26 22 19901110 000034 19901113 TUE 1.99
12 2000 19901110 154100 19901113 TUE 2.34
04 1104 19901110 175001 19901113 TUE 2.25
12 114 19901229 115522 19901230 SUN .50
15 2000 19901110 190113 19901114 WED 3.20
10 1440 19901112 001500 19901115 THU 1.98
25 1104 19901118 120101 19901119 MON .49
25 4 19901118 110030 19901119 MON .54
12 144 19901114 010510 19901119 MON 3.95
14 112 19901119 010101 19901122 THU 1.95
26 321 19901117 173945 19901119 MON 1.26
13 1221 19901101 135133 19901102 FRI .42
10 22 19901029 210000 19901030 TUE .12
14 35 19901130 160500 19901201 SAT .32
11 9005 19901211 050505 19901212 WED .78
06 990 19900511 214409 19900515 TUE 3.09
13 1998 19900712 150100 19900716 MON 3.37
26 31 19901010 185559 19901011 THU .21
14 30 19901210 195500 19901212 WED 1.17

Preparing to run IGYTSALE
All files required by the IGYTSALE program (IGYTSALE, IGYTCRC, IGYTPRC,
IGYTSRC, IGYTABLE, and IGYTRANA) are on the product installation tape in the
IGY.V5R1M0.SIGYSAMP data set.

You can change data-set names and procedure-names at installation time. Check
with your system programmer to verify these names.

Do not change these options in the CBL statement in the source file for IGYTSALE:
v NONUMBER

v SEQUENCE

v NONUMBER

v QUOTE

With these options in effect, the program might not cause any diagnostic messages
to be issued. You can use the sequence number string in the source file to search
for the language elements used.

When you run IGYTSALE, the following messages are printed to the SYSOUT data
set:
Program IGYTSALE Begins
There were 00041 records processed in this program
Program IGYTSALE Normal End

RELATED CONCEPTS

“IGYTSALE: nested program application” on page 812

RELATED TASKS

“Running IGYTSALE” on page 819

818 Enterprise COBOL for z/OS, V5.2 Programming Guide

RELATED REFERENCES

“Input data for IGYTSALE” on page 813
“Reports produced by IGYTSALE” on page 815
“Language elements and concepts that are illustrated”

Running IGYTSALE
Use the following JCL to compile, link-edit, and run the IGYTSALE program. If
you want only to compile or only to compile and link-edit the program, change the
IGYWCLG cataloged procedure.

Insert the accounting information for your system or installation in the fields that
are shown in lowercase letters.
//IGYTSALE JOB (acct-info),’IGYTSALE’,MSGLEVEL=(1,1),TIME=(0,29)
//TEST EXEC IGYWCLG
//COBOL.SYSLIB DD DSN=IGY.V5R1M0.SIGYSAMP,DISP=SHR
//COBOL.SYSIN DD DSN=IGY.V5R1M0.SIGYSAMP(IGYTSALE),DISP=SHR
//GO.SYSOUT DD SYSOUT=A
//GO.IGYTABLE DD DSN=IGY.V5R1M0.SIGYSAMP(IGYTABLE),DISP=SHR
//GO.IGYTRANS DD DSN=IGY.V5R1M0.SIGYSAMP(IGYTRANA),DISP=SHR
//GO.IGYPRINT DD SYSOUT=A,DCB=BLKSIZE=133
//GO.IGYPRT2 DD SYSOUT=A,DCB=BLKSIZE=133
//

Language elements and concepts that are illustrated
The sample programs illustrate several COBOL language elements and concepts.

To find the applicable language element for a sample program, locate the
abbreviation for that program in the sequence string:

Sample program Abbreviation

IGYTCARA IA

IGYTCARB IB

IGYTSALE IS

The following table lists the language elements and programming concepts that the
sample programs illustrate. The language element or concept is described, and the
sequence string is shown. The sequence string is the special character string that
appears in the sequence field of the source file. You can use this string as a search
argument for locating the elements in the listing.

Language element or concept Sequence string

ACCEPT . . . FROM DAY-OF-WEEK IS0900

ACCEPT . . . FROM DATE IS0901

ACCEPT . . . FROM TIME IS0902

ADD . . . TO IS4550

AFTER ADVANCING IS2700

AFTER PAGE IS2600

ALL IS4200

ASSIGN IS1101

AUTHOR IA0040

CALL IS0800

Appendix G. Using sample programs 819

Language element or concept Sequence string

Callable services (Language Environment):

1. CEEDATM: format date or time output

2. CEEDCOD: feedback code check

3. CEEGMTO: UTC offset from local time

4. CEELOCT: local date and time

5. CEESECS: convert time stamp to seconds

1. IS0875, IS2575

2. IS0905

3. IS0904

4. IS0850

5. IS2350, IS2550

CLOSE files IS1900

Comma, semicolon, and space interchangeable IS3500, IS3600

COMMON statement for nested programs IS4600

Complex OCCURS DEPENDING ON IS0700, IS3700

COMPUTE IS4501

COMPUTE ROUNDED IS4500

CONFIGURATION SECTION IA0970

CONFIGURATION SECTION (optional) IS0200

CONTINUE statement IA5310, IA5380

COPY statement IS0500

DATA DIVISION (optional) IS5100

Data validation IA5130-6190

Do-until (PERFORM . . . TEST AFTER) IA4900-5010, IA7690-7770

Do-while (PERFORM . . . TEST BEFORE) IS1660

END-ADD IS2900

END-COMPUTE IS4510

END-EVALUATE IA6590, IS2450

END-IF IS1680

END-MULTIPLY IS3100

END-PERFORM IS1700

END PROGRAM IA9990

END-READ IS1800

END-SEARCH IS3400

ENVIRONMENT DIVISION (optional) IS0200

Error handling, termination of program IA4620, IA5080, IA7800-7980

EVALUATE statement IA6270-6590

EVALUATE . . . ALSO IS2400

EXIT PROGRAM not only statement in paragraph IS2000

Exponentiation IS4500

EXTERNAL clause IS1200

FILE-CONTROL entry for sequential file IA1190-1300

FILE-CONTROL entry for VSAM indexed file IA1070-1180

FILE SECTION (optional) IS0200

FILE STATUS code check IA4600-4630, IA4760-4790

FILLER (optional) IS0400

820 Enterprise COBOL for z/OS, V5.2 Programming Guide

Language element or concept Sequence string

Flags, level-88, definition IA1730-1800, IA2440-2480, IA2710

Flags, level-88, testing IA4430, IA5200-5250

FLOATING POINT IS4400

GLOBAL statement IS0300

INITIAL statement for nested programs IS2300

INITIALIZE IS2500

Initializing a table in the DATA DIVISION IA2920-4260

Inline PERFORM statement IA4410-4520

I-O-CONTROL paragraphs (optional) IS0200

INPUT-OUTPUT SECTION (optional) IS0200

Intrinsic functions:

1. CURRENT-DATE

2. MAX

3. MEAN

4. MEDIAN

5. MIN

6. STANDARD-DEVIATION

7. UPPER-CASE

8. VARIANCE

9. WHEN-COMPILED

1. IA9005

2. IA9235

3. IA9215

4. IA9220

5. IA9240

6. IA9230

7. IA9015

8. IA9225

9. IA9000

IS (optional in all clauses) IS0700

LABEL RECORDS (optional) IS1150

LINKAGE SECTION IS4900

Mixing of indexes and subscripts IS3500

Mnemonic names IA1000

MOVE IS0903

MOVE CORRESPONDING statement IA4810, IA4830

MULTIPLY . . . GIVING IS3000

Nested IF statement, using END-IF IA5460-5830

Nested program IS1000

NEXT SENTENCE IS4300

NOT AT END IS1600

NULL IS4800

OBJECT-COMPUTER (optional) IS0200

OCCURS DEPENDING ON IS0710

ODO uses maximum length for receiving item IS1550

OPEN EXTEND IB2210

OPEN INPUT IS1400

OPEN OUTPUT IS1500

ORGANIZATION (optional) IS1100

Page eject IA7180-7210

Parenthesis in abbreviated conditions IS4850

Appendix G. Using sample programs 821

Language element or concept Sequence string

PERFORM . . . WITH TEST AFTER (Do-until) IA4900-5010, IA7690-7770

PERFORM . . . WITH TEST BEFORE (Do-while) IS1660

PERFORM . . . UNTIL IS5000

PERFORM . . . VARYING statement IA7690-7770

POINTER function IS4700

Print file FD entry IA1570-1620

Print report IA7100-7360

PROCEDURE DIVISION . . . USING IB1320-IB1650

PROGRAM-ID (30 characters allowed) IS0120

READ . . . INTO . . . AT END IS1550

REDEFINES statement IA1940, IA2060, IA2890, IA3320

Reference modification IS2425

Relational operator <= (less than or equal) IS4400

Relational operator >= (greater than or equal) IS2425

Relative subscripting IS4000

REPLACE IS4100

SEARCH statement IS3300

SELECT IS1100

Sequence number can contain any character IA, IB, IS

Sequential file processing IA4480-4510, IA4840-4870

Sequential table search, using PERFORM IA7690-7770

Sequential table search, using SEARCH IA5270-5320, IA5340-5390

SET INDEX IS3200

SET . . . TO TRUE statement IA4390, IA4500, IA4860, IA4980

SOURCE-COMPUTER (optional) IS0200

SPECIAL-NAMES paragraph (optional) IS0200

STRING statement IA6950, IA7050

Support for lowercase letters IS0100

TALLY IS1650

TITLE statement for nested programs IS0100

Update commuter record IA6200-6610

Update transaction work value spaces IB0790-IB1000

USAGE BINARY IS1300

USAGE PACKED-DECIMAL IS1301

Validate elements IB0810, IB0860, IB1000

VALUE with OCCURS IS0600

VALUE SPACE (S) IS0601

VALUE ZERO (S) (ES) IS0600

Variable-length table control variable IA5100

Variable-length table definition IA2090-2210

Variable-length table loading IA4840-4990

822 Enterprise COBOL for z/OS, V5.2 Programming Guide

Language element or concept Sequence string

VSAM indexed file key definition IA1170

VSAM return-code display IA7800-7900

WORKING-STORAGE SECTION IS0250

Appendix G. Using sample programs 823

824 Enterprise COBOL for z/OS, V5.2 Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2018 825

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

826 Enterprise COBOL for z/OS, V5.2 Programming Guide

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 827

http://www.ibm.com/legal/copytrade.shtml

828 Enterprise COBOL for z/OS, V5.2 Programming Guide

Glossary

The terms in this glossary are defined in
accordance with their meaning in COBOL. These
terms might or might not have the same meaning
in other languages.

This glossary includes terms and definitions from
the following publications:
v ANSI INCITS 23-1985, Programming languages -

COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic
Function Module for COBOL, and ANSI INCITS
23b-1993, Programming Languages - Correction
Amendment for COBOL

v ANSI X3.172-2002, American National Standard
Dictionary for Information Systems

American National Standard definitions are
preceded by an asterisk (*).

A

* abbreviated combined relation condition
The combined condition that results from
the explicit omission of a common subject
or a common subject and common
relational operator in a consecutive
sequence of relation conditions.

abend Abnormal termination of a program.

above the 16 MB line
Storage above the so-called 16 MB line (or
boundary) but below the 2 GB bar. This
storage is addressable only in 31-bit
mode. Before IBM introduced the
MVS/XA architecture in the 1980s, the
virtual storage for a program was limited
to 16 MB. Programs that have been
compiled with a 24-bit mode can address
only 16 MB of space, as though they were
kept under an imaginary storage line.
Since VS COBOL II, a program that has
been compiled with a 31-bit mode can be
above the 16 MB line.

* access mode
The manner in which records are to be
operated upon within a file.

* actual decimal point
The physical representation, using the

decimal point characters period (.) or
comma (,), of the decimal point position
in a data item.

actual document encoding
For an XML document, one of the
following encoding categories that the
XML parser determines by examining the
first few bytes of the document:
v ASCII
v EBCDIC
v UTF-8
v UTF-16, either big-endian or

little-endian
v Other unsupported encoding
v No recognizable encoding

* alphabet-name
A user-defined word, in the
SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION, that assigns a
name to a specific character set or
collating sequence or both.

* alphabetic character
A letter or a space character.

alphabetic data item
A data item that is described with a
PICTURE character string that contains
only the symbol A. An alphabetic data
item has USAGE DISPLAY.

* alphanumeric character
Any character in the single-byte character
set of the computer.

alphanumeric data item
A general reference to a data item that is
described implicitly or explicitly as USAGE
DISPLAY, and that has category
alphanumeric, alphanumeric-edited, or
numeric-edited.

alphanumeric-edited data item
A data item that is described by a PICTURE
character string that contains at least one
instance of the symbol A or X and at least
one of the simple insertion symbols B, 0,
or /. An alphanumeric-edited data item
has USAGE DISPLAY.

* alphanumeric function
A function whose value is composed of a

© Copyright IBM Corp. 1991, 2018 829

string of one or more characters from the
alphanumeric character set of the
computer.

alphanumeric group item
A group item that is defined without a
GROUP-USAGE NATIONAL clause. For
operations such as INSPECT, STRING, and
UNSTRING, an alphanumeric group item is
processed as though all its content were
described as USAGE DISPLAY regardless of
the actual content of the group. For
operations that require processing of the
elementary items within a group, such as
MOVE CORRESPONDING, ADD CORRESPONDING,
or INITIALIZE, an alphanumeric group
item is processed using group semantics.

alphanumeric literal
A literal that has an opening delimiter
from the following set: ’, ", X’, X", Z’, or
Z". The string of characters can include
any character in the character set of the
computer.

* alternate record key
A key, other than the prime record key,
whose contents identify a record within
an indexed file.

ANSI (American National Standards Institute)
An organization that consists of
producers, consumers, and
general-interest groups and establishes the
procedures by which accredited
organizations create and maintain
voluntary industry standards in the
United States.

argument
(1) An identifier, a literal, an arithmetic
expression, or a function-identifier that
specifies a value to be used in the
evaluation of a function. (2) An operand
of the USING phrase of a CALL or INVOKE
statement, used for passing values to a
called program or an invoked method.

* arithmetic expression
An identifier of a numeric elementary
item, a numeric literal, such identifiers
and literals separated by arithmetic
operators, two arithmetic expressions
separated by an arithmetic operator, or an
arithmetic expression enclosed in
parentheses.

* arithmetic operation
The process caused by the execution of an

arithmetic statement, or the evaluation of
an arithmetic expression, that results in a
mathematically correct solution to the
arguments presented.

* arithmetic operator
A single character, or a fixed
two-character combination that belongs to
the following set:

Character Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation

* arithmetic statement
A statement that causes an arithmetic
operation to be executed. The arithmetic
statements are ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT.

array An aggregate that consists of data objects,
each of which can be uniquely referenced
by subscripting. An array is roughly
analogous to a COBOL table.

* ascending key
A key upon the values of which data is
ordered, starting with the lowest value of
the key up to the highest value of the key,
in accordance with the rules for
comparing data items.

ASCII
American National Standard Code for
Information Interchange. The standard
code uses a coded character set that is
based on 7-bit coded characters (8 bits
including parity check). The standard is
used for information interchange between
data processing systems, data
communication systems, and associated
equipment. The ASCII set consists of
control characters and graphic characters.

IBM has defined an extension to ASCII
(characters 128-255).

assignment-name
A name that identifies the organization of
a COBOL file and the name by which it is
known to the system.

* assumed decimal point
A decimal point position that does not
involve the existence of an actual
character in a data item. The assumed

830 Enterprise COBOL for z/OS, V5.2 Programming Guide

decimal point has logical meaning but no
physical representation.

AT END condition
A condition that is caused during the
execution of a READ, RETURN, or SEARCH
statement under certain conditions:
v A READ statement runs on a sequentially

accessed file when no next logical
record exists in the file, or when the
number of significant digits in the
relative record number is larger than
the size of the relative key data item, or
when an optional input file is not
available.

v A RETURN statement runs when no next
logical record exists for the associated
sort or merge file.

v A SEARCH statement runs when the
search operation terminates without
satisfying the condition specified in any
of the associated WHEN phrases.

B

big-endian
The default format that the mainframe
and the AIX workstation use to store
binary data and UTF-16 characters. In this
format, the least significant byte of a
binary data item is at the highest address
and the least significant byte of a UTF-16
character is at the highest address.
Compare with little-endian.

binary item
A numeric data item that is represented in
binary notation (on the base 2 numbering
system). The decimal equivalent consists
of the decimal digits 0 through 9, plus an
operational sign. The leftmost bit of the
item is the operational sign.

binary search
A dichotomizing search in which, at each
step of the search, the set of data elements
is divided by two; some appropriate
action is taken in the case of an odd
number.

* block
A physical unit of data that is normally
composed of one or more logical records.
For mass storage files, a block can contain
a portion of a logical record. The size of a
block has no direct relationship to the size
of the file within which the block is
contained or to the size of the logical

records that are either contained within
the block or that overlap the block.
Synonymous with physical record.

breakpoint
A place in a computer program, usually
specified by an instruction, where external
intervention or a monitor program can
interrupt the program as it runs.

buffer
A portion of storage that is used to hold
input or output data temporarily.

built-in function
See intrinsic function.

business method
A method of an enterprise bean that
implements the business logic or rules of
an application. (Oracle)

byte A string that consists of a certain number
of bits, usually eight, treated as a unit,
and representing a character or a control
function.

byte order mark (BOM)
A Unicode character that can be used at
the start of UTF-16 or UTF-32 text to
indicate the byte order of subsequent text;
the byte order can be either big-endian or
little-endian.

bytecode
Machine-independent code that is
generated by the Java compiler and
executed by the Java interpreter. (Oracle)

C

callable services
In Language Environment, a set of
services that a COBOL program can
invoke by using the conventional
Language Environment-defined call
interface. All programs that share the
Language Environment conventions can
use these services.

called program
A program that is the object of a CALL
statement. At run time the called program
and calling program are combined to
produce a run unit.

* calling program
A program that executes a CALL to another
program.

Glossary 831

case structure
A program-processing logic in which a
series of conditions is tested in order to
choose between a number of resulting
actions.

cataloged procedure
A set of job control statements that are
placed in a partitioned data set called the
procedure library (SYS1.PROCLIB). You
can use cataloged procedures to save time
and reduce errors in coding JCL.

CCSID
See coded character set identifier.

century window
A 100-year interval within which any
two-digit year is unique. Several types of
century window are available to COBOL
programmers:
v For the windowing intrinsic functions

DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY, you specify the century
window with argument-2.

v For Language Environment callable
services, you specify the century
window in CEESCEN.

* character
The basic indivisible unit of the language.

character encoding unit
A unit of data that corresponds to one
code point in a coded character set. One
or more character encoding units are used
to represent a character in a coded
character set. Also known as encoding unit.

For USAGE NATIONAL, a character encoding
unit corresponds to one 2-byte code point
of UTF-16.

For USAGE DISPLAY, a character encoding
unit corresponds to a byte.

For USAGE DISPLAY-1, a character
encoding unit corresponds to a 2-byte
code point in the DBCS character set.

character position
The amount of physical storage or
presentation space required to hold or
present one character. The term applies to
any class of character. For specific classes
of characters, the following terms apply:
v Alphanumeric character position, for

characters represented in USAGE DISPLAY

v DBCS character position, for DBCS
characters represented in USAGE
DISPLAY-1

v National character position, for characters
represented in USAGE NATIONAL;
synonymous with character encoding unit
for UTF-16

character set
A collection of elements that are used to
represent textual information, but for
which no coded representation is
assumed. See also coded character set.

character string
A sequence of contiguous characters that
form a COBOL word, a literal, a PICTURE
character string, or a comment-entry. A
character string must be delimited by
separators.

checkpoint
A point at which information about the
status of a job and the system can be
recorded so that the job step can be
restarted later.

* class
The entity that defines common behavior
and implementation for zero, one, or
more objects. The objects that share the
same implementation are considered to be
objects of the same class. Classes can be
defined hierarchically, allowing one class
to inherit from another.

* class condition
The proposition (for which a truth value
can be determined) that the content of an
item is wholly alphabetic, is wholly
numeric, is wholly DBCS, is wholly Kanji,
or consists exclusively of the characters
that are listed in the definition of a
class-name.

* class definition
The COBOL source unit that defines a
class.

class hierarchy
A tree-like structure that shows
relationships among object classes. It
places one class at the top and one or
more layers of classes below it.
Synonymous with inheritance hierarchy.

* class identification entry
An entry in the CLASS-ID paragraph of the
IDENTIFICATION DIVISION; this entry
contains clauses that specify the

832 Enterprise COBOL for z/OS, V5.2 Programming Guide

class-name and assign selected attributes
to the class definition.

class-name (object-oriented)
The name of an object-oriented COBOL
class definition.

* class-name (of data)
A user-defined word that is defined in the
SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION; this word assigns
a name to the proposition (for which a
truth value can be defined) that the
content of a data item consists exclusively
of the characters that are listed in the
definition of the class-name.

class object
The runtime object that represents a class.

* clause
An ordered set of consecutive COBOL
character strings whose purpose is to
specify an attribute of an entry.

client In object-oriented programming, a
program or method that requests services
from one or more methods in a class.

COBOL character set
The set of characters used in writing
COBOL syntax. The complete COBOL
character set consists of these characters:

Character Meaning
0,1, . . . ,9 Digit
A,B, . . . ,Z Uppercase letter
a,b, . . . ,z Lowercase letter

Space
+ Plus sign
- Minus sign (hyphen)
* Asterisk
/ Slant (forward slash)
= Equal sign
$ Currency sign
, Comma
; Semicolon
. Period (decimal point, full stop)
" Quotation mark
' Apostrophe
(Left parenthesis
) Right parenthesis
> Greater than
< Less than
: Colon
_ Underscore

* COBOL word
See word.

code page
An assignment of graphic characters and
control function meanings to all code
points. For example, one code page could
assign characters and meanings to 256
code points for 8-bit code, and another
code page could assign characters and
meanings to 128 code points for 7-bit
code. For example, one of the IBM code
pages for English on the workstation is
IBM-1252 and on the host is IBM-1047. A
coded character set.

code point
A unique bit pattern that is defined in a
coded character set (code page). Graphic
symbols and control characters are
assigned to code points.

coded character set
A set of unambiguous rules that establish
a character set and the relationship
between the characters of the set and their
coded representation. Examples of coded
character sets are the character sets as
represented by ASCII or EBCDIC code
pages or by the UTF-16 encoding scheme
for Unicode.

coded character set identifier (CCSID)
An IBM-defined number in the range 1 to
65,535 that identifies a specific code page.

* collating sequence
The sequence in which the characters that
are acceptable to a computer are ordered
for purposes of sorting, merging,
comparing, and for processing indexed
files sequentially.

* column
A byte position within a print line or
within a reference format line. The
columns are numbered from 1, by 1,
starting at the leftmost position of the line
and extending to the rightmost position of
the line. A column holds one single-byte
character.

* combined condition
A condition that is the result of
connecting two or more conditions with
the AND or the OR logical operator. See also
condition and negated combined condition.

* comment-entry
An entry in the IDENTIFICATION DIVISION
that can be any combination of characters
from the character set of the computer.

Glossary 833

comment line
A source program line represented by an
asterisk (*) in the indicator area of the
line and any characters from the character
set of the computer that follow in Area A
and Area B of that line. A comment line
serves only for documentation. A special
form of comment line represented by a
slant (/) in the indicator area of the line
and any characters from the character set
of the computer in Area A and Area B of
that line causes page ejection before the
comment is printed.

* common program
A program that, despite being directly
contained within another program, can be
called from any program directly or
indirectly contained in that other
program.

* compile
(1) To translate a program expressed in a
high-level language into a program
expressed in an intermediate language,
assembly language, or a computer
language. (2) To prepare a
machine-language program from a
computer program written in another
programming language by making use of
the overall logic structure of the program,
or generating more than one computer
instruction for each symbolic statement,
or both, as well as performing the
function of an assembler.

* compile time
The time at which COBOL source code is
translated, by a COBOL compiler, to a
COBOL object program.

compiler
A program that translates source code
written in a higher-level language into
machine-language object code.

compiler-directing statement
A statement that causes the compiler to
take a specific action during compilation.
The standard compiler-directing
statements are COPY, REPLACE, and USE.

* complex condition
A condition in which one or more logical
operators act upon one or more
conditions. See also condition, negated
simple condition, and negated combined
condition.

complex ODO
Certain forms of the OCCURS DEPENDING ON
clause:
v Variably located item or group: A data

item described by an OCCURS clause
with the DEPENDING ON option is
followed by a nonsubordinate data
item or group. The group can be an
alphanumeric group or a national
group.

v Variably located table: A data item
described by an OCCURS clause with the
DEPENDING ON option is followed by a
nonsubordinate data item described by
an OCCURS clause.

v Table with variable-length elements: A
data item described by an OCCURS
clause contains a subordinate data item
described by an OCCURS clause with the
DEPENDING ON option.

v Index name for a table with
variable-length elements.

v Element of a table with variable-length
elements.

component
(1) A functional grouping of related files.
(2) In object-oriented programming, a
reusable object or program that performs
a specific function and is designed to
work with other components and
applications. JavaBeans is Oracle's
architecture for creating components.

* computer-name
A system-name that identifies the
computer where the program is to be
compiled or run.

condition (exception)
An exception that has been enabled, or
recognized, by Language Environment
and thus is eligible to activate user and
language condition handlers. Any
alteration to the normal programmed flow
of an application. Conditions can be
detected by the hardware or the operating
system and result in an interrupt. They
can also be detected by language-specific
generated code or language library code.

condition (expression)
A status of data at run time for which a
truth value can be determined. Where
used in this information in or in reference
to “condition” (condition-1, condition-2,. . .)
of a general format, the term refers to a

834 Enterprise COBOL for z/OS, V5.2 Programming Guide

conditional expression that consists of
either a simple condition optionally
parenthesized or a combined condition
(consisting of the syntactically correct
combination of simple conditions, logical
operators, and parentheses) for which a
truth value can be determined. See also
simple condition, complex condition, negated
simple condition, combined condition, and
negated combined condition.

* conditional expression
A simple condition or a complex
condition specified in an EVALUATE, IF,
PERFORM, or SEARCH statement. See also
simple condition and complex condition.

* conditional phrase
A phrase that specifies the action to be
taken upon determination of the truth
value of a condition that results from the
execution of a conditional statement.

* conditional statement
A statement that specifies that the truth
value of a condition is to be determined
and that the subsequent action of the
object program depends on this truth
value.

* conditional variable
A data item one or more values of which
has a condition-name assigned to it.

* condition-name
A user-defined word that assigns a name
to a subset of values that a conditional
variable can assume; or a user-defined
word assigned to a status of an
implementor-defined switch or device.

* condition-name condition
The proposition (for which a truth value
can be determined) that the value of a
conditional variable is a member of the
set of values attributed to a
condition-name associated with the
conditional variable.

* CONFIGURATION SECTION
A section of the ENVIRONMENT DIVISION
that describes overall specifications of
source and object programs and class
definitions.

CONSOLE
A COBOL environment-name associated
with the operator console.

contained program
A COBOL program that is nested within
another COBOL program.

* contiguous items
Items that are described by consecutive
entries in the DATA DIVISION, and that
bear a definite hierarchic relationship to
each other.

copybook
A file or library member that contains a
sequence of code that is included in the
source program at compile time using the
COPY statement. The file can be created by
the user, supplied by COBOL, or supplied
by another product. Synonymous with
copy file.

* counter
A data item used for storing numbers or
number representations in a manner that
permits these numbers to be increased or
decreased by the value of another
number, or to be changed or reset to zero
or to an arbitrary positive or negative
value.

cross-reference listing
The portion of the compiler listing that
contains information on where files,
fields, and indicators are defined,
referenced, and modified in a program.

currency-sign value
A character string that identifies the
monetary units stored in a numeric-edited
item. Typical examples are $, USD, and
EUR. A currency-sign value can be
defined by either the CURRENCY compiler
option or the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. If the CURRENCY
SIGN clause is not specified and the
NOCURRENCY compiler option is in effect,
the dollar sign ($) is used as the default
currency-sign value. See also currency
symbol.

currency symbol
A character used in a PICTURE clause to
indicate the position of a currency sign
value in a numeric-edited item. A
currency symbol can be defined by either
the CURRENCY compiler option or the
CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. If the CURRENCY
SIGN clause is not specified and the

Glossary 835

NOCURRENCY compiler option is in effect,
the dollar sign ($) is used as the default
currency sign value and currency symbol.
Multiple currency symbols and currency
sign values can be defined. See also
currency sign value.

* current record
In file processing, the record that is
available in the record area associated
with a file.

* current volume pointer
A conceptual entity that points to the
current volume of a sequential file.

D

* data clause
A clause, appearing in a data description
entry in the DATA DIVISION of a COBOL
program, that provides information
describing a particular attribute of a data
item.

* data description entry
An entry in the DATA DIVISION of a
COBOL program that is composed of a
level-number followed by a data-name, if
required, and then followed by a set of
data clauses, as required.

DATA DIVISION
The division of a COBOL program or
method that describes the data to be
processed by the program or method: the
files to be used and the records contained
within them; internal WORKING-STORAGE
records that will be needed; data to be
made available in more than one program
in the COBOL run unit.

* data item
A unit of data (excluding literals) defined
by a COBOL program or by the rules for
function evaluation.

data set
Synonym for file.

* data-name
A user-defined word that names a data
item described in a data description entry.
When used in the general formats,
data-name represents a word that must
not be reference-modified, subscripted, or
qualified unless specifically permitted by
the rules for the format.

DBCS See double-byte character set (DBCS).

DBCS character
Any character defined in IBM's
double-byte character set.

DBCS character position
See character position.

DBCS data item
A data item that is described by a PICTURE
character string that contains at least one
symbol G, or, when the NSYMBOL(DBCS)
compiler option is in effect, at least one
symbol N. A DBCS data item has USAGE
DISPLAY-1.

* debugging line
Any line with a D in the indicator area of
the line.

* debugging section
A section that contains a USE FOR
DEBUGGING statement.

* declarative sentence
A compiler-directing sentence that
consists of a single USE statement
terminated by the separator period.

* declaratives
A set of one or more special-purpose
sections, written at the beginning of the
PROCEDURE DIVISION, the first of which is
preceded by the key word DECLARATIVE
and the last of which is followed by the
key words END DECLARATIVES. A
declarative is composed of a section
header, followed by a USE
compiler-directing sentence, followed by a
set of zero, one, or more associated
paragraphs.

* de-edit
The logical removal of all editing
characters from a numeric-edited data
item in order to determine the unedited
numeric value of the item.

* delimited scope statement
Any statement that includes its explicit
scope terminator.

* delimiter
A character or a sequence of contiguous
characters that identify the end of a string
of characters and separate that string of
characters from the following string of
characters. A delimiter is not part of the
string of characters that it delimits.

dependent region
In IMS, the MVS virtual storage region

836 Enterprise COBOL for z/OS, V5.2 Programming Guide

that contains message-driven programs,
batch programs, or online utilities.

* descending key
A key upon the values of which data is
ordered starting with the highest value of
key down to the lowest value of key, in
accordance with the rules for comparing
data items.

digit Any of the numerals from 0 through 9. In
COBOL, the term is not used to refer to
any other symbol.

* digit position
The amount of physical storage required
to store a single digit. This amount can
vary depending on the usage specified in
the data description entry that defines the
data item.

* direct access
The facility to obtain data from storage
devices or to enter data into a storage
device in such a way that the process
depends only on the location of that data
and not on a reference to data previously
accessed.

display floating-point data item
A data item that is described implicitly or
explicitly as USAGE DISPLAY and that has a
PICTURE character string that describes an
external floating-point data item.

* division
A collection of zero, one, or more sections
or paragraphs, called the division body,
that are formed and combined in
accordance with a specific set of rules.
Each division consists of the division
header and the related division body.
There are four divisions in a COBOL
program: Identification, Environment,
Data, and Procedure.

* division header
A combination of words followed by a
separator period that indicates the
beginning of a division. The division
headers are:
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DLL See dynamic link library (DLL).

DLL application
An application that references imported
programs, functions, or variables.

DLL linkage
A CALL in a program that has been
compiled with the DLL and NODYNAM
options; the CALL resolves to an exported
name in a separate module, or to an
INVOKE of a method that is defined in a
separate module.

do construct
In structured programming, a DO
statement is used to group a number of
statements in a procedure. In COBOL, an
inline PERFORM statement functions in the
same way.

do-until
In structured programming, a do-until
loop will be executed at least once, and
until a given condition is true. In COBOL,
a TEST AFTER phrase used with the
PERFORM statement functions in the same
way.

do-while
In structured programming, a do-while
loop will be executed if, and while, a
given condition is true. In COBOL, a TEST
BEFORE phrase used with the PERFORM
statement functions in the same way.

document type declaration
An XML element that contains or points
to markup declarations that provide a
grammar for a class of documents. This
grammar is known as a document type
definition, or DTD.

document type definition (DTD)
The grammar for a class of XML
documents. See document type declaration.

double-byte character set (DBCS)
A set of characters in which each
character is represented by 2 bytes.
Languages such as Japanese, Chinese, and
Korean, which contain more symbols than
can be represented by 256 code points,
require double-byte character sets.
Because each character requires 2 bytes,
entering, displaying, and printing DBCS
characters requires hardware and
supporting software that are
DBCS-capable.

DWARF
DWARF was developed by the UNIX
International Programming Languages
Special Interest Group (SIG). It is
designed to meet the symbolic,

Glossary 837

source-level debugging needs of different
languages in a unified fashion by
supplying language-independent
debugging information. A DWARF file
contains debugging data organized into
different elements. For more information,
see DWARF program information in the
DWARF/ELF Extensions Library Reference.

* dynamic access
An access mode in which specific logical
records can be obtained from or placed
into a mass storage file in a nonsequential
manner and obtained from a file in a
sequential manner during the scope of the
same OPEN statement.

dynamic CALL
A CALL literal statement in a program that
has been compiled with the DYNAM option
and the NODLL option, or a CALL identifier
statement in a program that has been
compiled with the NODLL option.

dynamic link library (DLL)
A file that contains executable code and
data that are bound to a program at load
time or run time, rather than during
linking. Several applications can share the
code and data in a DLL simultaneously.
Although a DLL is not part of the
executable file for a program, it can be
required for an executable file to run
properly.

dynamic storage area (DSA)
Dynamically acquired storage composed
of a register save area and an area
available for dynamic storage allocation
(such as program variables). A DSA is
allocated upon invocation of a program or
function and persists for the duration of
the invocation instance. DSAs are
generally allocated within stack segments
managed by Language Environment.

* EBCDIC (Extended Binary-Coded Decimal
Interchange Code)

A coded character set based on 8-bit
coded characters.

EBCDIC character
Any one of the symbols included in the
EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) set.

edited data item
A data item that has been modified by
suppressing zeros or inserting editing
characters or both.

* editing character
A single character or a fixed two-character
combination belonging to the following
set:

Character Meaning
Space

0 Zero
+ Plus
- Minus
CR Credit
DB Debit
Z Zero suppress
* Check protect
$ Currency sign
, Comma (decimal point)
. Period (decimal point)
/ Slant (forward slash)

EJB See Enterprise JavaBeans.

EJB container
A container that implements the EJB
component contract of the J2EE
architecture. This contract specifies a
runtime environment for enterprise beans
that includes security, concurrency, life
cycle management, transaction,
deployment, and other services. An EJB
container is provided by an EJB or J2EE
server. (Oracle)

EJB server
Software that provides services to an EJB
container. An EJB server can host one or
more EJB containers. (Oracle)

element (text element)
One logical unit of a string of text, such
as the description of a single data item or
verb, preceded by a unique code
identifying the element type.

* elementary item
A data item that is described as not being
further logically subdivided.

encapsulation
In object-oriented programming, the
technique that is used to hide the inherent
details of an object. The object provides
an interface that queries and manipulates

838 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://www.ibm.com/software/awdtools/commondebug/library/

the data without exposing its underlying
structure. Synonymous with information
hiding.

enclave
When running under Language
Environment, an enclave is analogous to a
run unit. An enclave can create other
enclaves by using LINK and by using the
system() function in C.

encoding unit
See character encoding unit.

end class marker
A combination of words, followed by a
separator period, that indicates the end of
a COBOL class definition. The end class
marker is:
END CLASS class-name.

end method marker
A combination of words, followed by a
separator period, that indicates the end of
a COBOL method definition. The end
method marker is:
END METHOD method-name.

* end of PROCEDURE DIVISION
The physical position of a COBOL source
program after which no further
procedures appear.

* end program marker
A combination of words, followed by a
separator period, that indicates the end of
a COBOL source program. The end
program marker is:
END PROGRAM program-name.

enterprise bean
A component that implements a business
task and resides in an EJB container.
(Oracle)

Enterprise JavaBeans
A component architecture defined by
Oracle for the development and
deployment of object-oriented,
distributed, enterprise-level applications.

* entry
Any descriptive set of consecutive clauses
terminated by a separator period and
written in the IDENTIFICATION DIVISION,
ENVIRONMENT DIVISION, or DATA DIVISION
of a COBOL program.

* environment clause
A clause that appears as part of an
ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION
One of the four main component parts of
a COBOL program, class definition, or
method definition. The ENVIRONMENT
DIVISION describes the computers where
the source program is compiled and those
where the object program is run. It
provides a linkage between the logical
concept of files and their records, and the
physical aspects of the devices on which
files are stored.

environment-name
A name, specified by IBM, that identifies
system logical units, printer and card
punch control characters, report codes,
program switches or all of these. When an
environment-name is associated with a
mnemonic-name in the ENVIRONMENT
DIVISION, the mnemonic-name can be
substituted in any format in which such
substitution is valid.

environment variable
Any of a number of variables that define
some aspect of the computing
environment, and are accessible to
programs that operate in that
environment. Environment variables can
affect the behavior of programs that are
sensitive to the environment in which
they operate.

execution time
See run time.

execution-time environment
See runtime environment.

* explicit scope terminator
A reserved word that terminates the scope
of a particular PROCEDURE DIVISION
statement.

exponent
A number that indicates the power to
which another number (the base) is to be
raised. Positive exponents denote
multiplication; negative exponents denote
division; and fractional exponents denote
a root of a quantity. In COBOL, an
exponential expression is indicated with
the symbol ** followed by the exponent.

* expression
An arithmetic or conditional expression.

Glossary 839

* extend mode
The state of a file after execution of an
OPEN statement, with the EXTEND phrase
specified for that file, and before the
execution of a CLOSE statement, without
the REEL or UNIT phrase for that file.

Extensible Markup Language
See XML.

extensions
COBOL syntax and semantics supported
by IBM compilers in addition to those
described in the 85 COBOL Standard.

external code page
For XML documents, the value specified
by the CODEPAGE compiler option.

* external data
The data that is described in a program as
external data items and external file
connectors.

* external data item
A data item that is described as part of an
external record in one or more programs
of a run unit and that can be referenced
from any program in which it is
described.

* external data record
A logical record that is described in one
or more programs of a run unit and
whose constituent data items can be
referenced from any program in which
they are described.

external decimal data item
See zoned decimal data item and national
decimal data item.

* external file connector
A file connector that is accessible to one
or more object programs in the run unit.

external floating-point data item
See display floating-point data item and
national floating-point data item.

external program
The outermost program. A program that
is not nested.

* external switch
A hardware or software device, defined
and named by the implementor, which is
used to indicate that one of two alternate
states exists.

F

factory data
Data that is allocated once for a class and
shared by all instances of the class.
Factory data is declared in the
WORKING-STORAGE SECTION of the DATA
DIVISION in the FACTORY paragraph of the
class definition, and is equivalent to Java
private static data.

factory method
A method that is supported by a class
independently of an object instance.
Factory methods are declared in the
FACTORY paragraph of the class definition,
and are equivalent to Java public static
methods. They are typically used to
customize the creation of objects.

* figurative constant
A compiler-generated value referenced
through the use of certain reserved
words.

* file A collection of logical records.

* file attribute conflict condition
An unsuccessful attempt has been made
to execute an input-output operation on a
file and the file attributes, as specified for
that file in the program, do not match the
fixed attributes for that file.

* file clause
A clause that appears as part of any of
the following DATA DIVISION entries: file
description entry (FD entry) and
sort-merge file description entry (SD
entry).

* file connector
A storage area that contains information
about a file and is used as the linkage
between a file-name and a physical file
and between a file-name and its
associated record area.

* file control entry
A SELECT clause and all its subordinate
clauses that declare the relevant physical
attributes of a file.

FILE-CONTROL paragraph
A paragraph in the ENVIRONMENT DIVISION
in which the data files for a given source
unit are declared.

* file description entry
An entry in the FILE SECTION of the DATA
DIVISION that is composed of the level

840 Enterprise COBOL for z/OS, V5.2 Programming Guide

indicator FD, followed by a file-name, and
then followed by a set of file clauses as
required.

* file-name
A user-defined word that names a file
connector described in a file description
entry or a sort-merge file description
entry within the FILE SECTION of the DATA
DIVISION.

* file organization
The permanent logical file structure
established at the time that a file is
created.

file position indicator
A conceptual entity that contains the
value of the current key within the key of
reference for an indexed file, or the record
number of the current record for a
sequential file, or the relative record
number of the current record for a
relative file, or indicates that no next
logical record exists, or that an optional
input file is not available, or that the AT
END condition already exists, or that no
valid next record has been established.

* FILE SECTION
The section of the DATA DIVISION that
contains file description entries and
sort-merge file description entries together
with their associated record descriptions.

file system
The collection of files that conform to a
specific set of data-record and
file-description protocols, and a set of
programs that manage these files.

* fixed file attributes
Information about a file that is established
when a file is created and that cannot
subsequently be changed during the
existence of the file. These attributes
include the organization of the file
(sequential, relative, or indexed), the
prime record key, the alternate record
keys, the code set, the minimum and
maximum record size, the record type
(fixed or variable), the collating sequence
of the keys for indexed files, the blocking
factor, the padding character, and the
record delimiter.

* fixed-length record
A record associated with a file whose file
description or sort-merge description

entry requires that all records contain the
same number of bytes.

fixed-point item
A numeric data item defined with a
PICTURE clause that specifies the location
of an optional sign, the number of digits
it contains, and the location of an optional
decimal point. The format can be either
binary, packed decimal, or external
decimal.

floating point
A format for representing numbers in
which a real number is represented by a
pair of distinct numerals. In a
floating-point representation, the real
number is the product of the fixed-point
part (the first numeral) and a value
obtained by raising the implicit
floating-point base to a power denoted by
the exponent (the second numeral). For
example, a floating-point representation of
the number 0.0001234 is 0.1234 -3, where
0.1234 is the mantissa and -3 is the
exponent.

floating-point data item
A numeric data item that contains a
fraction and an exponent. Its value is
obtained by multiplying the fraction by
the base of the numeric data item raised
to the power that the exponent specifies.

* format
A specific arrangement of a set of data.

* function
A temporary data item whose value is
determined at the time the function is
referenced during the execution of a
statement.

* function-identifier
A syntactically correct combination of
character strings and separators that
references a function. The data item
represented by a function is uniquely
identified by a function-name with its
arguments, if any. A function-identifier
can include a reference-modifier. A
function-identifier that references an
alphanumeric function can be specified
anywhere in the general formats that an
identifier can be specified, subject to
certain restrictions. A function-identifier
that references an integer or numeric
function can be referenced anywhere in

Glossary 841

the general formats that an arithmetic
expression can be specified.

function-name
A word that names the mechanism whose
invocation, along with required
arguments, determines the value of a
function.

function-pointer data item
A data item in which a pointer to an
entry point can be stored. A data item
defined with the USAGE IS
FUNCTION-POINTER clause contains the
address of a function entry point.
Typically used to communicate with C
and Java programs.

G

garbage collection
The automatic freeing by the Java runtime
system of the memory for objects that are
no longer referenced.

* global name
A name that is declared in only one
program but that can be referenced from
the program and from any program
contained within the program.
Condition-names, data-names, file-names,
record-names, report-names, and some
special registers can be global names.

global reference
A reference to an object that is outside the
scope of a method.

group item
(1) A data item that is composed of
subordinate data items. See alphanumeric
group item and national group item. (2)
When not qualified explicitly or by
context as a national group or an
alphanumeric group, the term refers to
groups in general.

grouping separator
A character used to separate units of
digits in numbers for ease of reading. The
default is the character comma.

H

header label
(1) A data-set label that precedes the data
records in a unit of recording media. (2)
Synonym for beginning-of-file label.

hide To redefine a factory or static method
(inherited from a parent class) in a
subclass.

* high-order end
The leftmost character of a string of
characters.

hiperspace
In a z/OS environment, a range of up to
2 GB of contiguous virtual storage
addresses that a program can use as a
buffer.

I

IBM COBOL extension
COBOL syntax and semantics supported
by IBM compilers in addition to those
described in the 85 COBOL Standard.

IDENTIFICATION DIVISION
One of the four main component parts of
a COBOL program, class definition, or
method definition. The IDENTIFICATION
DIVISION identifies the program, class, or
method. The IDENTIFICATION DIVISION
can include the following documentation:
author name, installation, or date.

* identifier
A syntactically correct combination of
character strings and separators that
names a data item. When referencing a
data item that is not a function, an
identifier consists of a data-name,
together with its qualifiers, subscripts,
and reference-modifier, as required for
uniqueness of reference. When referencing
a data item that is a function, a
function-identifier is used.

* imperative statement
A statement that either begins with an
imperative verb and specifies an
unconditional action to be taken or is a
conditional statement that is delimited by
its explicit scope terminator (delimited
scope statement). An imperative statement
can consist of a sequence of imperative
statements.

* implicit scope terminator
A separator period that terminates the
scope of any preceding unterminated
statement, or a phrase of a statement that
by its occurrence indicates the end of the
scope of any statement contained within
the preceding phrase.

842 Enterprise COBOL for z/OS, V5.2 Programming Guide

* index
A computer storage area or register, the
content of which represents the
identification of a particular element in a
table.

* index data item
A data item in which the values
associated with an index-name can be
stored in a form specified by the
implementor.

indexed data-name
An identifier that is composed of a
data-name, followed by one or more
index-names enclosed in parentheses.

* indexed file
A file with indexed organization.

* indexed organization
The permanent logical file structure in
which each record is identified by the
value of one or more keys within that
record.

indexing
Synonymous with subscripting using
index-names.

* index-name
A user-defined word that names an index
associated with a specific table.

inheritance
A mechanism for using the
implementation of a class as the basis for
another class. By definition, the inheriting
class conforms to the inherited classes.
Enterprise COBOL does not support
multiple inheritance; a subclass has exactly
one immediate superclass.

inheritance hierarchy
See class hierarchy.

* initial program
A program that is placed into an initial
state every time the program is called in a
run unit.

* initial state
The state of a program when it is first
called in a run unit.

inline
In a program, instructions that are
executed sequentially, without branching
to routines, subroutines, or other
programs.

* input file
A file that is opened in the input mode.

* input mode
The state of a file after execution of an
OPEN statement, with the INPUT phrase
specified, for that file and before the
execution of a CLOSE statement, without
the REEL or UNIT phrase for that file.

* input-output file
A file that is opened in the I-O mode.

* INPUT-OUTPUT SECTION
The section of the ENVIRONMENT DIVISION
that names the files and the external
media required by an object program or
method and that provides information
required for transmission and handling of
data at run time.

* input-output statement
A statement that causes files to be
processed by performing operations on
individual records or on the file as a unit.
The input-output statements are ACCEPT
(with the identifier phrase), CLOSE, DELETE,
DISPLAY, OPEN, READ, REWRITE, SET (with
the TO ON or TO OFF phrase), START, and
WRITE.

* input procedure
A set of statements, to which control is
given during the execution of a format 1
SORT statement, for the purpose of
controlling the release of specified records
to be sorted.

instance data
Data that defines the state of an object.
The instance data introduced by a class is
defined in the WORKING-STORAGE SECTION
of the DATA DIVISION in the OBJECT
paragraph of the class definition. The
state of an object also includes the state of
the instance variables introduced by
classes that are inherited by the current
class. A separate copy of the instance data
is created for each object instance.

* integer
(1) A numeric literal that does not include
any digit positions to the right of the
decimal point. (2) A numeric data item
defined in the DATA DIVISION that does
not include any digit positions to the
right of the decimal point. (3) A numeric
function whose definition provides that
all digits to the right of the decimal point

Glossary 843

|
|

are zero in the returned value for any
possible evaluation of the function.

integer function
A function whose category is numeric and
whose definition does not include any
digit positions to the right of the decimal
point.

Interactive System Productivity Facility (ISPF)
An IBM software product that provides a
menu-driven interface for the TSO or VM
user. ISPF includes library utilities, a
powerful editor, and dialog management.

interlanguage communication (ILC)
The ability of routines written in different
programming languages to communicate.
ILC support lets you readily build
applications from component routines
written in a variety of languages.

intermediate result
An intermediate field that contains the
results of a succession of arithmetic
operations.

* internal data
The data that is described in a program
and excludes all external data items and
external file connectors. Items described
in the LINKAGE SECTION of a program are
treated as internal data.

* internal data item
A data item that is described in one
program in a run unit. An internal data
item can have a global name.

internal decimal data item
A data item that is described as USAGE
PACKED-DECIMAL or USAGE COMP-3, and that
has a PICTURE character string that defines
the item as numeric (a valid combination
of symbols 9, S, P, or V). Synonymous
with packed-decimal data item.

* internal file connector
A file connector that is accessible to only
one object program in the run unit.

internal floating-point data item
A data item that is described as USAGE
COMP-1 or USAGE COMP-2. COMP-1 defines a
single-precision floating-point data item.
COMP-2 defines a double-precision
floating-point data item. There is no
PICTURE clause associated with an internal
floating-point data item.

* intrarecord data structure
The entire collection of groups and
elementary data items from a logical
record that a contiguous subset of the
data description entries defines. These
data description entries include all entries
whose level-number is greater than the
level-number of the first data description
entry describing the intra-record data
structure.

intrinsic function
A predefined function, such as a
commonly used arithmetic function,
called by a built-in function reference.

* invalid key condition
A condition, at run time, caused when a
specific value of the key associated with
an indexed or relative file is determined
to be not valid.

* I-O-CONTROL
The name of an ENVIRONMENT DIVISION
paragraph in which object program
requirements for rerun points, sharing of
same areas by several data files, and
multiple file storage on a single
input-output device are specified.

* I-O-CONTROL entry
An entry in the I-O-CONTROL paragraph of
the ENVIRONMENT DIVISION; this entry
contains clauses that provide information
required for the transmission and
handling of data on named files during
the execution of a program.

* I-O mode
The state of a file after execution of an
OPEN statement, with the I-O phrase
specified, for that file and before the
execution of a CLOSE statement without
the REEL or UNIT phase for that file.

* I-O status
A conceptual entity that contains the
two-character value indicating the
resulting status of an input-output
operation. This value is made available to
the program through the use of the FILE
STATUS clause in the file control entry for
the file.

is-a A relationship that characterizes classes
and subclasses in an inheritance hierarchy.
Subclasses that have an is-a relationship
to a class inherit from that class.

844 Enterprise COBOL for z/OS, V5.2 Programming Guide

ISPF See Interactive System Productivity Facility
(ISPF).

iteration structure
A program processing logic in which a
series of statements is repeated while a
condition is true or until a condition is
true.

J

J2EE See Java 2 Platform, Enterprise Edition
(J2EE).

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and
deploying enterprise applications, defined
by Oracle. The J2EE platform consists of a
set of services, application programming
interfaces (APIs), and protocols that
provide the functionality for developing
multitiered, Web-based applications.
(Oracle)

Java batch-processing program (JBP)
An IMS batch-processing program that
has access to online databases and output
message queues. JBPs run online, but like
programs in a batch environment, they
are started with JCL or in a TSO session.

Java batch-processing region
An IMS dependent region in which only
Java batch-processing programs are
scheduled.

Java Database Connectivity (JDBC)
A specification from Oracle that defines
an API that enables Java programs to
access databases.

Java message-processing program (JMP)
A Java application program that is driven
by transactions and has access to online
IMS databases and message queues.

Java message-processing region
An IMS dependent region in which only
Java message-processing programs are
scheduled.

Java Native Interface (JNI)
A programming interface that lets Java
code that runs inside a Java virtual
machine (JVM) interoperate with
applications and libraries written in other
programming languages.

Java virtual machine (JVM)
A software implementation of a central
processing unit that runs compiled Java
programs.

JavaBeans
A portable, platform-independent,
reusable component model. (Oracle)

JBP See Java batch-processing program (JBP).

JDBC See Java Database Connectivity (JDBC).

JMP See Java message-processing program (JMP).

job control language (JCL)
A control language used to identify a job
to an operating system and to describe
the job's requirements.

JVM See Java virtual machine (JVM).

K

K When referring to storage capacity, two to
the tenth power; 1024 in decimal notation.

* key A data item that identifies the location of
a record, or a set of data items that serve
to identify the ordering of data.

* key of reference
The key, either prime or alternate,
currently being used to access records
within an indexed file.

* keyword
A reserved word or function-name whose
presence is required when the format in
which the word appears is used in a
source program.

kilobyte (KB)
One kilobyte equals 1024 bytes.

L

* language-name
A system-name that specifies a particular
programming language.

Language Environment-conforming
A characteristic of compiler products
(such as Enterprise COBOL, COBOL for
OS/390 & VM, COBOL for MVS & VM,
C/C++ for MVS & VM, PL/I for MVS &
VM) that produce object code conforming
to the Language Environment
conventions.

last-used state
A state that a program is in if its internal
values remain the same as when the

Glossary 845

program was exited (the values are not
reset to their initial values).

* letter
A character belonging to one of the
following two sets:
1. Uppercase letters: A, B, C, D, E, F, G,

H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
V, W, X, Y, Z

2. Lowercase letters: a, b, c, d, e, f, g, h, i,
j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y,
z

* level indicator
Two alphabetic characters that identify a
specific type of file or a position in a
hierarchy. The level indicators in the DATA
DIVISION are: CD, FD, and SD.

* level-number
A user-defined word (expressed as a
two-digit number) that indicates the
hierarchical position of a data item or the
special properties of a data description
entry. Level-numbers in the range from 1
through 49 indicate the position of a data
item in the hierarchical structure of a
logical record. Level-numbers in the range
1 through 9 can be written either as a
single digit or as a zero followed by a
significant digit. Level-numbers 66, 77,
and 88 identify special properties of a
data description entry.

* library-name
A user-defined word that names a
COBOL library that the compiler is to use
for compiling a given source program.

* library text
A sequence of text words, comment lines,
the separator space, or the separator
pseudo-text delimiter in a COBOL library.

Lilian date
The number of days since the beginning
of the Gregorian calendar. Day one is
Friday, October 15, 1582. The Lilian date
format is named in honor of Luigi Lilio,
the creator of the Gregorian calendar.

* linage-counter
A special register whose value points to
the current position within the page body.

link (1) The combination of the link connection
(the transmission medium) and two link
stations, one at each end of the link
connection. A link can be shared among

multiple links in a multipoint or
token-ring configuration. (2) To
interconnect items of data or portions of
one or more computer programs; for
example, linking object programs by a
linkage-editor to produce an executable
file.

LINKAGE SECTION
The section in the DATA DIVISION of the
called program or invoked method that
describes data items available from the
calling program or invoking method. Both
the calling program or invoking method
and the called program or invoked
method can refer to these data items.

linker A term that refers to either the z/OS
binder (linkage-editor).

literal
A character string whose value is
specified either by the ordered set of
characters comprising the string or by the
use of a figurative constant.

little-endian
The default format that Intel processors
use to store binary data and UTF-16
characters. In this format, the most
significant byte of a binary data item is at
the highest address and the most
significant byte of a UTF-16 character is at
the highest address. Compare with
big-endian.

local reference
A reference to an object that is within the
scope of your method.

locale A set of attributes for a program
execution environment that indicates
culturally sensitive considerations, such as
character code page, collating sequence,
date and time format, monetary value
representation, numeric value
representation, or language.

* LOCAL-STORAGE SECTION
The section of the DATA DIVISION that
defines storage that is allocated and freed
on a per-invocation basis, depending on
the value assigned in the VALUE clauses.

* logical operator
One of the reserved words AND, OR, or
NOT. In the formation of a condition,
either AND, or OR, or both can be used
as logical connectives. NOT can be used
for logical negation.

846 Enterprise COBOL for z/OS, V5.2 Programming Guide

* logical record
The most inclusive data item. The
level-number for a record is 01. A record
can be either an elementary item or a
group of items. Synonymous with record.

* low-order end
The rightmost character of a string of
characters.

M

main program
In a hierarchy of programs and
subroutines, the first program that
receives control when the programs are
run within a process.

makefile
A text file that contains a list of the files
for your application. The make utility
uses this file to update the target files
with the latest changes.

* mass storage
A storage medium in which data can be
organized and maintained in both a
sequential manner and a nonsequential
manner.

* mass storage device
A device that has a large storage capacity,
such as a magnetic disk.

* mass storage file
A collection of records that is stored in a
mass storage medium.

* megabyte (MB)
One megabyte equals 1,048,576 bytes.

* merge file
A collection of records to be merged by a
MERGE statement. The merge file is created
and can be used only by the merge
function.

message-processing program (MPP)
An IMS application program that is
driven by transactions and has access to
online IMS databases and message
queues.

message queue
The data set on which messages are
queued before being processed by an
application program or sent to a terminal.

method
Procedural code that defines an operation

supported by an object and that is
executed by an INVOKE statement on that
object.

* method definition
The COBOL source code that defines a
method.

* method identification entry
An entry in the METHOD-ID paragraph of
the IDENTIFICATION DIVISION; this entry
contains a clause that specifies the
method-name.

method invocation
A communication from one object to
another that requests the receiving object
to execute a method.

method-name
The name of an object-oriented operation.
When used to invoke the method, the
name can be an alphanumeric or national
literal or a category alphanumeric or
category national data item. When used
in the METHOD-ID paragraph to define the
method, the name must be an
alphanumeric or national literal.

* mnemonic-name
A user-defined word that is associated in
the ENVIRONMENT DIVISION with a
specified implementor-name.

module definition file
A file that describes the code segments
within a program object.

MPP See message-processing program (MPP).

multitasking
A mode of operation that provides for the
concurrent, or interleaved, execution of
two or more tasks.

multithreading
Concurrent operation of more than one
path of execution within a computer.
Synonymous with multiprocessing.

N

name A word (composed of not more than 30
characters) that defines a COBOL
operand.

namespace
See XML namespace.

national character
(1) A UTF-16 character in a USAGE

Glossary 847

NATIONAL data item or national literal. (2)
Any character represented in UTF-16.

national character position
See character position.

national data item
A data item of category national,
national-edited, or numeric-edited of
USAGE NATIONAL.

national decimal data item
An external decimal data item that is
described implicitly or explicitly as USAGE
NATIONAL and that contains a valid
combination of PICTURE symbols 9, S, P,
and V.

national-edited data item
A data item that is described by a PICTURE
character string that contains at least one
instance of the symbol N and at least one
of the simple insertion symbols B, 0, or /.
A national-edited data item has USAGE
NATIONAL.

national floating-point data item
An external floating-point data item that
is described implicitly or explicitly as
USAGE NATIONAL and that has a PICTURE
character string that describes a
floating-point data item.

national group item
A group item that is explicitly or
implicitly described with a GROUP-USAGE
NATIONAL clause. A national group item is
processed as though it were defined as an
elementary data item of category national
for operations such as INSPECT, STRING,
and UNSTRING. This processing ensures
correct padding and truncation of
national characters, as contrasted with
defining USAGE NATIONAL data items
within an alphanumeric group item. For
operations that require processing of the
elementary items within a group, such as
MOVE CORRESPONDING, ADD CORRESPONDING,
and INITIALIZE, a national group is
processed using group semantics.

* native character set
The implementor-defined character set
associated with the computer specified in
the OBJECT-COMPUTER paragraph.

* native collating sequence
The implementor-defined collating

sequence associated with the computer
specified in the OBJECT-COMPUTER
paragraph.

native method
A Java method with an implementation
that is written in another programming
language, such as COBOL.

* negated combined condition
The NOT logical operator immediately
followed by a parenthesized combined
condition. See also condition and combined
condition.

* negated simple condition
The NOT logical operator immediately
followed by a simple condition. See also
condition and simple condition.

nested program
A program that is directly contained
within another program.

* next executable sentence
The next sentence to which control will be
transferred after execution of the current
statement is complete.

* next executable statement
The next statement to which control will
be transferred after execution of the
current statement is complete.

* next record
The record that logically follows the
current record of a file.

* noncontiguous items
Elementary data items in the
WORKING-STORAGE SECTION and LINKAGE
SECTION that bear no hierarchic
relationship to other data items.

null A figurative constant that is used to
assign, to pointer data items, the value of
an address that is not valid. NULLS can be
used wherever NULL can be used.

* numeric character
A character that belongs to the following
set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric data item
(1) A data item whose description restricts
its content to a value represented by
characters chosen from the digits 0
through 9. If signed, the item can also
contain a +, -, or other representation of
an operational sign. (2) A data item of
category numeric, internal floating-point,

848 Enterprise COBOL for z/OS, V5.2 Programming Guide

or external floating-point. A numeric data
item can have USAGE DISPLAY, NATIONAL,
PACKED-DECIMAL, BINARY, COMP, COMP-1,
COMP-2, COMP-3, COMP-4, or COMP-5.

numeric-edited data item
A data item that contains numeric data in
a form suitable for use in printed output.
The data item can consist of external
decimal digits from 0 through 9, the
decimal separator, commas, the currency
sign, sign control characters, and other
editing characters. A numeric-edited item
can be represented in either USAGE
DISPLAY or USAGE NATIONAL.

* numeric function
A function whose class and category are
numeric but that for some possible
evaluation does not satisfy the
requirements of integer functions.

* numeric literal
A literal composed of one or more
numeric characters that can contain a
decimal point or an algebraic sign, or
both. The decimal point must not be the
rightmost character. The algebraic sign, if
present, must be the leftmost character.

O

object
An entity that has state (its data values)
and operations (its methods). An object is
a way to encapsulate state and behavior.
Each object in the class is said to be an
instance of the class.

object code
Output from a compiler or assembler that
is itself executable machine code or is
suitable for processing to produce
executable machine code.

* OBJECT-COMPUTER
The name of an ENVIRONMENT DIVISION
paragraph in which the computer
environment, where the object program is
run, is described.

* object computer entry
An entry in the OBJECT-COMPUTER
paragraph of the ENVIRONMENT DIVISION;
this entry contains clauses that describe
the computer environment in which the
object program is to be executed.

object deck
A portion of an object program suitable as

input to a linkage-editor. Synonymous
with object module and text deck.

object instance
See object.

object module
Synonym for object deck or text deck.

* object of entry
A set of operands and reserved words,
within a DATA DIVISION entry of a COBOL
program, that immediately follows the
subject of the entry.

object-oriented programming
A programming approach based on the
concepts of encapsulation and inheritance.
Unlike procedural programming
techniques, object-oriented programming
concentrates on the data objects that
comprise the problem and how they are
manipulated, not on how something is
accomplished.

object program
A set or group of executable
machine-language instructions and other
material designed to interact with data to
provide problem solutions. In this context,
an object program is generally the
machine language result of the operation
of a COBOL compiler on a source
program or class definition. Where there
is no danger of ambiguity, the word
program can be used in place of object
program.

object reference
A value that identifies an instance of a
class. If the class is not specified, the
object reference is universal and can
apply to instances of any class.

* object time
The time at which an object program is
executed. Synonymous with run time.

* obsolete element
A COBOL language element in the 85
COBOL Standard that was deleted from
the 2002 COBOL Standard.

ODO object
In the example below, X is the object of
the OCCURS DEPENDING ON clause (ODO
object).

Glossary 849

WORKING-STORAGE SECTION
01 TABLE-1.

05 X PICS9.
05 Y OCCURS 3 TIMES

DEPENDING ON X PIC X.

The value of the ODO object determines
how many of the ODO subject appear in
the table.

ODO subject
In the example above, Y is the subject of
the OCCURS DEPENDING ON clause (ODO
subject). The number of Y ODO subjects
that appear in the table depends on the
value of X.

* open mode
The state of a file after execution of an
OPEN statement for that file and before the
execution of a CLOSE statement without
the REEL or UNIT phrase for that file. The
particular open mode is specified in the
OPEN statement as either INPUT, OUTPUT,
I-O, or EXTEND.

* operand
(1) The general definition of operand is
“the component that is operated upon.”
(2) For the purposes of this document,
any lowercase word (or words) that
appears in a statement or entry format
can be considered to be an operand and,
as such, is an implied reference to the
data indicated by the operand.

operation
A service that can be requested of an
object.

* operational sign
An algebraic sign that is associated with a
numeric data item or a numeric literal, to
indicate whether its value is positive or
negative.

optional file
A file that is declared as being not
necessarily available each time the object
program is run.

* optional word
A reserved word that is included in a
specific format only to improve the
readability of the language. Its presence is
optional to the user when the format in
which the word appears is used in a
source unit.

* output file
A file that is opened in either output
mode or extend mode.

* output mode
The state of a file after execution of an
OPEN statement, with the OUTPUT or EXTEND
phrase specified, for that file and before
the execution of a CLOSE statement
without the REEL or UNIT phrase for that
file.

* output procedure
A set of statements to which control is
given during execution of a format 1 SORT
statement after the sort function is
completed, or during execution of a MERGE
statement after the merge function reaches
a point at which it can select the next
record in merged order when requested.

overflow condition
A condition that occurs when a portion of
the result of an operation exceeds the
capacity of the intended unit of storage.

overload
To define a method with the same name
as another method that is available in the
same class, but with a different signature.
See also signature.

override
To redefine an instance method (inherited
from a parent class) in a subclass.

P

package
A group of related Java classes, which can
be imported individually or as a whole.

packed-decimal data item
See internal decimal data item.

padding character
An alphanumeric or national character
that is used to fill the unused character
positions in a physical record.

page A vertical division of output data that
represents a physical separation of the
data. The separation is based on internal
logical requirements or external
characteristics of the output medium or
both.

* page body
That part of the logical page in which
lines can be written or spaced or both.

850 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

* paragraph
In the PROCEDURE DIVISION, a
paragraph-name followed by a separator
period and by zero, one, or more
sentences. In the IDENTIFICATION
DIVISION and ENVIRONMENT DIVISION, a
paragraph header followed by zero, one,
or more entries.

* paragraph header
A reserved word, followed by the
separator period, that indicates the
beginning of a paragraph in the
IDENTIFICATION DIVISION and
ENVIRONMENT DIVISION. The permissible
paragraph headers in the IDENTIFICATION
DIVISION are:
PROGRAM-ID. (Program IDENTIFICATION

DIVISION)
CLASS-ID. (Class IDENTIFICATION DIVISION)
METHOD-ID. (Method IDENTIFICATION

DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the
ENVIRONMENT DIVISION are:
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class

CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name
A user-defined word that identifies and
begins a paragraph in the PROCEDURE
DIVISION.

parameter
(1) Data passed between a calling
program and a called program. (2) A data
element in the USING phrase of a method
invocation. Arguments provide additional
information that the invoked method can
use to perform the requested operation.

Persistent Reusable JVM
A JVM that can be serially reused for
transaction processing by resetting the
JVM between transactions. The reset
phase restores the JVM to a known
initialization state.

* phrase
An ordered set of one or more
consecutive COBOL character strings that

form a portion of a COBOL procedural
statement or of a COBOL clause.

* physical record
See block.

pointer data item
A data item in which address values can
be stored. Data items are explicitly
defined as pointers with the USAGE IS
POINTER clause. ADDRESS OF special
registers are implicitly defined as pointer
data items. Pointer data items can be
compared for equality or moved to other
pointer data items.

port (1) To modify a computer program to
enable it to run on a different platform.
(2) In the Internet suite of protocols, a
specific logical connector between the
Transmission Control Protocol (TCP) or
the User Datagram Protocol (UDP) and a
higher-level protocol or application. A
port is identified by a port number.

portability
The ability to transfer an application
program from one application platform to
another with relatively few changes to the
source program.

preinitialization
The initialization of the COBOL runtime
environment in preparation for multiple
calls from programs, especially
non-COBOL programs. The environment
is not terminated until an explicit
termination.

* prime record key
A key whose contents uniquely identify a
record within an indexed file.

* priority-number
A user-defined word that classifies
sections in the PROCEDURE DIVISION for
purposes of segmentation. Segment
numbers can contain only the characters 0
through 9. A segment number can be
expressed as either one or two digits.

private
As applied to factory data or instance
data, accessible only by methods of the
class that defines the data.

* procedure
A paragraph or group of logically
successive paragraphs, or a section or

Glossary 851

group of logically successive sections,
within the PROCEDURE DIVISION.

* procedure branching statement
A statement that causes the explicit
transfer of control to a statement other
than the next executable statement in the
sequence in which the statements are
written in the source code. The procedure
branching statements are: ALTER, CALL,
EXIT, EXIT PROGRAM, GO TO, MERGE (with the
OUTPUT PROCEDURE phrase), PERFORM and
SORT (with the INPUT PROCEDURE or OUTPUT
PROCEDURE phrase), XML PARSE.

PROCEDURE DIVISION
The COBOL division that contains
instructions for solving a problem.

procedure integration
One of the functions of the COBOL
optimizer is to simplify calls to performed
procedures or contained programs.

PERFORM procedure integration is the
process whereby a PERFORM statement is
replaced by its performed procedures.
Contained program procedure integration
is the process where a call to a contained
program is replaced by the program code.

* procedure-name
A user-defined word that is used to name
a paragraph or section in the PROCEDURE
DIVISION. It consists of a paragraph-name
(which can be qualified) or a
section-name.

procedure-pointer data item
A data item in which a pointer to an
entry point can be stored. A data item
defined with the USAGE IS
PROCEDURE-POINTER clause contains the
address of a procedure entry point.
Typically used to communicate with
COBOL and Language Environment
programs.

process
The course of events that occurs during
the execution of all or part of a program.
Multiple processes can run concurrently,
and programs that run within a process
can share resources.

program
(1) A sequence of instructions suitable for
processing by a computer. Processing may
include the use of a compiler to prepare
the program for execution, as well as a

runtime environment to execute it. (2) A
logical assembly of one or more
interrelated modules. Multiple copies of
the same program can be run in different
processes.

* program identification entry
In the PROGRAM-ID paragraph of the
IDENTIFICATION DIVISION, an entry that
contains clauses that specify the
program-name and assign selected
program attributes to the program.

program-name
In the IDENTIFICATION DIVISION and the
end program marker, a user-defined word
or alphanumeric literal that identifies a
COBOL source program.

project
The complete set of data and actions that
are required to build a target, such as a
dynamic link library (DLL) or other
executable (EXE).

* pseudo-text
A sequence of text words, comment lines,
or the separator space in a source
program or COBOL library bounded by,
but not including, pseudo-text delimiters.

* pseudo-text delimiter
Two contiguous equal sign characters (==)
used to delimit pseudo-text.

* punctuation character
A character that belongs to the following
set:

Character Meaning
, Comma
; Semicolon
: Colon
. Period (full stop)
" Quotation mark
(Left parenthesis
) Right parenthesis

Space
= Equal sign

Q

QSAM (Queued Sequential Access Method)
An extended version of the basic
sequential access method (BSAM). When
this method is used, a queue is formed of
input data blocks that are awaiting
processing or of output data blocks that

852 Enterprise COBOL for z/OS, V5.2 Programming Guide

have been processed and are awaiting
transfer to auxiliary storage or to an
output device.

* qualified data-name
An identifier that is composed of a
data-name followed by one or more sets
of either of the connectives OF and IN
followed by a data-name qualifier.

* qualifier
(1) A data-name or a name associated
with a level indicator that is used in a
reference either together with another
data-name (which is the name of an item
that is subordinate to the qualifier) or
together with a condition-name. (2) A
section-name that is used in a reference
together with a paragraph-name specified
in that section. (3) A library-name that is
used in a reference together with a
text-name associated with that library.

R

* random access
An access mode in which the
program-specified value of a key data
item identifies the logical record that is
obtained from, deleted from, or placed
into a relative or indexed file.

* record
See logical record.

* record area
A storage area allocated for the purpose
of processing the record described in a
record description entry in the FILE
SECTION of the DATA DIVISION. In the FILE
SECTION, the current number of character
positions in the record area is determined
by the explicit or implicit RECORD clause.

* record description
See record description entry.

* record description entry
The total set of data description entries
associated with a particular record.
Synonymous with record description.

record key
A key whose contents identify a record
within an indexed file.

* record-name
A user-defined word that names a record
described in a record description entry in
the DATA DIVISION of a COBOL program.

* record number
The ordinal number of a record in the file
whose organization is sequential.

recording mode
The format of the logical records in a file.
Recording mode can be F (fixed length), V
(variable length), S (spanned), or U
(undefined).

recursion
A program calling itself or being directly
or indirectly called by one of its called
programs.

recursively capable
A program is recursively capable (can be
called recursively) if the RECURSIVE
attribute is on the PROGRAM-ID statement.

reel A discrete portion of a storage medium,
the dimensions of which are determined
by each implementor that contains part of
a file, all of a file, or any number of files.
Synonymous with unit and volume.

reentrant
The attribute of a program or routine that
lets more than one user share a single
copy of a program object.

* reference format
A format that provides a standard method
for describing COBOL source programs.

reference modification
A method of defining a new category
alphanumeric, category DBCS, or category
national data item by specifying the
leftmost character and length relative to
the leftmost character position of a USAGE
DISPLAY, DISPLAY-1, or NATIONAL data
item.

* reference-modifier
A syntactically correct combination of
character strings and separators that
defines a unique data item. It includes a
delimiting left parenthesis separator, the
leftmost character position, a colon
separator, optionally a length, and a
delimiting right parenthesis separator.

* relation
See relational operator or relation condition.

* relation character
A character that belongs to the following
set:

Glossary 853

Character Meaning
> Greater than
< Less than
= Equal to

* relation condition
The proposition (for which a truth value
can be determined) that the value of an
arithmetic expression, data item,
alphanumeric literal, or index-name has a
specific relationship to the value of
another arithmetic expression, data item,
alphanumeric literal, or index name. See
also relational operator.

* relational operator
A reserved word, a relation character, a
group of consecutive reserved words, or a
group of consecutive reserved words and
relation characters used in the
construction of a relation condition. The
permissible operators and their meanings
are:

Character Meaning
IS GREATER THAN Greater than
IS > Greater than
IS NOT GREATER THAN Not greater than
IS NOT > Not greater than

IS LESS THAN Less than
IS < Less than
IS NOT LESS THAN Not less than
IS NOT < Not less than

IS EQUAL TO Equal to
IS = Equal to
IS NOT EQUAL TO Not equal to
IS NOT = Not equal to

IS GREATER THAN OR EQUAL
TO

Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO Less than or equal to
IS <= Less than or equal to

* relative file
A file with relative organization.

* relative key
A key whose contents identify a logical
record in a relative file.

* relative organization
The permanent logical file structure in
which each record is uniquely identified

by an integer value greater than zero,
which specifies the logical ordinal
position of the record in the file.

* relative record number
The ordinal number of a record in a file
whose organization is relative. This
number is treated as a numeric literal that
is an integer.

* reserved word
A COBOL word that is specified in the
list of words that can be used in a
COBOL source program, but that must
not appear in the program as a
user-defined word or system-name.

* resource
A facility or service, controlled by the
operating system, that an executing
program can use.

* resultant identifier
A user-defined data item that is to contain
the result of an arithmetic operation.

reusable environment
A reusable environment is created when
you establish an assembler program as
the main program by using either the old
COBOL interfaces for preinitialization
(RTEREUS runtime option), or the
Language Environment interface,
CEEPIPI.

routine
A set of statements in a COBOL program
that causes the computer to perform an
operation or series of related operations.
In Language Environment, refers to either
a procedure, function, or subroutine.

* routine-name
A user-defined word that identifies a
procedure written in a language other
than COBOL.

* run time
The time at which an object program is
executed. Synonymous with object time.

runtime environment
The environment in which a COBOL
program executes.

* run unit
A stand-alone object program, or several
object programs, that interact by means of
COBOL CALL or INVOKE statements and
function at run time as an entity.

854 Enterprise COBOL for z/OS, V5.2 Programming Guide

S

SBCS See single-byte character set (SBCS).

scope terminator
A COBOL reserved word that marks the
end of certain PROCEDURE DIVISION
statements.It can be either explicit
(END-ADD, for example) or implicit
(separator period).

* section
A set of zero, one, or more paragraphs or
entities, called a section body, the first of
which is preceded by a section header.
Each section consists of the section header
and the related section body.

* section header
A combination of words followed by a
separator period that indicates the
beginning of a section in any of these
divisions: ENVIRONMENT, DATA, or
PROCEDURE. In the ENVIRONMENT DIVISION
and DATA DIVISION, a section header is
composed of reserved words followed by
a separator period. The permissible
section headers in the ENVIRONMENT
DIVISION are:
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the
DATA DIVISION are:
FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the PROCEDURE DIVISION, a section
header is composed of a section-name,
followed by the reserved word SECTION,
followed by a separator period.

* section-name
A user-defined word that names a section
in the PROCEDURE DIVISION.

selection structure
A program processing logic in which one
or another series of statements is
executed, depending on whether a
condition is true or false.

* sentence
A sequence of one or more statements, the
last of which is terminated by a separator
period.

* separately compiled program
A program that, together with its
contained programs, is compiled
separately from all other programs.

* separator
A character or two or more contiguous
characters used to delimit character
strings.

* separator comma
A comma (,) followed by a space used to
delimit character strings.

* separator period
A period (.) followed by a space used to
delimit character strings.

* separator semicolon
A semicolon (;) followed by a space used
to delimit character strings.

sequence structure
A program processing logic in which a
series of statements is executed in
sequential order.

* sequential access
An access mode in which logical records
are obtained from or placed into a file in
a consecutive predecessor-to-successor
logical record sequence determined by the
order of records in the file.

* sequential file
A file with sequential organization.

* sequential organization
The permanent logical file structure in
which a record is identified by a
predecessor-successor relationship
established when the record is placed into
the file.

serial search
A search in which the members of a set
are consecutively examined, beginning
with the first member and ending with
the last.

session bean
In EJB, an enterprise bean that is created
by a client and that usually exists only for
the duration of a single client/server
session. (Oracle)

77-level-description-entry
A data description entry that describes a
noncontiguous data item that has
level-number 77.

Glossary 855

* sign condition
The proposition (for which a truth value
can be determined) that the algebraic
value of a data item or an arithmetic
expression is either less than, greater than,
or equal to zero.

signature
(1) The name of an operation and its
parameters. (2) The name of a method
and the number and types of its formal
parameters.

* simple condition
Any single condition chosen from this set:
v Relation condition
v Class condition
v Condition-name condition
v Switch-status condition
v Sign condition

See also condition and negated simple
condition.

single-byte character set (SBCS)
A set of characters in which each
character is represented by a single byte.
See also ASCII and EBCDIC (Extended
Binary-Coded Decimal Interchange Code).

slack bytes
Bytes inserted between data items or
records to ensure correct alignment of
some numeric items. Slack bytes contain
no meaningful data. In some cases, they
are inserted by the compiler; in others, it
is the responsibility of the programmer to
insert them. The SYNCHRONIZED clause
instructs the compiler to insert slack bytes
when they are needed for proper
alignment. Slack bytes between records
are inserted by the programmer.

* sort file
A collection of records to be sorted by a
format 1 SORT statement. The sort file is
created and can be used by the sort
function only.

* sort-merge file description entry
An entry in the FILE SECTION of the DATA
DIVISION that is composed of the level
indicator SD, followed by a file-name, and
then followed by a set of file clauses as
required.

* SOURCE-COMPUTER
The name of an ENVIRONMENT DIVISION
paragraph in which the computer

environment, where the source program is
compiled, is described.

* source computer entry
An entry in the SOURCE-COMPUTER
paragraph of the ENVIRONMENT DIVISION;
this entry contains clauses that describe
the computer environment in which the
source program is to be compiled.

* source item
An identifier designated by a SOURCE
clause that provides the value of a
printable item.

source program
Although a source program can be
represented by other forms and symbols,
in this document the term always refers
to a syntactically correct set of COBOL
statements. A COBOL source program
commences with the IDENTIFICATION
DIVISION or a COPY statement and
terminates with the end program marker,
if specified, or with the absence of
additional source program lines.

source unit
A unit of COBOL source code that can be
separately compiled: a program or a class
definition. Also known as a compilation
unit.

special character
A character that belongs to the following
set:

Character Meaning
+ Plus sign
- Minus sign (hyphen)
* Asterisk
/ Slant (forward slash)
= Equal sign
$ Currency sign
, Comma
; Semicolon
. Period (decimal point, full stop)
" Quotation mark
' Apostrophe
(Left parenthesis
) Right parenthesis
> Greater than
< Less than
: Colon
_ Underscore

SPECIAL-NAMES
The name of an ENVIRONMENT DIVISION

856 Enterprise COBOL for z/OS, V5.2 Programming Guide

|

paragraph in which environment-names
are related to user-specified
mnemonic-names.

* special names entry
An entry in the SPECIAL-NAMES paragraph
of the ENVIRONMENT DIVISION; this entry
provides means for specifying the
currency sign; choosing the decimal point;
specifying symbolic characters; relating
implementor-names to user-specified
mnemonic-names; relating
alphabet-names to character sets or
collating sequences; and relating
class-names to sets of characters.

* special registers
Certain compiler-generated storage areas
whose primary use is to store information
produced in conjunction with the use of a
specific COBOL feature.

* statement
A syntactically valid combination of
words, literals, and separators, beginning
with a verb, written in a COBOL source
program.

structured programming
A technique for organizing and coding a
computer program in which the program
comprises a hierarchy of segments, each
segment having a single entry point and a
single exit point. Control is passed
downward through the structure without
unconditional branches to higher levels of
the hierarchy.

* subclass
A class that inherits from another class.
When two classes in an inheritance
relationship are considered together, the
subclass is the inheritor or inheriting
class; the superclass is the inheritee or
inherited class.

* subject of entry
An operand or reserved word that
appears immediately following the level
indicator or the level-number in a DATA
DIVISION entry.

* subprogram
See called program.

* subscript
An occurrence number that is represented
by either an integer, a data-name
optionally followed by an integer with the
operator + or -, or an index-name

optionally followed by an integer with the
operator + or -, that identifies a particular
element in a table. A subscript can be the
word ALL when the subscripted identifier
is used as a function argument for a
function allowing a variable number of
arguments.

* subscripted data-name
An identifier that is composed of a
data-name followed by one or more
subscripts enclosed in parentheses.

substitution character
A character that is used in a conversion
from a source code page to a target code
page to represent a character that is not
defined in the target code page.

* superclass
A class that is inherited by another class.
See also subclass.

surrogate pair
In the UTF-16 format of Unicode, a pair
of encoding units that together represents
a single Unicode graphic character. The
first unit of the pair is called a high
surrogate and the second a low surrogate.
The code value of a high surrogate is in
the range X'D800' through X'DBFF'. The
code value of a low surrogate is in the
range X'DC00' through X'DFFF'. Surrogate
pairs provide for more characters than the
65,536 characters that fit in the Unicode
16-bit coded character set.

switch-status condition
The proposition (for which a truth value
can be determined) that an UPSI switch,
capable of being set to an on or off status,
has been set to a specific status.

* symbolic-character
A user-defined word that specifies a
user-defined figurative constant.

syntax (1) The relationship among characters or
groups of characters, independent of their
meanings or the manner of their
interpretation and use. (2) The structure
of expressions in a language. (3) The rules
governing the structure of a language. (4)
The relationship among symbols. (5) The
rules for the construction of a statement.

* system-name
A COBOL word that is used to
communicate with the operating
environment.

Glossary 857

T

* table
A set of logically consecutive items of
data that are defined in the DATA DIVISION
by means of the OCCURS clause.

* table element
A data item that belongs to the set of
repeated items comprising a table.

text deck
Synonym for object deck or object module.

* text-name
A user-defined word that identifies library
text.

* text word
A character or a sequence of contiguous
characters between margin A and margin
R in a COBOL library, source program, or
pseudo-text that is any of the following
characters:
v A separator, except for space; a

pseudo-text delimiter; and the opening
and closing delimiters for alphanumeric
literals. The right parenthesis and left
parenthesis characters, regardless of
context within the library, source
program, or pseudo-text, are always
considered text words.

v A literal including, in the case of
alphanumeric literals, the opening
quotation mark and the closing
quotation mark that bound the literal.

v Any other sequence of contiguous
COBOL characters except comment
lines and the word COPY bounded by
separators that are neither a separator
nor a literal.

thread
A stream of computer instructions
(initiated by an application within a
process) that is in control of a process.

token In the COBOL editor, a unit of meaning in
a program. A token can contain data, a
language keyword, an identifier, or other
part of the language syntax.

top-down design
The design of a computer program using
a hierarchic structure in which related
functions are performed at each level of
the structure.

top-down development
See structured programming.

trailer-label
(1) A data-set label that follows the data
records on a unit of recording medium.
(2) Synonym for end-of-file label.

troubleshoot
To detect, locate, and eliminate problems
in using computer software.

* truth value
The representation of the result of the
evaluation of a condition in terms of one
of two values: true or false.

typed object reference
A data-name that can refer only to an
object of a specified class or any of its
subclasses.

U

* unary operator
A plus (+) or a minus (-) sign that
precedes a variable or a left parenthesis in
an arithmetic expression and that has the
effect of multiplying the expression by +1
or -1, respectively.

Unicode
A universal character encoding standard
that supports the interchange, processing,
and display of text that is written in any
of the languages of the modern world.
There are multiple encoding schemes to
represent Unicode, including UTF-8,
UTF-16, and UTF-32. Enterprise COBOL
supports Unicode using UTF-16 in
big-endian format as the representation
for the national data type.

Uniform Resource Identifier (URI)
A sequence of characters that uniquely
names a resource; in Enterprise COBOL,
the identifier of a namespace. URI syntax
is defined by the document Uniform
Resource Identifier (URI): Generic Syntax.

unit A module of direct access, the dimensions
of which are determined by IBM.

universal object reference
A data-name that can refer to an object of
any class.

unrestricted storage
Storage below the 2 GB bar. It can be
above or below the 16 MB line. If it is
above the 16 MB line, it is addressable
only in 31-bit mode.

858 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt

* unsuccessful execution
The attempted execution of a statement
that does not result in the execution of all
the operations specified by that statement.
The unsuccessful execution of a statement
does not affect any data referenced by
that statement, but can affect status
indicators.

UPSI switch
A program switch that performs the
functions of a hardware switch. Eight are
provided: UPSI-0 through UPSI-7.

URI See Uniform Resource Identifier (URI).

* user-defined word
A COBOL word that must be supplied by
the user to satisfy the format of a clause
or statement.

V

* variable
A data item whose value can be changed
by execution of the object program. A
variable used in an arithmetic expression
must be a numeric elementary item.

variable-length item
A group item that contains a table
described with the DEPENDING phrase of
the OCCURS clause.

* variable-length record
A record associated with a file whose file
description or sort-merge description
entry permits records to contain a varying
number of character positions.

* variable-occurrence data item
A variable-occurrence data item is a table
element that is repeated a variable
number of times. Such an item must
contain an OCCURS DEPENDING ON clause in
its data description entry or be
subordinate to such an item.

* variably located group
A group item following, and not
subordinate to, a variable-length table in
the same record. The group item can be
an alphanumeric group or a national
group.

* variably located item
A data item following, and not
subordinate to, a variable-length table in
the same record.

* verb
A word that expresses an action to be
taken by a COBOL compiler or object
program.

volume
A module of external storage. For tape
devices it is a reel; for direct-access
devices it is a unit.

volume switch procedures
System-specific procedures that are
executed automatically when the end of a
unit or reel has been reached before
end-of-file has been reached.

VSAM file system
A file system that supports COBOL
sequential, relative, and indexed
organizations.

W

web service
A modular application that performs
specific tasks and is accessible through
open protocols like HTTP and SOAP.

white space
Characters that introduce space into a
document. They are:
v Space
v Horizontal tabulation
v Carriage return
v Line feed
v Next line

as named in the Unicode Standard.

* word
A character string of not more than 30
characters that forms a user-defined word,
a system-name, a reserved word, or a
function-name.

* WORKING-STORAGE SECTION
The section of the DATA DIVISION that
describes WORKING-STORAGE data items,
composed either of noncontiguous items
or WORKING-STORAGE records or of both.

workstation
A generic term for computers, including
personal computers, 3270 terminals,
intelligent workstations, and UNIX
terminals. Often a workstation is
connected to a mainframe or to a
network.

Glossary 859

wrapper
An object that provides an interface
between object-oriented code and
procedure-oriented code. Using wrappers
lets programs be reused and accessed by
other systems.

X

x The symbol in a PICTURE clause that can
hold any character in the character set of
the computer.

XML Extensible Markup Language. A standard
metalanguage for defining markup
languages that was derived from and is a
subset of SGML. XML omits the more
complex and less-used parts of SGML and
makes it much easier to write applications
to handle document types, author and
manage structured information, and
transmit and share structured information
across diverse computing systems. The
use of XML does not require the robust
applications and processing that is
necessary for SGML. XML is developed
under the auspices of the World Wide
Web Consortium (W3C).

XML data
Data that is organized into a hierarchical
structure with XML elements. The data
definitions are defined in XML element
type declarations.

XML declaration
XML text that specifies characteristics of
the XML document such as the version of
XML being used and the encoding of the
document.

XML document
A data object that is well formed as
defined by the W3C XML specification.

XML namespace
A mechanism, defined by the W3C XML
Namespace specifications, that limits the
scope of a collection of element names
and attribute names. A uniquely chosen
XML namespace ensures the unique
identity of an element name or attribute
name across multiple XML documents or
multiple contexts within an XML
document.

XML schema
A mechanism, defined by the W3C, for
describing and constraining the structure

and content of XML documents. An XML
schema, which is itself expressed in XML,
effectively defines a class of XML
documents of a given type, for example,
purchase orders.

Z

z/OS UNIX file system
A collection of files and directories that
are organized in a hierarchical structure
and can be accessed by using z/OS
UNIX.

zoned decimal data item
An external decimal data item that is
described implicitly or explicitly as USAGE
DISPLAY and that contains a valid
combination of PICTURE symbols 9, S, P,
and V. The content of a zoned decimal
data item is represented in characters 0
through 9, optionally with a sign. If the
PICTURE string specifies a sign and the
SIGN IS SEPARATE clause is specified, the
sign is represented as characters + or -. If
SIGN IS SEPARATE is not specified, the
sign is one hexadecimal digit that
overlays the first 4 bits of the sign
position (leading or trailing).

#

85 COBOL Standard
The COBOL language defined by the
following standards:
v ANSI INCITS 23-1985, Programming

languages - COBOL, as amended by
ANSI INCITS 23a-1989, Programming
Languages - COBOL - Intrinsic Function
Module for COBOL and ANSI INCITS
23b-1993, Programming Languages -
Correction Amendment for COBOL

v ISO 1989:1985, Programming languages -
COBOL, as amended by ISO/IEC
1989/AMD1:1992, Programming languages
- COBOL: Intrinsic function module and
ISO/IEC 1989/AMD2:1994, Programming
languages - Correction and clarification
amendment for COBOL

2002 COBOL Standard
The COBOL language defined by the
following standards:
v INCITS/ISO/IEC 1989-2002,

Information Technology - Programming
Languages - COBOL

860 Enterprise COBOL for z/OS, V5.2 Programming Guide

v ISO/IEC 1989:2002, Information
technology -- Programming languages
-- COBOL

Glossary 861

862 Enterprise COBOL for z/OS, V5.2 Programming Guide

List of resources

Enterprise COBOL for z/OS
COBOL for z/OS publications

You can find the following publications in the
Enterprise COBOL for z/OS library:
v Customization Guide, SC14-7380
v Language Reference, SC14-7381
v Programming Guide, SC14-7382
v Migration Guide, GC14-7383
v Program Directory, GI11-9180
v Licensed Program Specifications, GI11-9181

Softcopy publications

The following collection kits contain Enterprise
COBOL and other product publications. You can
find them at http://www-05.ibm.com/e-
business/linkweb/publications/servlet/pbi.wss.
v z/OS Software Products Collection

v z/OS and Software Products DVD Collection

Support

Performance Tuning, www.ibm.com/support/
docview.wss?uid=swg27018287

If you have a problem using Enterprise COBOL
for z/OS, see the following site that provides
up-to-date support information:
https://www.ibm.com/support/home/product/
B984385H82239E03/Enterprise_COBOL_for_z/OS.

Related publications
z/OS library publications

You can find the following publications in the
z/OS Internet Library.

Run-Time Library Extensions

v DWARF/ELF Extensions Library Reference

v Common Debug Architecture Library Reference

v Common Debug Architecture User’s Guide

z/Architecture

v Principles of Operation

z/OS DFSMS

v Access Method Services for Catalogs

v Checkpoint/Restart

v Macro Instructions for Data Sets

v Using Data Sets

v Utilities

z/OS DFSORT

v Application Programming Guide

v Installation and Customization

z/OS ISPF

v Dialog Developer's Guide and Reference

v User's Guide Vol I

v User's Guide Vol II

z/OS Language Environment

v Concepts Guide

v Customization

v Debugging Guide

v Programming Guide

v Programming Reference

v Run-Time Messages

v Run-Time Application Migration Guide

v Language Environment Vendor Interfaces

v Writing Interlanguage Communication Applications

z/OS MVS

v JCL Reference

v JCL User's Guide

v Program Management: User's Guide and Reference

v System Commands

v z/OS Unicode Services User's Guide and Reference

v z/OS XML System Services User's Guide and
Reference

z/OS TSO/E

v Command Reference

v Primer

v User's Guide

z/OS UNIX System Services

v Command Reference

© Copyright IBM Corp. 1991, 2018 863

http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www-01.ibm.com/support/docview.wss?uid=swg27018287
http://www-01.ibm.com/support/docview.wss?uid=swg27018287
https://www.ibm.com/support/home/product/B984385H82239E03/Enterprise_COBOL_for_z/OS
https://www.ibm.com/support/home/product/B984385H82239E03/Enterprise_COBOL_for_z/OS
http://www.ibm.com/systems/z/os/zos/library/bkserv/

v Programming: Assembler Callable Services
Reference

v User's Guide

z/OS XL C/C++

v Programming Guide

v Run-Time Library Reference

CICS Transaction Server for z/OS

You can find the following publications in the
CICS Library:
v Application Programming Guide

v Application Programming Reference

v Customization Guide

v External Interfaces Guide

DB2 for z/OS

You can find the following publications in the
DB2 Library:
v Application Programming and SQL Guide

v Command Reference

v SQL Reference

Debug Tool

You can find the following publications in the
Debug Tool Library:
v Reference and Messages

v User's Guide

You can find the following publications by
searching their publication numbers in the IBM
Publications Center.

IMS
v Application Programming API Reference,

SC18-9699
v Application Programming Guide, SC18-9698

WebSphere Application Server for z/OS
v Applications, SA22-7959

Softcopy publications for z/OS

The following collection kit contains z/OS and
related product publications:
v z/OS CD Collection Kit, SK3T-4269

Java
v IBM SDK, Java Technology Edition,

developer.ibm.com/javasdk/documentation/
v The Java 2 Enterprise Edition Developer's Guide,

download.oracle.com/javaee/1.2.1/devguide/
html/DevGuideTOC.html

v Java 2 on z/OS, www.ibm.com/servers/eserver/
zseries/software/java/

v The Java EE 5 Tutorial, download.oracle.com/
javaee/5/tutorial/doc/

v The Java Language Specification, Third Edition, by
Gosling et al., java.sun.com/docs/books/jls/

v The Java Native Interface, download.oracle.com/
javase/1.5.0/docs/guide/jni/

v JDK 5.0 Documentation, download.oracle.com/
javase/1.5.0/docs/

Unicode and character representation
v Unicode, www.unicode.org/
v Character Data Representation Architecture

Reference and Registry, SC09-2190

XML
v Extensible Markup Language (XML),

www.w3.org/XML/
v Namespaces in XML 1.0, www.w3.org/TR/xml-

names/
v Namespaces in XML 1.1, www.w3.org/TR/xml-

names11/
v XML specification, www.w3.org/TR/xml/

864 Enterprise COBOL for z/OS, V5.2 Programming Guide

http://www.ibm.com/software/htp/cics/library/
http://www.ibm.com/support/docview.wss?uid=swg27019288
http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
https://developer.ibm.com/javasdk/documentation/
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://www.ibm.com/servers/eserver/zseries/software/java/
http://www.ibm.com/servers/eserver/zseries/software/java/
http://download.oracle.com/javaee/5/tutorial/doc/
http://download.oracle.com/javaee/5/tutorial/doc/
http://java.sun.com/docs/books/jls/
http://download.oracle.com/javase/1.5.0/docs/guide/jni/
http://download.oracle.com/javase/1.5.0/docs/guide/jni/
http://download.oracle.com/javase/1.5.0/docs/
http://download.oracle.com/javase/1.5.0/docs/
http://www.unicode.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml/

Index

Special characters
_BPX_SHAREAS environment

variable 467
_CEE_ENVFILE environment variable

description 465
indicating Java settings 297

_CEE_RUNOPTS environment variable
description 465
setting XPLINK 299
specifying runtime options 463

_IGZ_SYSOUT environment variable
setting 465
writing to stdout or stderr 36

-# cob2 option for displaying compile and
link steps 288

-b cob2 option
for creating DLLs 286
for passing information to the

linker 287
-c cob2 option for compiling but not

linking 287
-comprc_ok cob2 option for controlling

compiler based on return code 287
-e cob2 option for specifying entry

point 287
-g cob2 option equivalent to specifying

TEST 288
-I cob2 option for searching

copybooks 288
-l cob2 option for specifying archive

library name 288
-L cob2 option for specifying archive

library path 288
-o cob2 option for specifying output

file 288
-q cob2 option for specifying compiler

options 288
-v cob2 option for displaying and

executing compile and link steps 288
! character, hexadecimal values 550
.a suffix with cob2 289
.adt file 305
.adt suffix with cob2 289
.cbl suffix with cob2 289
.dek suffix with cob2 289
.lst suffix with cob2 289
.o suffix with cob2 289
.x suffix with cob2 289
*CBL statement 381
*CONTROL statement 381
[character, hexadecimal values 550
] character, hexadecimal values 550
| character, hexadecimal values 550
character, hexadecimal values 550

Numerics
16 MB line

CICS programs 430
IMS programs 430

16 MB line (continued)
performance options 669

24-bit addressing mode 39
31-bit addressing mode 39

dynamic call 479
64-bit addressing

no support 39
85 COBOL Standard

checkpoints 652
required compiler options 304
required runtime options 304

A
a suffix with cob2 289
a.out file from cob2 289
abends, compile-time 322
ACCEPT statement

assigning input 35
reading from stdin 35
under CICS 431

access method services
build alternate indexes in

advance 209
defining VSAM data sets to

z/OS 203
loading a VSAM data set 197

accessibility
of Enterprise COBOL xx
of this information xxi
using z/OS xx

ADATA compiler option 305
adding records

to line-sequential files 217
to QSAM files 172
to VSAM files 199

ADDRESS OF special register
use in CALL statement 492

addresses
incrementing 497
NULL value 497
passing between programs 497
passing entry-point addresses 487

addressing mode, definition 39
ADEXIT suboption of EXIT option

processing of 717
syntax 325

ADMODE attribute
with multithreading 523

adt suffix with cob2 289
ADV compiler option 306
AFP compiler option 307

performance considerations 669
AIXBLD runtime option

effect on performance 673
ALL subscript

examples 89
processing table elements

iteratively 89
table elements as function

arguments 58

ALL31 runtime option
multioption interaction 40
OFF for AMODE switching 479

ALLOCATE command (TSO)
compiler data sets 262
with z/OS UNIX files 263

allocation of files
description 157
line-sequential 215
QSAM 174
under TSO 262
VSAM 206

ALPHABET clause, establishing collating
sequence with 6

alphabetic data
comparing to national 149
MOVE statement with 32

alphanumeric comparison 98
alphanumeric data

comparing
effect of ZWB 379
to national 149

converting
to DBCS with IGZCA2D 695
to national with MOVE 138
to national with

NATIONAL-OF 139
MOVE statement with 32
with double-byte characters 695

alphanumeric group item
a group without GROUP-USAGE

NATIONAL 25
definition 24

alphanumeric literals
conversion of mixed

DBCS/EBCDIC 695
description 25
with DBCS content 151
with double-byte characters 695

alphanumeric-edited data
initializing

example 29
using INITIALIZE 74

MOVE statement with 32
alternate collating sequence

choosing 229
example 7

alternate entry point, calling 489
alternate index

creating 204
example of 205
password for 202
path 204, 205
performance considerations 210
using 189

ALTERNATE RECORD KEY clause
identify alternate indexes 205
identifying alternate keys in KSDS

files 189
alternate reserved-word table

CICS 437

© Copyright IBM Corp. 1991, 2018 865

alternate reserved-word table (continued)
specifying 372

AMODE
and DLLs 512
description 39
of EXIT modules 712
switching

ALL31(OFF) 479
examples 479
overview 479

AMP parameter 206
ANNUITY intrinsic function 62
APIs, UNIX and POSIX

calling 466
APOST compiler option 352
APPLY WRITE-ONLY clause 10
ARCH compiler option 307

performance considerations 669
arguments

describing in calling program 493
from main program

accessing in z/OS 505
accessing in z/OS UNIX 468

passing BY VALUE 493
specifying OMITTED 495
testing for OMITTED arguments 495

ARITH compiler option
description 309
performance considerations 669

arithmetic
COMPUTE statement simpler to

code 56
error handling 240
with intrinsic functions 57

arithmetic comparisons 63
arithmetic evaluation

conversions and precision 52
data format conversion 52
examples 63, 64
fixed-point contrasted with

floating-point 63
intermediate results 685
performance tips 663
precedence 57, 687
precision 685

arithmetic expression
as reference modifier 114
description of 57
in nonarithmetic statement 693
in parentheses 57

arrays
COBOL 39
Java

declaring 639
manipulating 640

ASCII
alphabet, QSAM 182
code pages supported in XML

documents 546
converting to EBCDIC 119
job control language (JCL) 183
record formats, QSAM 183
tape files, QSAM 182

ASCII files
CODE-SET clause 14
OPTCD= parameter in DCB 14

assembler
expansion of PROCEDURE

DIVISION 405
programs

calls from (in CICS) 431
compiling from 265
listing of 334, 667
with multithreading 523

ASSIGN clause
corresponds to ddname 8
QSAM files 160

assigning values 27
assistive technologies xxi
associated-data file, creating 271
asynchronous signals with

multithreading 523
AT END (end-of-file) phrase 244
ATTACH macro 265
attribute methods 603
automatic restart 655
available files

QSAM 171
VSAM 202

AWO compiler option
APPLY-WRITE ONLY clause

performance 10
description 310
performance considerations 669

B
Base class

equating to java.lang.Object 595
using for java.lang.Object 594

base cluster name 205
base locator 401, 402
base locator table 419
basis libraries 270
BASIS statement 381
batch compilation

description 275
LANGUAGE option

example 279
precedence of options

example 278
overview 277

Bibliography 863
big-endian, converting to

little-endian 130
binary data 341
binary data item

general description 48
intermediate results 690
synonyms 47
using efficiently 48, 663

binary search
description 87
example 88

binder
c89 command 285
options needed for DLLs 509
recommended for DLLs 509

binding OO applications
example 298
using JCL or TSO/E 296

BLANK WHEN ZERO clause
coded for numeric data 131

BLANK WHEN ZERO clause (continued)
example with numeric-edited

data 45
BLOCK CONTAINS clause

FILE SECTION entry 13
no meaning for VSAM files 192
QSAM files 161, 168, 310

block size
ASCII files 183
compiler data sets 268
QSAM files 168, 310

fixed-length 161
record layout 163
using DCB 176
variable-length 162

system-determined
compiler data sets 268
QSAM files 168, 310

BLOCK0 compiler option
description 310
performance considerations 669

blocking factor, definition 161
blocking QSAM files

using BLOCK CONTAINS clause 168
using BLOCK0 310

blocking records 168
BPXBATCH utility

calling z/OS UNIX programs 464
running OO applications 296

branch, implicit 102
buffers

best use of 10
obtaining for QSAM 181

BUFSIZE compiler option 312
BY CONTENT 491
BY REFERENCE 491
BY VALUE

description 491
restrictions 493
valid data types 493

byte order mark not generated 577
byte-stream files

processing with QSAM 181

C
C/C++ programs

with COBOL DLLs 515
with multithreading 523

c89 command for link step 285
CALL command (TSO) 262
CALL identifier

always dynamic 479
dynamic calls 477
making from DLLs 510
with NODLL 477
with NODYNAM 481

CALL literal
dynamic calls 477
static calls 476
with DYNAM 477
with NODLL 476, 477
with NODYNAM 476, 481

CALL statement
AMODE processing 479
BY CONTENT 491
BY REFERENCE 491

866 Enterprise COBOL for z/OS, V5.2 Programming Guide

CALL statement (continued)
BY VALUE

description 491
restrictions 493

CICS restrictions 431
effect of EXIT option on registers 712
exception condition 250
for error handling 250
function-pointer 489
handling of program-name in 349
Language Environment callable

services 679
overflow condition 250
RETURNING 501
to alternate entry points 489
USING 493
with CANCEL 478
with DYNAM 323
with ON EXCEPTION 250
with ON OVERFLOW 20, 250

calls
31-bit addressing mode 479
AMODE switching for 24-bit

programs 479
between COBOL and non-COBOL

programs 473
between COBOL programs 473, 475
CICS restrictions 431
dynamic

example 482
making 477
performance 481
restrictions 477
with static calls 481

exception condition 250
interlanguage 473
LINKAGE SECTION 495
OMITTED arguments 495
overflow condition 250
passing arguments 493
passing data 491
receiving parameters 494
recursive 487
static

example 482
making 476
performance 481
with dynamic calls 481

to and from object-oriented
programs 487

to JNI services 633
to Language Environment callable

services 679
CANCEL statement

cannot use with DLL linkage 512
for subprograms 478
handling of program-name in 349
with dynamic CALL 478

case structure, EVALUATE statement
for 95

cataloged procedure
JCL for compiling 256
to compile (IGYWC) 257
to compile and link-edit

(IGYWCL) 258
to compile, link-edit, run

(IGYWCLG) 259

CBL statement
overview 381
specifying compiler options 273

cbl suffix with cob2 289
CBLPSHPOP runtime option 438
CBLQDA runtime option 171
CCSID

conflict in XML documents 555
definition 129
EBCDIC multibyte CCSIDs 315
in PARSE statement 530
of DB2 string data 447
of XML documents 546
of XML documents to be parsed 530
specifying with CODEPAGE

option 313
chained-list processing

example 498
overview 497

changing
characters to numbers 117
file-name 9
title on source listing 5

CHAR intrinsic function, example 119
character set, definition 129
CHECK runtime option

performance considerations 671
checking for valid data

conditional expressions 98
checkpoint

85 COBOL Standard 652
designing 652
example of JCL for restart 657
messages generated during 654
methods 651
multiple 652, 654
overview 651
record data set 653
restart during DFSORT 236
restrictions during sort 652
setting 651
single 652

disk 654
tape 653

testing 653
Chinese GB 18030 data

processing 146
CHKPT keyword 236
CICS

alternate reserved-word table 437
calling nested programs 432
CICS HANDLE 438

example 439
LABEL value 438

coding programs to run under
calls 431
DISPLAY statement 430
I/O 430
overview 429
restrictions 429
SORT statement 438

command-level interface 429
commands and the PROCEDURE

DIVISION 429
compiling with CICS option 433
developing programs for 429

CICS (continued)
DFHCOMMAREA parameter

calling nested programs 432
calling separately compiled

programs 431
DFHEIBLK parameter

calling nested programs 432
calling separately compiled

programs 431
ECI calls and RETURN-CODE special

register 433
EXIT compiler option and 728
in a multithreaded environment 523
integrated translator

advantages 435
calling nested programs 432
compiler options for 434
overview 435

interlanguage communication
under 432

macro-level interface 429
NODYNAM compiler option 432
performance

overview 661
performance considerations 439, 672
restrictions

16 MB line 430
files 5
OO programs 429, 589
OUTDD compiler option 348
parsing with validation using

FILE 541
separate translator 435
sorting 237

separate translator
calling nested programs 433
compiler options for 436
restrictions 435
using 436

sorting under
change reserved-word table 438
overview 237
restrictions 237

system date, getting 431
CICS compiler option

description 312
enables integrated translator 435
multioption interaction 305
specifying suboptions 313, 435
using 433

CISZ (control interval size), performance
considerations 210, 673

CKPT keyword 236
class

defining 592
definition of 589
factory data 622
instance data 596
instantiating

COBOL 615
Java 615

name
external 595, 607
in a program 594

object, obtaining reference with
JNI 634

user-defined 8

Index 867

class condition
testing

for DBCS 151
for Kanji 151
for numeric 54
overview 98

validating data 387
CLASSPATH environment variable

description 465
example of setting 297
specifying location of Java

classes 293
client

defining 606
definition of 606

CLIST for compiling under TSO 264
CLOSE statement

line-sequential files 215
QSAM 170
VSAM 193

closing files
line-sequential 217
multithreading serialization 520
QSAM

overview 173
with multithreading 173

VSAM
overview 200
with multithreading 201

closing files, automatic
line-sequential 217
QSAM 173
VSAM 200

cluster, VSAM 203
cob2 command

compiling with
examples 286
overview 285

description 287
for compiling OO applications 291
for creating DLLs 286
for linking OO applications 292
input and output 289
linking with

examples 286
overview 285

options and syntax 287
COBJVMINITOPTIONS environment

variable
description 465
specifying JVM options 295

COBOL
and Java

binding 296
communicating between 633
compatibility 300
compiling under z/OS UNIX 291
compiling using JCL or

TSO/E 295
linking 292
running 293, 296
structuring applications 630
under IMS 458

object-oriented
binding 296
compiling under z/OS UNIX 291

COBOL (continued)
object-oriented (continued)

compiling using JCL or
TSO/E 295

linking 292
running 293
under IMS 458

COBOL client
example 625
example of passing object

references 612
COBOL DLL programs, calling 513
COBOL terms 23
COBOL3 translator option 436
COBOPT environment variable 283
code

copy 675
optimized 667

code page
conflict in XML documents 555
DBCS 315
definition 129
euro currency support 65
hexadecimal values of special

characters 550
of DB2 string data 447
overriding 140
specifying 313
specifying for alphanumeric XML

document 549
code point, definition 129
CODE-SET clause 14
coded character set

definition 129
in XML documents 546

CODEPAGE compiler option
DBCS code pages 315
description 313
for national literals 137
items that are not affected 314
operations that override 314

coding
class definition 592
clients 606
condition tests 99
constructor methods 622
DATA DIVISION 11
decisions 93
efficiently 661
ENVIRONMENT DIVISION 5
errors, avoiding 661
EVALUATE statement 95
factory definition 621
factory methods 622
file input/output (overview) 153
IDENTIFICATION DIVISION 3
IF statement 93
input/output overview 156
input/output statements

for line-sequential files 215
for QSAM files 170
for VSAM files 193

instance methods 597, 619
interoperable data types with

Java 638
loops 101

coding (continued)
OO programs

must be reentrant 490
overview 589

PROCEDURE DIVISION 17
programs to run under CICS

calls 431
DISPLAY statement 430
I/O 430
must be reentrant 490
overview 429
restrictions 429
SORT statement 438
system date, getting 431

programs to run under DB2
CCSID of string data 447
overview 441
stored procedures must be

reentrant 490
programs to run under IMS

must be reentrant 490
overview 453
restrictions 453

simplifying 675
SQL statements

overview 442
restriction 442

SQLIMS statements
overview 454

subclasses
example 620
overview 617

tables 67
techniques 11, 661
test conditions 99

collating sequence
alternate

choosing 229
example 7

ASCII 7
binary for national keys 228
EBCDIC 7
HIGH-VALUE 7
ISO 7-bit code 7
LOW-VALUE 7
MERGE 7, 229
NATIVE 7
nonnumeric comparisons 6
ordinal position of a character 119
SEARCH ALL 7
SORT 7, 229
specifying 6
STANDARD-1 7
STANDARD-2 7
symbolic characters in the 8

COLLATING SEQUENCE phrase
does not apply to national keys 228
overrides PROGRAM COLLATING

SEQUENCE clause 6, 229
use in SORT or MERGE 229

columns in tables 67
COMMON attribute 4, 484
COMP (COMPUTATIONAL) 48
COMP-1 (COMPUTATIONAL-1)

format 50
performance tips 664

868 Enterprise COBOL for z/OS, V5.2 Programming Guide

COMP-2 (COMPUTATIONAL-2)
format 50
performance tips 664

COMP-3 (COMPUTATIONAL-3) 50
COMP-4 (COMPUTATIONAL-4) 48
COMP-5 (COMPUTATIONAL-5) 49
comparing data items 377

national
overview 147
to alphabetic, alphanumeric, or

DBCS 149
to alphanumeric groups 149
to numeric 148
two operands 148

object references 609
zoned decimal and alphanumeric,

effect of ZWB 379
compatibility

Java and COBOL 300
object-oriented syntax 300

compatibility mode 43, 685
compilation

conformance to 85 COBOL
Standard 304

results 274
with z/OS UNIX files 258

compilation statistics 399
COMPILE compiler option

description 316
use NOCOMPILE to find syntax

errors 390
compile-time considerations

compiler-directed errors 280
display compile and link steps 288
dump, generating a 322
error messages

determining what severity level to
produce 328

severity levels 282
executing compile and link steps after

display 288
compiler

calculation of intermediate
results 686

environment variables under z/OS
UNIX 283

generating list of error messages 280
invoking in the z/OS UNIX shell

examples 286
overview 285

limits
DATA DIVISION 11

messages
choosing severity to be

flagged 392
customizing 720
determining what severity level to

produce 328
embedding in source listing 392
from exit modules 727
sending to terminal 271
severity levels 282, 721

return code
depends on highest severity 282
effect of message

customization 722
overview 282

compiler data sets
in the z/OS UNIX file system 256,

261
input and output 267
required for compilation 267
SYSADATA (ADATA records) 271
SYSIN 269
SYSJAVA 272
SYSLIB (libraries) 270
SYSLIN (object code) 271
SYSMDECK (library processing) 272
SYSOPTF 269
SYSOUT (listing) 270
SYSPUNCH (object code) 271
SYSTERM (messages) 271
with cob2 289

compiler listings
getting 395

compiler options
85 COBOL Standard

conformance 304
abbreviations 301
ADATA 305
ADV 306
AFP 307

performance considerations 669
APOST 352
ARCH 307

performance considerations 669
ARITH

description 309
performance considerations 669

AWO
description 310
performance considerations 669

BLOCK0
description 310
performance considerations 669

BUFSIZE 312
CICS 312
CODEPAGE 313
COMPILE 316
conflicting 305
COPYRIGHT 316
CURRENCY 317
DATA 318
DBCS 319
DECK 319
DIAGTRUNC 320
DISPSIGN 320
DLL 322
DUMP 322
DYNAM 323, 670
EXIT 324
EXPORTALL 326
FASTSRT 231, 327

performance considerations 670
FLAG 328, 392
FLAGSTD 329
for CICS integrated translator 434
for CICS separate translator 433, 436
for debugging

overview 390
TEST restriction 388
THREAD restriction 388

HGPR 331
performance considerations 670

compiler options (continued)
IMS, recommended for 457
in effect 407
INITCHECK 331
INTDATE 332
LANGUAGE

description 333
example in batch compilation 279

LINECOUNT 334
LIST 334, 395
MAP 335, 394, 395
MAXPCF 336
MAXPCF(nnn)

performance considerations 670
MDECK 338
NAME 339
NOCOMPILE 390
NOFASTSRT 233
NSYMBOL 340
NUMBER 340, 397
NUMCHECK 341
NUMPROC 343
NUMPROC(PFD)

performance considerations 670
NUMPROC(PFD|NOPFD) 54
OBJECT 344
OFFSET 345
on compiler invocation 399
OPTFILE 345
OPTIMIZE

description 346
performance considerations 667,

670
OUTDD 348
performance considerations 669
PGMNAME 348
precedence of

example 278
in batch 277
in SYSOPTF data sets 270, 346
under z/OS 272
under z/OS UNIX 284

QUALIFY 351
QUOTE 352
RENT

description 352
performance considerations 670

RMODE
description 353
performance considerations 671

RULES 354
SEQUENCE 356
SERVICE 356
signature information bytes 407
SOURCE 357, 395
SPACE 357
specifying 272

using PROCESS (CBL) 273
specifying under TSO 274
specifying under z/OS 274
specifying under z/OS UNIX 284
specifying with SYSOPTF data

set 269
SQL

description 358
using with DB2 445

Index 869

compiler options (continued)
SQLCCSID

description 359
effect on CCSID of string

data 447
performance considerations 448
recommended with DB2

coprocessor 448
SQLIMS 360
SSRANGE 361, 391

performance considerations 671
status 399
STGOPT 362
table of 301
TERMINAL 363
TEST

description 364
performance considerations 671
use for debugging 395

THREAD
debugging restriction 388
description 366
performance considerations 671

TRUNC
description 368
performance considerations 671

under IMS and CICS 430
VBREF 370, 395
VLR

description 371
VSAMOPENFS 372
WORD 372
XMLPARSE 373
XREF 374, 394
ZONECHECK 376
ZONEDATA 377
ZWB 379

Compiler options
listing example 415

compiler-directing statements
description 381
overview 20

compiling
batch 275
control of 272
data sets for 267
DLLs 286
from an assembler program 265
OO applications

cob2 command 291
example 293, 298
under z/OS UNIX 291
using JCL or TSO/E 295

under TSO
example CLIST 264
overview 262

under z/OS 255
under z/OS UNIX 283
using shell script 289
using the cob2 command

examples 286
overview 285

with cataloged procedures 256
compile 257
compile and link-edit 258
compile, link-edit, run 259

with JCL (job control language) 256

compiling and linking in the z/OS UNIX
shell

DLLs 286
examples 286
OO applications

cob2 command 292
example 293

overview 285
completion code

merge 230
sort 230

complex OCCURS DEPENDING ON
basic forms of 81
complex ODO item 82
variably located data item 82
variably located group 82

computation
arithmetic data items 663
of indexes 72
of subscripts 666

COMPUTATIONAL (COMP) 48
COMPUTATIONAL-1 (COMP-1)

format 50
performance tips 664

COMPUTATIONAL-2 (COMP-2)
format 50
performance tips 664

COMPUTATIONAL-3 (COMP-3)
description 50

COMPUTATIONAL-4 (COMP-4) 48
COMPUTATIONAL-5 (COMP-5) 49
COMPUTE statement

assigning arithmetic results 34
simpler to code 56

computer, describing 5
concatenating data items (STRING) 105
condition handling

closing QSAM files 173
closing VSAM files 200
in input or output procedures 225
using Language Environment 677

condition testing 99
conditional expression

EVALUATE statement 93
IF statement 93
PERFORM statement 103

conditional statement
overview 19
with NOT phrase 19
with object references 609

CONFIGURATION SECTION 5
conflicting compiler options 305
conformance requirements

85 COBOL Standard 304
example of passing object references

in INVOKE 612
RETURNING phrase of INVOKE 613
USING phrase of INVOKE 611

Constant area 418
constants

data items 662
definition 26
figurative, definition 26

contained program integration 668
CONTENT-CHARACTERS XML event

example 567
when parsing segments 544

continuation
entry 235
of program 241
syntax checking 316

CONTINUE statement 93
control

in nested programs 484
program flow 93
transfer 473

control interval size (CISZ), performance
considerations 210, 673

CONTROL statement 381
converting data items

between code pages 119
between data formats 52
exceptions with national data 140
precision 52
reversing order of characters 117
to alphanumeric

with DISPLAY 36
with DISPLAY-OF 139

to Chinese GB 18030 from
national 146

to integers with INTEGER,
INTEGER-PART 114

to national
from Chinese GB 18030 146
from UTF-8 141
with ACCEPT 35
with MOVE 138
with NATIONAL-OF 139

to numbers with NUMVAL,
NUMVAL-C 117

to uppercase or lowercase
with INSPECT 116
with intrinsic functions 117

to UTF-8 from national 141
with INSPECT 115
with intrinsic functions 116

CONVERTING phrase (INSPECT),
example 116

coprocessor, DB2
CCSID determination of string

data 447
differences from the precompiler 449
enable with SQL compiler option 445
overview 441
recommended compiler option

SQLCCSID 448
using SQL INCLUDE with 443

coprocessor, IMS
enable with SQLIMS compiler

option 456
overview 453

copy libraries
COPY statement 381
data set 267
example 676
search order 382
specifying 270
SYSLIB 270
z/OS UNIX search order 284, 288

COPY statement
DB2 considerations 449
description 381
example 676
nested 675, 714

870 Enterprise COBOL for z/OS, V5.2 Programming Guide

COPY statement (continued)
z/OS considerations 270
z/OS UNIX considerations 382

copybook
description 381
obtaining from user-supplied

module 325
searching for 288, 382

copybook cross-reference,
description 394

copybooks
cross-reference 422
using 675

COPYRIGHT compiler option 316
COUNT IN phrase

UNSTRING 107
XML GENERATE 577

counting
characters (INSPECT) 115
generated XML characters 572

creating
associated-data file 271
library-processing output file 272
line-sequential files in z/OS 215
object code 271
objects 614
QSAM files, z/OS 174, 177
SYSJAVA file 272
variable-length tables 78

cross-reference
COPY/BASIS 422
COPY/BASIS statements 395
copybooks 395
data and procedure-names 394
embedded 395
list 374
program-name 422
special definition symbols 424
text-names and data sets 394
verb list 370
verbs 395

CRP (file position indicator) 195, 198
CURRENCY compiler option 317
currency signs

euro 65
hexadecimal literals 65
multiple-character 65
using 65

CURRENT-DATE intrinsic function
example 61
under CICS 431

customer support xviii, 863

D
D-format record

layout 163
requesting 162

DASD (direct-access storage device) 210
data

concatenating (STRING) 105
converting between alphanumeric and

DBCS 695
efficient execution 661
format conversion of 52
format, numeric types 46
grouping 496

data (continued)
incompatible 54
naming 12
numeric 43
passing 491
record size 13
splitting (UNSTRING) 107
validating 54

data and procedure-name cross-reference,
description 394

data areas, dynamic 323
DATA compiler option

description 318
influencing data location 42
multioption interaction 40
performance considerations 669
when passing data 41

data definition 401
data description entry 11
DATA DIVISION

client 608
coding 11
description 11
entries for line-sequential files 214
entries for QSAM files 160
entries for VSAM files 192
factory data 622
factory method 623
FD entry 11
FILE SECTION 11
GROUP-USAGE NATIONAL

clause 68
instance data 596, 619
instance method 599
items present in 407
limits 11
LINKAGE SECTION 11, 16
listing 395
LOCAL-STORAGE SECTION 11
mapping of items 335, 395
OCCURS clause 67
OCCURS DEPENDING ON (ODO)

clause 78
REDEFINES clause 75
restrictions 11
signature information bytes 407
USAGE clause at the group level 25
USAGE IS INDEX clause 72
USAGE NATIONAL clause at the

group level 134
WORKING-STORAGE SECTION 11

data item
alphanumeric with double-byte

characters 695
coding Java types 637
common, in subprogram linkage 494
concatenating (STRING) 105
converting characters (INSPECT) 115
converting characters to numbers 117
converting to uppercase or

lowercase 117
converting with intrinsic

functions 116
counting characters (INSPECT) 115
DBCS 695
elementary, definition 24

data item (continued)
evaluating with intrinsic

functions 119
finding the smallest or largest

item 120
group, definition 24
index, referring to table elements

with 70
initializing, examples of 28
map 274
numeric 43
reference modification 111
referring to a substring 111
replacing characters (INSPECT) 115
reversing characters 117
splitting (UNSTRING) 107
unused 346, 401
variably located 82

data manipulation
character data 105
DBCS data 695

DATA RECORDS clause 13
data set

alternate data-set names 265
checkpoint record 653
compiler-option 269
defining with environment

variable 157
example of checkpoint/restart 657
file, same meaning as 5
JAVAERR 297
JAVAIN 297
JAVAOUT 297
names, alternate 265
output 270
source code 269
SYSADATA 271
SYSIN 269
SYSJAVA 272
SYSLIB 270
SYSLIN 271
SYSMDECK 272
SYSOPTF 269
SYSPRINT 270
SYSPUNCH 271
SYSTERM 271

data sets used for compiling 267
data-definition attribute codes 401
data-name

cross-reference 421
cross-reference list 275
in MAP listing 401
OMITTED 13
password for VSAM files 202

date and time operations
Language Environment callable

services 677
date operations

finding date of compilation 123
DATE-COMPILED paragraph 3
DATE-OF-INTEGER intrinsic

function 61
DB2

coding considerations 441
coprocessor

CCSID determination of string
data 447

Index 871

DB2 (continued)
coprocessor (continued)

database request module
(DBRM) 442, 446

differences from the
precompiler 449

enable with SQL compiler
option 445

overview 441
recommended compiler option

SQLCCSID 448
using SQL INCLUDE with 443

DYNAM compiler option with TSO or
IMS 451

NODYNAM compiler option with
CICS or CAF 451

precompiler
differences from the

coprocessor 449
recommended compiler option

NOSQLCCSID 448
specifying code page for host

variables 443
SQL compiler option 445
SQL statements

CCSID determination 447
coding 442
overview 441
return codes 445
SQL DECLARE 443
SQL INCLUDE 443
using binary data in 445
using character data in 443
using national decimal data 444

SQLCCSID compiler option 447
DBCS comparison 98
DBCS compiler option

description 319
for Java interoperability 291, 295
for OO COBOL 291, 295
multioption interaction 305

DBCS data
comparing

to national 149
converting

to alphanumeric with
IGZCD2A 698

to and from alphanumeric 695
to national, overview 152

declaring 150
encoding and storage 137
literals

description 26
maximum length 151
using 150

MOVE statement with 32
notation for 695
testing for 151

DBRM data set
defining 446
description 442

DBRMLIB DD statement 442, 446
DCB 169
DD control statement

allocating line-sequential files 215
AMP parameter 206
ASCII tape files 183

DD control statement (continued)
creating QSAM files 174, 177
DBRMLIB 446
DCB overrides data-set label 176
define file 8
defining merge data sets 226
defining sort data sets 226
JAVAERR 297
JAVAIN 297
JAVAOUT 297
RLS parameter 207
SYSADATA 271
SYSIN 269
SYSJAVA 272
SYSLIB 270
SYSLIN 271
SYSMDECK 272
SYSOPTF 269
SYSPRINT 270
SYSPUNCH 271

ddname definition 8
deadlock in I/O error declarative 244
Debug Tool

compiler options for 395
description 385

debugging
and performance 365
compiler options for

overview 390
TEST restriction 388
THREAD restriction 388

overview 385
runtime options for 388
using COBOL language features 386
using the debugger 395

debugging, language features
class test 387
debugging lines 388
debugging statements 388
declaratives 388
DISPLAY statements 386
file status keys 387
INITIALIZE statements 388
scope terminators 386
SET statements 388
WITH DEBUGGING MODE

clause 388
DECK compiler option 319
declarative procedures

EXCEPTION/ERROR 244
with multithreading 244

USE FOR DEBUGGING 388
deferred restart 655
defining

files, overview 8, 153
libraries 270
line-sequential files to z/OS 215
QSAM files

to z/OS 174, 177
sort or merge files under z/OS 226
VSAM files

to z/OS 203
dek suffix with cob2 289
DELETE statement

compiler-directing 383
multithreading serialization 520
VSAM, coding 193

deleting records from VSAM file 200
delimited scope statement

description of 19
nested 21

DEPENDING ON clause 162, 192
depth in tables 69
device

classes 267
requirements 267

DFHCOMMAREA parameter
calling nested CICS programs 432
calling separately compiled CICS

programs 431
DFHEIBLK parameter

calling nested CICS programs 432
calling separately compiled CICS

programs 431
DFSORT

defining data sets for 226
error message for RETURN

statement 224
diagnostics, program 399
DIAGTRUNC compiler option 320
direct-access

direct indexing 72
file organization 154
storage device (DASD) 210

directories
adding a path to 288

disability xx
DISPLAY (USAGE IS)

encoding and storage 137
external decimal 47
floating point 48

display floating-point data (USAGE
DISPLAY) 48

DISPLAY statement
directing output 348
displaying data values 35
displaying on the system logical

output device 36
interaction with OUTDD 36
suppressing line spacing 37
under CICS 430
using in debugging 386
writing to stdout or stderr 36

DISPLAY-1 (USAGE IS)
encoding and storage 137

DISPLAY-OF intrinsic function
example with Chinese data 147
example with Greek data 140
example with UTF-8 data 141
using 139
with XML documents 548

DISPSIGN compiler option 320
DLL compiler option

description 322
for Java interoperability 291, 295
for OO COBOL 291, 295
multioption interaction 305

DLL igzcjava.x
binding with

example 298
preparing OO applications 297

linking with
example 293
preparing OO applications 292

872 Enterprise COBOL for z/OS, V5.2 Programming Guide

DLL libjvm.x
binding with

example 298
preparing OO applications 297

linking with
example 293
preparing OO applications 292

with EBCDIC services 644
DLLs (see dynamic link libraries) 507
do loop 103
do-until 103
do-while 103
documentation of program 5
DSA memory map 405
dump

requesting 239
with DUMP compiler option 274

DUMP compiler option
description 322
output 274

DYNAM compiler option
description 323
multioption interaction 305
performance considerations 670
under DB2 with TSO or IMS 451
with dynamic calls 477

dynamic calls
example 482
making 477
performance 481
restrictions 477
using with DLL linkage 512
when to use 478
with static calls 481

dynamic data areas, allocating
storage 42

dynamic file allocation
order of allocation 157
using CBLQDA 171
using environment variables

line-sequential files 215
QSAM files 174
VSAM files 206

dynamic link libraries
about 507
binder options for DLLs 509
compiler options required 286
compiling 508
creating

from the z/OS UNIX shell 286
overview 507

creating for OO 292
for Java interoperability 292
in OO COBOL applications 516
linking 509
programs with DLL support must be

reentrant 490
search order for in z/OS UNIX file

system 511
using CALL identifier with 510
using with C/C++ programs 515
using with dynamic calls 512
using with Java interoperability 293
using with OO 293

E
E-level error message 282, 392
EBCDIC

code pages supported in XML
documents 546

converting to ASCII 119
JNI services 643
multibyte CCSIDs supported for

DBCS 315
ECI calls and RETURN-CODE special

register 433
efficiency of coding 661
EJECT statement 383
embedded cross-reference

description 395
example 423

embedded error messages 392
embedded MAP summary 394, 402
enclave 473
encoding

conflicts in XML documents 555
controlling in generated XML

output 576
description 137
language characters 129
of XML documents 546, 547
of XML documents to be parsed 530
specifying for alphanumeric XML

document 549
specifying with CODEPAGE

option 313
encoding declaration

preferable to omit 549
specifying 549

end-of-file (AT END phrase) 244
END-OF-INPUT XML event

example 567
when parsing segments 543

enhancing XML output
example of modifying data

definitions 583
rationale and techniques 583

ENTER statement 383
entry point

alternate 489
alternate in ENTRY statement 488
ENTRY label 489
passing entry addresses of 487
procedure-pointer data item 487

ENTRY statement
for alternate entry points 488
handling of program-name in 349

ENVAR runtime option 297
ENVIRONMENT DIVISION

class 594
client 607
collating sequence coding 6
CONFIGURATION SECTION 5
description 5
entries for line-sequential files 213
entries for QSAM files 159
entries for VSAM files 188
INPUT-OUTPUT SECTION 5
instance method 599
items present in, program

initialization code 407
signature information bytes 407

ENVIRONMENT DIVISION (continued)
subclass 619

environment variables
_BPX_SHAREAS 467
_CEE_ENVFILE

description 465
indicating Java settings 297

_CEE_RUNOPTS
description 465
setting XPLINK 299
specifying runtime options 463

_IGZ_SYSOUT 465
allocating line-sequential files 215
and copybooks 381
CLASSPATH

description 465
example of setting 297
specifying location of Java

classes 293
COBJVMINITOPTIONS

description 465
specifying JVM options 295

COBOPT 283
compiler 283
defining files, example 8
defining QSAM files 174
example of setting and accessing 466
LIBPATH

description 465
example of setting 297
specifying location for COBOL

classes 293
library-name 284, 381
PATH

description 465
example of setting 297

runtime 465
setting and accessing 464
STEPLIB

description 465
example 285

SYSLIB
description 284
specifying location of JNI.cpy 291

text-name 284, 381
using to allocate files 157

environment-name 5
ERRMSG, for generating list of error

messages 280
error

arithmetic 240
compiler options, conflicting 305
handling 239
handling for I/O 158
listing 274
message table

example using indexing 77
example using subscripting 77

processing
line-sequential files 218
QSAM files 174
VSAM files 201
XML GENERATE 577
XML PARSE 554

routines for handling 250

Index 873

error messages
compiler

choosing severity to be
flagged 392

correcting source 280
customizing 720
determining what severity level to

produce 328
embedding in source listing 392
format 281
from exit modules 727
generating a list of 280
location in listing 281
sending to terminal 271
severity levels 282, 721

compiler-directed 280
ESDS (entry-sequenced data sets)

file access mode 191
organization 188

euro currency sign 65
EVALUATE statement

case structure 95
coding 95
contrasted with nested IFs 96, 97
example that tests several

conditions 97
example with multiple WHEN

phrases 97
example with THRU phrase 96
performance 96
structured programming 662
testing multiple values, example 100,

101
use to test multiple conditions 93

evaluating data item contents
class test

for numeric 54
overview 98

INSPECT statement 115
intrinsic functions 119

exception condition
CALL 250
XML GENERATE 577
XML PARSE 554

exception handling
with Java 634
with XML GENERATE 577
with XML PARSE 552

EXCEPTION XML event 554
EXCEPTION/ERROR declarative

description 244
file status key 246
line-sequential error processing 218
QSAM error processing 174
VSAM error processing 201

EXEC control statement, RD parameter
of 654

EXIT compiler option
considerations for SQL and CICS

statements 728
description 324
MSGEXIT suboption 719
register usage 712
user-exit work area 711
using 324

exit modules
called for SYSADATA data set 717

exit modules (continued)
calling COBOL programs 712
error messages generated 727
message severity customization 719
used in place of library-name 713
used in place of SYSLIB 713
used in place of SYSPRINT 716

EXIT PROGRAM statement
in subprogram 474
with multithreading 474

explicit scope terminator 20
exponentiation

evaluated in fixed-point
arithmetic 688

evaluated in floating-point
arithmetic 693

performance tips 664
EXPORTALL compiler option

description 326
DLL considerations 508
multioption interaction 305

extended mode 43, 685
external class-name 595, 607
EXTERNAL clause

example for files 502
for data items 501
for sharing files 12, 501

external data
obtaining storage for 42
sharing 501
storage location of 42

external decimal data
national 47
zoned 47

external file 501
external floating-point data

display 48
national 48

External symbols 419

F
F-format record

layout 162
requesting 161

factoring expressions 662
factory data

defining 622
definition of 589
making it accessible 622
private 622

factory definition, coding 621
factory methods

defining 622
definition of 589
hiding 623
invoking 624
using to wrap procedural

programs 630
FACTORY paragraph

factory data 622
factory methods 622

factory section, defining 621
FASTSRT compiler option

description 327
improving sort performance 231, 670
information message 231

FASTSRT compiler option (continued)
requirements

JCL 231
QSAM 232
sort input and output files 231
VSAM 233

FD (file description) entry 12
figurative constants

definition 26
HIGH-VALUE restriction 132
national-character 132

file access mode
choosing 155
dynamic 191
example 191
for indexed files (KSDS) 191
for relative files (RRDS) 191
for sequential files (ESDS) 191
performance considerations 210
random 191
sequential 191
summary table of 188

file allocation 157
file availability

QSAM files under z/OS 171
VSAM files under z/OS 202

file description (FD) entry 12
file organization

choosing 155
comparison of ESDS, KSDS,

RRDS 187
indexed 154, 188
line-sequential 213
overview 153
QSAM 159
relative 154
relative-record 190
sequential 153, 188
VSAM 186

file position indicator (CRP) 195, 198
FILE SECTION

BLOCK CONTAINS clause 13
CODE-SET clause 14
DATA RECORDS clause 13
description 11
EXTERNAL clause 12
FD entry 12
GLOBAL clause 12
LABEL RECORDS clause 13
LINAGE clause 13
OMITTED 13
RECORD CONTAINS clause 13
record description 11
RECORD IS VARYING 13
RECORDING MODE clause 14
VALUE OF 13

FILE STATUS clause
description 158
example 249
line-sequential error processing 218
NOFASTSRT error processing 233
QSAM error processing 174
using 245
VSAM error processing 201
with VSAM status code 246

file status code
02 198

874 Enterprise COBOL for z/OS, V5.2 Programming Guide

file status code (continued)
30 197
37 170
39 170, 178, 182
49 200
90 168, 173, 201
92 200, 466

file status key
05 195
35 195
39 195
checking for I/O errors 245
checking for successful OPEN 245,

246
error handling 387
set for error handling 158
used with VSAM status code 246
VSAM, importance of in 201

FILE-CONTROL paragraph
example of entries 6
relation to FD entries 8

files
associating program files to external

files 5
attributes 178
available

QSAM 171
VSAM 202

changing name 9
CICS, restrictions under 5
COBOL coding

DATA DIVISION entries 160, 192,
214

ENVIRONMENT DIVISION
entries 159, 188, 213

input/output statements 170, 193,
215

overview 156
data sets, same meaning as 5
defining to operating system 8
describing 11
external 501
identifying to z/OS 174, 177, 203
line-sequential, allocating 215
multithreaded processing

example 522
recommended organization 521
recommended usage patterns 521
serialization 520

optional
QSAM 171
VSAM 196

overview 154
processing

line-sequential 213
QSAM 159
VSAM 185
with multithreading 520

sort performance
FASTSRT 231
variable-length files 226

storage of file-definition records 521
unavailable

QSAM 171
VSAM 203

usage explanation 9

FIPS messages
categories 721
FLAGSTD compiler option 329

fixed-length records
QSAM

layout 162
requesting 161

VSAM
defining 192
RRDS 186

fixed-point arithmetic
comparisons 63
evaluation 63
example evaluations 64
exponentiation 688

fixed-point data
binary 48
conversions and precision 52
conversions between fixed- and

floating-point 52
external decimal 47
intermediate results 687
packed-decimal 50
planning use of 663

FLAG compiler option
compiler output 393
description 328
using 392

flags and switches 99
FLAGSTD compiler option 329

multioption interaction 305
floating-point arithmetic

comparisons 63
evaluation 63
example evaluations 64
exponentiation 693

floating-point data
conversions and precision 52
conversions between fixed- and

floating-point 52
external 48
intermediate results 692
internal

format 50
performance tips 664

planning use of 663
format of record

fixed-length
defining for VSAM 192
layout of QSAM 162
requesting for QSAM 161

for QSAM ASCII tape 183
format D 183

layout 163
requesting 162

format F 183
layout 162
requesting 161

format S
layout 166
overview 165
requesting 164

format U 183
layout 167
requesting 166

format V 183
layout 163

format of record (continued)
format V (continued)

requesting 162
spanned

layout 166
overview 165
requesting 164

undefined
layout 167
requesting 166

variable-length
defining for VSAM 192
layout of QSAM 163
requesting for QSAM 162

formatted dump 239
freeing object instances 616
function-pointer data item

addressing JNI services 731
CALL statement 489
calling COBOL 489
calling DLL program

example 514
calling Language Environment

services 489
definition 487
SET function-pointer 487
with DLLs 513

G
garbage collection 616
GB 18030 data

converting to or from national 146
processing 146

generating XML output
example 578
overview 571

get and set methods 603
GETMAIN, saving address of 711
GLOBAL clause for files 12, 16
global names 486
Glossary 829
GOBACK statement

in main program 474
in subprogram 474
with multithreading 474

group item
cannot subordinate alphanumeric

group within national group 135
comparing to national data 149
definition 24
for defining tables 67
group move contrasted with

elementary move 33, 135
initializing

using a VALUE clause 76
using INITIALIZE 30, 73

MOVE statement with 33
passing as an argument 496
treated as a group item

example with INITIALIZE 74
in INITIALIZE 31

variably located 82
group move contrasted with elementary

move 33, 135
GROUP-USAGE NATIONAL clause

communicating with Java 638

Index 875

GROUP-USAGE NATIONAL clause
(continued)

defining a national group 134
defining tables 68
example of declaring a national

group 24
initializing a national group 31

grouping data to pass as an
argument 496

H
header on listing 5
HEAP runtime option

influencing data location 42
multioption interaction 40

hexadecimal literals
as currency sign 65
national

description 26
using 131

HGPR compiler option 331
performance considerations 670

hiding factory methods 623
hierarchy of compiler options

in batch 277
in SYSOPTF data sets 346
under z/OS 272
under z/OS UNIX 284

I
I-level message 282, 392
IDENTIFICATION DIVISION

class 594
CLASS-ID paragraph 594, 618
client 606
coding 3
DATE-COMPILED paragraph 3
errors 3
listing header example 5
method 598
PROGRAM-ID paragraph 3
required paragraphs 3
subclass 618
TITLE statement 5

IF statement
coding 93
nested 94
use EVALUATE instead for multiple

conditions 94
with null branch 93

IGZCA2D service routine 695
IGZCD2A service routine 698
igzcjava.x

binding with
example 298
preparing OO applications 297

linking with
example 293
preparing OO applications 292

IGZEOPT module
with multithreading 524

IGZETUN module
with multithreading 524

IGZSRTCD data set 235

imperative statement, list 19
implicit scope terminator 20
IMS

COBOL-Java interoperability
accessing databases 460
calling COBOL method from

Java 458
calling Java method from

COBOL 459
messages 460
restriction on EXEC SQL 460
STOP RUN 460
synchronizing transactions 460
using the AIB 460

coding programs under
overview 453
restrictions 5, 453

compiling and linking for 457
coprocessor

overview 453
performance considerations 673
SQLIMS compiler option 456
SQLIMS statements 455

return codes 455
SQLIMS INCLUDE 454
using character data in 455

using EXEC SQL under IMS 460
IMS SQL

coprocessor 454
incrementing addresses 497
index

assigning a value to 72
computation of element displacement,

example 70
creating with OCCURS INDEXED BY

clause 72
definition 70
incrementing or decrementing 72
initializing 72
key, detecting faulty 249
range checking 391
referencing other tables with 72

index data item
cannot use as subscript or index 73
creating with USAGE IS INDEX

clause 72
indexed file organization

description 154
specifying 188

indexing
computation of element displacement,

example 70
definition 70
example 77
preferred to subscripting 664
tables 72

INEXIT suboption of EXIT option
processing of 712
syntax 325

inheritance hierarchy, definition of 591
INITCHECK compiler option

description 331
INITIAL attribute

effect on subprograms 476, 477
use of dynamic call and CANCEL

instead 478

INITIAL clause
effect on main program 475
effect on nested programs 5
setting programs to initial state 5

INITIALIZE statement
examples 28
loading group values 30
loading national group values 31
loading table values 73
REPLACING phrase 73
using for debugging 388

initializing
a group item

using a VALUE clause 76
using INITIALIZE 30, 73

a national group item
using a VALUE clause 76
using INITIALIZE 31, 74

a structure using INITIALIZE 30
a table

all occurrences of an element 76
at the group level 76
each item individually 75
using INITIALIZE 73
using PERFORM VARYING 103

examples 28
instance data 614
variable-length group 81

inline PERFORM
example 102
overview 102

input
coding for CICS 430
coding for line-sequential files 215
coding for QSAM files 170
coding for VSAM files 193
from files 153
to compiler, under z/OS 267

input procedure
coding 222
example 228
FASTSRT option not effective 232
requires RELEASE or RELEASE

FROM 223
restrictions 225

INPUT-OUTPUT SECTION 5
input/output

checking for errors 245
coding overview 156
controlling with FASTSRT option 327
logic flow after error 241
overview 153
processing errors

line-sequential files 218
QSAM files 174, 241
VSAM files 201, 241

input/output coding
AT END (end-of-file) phrase 244
checking for successful operation 245
checking VSAM status codes 246
detecting faulty index key 249
error handling techniques 241
EXCEPTION/ERROR

declaratives 244
INSERT statement 383
INSPECT statement

avoid with UTF-8 data 551

876 Enterprise COBOL for z/OS, V5.2 Programming Guide

INSPECT statement (continued)
examples 115
using 115

inspecting data (INSPECT) 115
instance

creating 614
definition of 589
deleting 616

instance data
defining 596, 619
definition of 589
initializing 614
making it accessible 603
private 596

instance methods
defining 597, 619
definition of 589
invoking overridden 614
overloading 602
overriding 601

INTDATE compiler option
description 332
effect on calendar starting date 60

INTEGER intrinsic function,
example 114

INTEGER-OF-DATE intrinsic
function 61

INTEGER-PART intrinsic function 114
integrated CICS translator

advantages 435
compiler options for 434
overview 435

interactive program, example 809
Interactive System Productivity Facility

(ISPF) 809
interlanguage communication

and PL/I tasking 523
between COBOL and Java 633
IMS applications 459
subprograms 473
under CICS 432
with multithreading 523

intermediate results 685
internal floating-point data (COMP-1,

COMP-2) 50
interoperable data types with Java 638
interrupts 651
intrinsic functions

as reference modifiers 114
converting alphanumeric data items

with 116
converting national data items

with 116
evaluating data items 119
example of

ANNUITY 62
CHAR 119
CURRENT-DATE 61
DISPLAY-OF 140
INTEGER 114
INTEGER-OF-DATE 61
LENGTH 61, 121, 122
LOG 62
LOWER-CASE 117
MAX 61, 89, 120, 121
MEAN 62
MEDIAN 62, 89

intrinsic functions (continued)
example of (continued)

MIN 114
NATIONAL-OF 140
NUMVAL 117
NUMVAL-C 61, 117
ORD 119
ORD-MAX 89, 120
PRESENT-VALUE 61
RANGE 62, 89
REM 62
REVERSE 117
SQRT 62
SUM 89
UPPER-CASE 117
WHEN-COMPILED 123

example of Unicode functions 144
finding date of compilation 123
finding largest or smallest item 120
finding length of data items 122
intermediate results 690, 693
introduction to 38
nesting 38
numeric functions

differences from Language
Environment callable
services 59

equivalent Language Environment
callable services 59

examples of 58
integer, floating-point, mixed 57
nested 58
special registers as arguments 58
table elements as arguments 58
uses for 57

processing table elements 89
UTF-8 142

INVALID KEY phrase
description 249
example 249

INVOKE statement
RETURNING phrase 613
USING phrase 611
using to create objects 614
using to invoke methods 610
with ON EXCEPTION 611, 624
with PROCEDURE DIVISION

RETURNING 500
invoking

COBOL programs under z/OS 505
COBOL programs under z/OS

UNIX 463
factory or static methods 624
instance methods 610
Language Environment callable

services 679
ISAM data set, analogous to VSAM KSDS

data set 185
ISPF (Interactive System Productivity

Facility) 809

J
J2EE client

example 645
running 295

Java
and COBOL

binding 296
communicating between 633
compatibility 300
compiling under z/OS UNIX 291
compiling using JCL or

TSO/E 295
linking 292
running 293, 296
structuring applications 630

array classes 638
arrays

declaring 639
example 641
manipulating 640

boolean array 639
boolean type 638
byte array 639
byte type 638
char array 639
char type 638
class types 638
double array 640
double type 638
example

exception handling 635
J2EE client 645
processing an integer array 641

exception
catching 635
example 635
handling 634
throwing 634

float array 640
float type 638
global references

JNI services for 637
managing 636
object 636
passing 636

int array 639
int type 638
interoperability 633
interoperable data types, coding 638
jstring class 638
local references

deleting 636
freeing 637
JNI services for 637
managing 636
object 636
passing 636
per multithreading 636
saving 636

long array 639
long type 638
methods

access control 637
object array 639
running with COBOL

under z/OS UNIX 293
using JCL or TSO/E 296
XPLINK linkage 299

sharing data with 637
short array 639
short type 638

Index 877

Java (continued)
string array 639
strings

declaring 639
manipulating 642

Java virtual machine
exceptions 635
initializing 294
object references 636

java.lang.Object
referring to as Base 594

javac command
compiling Java class definitions 291
recompile for Java 5 or Java 6 300

JAVAERR data set 297
JAVAIN data set 297
JAVAOUT data set 297
JCL

ASCII tape files 183
cataloged procedures 256
example of checkpoint/restart 657
FASTSRT requirement 231
for compiling 256
for compiling in the z/OS UNIX file

system 258
for line-sequential files 215
for merge 226
for OO applications 295

example 298
for QSAM files 176
for sort 226
for VSAM data sets 206

JNI
accessing services 633
comparing object references 609
converting local references to

global 614
EBCDIC services 643
environment structure 633

addressability for 633
exception handling services 634
Java array services 640
Java string services 642
obtaining class object reference 634
restrictions when using 634
Unicode services 642
UTF-8 services 644

JNI.cpy
for compiling 291
for JNINativeInterface 633
listing 731

JNIEnvPtr special register
use for JNI callable services 633

JNINativeInterface
environment structure 633
JNI.cpy 633

JOB control statement, RD parameter
of 654

job resubmission 657
job stream 473
jstring Java class 638

K
Kanji comparison 98
Kanji data, testing for 151
keyboard navigation xxi

keys
alternate in KSDS file 189
for binary search 87
for merging

defining 227
overview 220

for sorting
defining 227
overview 220

permissible data types
in MERGE statement 228
in OCCURS clause 68
in SORT statement 228

prime in KSDS file 188
relative-record 190
to specify order of table elements 68

KSDS (key-sequenced data sets)
file access mode 191
organization 188

L
LABEL RECORDS clause

FILE SECTION entry 13
LANGUAGE compiler option

description 333
Language Environment callable services

condition handling 677
corresponding math intrinsic

functions 59
date and time computations 677
differences from intrinsic

functions 59
dynamic storage services 677
example of using 680
feedback code 679
for date and time 60
for mathematics 59
invoking with CALL 679
mathematics 677
message handling 678
national language support 678
omitted feedback code 679
overview 677
return code 680
RETURN-CODE special register 680
sample list of 678
types of 677

large block interface (LBI) 169
largest or smallest item, finding 120
last-used state

subprograms with EXIT PROGRAM
or GOBACK 475

subprograms without INITIAL
attribute 476, 477

LBI (large block interface) 169
LENGTH intrinsic function

compared with LENGTH OF special
register 122

example 61, 122
using 119
variable-length results 121
with national data 122

length of data items, finding 122
LENGTH OF special register

passing 492
using 122

level-88 item
conditional expressions 98
setting switches off, example 101
setting switches on, example 100
switches and flags 99
testing multiple values, example 100
testing single values, example 99

level-number 401
LIBEXIT suboption of EXIT option

processing of 713
syntax 325

libjvm.x
binding with

example 298
preparing OO applications 297

linking with
example 293
preparing OO applications 292

with EBCDIC services 644
LIBPATH environment variable

description 465
example of setting 297
specifying location for COBOL

classes 293
library

BASIS 270
COPY 270
defining 270
directory entry 265
specifying path for 381

library-name
alternative if not specified 288
cross-reference to data-set names 422
when not used 713

library-name environment variable 284
limits of the compiler

DATA DIVISION 11
user data 11

line number 400
line-sequential files

adding records to 217
blocking 12
closing 217
closing to prevent reopening 216
control characters in 214
DATA DIVISION entries 214
ENVIRONMENT DIVISION

entries 213
input/output error processing 218
input/output statements for 215
national data not supported 217
opening 216
organization 213
processing 213
reading from 215
reading records from 216
under z/OS

allocating 215
creating 215
job control language (JCL) 215

writing to 215
LINECOUNT compiler option 334
LINK macro 265
LINKAGE SECTION

coding 495
for describing parameters 494
with recursive calls 17

878 Enterprise COBOL for z/OS, V5.2 Programming Guide

LINKAGE SECTION (continued)
with the THREAD option 17

linked-list processing, example 498
linking in the z/OS UNIX shell

c89 command 285
passing information to cob2 287
using the cob2 command

DLLs 286
examples 286
overview 285

linking OO applications
cob2 command 292
under z/OS UNIX

example 293
overview 292

using JCL or TSO/E
example 298
overview 296

LIST compiler option
assembler code for source

program 405
base locator table 419
compiler output 407, 413
conflict with OFFSET option 395
Constant area section 418
description 334
DSA memory map 405, 420
External symbols section 419
getting output 395
MD5 signature example 414
multioption interaction 305
reading output 405
special register table 419
Static map section 417
symbols used in output 404
Timestamp and version information

example 414
List of resources 863
listings

assembler expansion of PROCEDURE
DIVISION 405

data and procedure-name
cross-reference 394

embedded error messages 392
generating a short listing 396
line numbers, user-supplied 397
sorted cross-reference of

program-names 422
sorted cross-reference of

text-names 422
terms used in MAP output 403
text-name cross-reference 394

literals
alphanumeric

description 25
with DBCS content 151

DBCS
description 26
maximum length 151
using 150

definition 25
hexadecimal

using 131
national

description 26
using 131

numeric 26

literals (continued)
using 25

little-endian, converting to
big-endian 130

loading a table dynamically 73
local names 486
local references, converting to global 614
LOCAL-STORAGE SECTION

client 608, 609
comparison with

WORKING-STORAGE
example 15
OO client 609
overview 14

determining location 42
LOG intrinsic function 62
logical record

description 153
fixed-length format

defining for VSAM 192
requesting for QSAM 161

QSAM, definition 160
variable-length format

defining for VSAM 192
layout for QSAM 163
requesting for QSAM 162

loops
coding 101
conditional 103
do 103
in a table 103
performed an explicit number of

times 103
LOWER-CASE intrinsic function 117
lowercase, converting to 117
lst suffix with cob2 289

M
main program

accessing parameter list in z/OS
example 505
overview 505

accessing parameter list in z/OS
UNIX

example 469
overview 468

and subprograms 473
dynamic calls 477

main storage, allocating to buffers 312
MAP compiler option

data items and relative addresses 274
description 335
embedded MAP summary 395
example 400, 405
nested program map 395

example 405
symbols used in output 404
terms used in output 403
using 394, 395

mapping of DATA DIVISION items 395
mathematics

intrinsic functions 58, 62
Language Environment callable

services 59, 677
MAX intrinsic function

example table calculation 89

MAX intrinsic function (continued)
example with functions 61
using 120

MAXPCF compiler option 336
MDECK compiler option

description 338
MEAN intrinsic function

example statistics calculation 62
example table calculation 89

MEDIAN intrinsic function
example statistics calculation 62
example table calculation 89

memory map
DSA 405

merge
alternate collating sequence 229
completion code 230
criteria 227
data sets needed under z/OS 226
DD statements for defining z/OS data

sets 226
description 219
determining success 230
diagnostic message 230
files, describing 221
keys

defining 227
overview 220

pass control statements to 235
process 220
restrictions 219
storage use 235
terminating 231
work files

describing 220
MERGE statement

ASCENDING|DESCENDING KEY
phrase 228

COLLATING SEQUENCE phrase 7,
229

description 226
GIVING phrase 226
overview 219
restrictions 219
USING phrase 226

message handling, Language
Environment callable services 678

messages
compiler

choosing severity to be
flagged 392

customizing 720
determining what severity level to

produce 328
embedding in source listing 392
generating a list of 280
sending to terminal 271
severity levels 282, 721

compiler-directed 280
from exit modules 727
sending to SYSTERM 363

METHOD-ID paragraph 598
methods

constructor 622
factory 622
hiding factory 623
instance 597, 619

Index 879

methods (continued)
invoking 610, 624
invoking superclass 614
Java access control 637
obtaining passed arguments 601
overloading 602
overriding 601, 623
returning a value from 601
signature 598

migration considerations
Java and COBOL 300

MIN intrinsic function
example 114
using 120

mixed DBCS/EBCDIC literal
alphanumeric to DBCS

conversion 695
DBCS to alphanumeric

conversion 698
mnemonic-name

SPECIAL-NAMES paragraph 5
MOVE statement

assigning arithmetic results 34
converting to national data 138
CORRESPONDING 33
effect of ODO on lengths of sending

and receiving items 79
group move contrasted with

elementary move 33, 135
with elementary receiving items 32
with group receiving items 33
with national items 32

MSGEXIT suboption of EXIT option
effect on compilation return code 722
example user exit 723
message severity levels 721
processing of 719
syntax 326

MSGFILE runtime option 348
multiple currency signs

example 66
using 65

multiple inheritance, not permitted 592,
617

multiple thread environment, running
in 366

multithreading
AMODE setting 523
asynchronous signals 523
choosing data section 517

in an OO client 609
closing QSAM files 173
closing VSAM files 201
COBOL programs 517
coding file I/O

example 522
recommended organization 521
recommended usage patterns 521
serialization 520

control transfer 519
ending programs 520
EXIT PROGRAM statement 474
GOBACK statement 474
I/O error declaratives 244
IGZEOPT 524
IGZETUN 524
interlanguage communication 523

multithreading (continued)
limitations 523
nested programs 523
older compilers 524
overview 517
preinitializing 519
preparing COBOL programs for 517
recursion 519
recursive requirement 523
reentrancy 523
reentrancy requirement 523
runtime restrictions 524
sort and merge restriction 219
STOP RUN statement 474
synchronizing access to

resources 523
terminology 518
THREAD compiler option

restrictions with 367
when to choose 519

UPSI switches 524
with PL/I tasks 523

N
N delimiter for national or DBCS

literals 26
NAME compiler option

description 339
using 3

name declaration
searching for 486

NAMESPACE-DECLARATION XML
event 538

naming
files 8
programs 3

NATIONAL (USAGE IS)
external decimal 47
floating point 48

national comparison 98
national data

communicating with Java 638
comparing

overview 147
to alphabetic, alphanumeric, or

DBCS 149
to alphanumeric groups 149
to numeric 148
two operands 148

concatenating (STRING) 105
converting

exceptions 140
from alphanumeric or DBCS with

NATIONAL-OF 139
from alphanumeric, DBCS, or

integer with MOVE 138
overview 138
to alphanumeric with

DISPLAY-OF 139
to numbers with NUMVAL,

NUMVAL-C 117
to or from Chinese GB 18030 146
to or from Greek alphanumeric,

example 140
to or from UTF-8 141
to uppercase or lowercase 117

national data (continued)
converting (continued)

with INSPECT 115
defining 131
displaying on output 36
encoding in XML documents 547
evaluating with intrinsic

functions 119
external decimal 47
external floating-point 48
figurative constants 132
finding the smallest or largest

item 120
in conditional expressions 147, 148
in generated XML documents 572
in keys

in MERGE statement 228
in OCCURS clause 68
in SORT statement 228

initializing, example of 29
input with ACCEPT 35
inspecting (INSPECT) 115
LENGTH intrinsic function and 122
LENGTH OF special register 122
literals

using 131
MOVE statement with 32, 138
NSYMBOL compiler option if no

USAGE clause 131
reference modification of 112
reversing characters 117
specifying 130
splitting (UNSTRING) 108
VALUE clause with alphanumeric

literal, example 121
national decimal data (USAGE

NATIONAL)
defining 133
example 43
format 47
initializing, example of 29

national floating-point data (USAGE
NATIONAL)

defining 133
definition 48

national group item
advantages over alphanumeric

groups 133
can contain only national data 24,

135
communicating with Java 638
contrasted with USAGE NATIONAL

group 25
defining 134
example 24
for defining tables 68
in generated XML documents 572
initializing

using a VALUE clause 76
using INITIALIZE 31, 74

LENGTH intrinsic function and 122
MOVE statement with 33
overview 133
passing as an argument 496
treated as a group item

example with INITIALIZE 136
in INITIALIZE 31

880 Enterprise COBOL for z/OS, V5.2 Programming Guide

national group item (continued)
treated as a group item (continued)

in MOVE CORRESPONDING 33
summary 136

treated as an elementary item
example with MOVE 33
in most cases 24, 133

using
as an elementary item 135
overview 134

VALUE clause with alphanumeric
literal, example 76

national language support (NLS)
DBCS 150
LANGUAGE compiler option 333
processing data 125

national literals
description 26
using 131

national-edited data
defining 131
editing symbols 131
initializing

example 29
using INITIALIZE 74

MOVE statement with 32
PICTURE clause 131

NATIONAL-OF intrinsic function
example with Chinese data 147
example with Greek data 140
example with UTF-8 data 141
using 139
with XML documents 548

nested COPY statement 675, 714
nested delimited scope statements 21
nested IF statement

coding 94
CONTINUE statement 93
EVALUATE statement preferred 94
with null branches 93

nested intrinsic functions 58
nested program integration 668
nested program map

description 395
example 405

nested programs
calling 484
description 484
effect of INITIAL clause 5
guidelines 484
map 395, 405
scope of names 486
transfer of control 484

nesting level
program 400, 405
statement 400

NOCBLCARD translator option 436
NOCOMPILE compiler option

use to find syntax errors 390
NODLL compiler option

with dynamic calls 477
with static calls 476

NODYNAM compiler option
under CICS 432
under DB2 with CICS or CAF 451
with static and dynamic calls 481
with static calls 476

NODYNAM compiler option (continued)
with stored procedures 451

NOFASTSRT compiler option 233, 236
NORENT compiler option

multioption interaction 305
NOSIMVRD runtime option 190
NOSQLCCSID compiler option

recommended for compatibility with
DB2 precompiler 448

Notices 825
NSYMBOL compiler option

description 340
effect on N literals 26
for DBCS literals 131
for national data items 131
for national literals 131
multioption interaction 305

null branch 93
null-terminated strings

example 111
handling 496
manipulating 110

NUMBER compiler option
description 340
for debugging 397

NUMCHECK compiler option 341
NUMCLS installation option, effect on

numeric class test 55
numeric class test

checking for valid data 54
effect of NUMPROC, NUMCLS 55

numeric comparison 98
numeric data

binary
USAGE BINARY 48
USAGE COMPUTATIONAL

(COMP) 48
USAGE COMPUTATIONAL-4

(COMP-4) 48
USAGE COMPUTATIONAL-5

(COMP-5) 49
can compare algebraic values

regardless of USAGE 149
comparing to national 148
converting

between fixed- and
floating-point 52

precision 52
to national with MOVE 138

defining 43
display floating-point (USAGE

DISPLAY) 48
editing symbols 45
external decimal

USAGE DISPLAY 47
USAGE NATIONAL 47

external floating-point
USAGE DISPLAY 48
USAGE NATIONAL 48

internal floating-point
USAGE COMPUTATIONAL-1

(COMP-1) 50
USAGE COMPUTATIONAL-2

(COMP-2) 50
national decimal (USAGE

NATIONAL) 48

numeric data (continued)
national floating-point (USAGE

NATIONAL) 48
packed-decimal

sign representation 53
USAGE COMPUTATIONAL-3

(COMP-3) 50
USAGE PACKED-DECIMAL 50

PICTURE clause 43, 45
storage formats 46
USAGE DISPLAY 43
USAGE NATIONAL 43
zoned decimal (USAGE DISPLAY)

format 48
sign representation 53

numeric intrinsic functions
differences from Language

Environment callable services 59
equivalent Language Environment

callable services 59
example of

ANNUITY 62
CURRENT-DATE 61
INTEGER 114
INTEGER-OF-DATE 61
LENGTH 61, 121
LOG 62
MAX 61, 89, 120, 121
MEAN 62
MEDIAN 62, 89
MIN 114
NUMVAL 117
NUMVAL-C 61, 117
ORD 119
ORD-MAX 89
PRESENT-VALUE 61
RANGE 62, 89
REM 62
SQRT 62
SUM 89

integer, floating-point, mixed 57
nested 58
special registers as arguments 58
table elements as arguments 58
uses for 57

numeric literals, description 26
numeric-edited data

BLANK WHEN ZERO clause
coding with numeric data 131
example 45

defining 131
editing symbols 45
initializing

examples 30
using INITIALIZE 74

PICTURE clause 45
USAGE DISPLAY

displaying 45
initializing, example of 30

USAGE NATIONAL
displaying 45
initializing, example of 30

NUMPROC compiler option
affected by NUMCLS 55
description 343
effect on sign processing 54
performance considerations 670

Index 881

NUMVAL intrinsic function
description 117

NUMVAL-C intrinsic function
description 117
example 61

NX delimiter for national literals 26

O
o suffix with cob2 289
object

creating 614
definition of 589
deleting 616

object code
compilation and listing 274
creating 271
generating 316
producing in 80-column record 319

OBJECT compiler option
description 344
multioption interaction 305

object instances, definition of 589
OBJECT paragraph

instance data 596, 619
instance methods 597

object references
comparing 609
converting from local to global 614
example of passing 612
setting 609
typed 608
universal 608

OBJECT-COMPUTER paragraph 5
object-oriented COBOL

binding
example 298
overview 296

calls to and from OO programs 487
communicating with Java 638
compatibility 300
compiling

under z/OS UNIX 291
using JCL or TSO/E 295

DLLs in 516
IMS

accessing databases 460
calling COBOL method from

Java 458
calling Java method from

COBOL 459
linking

example 293
overview 292

preparing applications
under z/OS UNIX 292
using JCL or TSO/E 296

programs must be reentrant 490
restrictions

cannot run under CICS 429
CICS 589
EXEC CICS statements 589
EXEC SQL statements 589
sort and merge 219
SQL compiler option 589
SQL statements 442

object-oriented COBOL (continued)
running

under z/OS UNIX 293
using JCL or TSO/E 296
XPLINK linkage 299

writing OO programs 589
OCCURS clause

ASCENDING|DESCENDING KEY
phrase

example 88
needed for binary search 87
specify order of table elements 68

cannot use in a level-01 item 68
defining tables 67
for defining table elements 68
INDEXED BY phrase for creating

indexes 72
nested for creating multidimensional

tables 68
OCCURS DEPENDING ON (ODO)

clause
complex 81
for creating variable-length tables 78
initializing ODO elements 81
ODO object 78
ODO subject 78
optimization 665
simple 78
variable-length records

QSAM 162
VSAM 192

OCCURS INDEXED BY clause, creating
indexes with 72

ODO object 78
ODO subject 78
OFFSET compiler option

description 345
multioption interaction 305
output 424

OMITTED clause, FILE SECTION 13
OMITTED parameters 679
OMITTED phrase for omitting

arguments 495
ON EXCEPTION phrase

INVOKE statement 611, 624
OPEN statement

file availability 170, 195, 216
file status key 245
line-sequential files 215
multithreading serialization 520
QSAM files 170
VSAM files 193

opening files
line-sequential 216
multithreading serialization 520
QSAM 170
VSAM

empty 196
overview 195

OPTFILE compiler option 345
optimization

avoid ALTER statement 662
BINARY data items 663
consistent data 663
constant data items 662
contained program integration 668
effect of compiler options on 668

optimization (continued)
effect on parameter passing 494
effect on performance 662
factor expressions 662
index computations 666
indexing 664
nested program integration 668
OCCURS DEPENDING ON 665
out-of-line PERFORM 662
packed-decimal data items 663
performance implications 665
procedure integration 668
structured programming 662
subscript computations 666
subscripting 664
table elements 664
top-down programming 662
unreachable code 667
unused data items 346, 401

OPTIMIZE compiler option
description 346
effect on parameter passing 494
performance considerations 667, 670

optimizer
overview 667

optional files
QSAM 171
VSAM 196

ORD intrinsic function, example 119
ORD-MAX intrinsic function

example table calculation 89
using 120

ORD-MIN intrinsic function 120
order of evaluation

arithmetic operators 57, 687
compiler options 305

out-of-line PERFORM 102
OUTDD compiler option

DD not allocated 36
description 348
interaction with DISPLAY 36

output
coding for CICS 430
coding for line-sequential files 215
coding for QSAM files 170
coding for VSAM files 193
data set 270
from compiler, under z/OS 268
to files 153

output files with cob2 289
output procedure

coding 224
example 224, 228
FASTSRT option not effective 232
requires RETURN or RETURN

INTO 224
restrictions 225

overflow condition
CALL 250
joining and splitting strings 240
UNSTRING 107

overloading instance methods 602
overriding

factory methods 623
instance methods 601

882 Enterprise COBOL for z/OS, V5.2 Programming Guide

P
packed decimal data 341
packed-decimal data item

description 50
sign representation 53
synonym 47
using efficiently 50, 663

page
control 172
depth 13

paragraph
definition 18
grouping 104

parameters
accessing from main program in z/OS

example 505
overview 505

accessing from main program in z/OS
UNIX

example 469
overview 468

ADEXIT 718
describing in called program 494
INEXIT 712
LIBEXIT 715
MSGEXIT 719
PRTEXIT 717

parse data item, definition 530
parsing XML documents

description 530
one segment at a time

example 566
overview 543

overview 528
UTF-8 551
white space 548
with validation

example 568
overview 540
performance considerations 541
restrictions 541

XML declaration 548
passing data between programs

addresses 497
arguments in calling program 493
BY CONTENT 491
BY REFERENCE 491
BY VALUE

overview 491
restrictions 493

EXTERNAL data 501
JNI services 634
OMITTED arguments 495
options considerations 41
parameters in called program 494
RETURN-CODE special register 500
with Java 637

password
alternate index 202
example 202
VSAM files 202

PASSWORD clause 202
PATH environment variable

description 465
example of setting 297

path name
for copybook search 288, 381

PERFORM statement
coding loops 101
for a table

example using indexing 77
example using subscripting 77

for changing an index 72
inline 102
out-of-line 102
performed an explicit number of

times 103
TEST AFTER 103
TEST BEFORE 103
THRU 104
TIMES 103
UNTIL 103
VARYING 103
VARYING WITH TEST AFTER 103
WITH TEST AFTER . . . UNTIL 103
WITH TEST BEFORE . . . UNTIL 103

performance
AIXBLD runtime option 673
and debugging 365
APPLY WRITE-ONLY clause 10
arithmetic evaluations 663
arithmetic expressions 664
blocking QSAM files 168, 310
calls 481
CBLPSHPOP considerations 439
CBLPSHPOP runtime option 439
CICS

overview 661
CICS coding 672
coding for 661
coding tables 664
compiler option

AFP 669
ARCH 669
ARITH 669
AWO 669
BLOCK0 669
DYNAM 670
FASTSRT 670
HGPR 670
MAXPCF 670
NUMPROC 54, 670
OPTIMIZE 667, 670
RENT 670
RMODE 671
SQLCCSID 448
SSRANGE 671
TEST 671
THREAD 367, 671
TRUNC 368, 671

consistent data types 663
data usage 663
effect of compiler options on 668
effects of buffer size 312
exponentiations 664
FASTSRT 231
IMS environment 457, 673
OCCURS DEPENDING ON 665
optimizer

overview 667
order of WHEN phrases in

EVALUATE 96
out-of-line PERFORM compared with

inline 102

performance (continued)
parsing XML documents with

validation 541
programming style 662
sorting with FASTSRT 231
striped extended-format QSAM data

sets 180
table handling 666
table searching

binary compared with serial 85
improving serial search 86

tape, QSAM 169
tuning 661
variable subscript data format 71
VSAM files 209, 673
worksheet 672

period as scope terminator 20
PGMNAME compiler option

COMPAT suboption 349
description 348
LONGMIXED suboption 350
LONGUPPER suboption 349

phrase, definition of 18
physical block 153
physical record 14, 153
PICTURE clause

cannot use for internal floating
point 44

determining symbol used 317
incompatible data 54
N for national data 131
national-edited data 131
numeric data 43
numeric-edited data 131
Z for zero suppression 45

PL/I tasking
POSIX runtime option 523
with COBOL 523

pointer data item
description 39
incrementing addresses with 497
NULL value 497
passing addresses 497
processing chained lists 497
used to process chained list 498

porting applications
effect of separate sign 44

POSIX
calling APIs 466
threads 523

POSIX runtime option
effect on DLL search order 511
use in OO applications 297

precedence
arithmetic operators 57, 687
CICS options 434
compiler options

in batch 277
in SYSOPTF data sets 270, 346
under z/OS 272
under z/OS UNIX 284

copybook search order 284
preferred sign 54
preinitializing the COBOL environment

with multithreading 519
PRESENT-VALUE intrinsic function 61

Index 883

preserving original sequence in a
sort 230

priority numbers, segmentation 668
procedure and data-name cross-reference,

description 394
PROCEDURE DIVISION

additional information 407
client 606
description 17
in subprograms 496
instance method 600
RETURNING

to return a value 17
using 500

signature information bytes 407
statements

compiler-directing 20
conditional 19
delimited scope 19
imperative 19

terminology 17
USING

BY VALUE 496
to receive parameters 17, 494

verbs present in 407
procedure integration 668
procedure-pointer data item

calling C/C++ 489
calling JNI services 489
definition 487
entry address for entry point 487
passing parameters to callable

services 487
SET procedure-pointer 487
with DLLs 513

process
definition 518

PROCESS (CBL) statement
batch compiling 277
conflicting options in 305
overview 383
precedence

in batch 277
under z/OS 272
under z/OS UNIX 284

specifying compiler options 273
processing

chained lists
example 498
overview 497

tables
example using indexing 77
example using subscripting 77

producing XML output 571
product support xviii, 863
program

attribute codes 405
compiling and linking using cob2

DLLs 286
examples 286
overview 285

compiling under z/OS 255
compiling under z/OS UNIX 283
decisions

EVALUATE statement 93
IF statement 93
loops 103

program (continued)
decisions (continued)

PERFORM statement 103
switches and flags 99

developing for z/OS UNIX 463
diagnostics 399
initialization code 413
limitations 661
main 473
nesting level 400
reentrant 490
restarting 654
signature information bytes 407
statistics 399
structure 3
subprogram 473

PROGRAM COLLATING SEQUENCE
clause

does not affect national or DBCS
operands 7

establishing collating sequence 6
overridden by COLLATING

SEQUENCE phrase 6
overrides default collating

sequence 229
Program information

listing example 415
program processing table 432
Program prolog area

listing example 416
program termination

actions taken in main and
subprogram 474

statements 474
PROGRAM-ID paragraph

coding 3
COMMON attribute 4
INITIAL clause 5

program-names
avoid using certain prefixes 3
cross-reference 422
handling of case 348
specifying 3

protecting VSAM files 202
PRTEXIT suboption of EXIT option

processing of 716
syntax 325

Q
QSAM files

adding records to 172
ASCII tape file 182
ASSIGN clause 160
attributes 178
BLOCK CONTAINS clause 168, 310
block size 168, 310
blocking enhances performance 168,

310
blocking records 168, 181
closing 173
closing to prevent reopening 171
DATA DIVISION entries 160
ENVIRONMENT DIVISION

entries 159
FASTSRT requirements 232

QSAM files (continued)
input/output error processing 174,

241
input/output statements for 170
obtaining buffers for 181
opening 170
processing

existing files 179
in reverse order 171
new files 180
overview 159
z/OS UNIX files 181

replacing records 172
retrieving 177
striped extended-format 180
tape performance 169
under z/OS

creating files 174, 177
DD statement for 174, 177
defining 174, 177
environment variable for 174
file availability 171
job control language (JCL) 176

updating files 172
using same input/output file under

FASTSRT 232
writing to a printer 172

QUALIFY compiler option 351
QUOTE compiler option 352

R
railroad track diagrams, how to read xvi
random numbers, generating 59
RANGE intrinsic function

example statistics calculation 62
example table calculation 89

RD parameter of JOB or EXEC
statement 654

READ INTO for format-V VSAM
files 193

READ NEXT statement 193
READ statement

AT END phrase 244
line-sequential files 215
multithreading serialization 520
QSAM 170
VSAM 193

reading records
block size 168
from line-sequential files 216

reading records from VSAM files
dynamically 198
randomly 198
sequentially 198

reason code from XML parsing 552, 701
record

description 11
format

fixed-length QSAM 161, 162
fixed-length VSAM 192
format D 162, 163, 183
format F 161, 162, 183
format S 164, 165, 166
format U 166, 167, 183
format V 162, 163, 183
QSAM ASCII tape 183

884 Enterprise COBOL for z/OS, V5.2 Programming Guide

record (continued)
format (continued)

spanned 164, 165, 166
undefined 166, 167
variable-length QSAM 162, 163
variable-length VSAM 192

order, effect of organization on 153
RECORD CONTAINS clause

FILE SECTION entry 13
RECORD KEY clause

identifying prime key in KSDS
files 188

RECORDING MODE clause
fixed-length records, QSAM 161
QSAM files 14
specify record format 160
variable-length records, QSAM 162,

163
recursive calls

and the LINKAGE SECTION 17
coding 487
identifying 4

REDEFINES clause, making a record into
a table using 75

reentrant programs 490
reference modification

example 113
expression checking with

SSRANGE 361
generated XML documents 572
intrinsic functions 111
national data 112
out-of-range values 113
tables 71, 112
UTF-8 documents 141

reference modifier
arithmetic expression as 114
intrinsic function as, example 114
variables as 112

registers used by EXIT compiler
option 712

relation condition 98
relative file organization 154
RELEASE FROM statement

compared to RELEASE 223
example 222

RELEASE statement
compared to RELEASE FROM 223
with SORT 222, 223

REM intrinsic function 62
RENT compiler option

description 352
for DLLs 508
for IMS 457
for Java interoperability 291, 295
for OO COBOL 291, 295
influencing addressability 41
multioption interaction 40, 305
performance considerations 670
when passing data 41

REPLACE statement
DB2 considerations 449
description 383

replacing
data items (INSPECT) 115
records in QSAM file 172
records in VSAM file 200

replacing (continued)
text, DB2 considerations 449

REPLACING phrase (INSPECT),
example 115

REPOSITORY paragraph
class 594
client 607
coding 5
subclass 619

representation
data 54
sign 53

RERUN clause
checkpoint/restart 236

reserved-word table, CICS alternate
overview 437
specifying with WORD 373

residency mode, definition 40
restart

automatic 655
automatic or deferred 651
deferred 655
overview 651

restarting a program 654
restrictions

CICS
16 MB line 430
calls 431
coding 429
files 5
OUTDD compiler option 348
parsing with validation using

FILE 541
separate translator 435
sorting 237

DB2 coprocessor 446
IMS

16 MB line 430
coding 5, 453

IMS SQL coprocessor 456
input/output procedures 225
OO programs 589
SQL compiler option 446
SQL statements 442
SQLIMS compiler option 456
subscripting 71

resubmitting a job 657
return code

compiler
depends on highest severity 282
effect of message

customization 722
overview 282

feedback code from Language
Environment services 680

from CICS ECI 433
from DB2 SQL statements 445
from XML parsing 552, 701
RETURN-CODE special register 500,

680
VSAM files

description 246
example 247
RLS mode 208

when control returns to operating
system 500

RETURN statement
required in output procedure 224
with INTO phrase 224

RETURN-CODE special register
calls to Language Environment

services 680
CICS ECI calls 433
considerations for DB2 445
not set by INVOKE 611
passing data between programs 500
sharing return codes between

programs 500
when control returns to operating

system 500
RETURNING phrase

CALL statement 501
INVOKE statement 613
PROCEDURE DIVISION header 500,

601
REVERSE intrinsic function 117
reverse order of tape files 171
reversing characters 117
REWRITE statement

multithreading serialization 520
QSAM 170
VSAM 193

RLS parameter 207
RMODE

description 40
of EXIT modules 712

RMODE compiler option
description 353
influencing addressability 40
multioption interaction 40
performance considerations 671
when passing data 41

ROUNDED phrase 686
rows in tables 69
RRDS (relative-record data sets)

file access mode 191
fixed-length records 186, 190
organization 190
performance considerations 210
simulating variable-length

records 190
variable-length records 186, 190

RULES compiler option
description 354

run time
accessing arguments in z/OS

example 505
overview 505

accessing arguments in z/OS UNIX
example 469
overview 468

changing file-name 9
multithreading restrictions 524
performance 661

run unit
description 473
role in multithreading 518

running OO applications
under z/OS UNIX

overview 293
XPLINK linkage 299

using JCL or TSO/E 296
XPLINK linkage 299

Index 885

runtime options
85 COBOL Standard

conformance 304
AIXBLD 673
ALL31 479
CBLOPTS 505
CBLPSHPOP 438
CHECK(OFF)

performance considerations 671
DEBUG 388
ENVAR 297
MSGFILE 348
NOSIMVRD 190
POSIX

DLL search order 511
use in OO applications 297

specifying under z/OS 505
specifying under z/OS UNIX 463
TRAP

closing files in QSAM 173
closing files in VSAM 200
closing line-sequential files 217
ON SIZE ERROR 240

XPLINK
not recommended as a

default 299
setting 299

S
S-format record

layout 166
overview 165
requesting 164

S-level error message 282, 392
sample programs 805
scope of names

global 486
local 486

scope terminator
aids in debugging 386
explicit 19, 20
implicit 20

SD (sort description) entry, example 222
SEARCH ALL statement

binary search 87
example 88
for changing an index 72
table must be ordered 87

search order
DLLs in the z/OS UNIX file

system 511
SEARCH statement

example 86
for changing an index 72
nesting to search more than one level

of a table 86
serial search 86

searching
for name declarations 486
tables

binary search 87
overview 85
performance 85
serial search 86

section
declarative 21

section (continued)
definition 18
grouping 104

segmentation 668
SELECT clause

ASSIGN clause 8
naming files 8
vary input-output file 9

SELECT OPTIONAL
QSAM 171
VSAM 196

SELF 609
sentence, definition of 18
separate CICS translator

compiler options for 433, 436
restrictions 435
using 436

separate sign
for line-sequential files 217
portability 44
printing 44
required for signed national

decimal 44
SEQUENCE compiler option 356
sequential file organization 153
sequential search

description 86
example 86

sequential storage device 154
serial search

description 86
example 86

serialization of files with
multithreading 520

SERVICE compiler option 356
SERVICE LABEL statement 383
SET condition-name TO TRUE statement

example 102, 104
switches and flags 100

SET statement
for changing an index 72
for changing index data items 72
for function-pointer data items 487
for object references 609
for procedure-pointer data items 487
for setting a condition, example 100
handling of program-name in 349
using for debugging 388

setting
index data items 72
indexes 72
switches and flags 100

sharing
data

between separately compiled
programs 501

coding the LINKAGE
SECTION 495

from another program 16
in recursive or multithreaded

programs 17
in separately compiled

programs 16
overview 491
parameter-passing

mechanisms 491

sharing (continued)
data (continued)

passing arguments to a
method 611

PROCEDURE DIVISION
header 496

RETURN-CODE special
register 500

returning a value from a
method 613

scope of names 486
with Java 637

files
scope of names 486
using EXTERNAL clause 12, 501
using GLOBAL clause 12

short listing, example 397
sign condition

testing sign of numeric operand 98
SIGN IS SEPARATE clause

for line-sequential files 217
portability 44
printing 44
required for signed national decimal

data 44
sign representation 53
signature

definition of 598
must be unique 598

signature information bytes
compiler options in effect 407
DATA DIVISION 407
ENVIRONMENT DIVISION 407
PROCEDURE DIVISION 407

size of printed page, control 172
skip a block of records 168
softcopy information xviii
sort

alternate collating sequence 229
checkpoint/restart 236
completion code 230
controlling behavior of 234
criteria 227
data sets needed under z/OS 226
DD statements for defining z/OS data

sets 226
description 219
determining success 230
diagnostic message 230
FASTSRT compiler option

improving performance 231
requirements 231
using same QSAM file for input

and output 232
files, describing 221
input procedures

coding 222
example 228

keys
defining 227
overview 220

NOFASTSRT compiler option 233
output procedures

coding 224
example 224, 228

pass control statements to 235

886 Enterprise COBOL for z/OS, V5.2 Programming Guide

sort (continued)
performance

FASTSRT 231
variable-length files 226

preserving original sequence 230
process 220
restrictions 219
restrictions on input/output

procedures 225
special registers 234
storage use 235
terminating 231
under CICS 237
variable-length records 226
work files

describing 220
workspace 236

SORT statement
ASCENDING|DESCENDING KEY

phrase 228
COLLATING SEQUENCE phrase 7,

229
description 226
GIVING phrase 226
overview 219
restrictions 219
restrictions for CICS applications 237
under CICS 237

change reserved-word table 438
USING phrase 226

SORT-CONTROL special register 234
SORT-CORE-SIZE special register 234
SORT-FILE-SIZE special register 234
SORT-MESSAGE special register 234
SORT-MODE-SIZE special register 234
SORT-RETURN special register 234

determining sort or merge
success 230

terminating sort or merge 231
SORTCKPT DD statement 236
sorting

tables
overview 88

SOURCE and NUMBER output,
example 399

source code
compiler data set 269
line number 400, 401, 405
listing, description 395
program listing 274

SOURCE compiler option
description 357
getting output 395

SOURCE-COMPUTER paragraph 5
SPACE compiler option 357
spanned files 165
spanned record format

description 164
layout 166
requesting 164

special feature specification 5
special register

ADDRESS OF
use in CALL statement 492

arguments in intrinsic functions 58
JNIEnvPtr

use for JNI callable services 633

special register (continued)
LENGTH OF 122, 492
RETURN-CODE 500
SORT-RETURN

determining sort or merge
success 230

terminating sort or merge 231
using in XML parsing 532, 534
WHEN-COMPILED 123
XML-CODE 532, 535
XML-EVENT 532, 534
XML-INFORMATION 532
XML-NAMESPACE 532, 538
XML-NAMESPACE-PREFIX 533, 538
XML-NNAMESPACE 533, 538
XML-NNAMESPACE-PREFIX 533,

538
XML-NTEXT 532, 537
XML-TEXT 532, 537

special register table 419
SPECIAL-NAMES paragraph

coding 5
QSAM files 182

splitting data items (UNSTRING) 107
SQL compiler option

description 358
restrictions

compiling in batch 446
OO programs 589

using 445
SQL statements

CCSID determination 447
coding

overview 442
restriction 442

EXIT compiler option and 728
overview 441
restrictions 442
return codes 445
SQL DECLARE 443
SQL INCLUDE 443
use for DB2 services 441
using binary data in 445
using character data in 443
using national decimal data 444

SQLCA
declare for programs that use SQL

statements 442
declare for programs that use SQLIMS

statements 454
return codes from DB2 445

SQLCCSID compiler option
description 359
effect on CCSID of string data 447
performance considerations 448
recommended with DB2

coprocessor 448
SQLIMS compiler option 360

restrictions
compiling in batch 456

using 456
SQLIMS statements

coding
overview 454

EXIT compiler option and 728
SQLIMS INCLUDE 454

SQRT intrinsic function 62

SSRANGE compiler option
description 361
performance considerations 671
reference modification 113
using 391

STACK runtime option
influencing data location 42
multioption interaction 40

STANDARD clause, FD entry 13
START statement

multithreading serialization 520
VSAM 193

statement
compiler-directing 20
conditional 19
definition 18
delimited scope 19
explicit scope terminator 20
imperative 19
implicit scope terminator 20
nesting level 400

static calls
example 482
making 476
performance 481
with dynamic calls 481

static data areas, allocating storage 42
static data, definition of 589
Static map 417
static methods

definition of 589
invoking 624

statistics intrinsic functions 62
status code, VSAM files

description 246
example 247

stderr
controlling line spacing 37
directing with DISPLAY 36
setting DISPLAY to 465

stdin
reading with ACCEPT 35

stdout
controlling line spacing 37
directing with DISPLAY 36
setting DISPLAY to 465

STEPLIB environment variable
description 465
example of specifying compiler 285

STGOPT compiler option 362
STOP RUN statement

in main program 474
in subprogram 474
with multithreading 474

storage
character data 137
device

direct-access 154
sequential 154

for arguments 493
management with Language

Environment callable services 677
mapping 395
use during sort 235

stride, table 666
STRING statement

example 106

Index 887

STRING statement (continued)
overflow condition 240
using 105
with DBCS data 695

strings
handling 105
Java

declaring 639
manipulating 642

null-terminated 496
striped extended-format QSAM file 180
structure, initializing using

INITIALIZE 30
structured programming 662
structuring OO applications 630
subclass

coding
example 620
overview 617

instance data 619
subprogram

and main program 473
definition 491
description 473
linkage 473

common data items 494
PROCEDURE DIVISION in 496
termination

effects 474
subscript

definition 70
literal, example 70
range checking 391
variable, example 70

subscripting
definition 70
example 77
literal, example 70
reference modification 71
relative 71
restrictions 71
use data-name or literal 71
variable, example 70

substitution character 132
substrings

of table elements 112
reference modification of 111

SUM intrinsic function, example table
calculation 89

SUPER 614
support xviii, 863
switch-status condition 98
switches and flags

defining 99
description 99
resetting 100
setting switches off, example 101
setting switches on, example 100
testing multiple values, example 100
testing single values, example 99

SYMBOLIC CHARACTERS clause 8
symbolic constant 662
syntax diagrams, how to read xvi
syntax errors

finding with NOCOMPILE compiler
option 390

SYSABEND file
description 268

SYSADATA
file, creating 271
output 305
records, exit module 717

SYSADATA file
description 268
example 739
file contents 737
record descriptions 740
record types 738

SYSIN data set
defining 269
description 267

SYSJAVA file
defining 272
description 268

SYSLIB data set
defining 270
description 267
when not used 713

SYSLIB environment variable
description 284
specifying location of JNI.cpy 291

SYSLIN data set 271
description 268

SYSMDECK file
defining 272
description 268

SYSMDUMP file
description 268

SYSOPTF data set
defining 269
description 267

SYSPRINT data set
defining 270
description 268
when not used 716

SYSPUNCH data set
description 268, 271
requirements for DECK compiler

option 319
system date

under CICS 431
system dump 239
system-determined block size

compiler data sets 268
QSAM files 168, 310

system-name 5
SYSTERM data set

defining 271
description 268
sending messages to 363

SYSUDUMP file
description 268

SYSUT data set 267

T
table

assigning values to 75
columns 67
compare to array 39
defining with OCCURS clause 67
definition 67
depth 69

table (continued)
description 39
dynamically loading 73
efficient coding 664, 666
elements 67
identical element specifications 664
index, definition 70
initializing

all occurrences of an element 76
at the group level 76
each item individually 75
using INITIALIZE 73
using PERFORM VARYING 103

loading values in 73
looping through 103
multidimensional 68
one-dimensional 67
processing with intrinsic

functions 89
redefining a record as 75
reference modification 71
referencing substrings of

elements 112
referencing with indexes, example 70
referencing with subscripts,

example 70
referring to elements 70
rows 69
searching

binary 87
overview 85
performance 85
sequential 86
serial 86

sorting
overview 88

stride computation 666
subscript, definition 70
three-dimensional 69
two-dimensional 69
variable-length

creating 78
example of loading 80
initializing 81
preventing overlay in 84

TALLYING phrase (INSPECT),
example 115

tape files
performance 169
reverse order 171

TERMINAL compiler option 363
terminal, sending messages to the 363
terminating XML parsing 556
termination 474
terminology

VSAM 185
terms used in MAP output 403
test

conditions 103
data 98
numeric operand 98
UPSI switch 98

TEST AFTER 103
TEST BEFORE 103
TEST compiler option

description 364
multioption interaction 305

888 Enterprise COBOL for z/OS, V5.2 Programming Guide

TEST compiler option (continued)
performance considerations 671
use for debugging 395

text-name cross-reference,
description 394

text-name environment variable 284
THREAD compiler option

and the LINKAGE SECTION 17
cannot use with nested

programs 484
description 366
for Java interoperability 291, 295
for OO COBOL 291, 295
multioption interaction 305
performance considerations 671

threading
and preinitialization 519
control transfer 519
ending programs 520
z/OS UNIX considerations 463

TITLE statement 383
controlling header on listing 5

top-down programming
constructs to avoid 662

TRACK OVERFLOW option 169
Trademarks 827
transferring control

between COBOL and non-COBOL
programs 473

between COBOL programs 475, 483
called program 473
calling program 473
main and subprograms 473
nested programs 484

transforming COBOL data to XML
example 578
overview 571

TRAP runtime option
closing line-sequential files 217
closing QSAM files 173
closing VSAM files 200
ON SIZE ERROR 240

TRUNC compiler option
description 368
performance considerations 671
suboptions for separate CICS

translator 437
TSO

ALLOCATE command 262
CALL command 262
compiling under

example CLIST 264
overview 262

SYSTERM for compiler messages 271
tuning considerations, performance 668,

669
typed object references 608

U
U-format record

layout 167
requesting 166

U-level error message 282, 392
unavailable files

QSAM 171
VSAM 203

UNBOUNDED groups
processing 90

undefined record format
layout 167
QSAM 183
requesting 166

unfilled tracks 169
Unicode

description 129
encoding and storage 137
JNI services 642
processing data 125
using with DB2 443

universal object references 608
UNIX

calling APIs 466
unreachable code 667
UNSTRING statement

example 108
overflow condition 240
using 107
with DBCS data 695

updating VSAM records 199
UPPER-CASE intrinsic function 117
uppercase, converting to 117
UPSI switches with multithreading 524
USAGE clause

at the group level 25
incompatible data 54
INDEX phrase, creating index data

items with 72
NATIONAL phrase at the group

level 134
OBJECT REFERENCE 608

USE FOR DEBUGGING declaratives
overview 388

USE statement 384
user-defined condition 98
user-exit work area 711
USING phrase

INVOKE statement 611
PROCEDURE DIVISION header 496,

601
UTF-16

definition 129
encoding for national data 129

UTF-8
avoid INSPECT 551
avoid moves that truncate 551
avoid reference modification with

XML documents 141
converting to or from national 141
definition 129
encoding and storage 137
encoding for ASCII invariant

characters 129
example of generating an XML

document 573
JNI services 644
parsing XML documents 551
processing data items 141
using intrinsic functions 142

UTF-8 data
using Unicode intrinsic functions 144

V
V-format record

layout 163
requesting 162

validating XML documents
example 568
overview 540
performance considerations 541
restrictions 541

VALUE clause
alphanumeric literal with national

data, example 121
alphanumeric literal with national

group, example 76
assigning table values

at the group level 76
to each item individually 75
to each occurrence of an

element 76
assigning to a variable-length

group 81
cannot use for external floating

point 48
initializing internal floating-point

literals 44
large literals with COMP-5 49
large, with TRUNC(BIN) 369

VALUE IS NULL 497
VALUE OF clause 13
variable

as reference modifier 112
definition 23

variable-length records
OCCURS DEPENDING ON (ODO)

clause 665
QSAM

layout 163
requesting 162

sorting 226
VSAM

defining 192
RRDS 186

variable-length table
assigning values to 81
creating 78
example 79
example of loading 80
preventing overlay in 84

variables, environment
example of setting and accessing 466
library-name 381
runtime 465

variably located data item 82
variably located group 82
VBREF compiler option

description 370
output example 425
using 395

verb cross-reference listing
description 395

verbs used in program 395
VLR compiler option

description 371
VSAM files

adding records to 199
allocating with environment

variable 206

Index 889

VSAM files (continued)
closing 200
coding input/output statements 193
comparison of file organizations 187
creating alternate indexes 204
DATA DIVISION entries 192
deleting records from 200
ENVIRONMENT DIVISION

entries 188
error processing 241
extended addressability 211
file position indicator (CRP) 195, 198
file status key 201
input/output error processing 201
loading

dynamically or randomly 196
extended format 197
sequentially 196
with access method services 197

opening
empty 196
overview 195

performance considerations 209
processing files 185
protecting with password 202
reading records from 198
record-level sharing (RLS)

error handling 208
overview 207
preventing update problems 207
restrictions 208

replacing records in 200
status codes

description 246
example 247

under z/OS
defining data sets 203
file availability 202
JCL 206
RLS mode 207

updating records 199
VSAM terminology

BDAM data set 185
comparison to non-VSAM terms 185
ESDS for QSAM 185
KSDS for ISAM 185
RRDS for BDAM 185

VSAMOPENFS compiler option 372

W
W-level message 282, 392
WHEN phrase

EVALUATE statement 95
SEARCH ALL statement 87
SEARCH statement 86

WHEN-COMPILED intrinsic
function 123

WHEN-COMPILED special register 123
white space in XML documents 548
WITH DEBUGGING MODE clause

for debugging lines 388
for debugging statements 388

WITH POINTER phrase
STRING 105
UNSTRING 107

WORD compiler option
description 372
multioption interaction 305
recommended for CICS integrated

translator 434
recommended for CICS separate

translator 437
work data sets for compiling 267
WORKING-STORAGE SECTION

client 608, 609
comparison with LOCAL-STORAGE

example 15
OO client 609
overview 14

factory data 622
instance data 596, 619
instance method 599
multithreading considerations 609
storage location for data 318

workspace
use during sort 236

wrapper, definition of 630
wrapping procedure-oriented

programs 630
Writable static area 417
write a block of records 168
WRITE ADVANCING statement 173
WRITE statement

line-sequential files 215
multithreading serialization 520
QSAM 170
VSAM 193

X
x suffix with cob2 289
XML declaration

generating 573
specifying encoding declaration 549
white space cannot precede 548

XML document
accessing 530
code pages supported 546
controlling the encoding of 576
EBCDIC special characters 550
encoding 546, 547
enhancing

example of modifying data
definitions 583

rationale and techniques 583
events

example 563
generating

example 578
overview 571

handling parsing exceptions 552
national language 547
parser 528
parsing

description 530
example 558, 563, 566
large documents 545
one segment at a time 543
UTF-8 551

parsing with validation
example 568
overview 540

XML document (continued)
parsing with validation (continued)

performance considerations 541
restrictions 541

processing 527
specifying encoding if

alphanumeric 549
white space 548
XML declaration 548

XML event
CONTENT-CHARACTERS

example 567
when parsing segments 544

encoding conflicts 555
END-OF-INPUT

example 567
when parsing segments 543

EXCEPTION 554
fatal errors 555
NAMESPACE-DECLARATION 538
overview 534
processing 528, 532
processing procedure 530

XML exception codes
for generating 710
for parsing 701
for parsing with

XMLPARSE(COMPAT)
handleable 703
not handleable 707

for parsing with
XMLPARSE(XMLSS) 701

XML GENERATE statement
COUNT IN 577
NAME 575
NAMESPACE 573
NAMESPACE-PREFIX 574
NOT ON EXCEPTION 576
ON EXCEPTION 577
SUPPRESS 575
TYPE 575
WITH ATTRIBUTES 573
WITH ENCODING 576
XML-DECLARATION 573

XML generation
controlling type of XML data 575
counting generated characters 572
description 571
enhancing output

example of modifying data
definitions 583

rationale and techniques 583
example 578
generating attributes 573
generating elements 572
handling errors 577
ignored data items 572
naming attributes or elements 575
no byte order mark 577
overview 571
suppressing generation of specified

attributes or elements 575
using namespace prefixes 574
using namespaces 573

XML output
controlling the encoding of 576

890 Enterprise COBOL for z/OS, V5.2 Programming Guide

XML output (continued)
enhancing

example of modifying data
definitions 583

rationale and techniques 583
generating

example 578
overview 571

XML PARSE statement
NOT ON EXCEPTION 531
ON EXCEPTION 531
overview 528
using 530

XML parser
error handling 554
overview 528

XML parsing
control flow with processing

procedure 535
description 530
fatal errors 555
handling encoding conflicts 555
handling exceptions 552
one segment at a time

example 566
overview 543

overview 527
reason code 552, 701
return code 552, 701
special registers 532, 534
terminating 556
with validation

example 568
overview 540
performance considerations 541
restrictions 541

XML processing procedure
control flow with parser 535
error with EXIT PROGRAM or

GOBACK 533
example

one segment at a time 566
parsing with validation 568
program for processing XML 558

handling encoding conflicts 556
handling parsing exceptions 552
multiple segments 543
restriction on XML PARSE 533
setting XML-CODE in 556
specifying 530
using special registers 532, 534
writing 532

XML schemas 542
XML-CODE special register

content 535
continuation after nonzero value 556
control flow between parser and

processing procedure 535
description 532
exception codes for generating 710
exception codes for parsing 701
exception codes for parsing with

XMLPARSE(COMPAT)
encoding conflicts 553
handleable 703
not handleable 707

XML-CODE special register (continued)
exception codes for parsing with

XMLPARSE(XMLSS) 701
fatal errors 555
reason code 552, 701
return code 552, 701
setting to -1 535, 556
setting to 1 543
subtracting 100,000 from 555
terminating parsing 556
using in generating 576
using in parsing 527
with code-page conflicts 555
with encoding conflicts 555
with generating exceptions 577
with parsing exceptions 554

XML-EVENT special register
content 534, 557
description 532
using 527, 532
with parsing exceptions 554

XML-INFORMATION special
register 545

content 536
description 532

XML-NAMESPACE special register
content 538
description 532
using 527

XML-NAMESPACE-PREFIX special
register

content 538
description 533
using 527

XML-NNAMESPACE special register
content 538
description 533
using 527

XML-NNAMESPACE-PREFIX special
register

content 538
description 533
using 527

XML-NTEXT special register
content 537
description 532
using 527
with parsing exceptions 554

XML-TEXT special register
content 537, 557
description 532
using 527
with parsing exceptions 554

XMLPARSE compiler option
choosing the parser 527
description 373

XPLINK linkage convention in OO
applications 299

XPLINK runtime option
not recommended as a default 299
setting 299

XREF compiler option
description 374
finding copybook data sets 394
finding data- and

procedure-names 394
getting output 395

XREF output
COPY/BASIS cross-references 422
data-name cross-references 421
program-name cross-references 422

Z
z/OS

accessing main parameters under
example 505
overview 505

compiling under 255
running programs under 505

z/OS UNIX
accessing environment variables

example 466
overview 464

accessing main parameters under
example 469
overview 468

compiler environment variables 283
compiling from script 289
compiling OO applications

example 293
overview 291

compiling under 283
copybook search order 284, 288, 382
copybooks 382
developing programs 463
execution environments 463
linking OO applications

example 293
overview 292

preparing OO applications
example 293
overview 292

programs must be reentrant 490
restrictions 463
running OO applications

overview 293
XPLINK linkage 299

running programs 463
setting environment variables

example 466
overview 464

sort and merge restriction 219
specifying compiler options 284

z/OS UNIX file system
compiler data sets 258
defining file with environment

variable 157
processing files with QSAM 181
reading file with ACCEPT 35
search order for DLLs in 511
writing files with DISPLAY 36

zero suppression
example of BLANK WHEN ZERO

clause 45
PICTURE symbol Z 45

ZONECHECK compiler option 376
zoned decimal data (USAGE

DISPLAY) 341, 376, 377
effect of ZWB on comparison to

alphanumeric 379
example 43
format 47
sign representation 53

Index 891

ZONEDATA compiler option 377
ZWB compiler option 379

892 Enterprise COBOL for z/OS, V5.2 Programming Guide

IBM®

Product Number: 5655-W32

Printed in USA

SC14-7382-03

	Contents
	Tables
	Preface
	About this information
	How this information will help you
	Abbreviated terms
	Comparison of commonly used terms
	How to read syntax diagrams
	How examples are shown

	Additional documentation and support
	Summary of changes
	Version 5 Release 2 with PTFs installed
	Version 5 Release 2

	How to send your comments
	Accessibility
	Interface information
	Keyboard navigation
	Accessibility of this information
	IBM and accessibility

	Part 1. Coding your program
	Chapter 1. Structuring your program
	Identifying a program
	Identifying a program as recursive
	Marking a program as callable by containing programs
	Setting a program to an initial state
	Changing the header of a source listing

	Describing the computing environment
	Example: FILE-CONTROL entries
	Specifying the collating sequence
	Example: specifying the collating sequence

	Defining symbolic characters
	Defining a user-defined class
	Defining files to the operating system
	Varying the input or output file at run time
	Optimizing buffer and device space

	Describing the data
	Using data in input and output operations
	FILE SECTION entries

	Comparison of WORKING-STORAGE and LOCAL-STORAGE
	Example: storage sections

	Using data from another program
	Sharing data in separately compiled programs
	Sharing data in nested programs
	Sharing data in recursive or multithreaded programs

	Processing the data
	How logic is divided in the PROCEDURE DIVISION
	Imperative statements
	Conditional statements
	Compiler-directing statements
	Scope terminators

	Declaratives

	Chapter 2. Using data
	Using variables, structures, literals, and constants
	Using variables
	Using data items and group items
	Using literals
	Using constants
	Using figurative constants

	Assigning values to data items
	Examples: initializing data items
	Initializing a structure (INITIALIZE)
	Assigning values to elementary data items (MOVE)
	Assigning values to group data items (MOVE)
	Assigning arithmetic results (MOVE or COMPUTE)
	Assigning input from a screen or file (ACCEPT)

	Displaying values on a screen or in a file (DISPLAY)
	Displaying data on the system logical output device
	Using WITH NO ADVANCING

	Using intrinsic functions (built-in functions)
	Using tables (arrays) and pointers
	Storage and its addressability
	Restrictions for AMODE
	Settings for RMODE
	Storage restrictions for passing data
	Location of data areas
	Storage for LOCAL-STORAGE data
	Storage for external data
	Storage for QSAM input-output buffers

	Chapter 3. Working with numbers and arithmetic
	Defining numeric data
	Displaying numeric data
	Controlling how numeric data is stored
	Formats for numeric data
	External decimal (DISPLAY and NATIONAL) items
	External floating-point (DISPLAY and NATIONAL) items
	Binary (COMP) items
	Native binary (COMP-5) items
	Packed-decimal (COMP-3) items
	Internal floating-point (COMP-1 and COMP-2) items
	Examples: numeric data and internal representation

	Data format conversions
	Conversions and precision
	Conversions that lose precision
	Conversions that preserve precision
	Conversions that result in rounding

	Sign representation of zoned and packed-decimal data
	Checking for incompatible data (numeric class test)
	Performing arithmetic
	Using COMPUTE and other arithmetic statements
	Using arithmetic expressions
	Using numeric intrinsic functions
	Using math-oriented callable services
	Using date callable services
	Examples: numeric intrinsic functions
	General number handling
	Date and time
	Finance
	Mathematics
	Statistics

	Fixed-point contrasted with floating-point arithmetic
	Floating-point evaluations
	Fixed-point evaluations
	Arithmetic comparisons (relation conditions)
	Examples: fixed-point and floating-point evaluations

	Using currency signs
	Example: multiple currency signs

	Chapter 4. Handling tables
	Defining a table (OCCURS)
	Nesting tables
	Example: subscripting
	Example: indexing

	Referring to an item in a table
	Subscripting
	Indexing

	Putting values into a table
	Loading a table dynamically
	Initializing a table (INITIALIZE)
	Assigning values when you define a table (VALUE)
	Initializing each table item individually
	Initializing a table at the group level
	Initializing all occurrences of a given table element

	Example: PERFORM and subscripting
	Example: PERFORM and indexing

	Creating variable-length tables (DEPENDING ON)
	Loading a variable-length table
	Assigning values to a variable-length table

	Complex OCCURS DEPENDING ON
	Example: complex ODO
	How length is calculated
	Setting values of ODO objects

	Effects of change in ODO object value
	Preventing index errors when changing ODO object value
	Preventing overlay when adding elements to a variable table

	Searching a table
	Doing a serial search (SEARCH)
	Example: serial search

	Doing a binary search (SEARCH ALL)
	Example: binary search

	Sorting a table
	Processing table items using intrinsic functions
	Example: processing tables using intrinsic functions

	Working with unbounded tables and groups
	Example: Using unbounded tables for parsing XML documents

	Chapter 5. Selecting and repeating program actions
	Selecting program actions
	Coding a choice of actions
	Using nested IF statements
	Using the EVALUATE statement

	Coding conditional expressions
	Switches and flags
	Defining switches and flags
	Example: switches
	Example: flags
	Resetting switches and flags
	Example: set switch on
	Example: set switch off

	Repeating program actions
	Choosing inline or out-of-line PERFORM
	Example: inline PERFORM statement

	Coding a loop
	Looping through a table
	Executing multiple paragraphs or sections

	Chapter 6. Handling strings
	Joining data items (STRING)
	Example: STRING statement
	STRING results

	Splitting data items (UNSTRING)
	Example: UNSTRING statement
	UNSTRING results

	Manipulating null-terminated strings
	Example: null-terminated strings

	Referring to substrings of data items
	Reference modifiers
	Example: arithmetic expressions as reference modifiers
	Example: intrinsic functions as reference modifiers

	Tallying and replacing data items (INSPECT)
	Examples: INSPECT statement

	Converting data items (intrinsic functions)
	Changing case (UPPER-CASE, LOWER-CASE)
	Transforming to reverse order (REVERSE)
	Converting to numbers (NUMVAL, NUMVAL-C)
	Converting from one code page to another

	Evaluating data items (intrinsic functions)
	Evaluating single characters for collating sequence
	Finding the largest or smallest data item
	Returning variable results with alphanumeric or national functions

	Finding the length of data items
	Finding the date of compilation

	Chapter 7. Processing data in an international environment
	COBOL statements and national data
	Intrinsic functions and national data
	Unicode and the encoding of language characters
	Using national data (Unicode) in COBOL
	Defining national data items
	Using national literals
	Using national-character figurative constants
	Defining national numeric data items
	National groups
	Using national groups
	Using national groups as elementary items
	Using national groups as group items

	Storage of character data

	Converting to or from national (Unicode) representation
	Converting alphanumeric, DBCS, and integer to national (MOVE)
	Converting alphanumeric or DBCS to national (NATIONAL-OF)
	Converting national to alphanumeric (DISPLAY-OF)
	Overriding the default code page
	Conversion exceptions
	Example: converting to and from national data

	Processing UTF-8 data
	Using intrinsic functions to process UTF-8 encoded data
	Example: deriving initials from UTF-8 names

	Processing Chinese GB 18030 data
	Comparing national (UTF-16) data
	Comparing two class national operands
	Comparing class national and class numeric operands
	Comparing national numeric and other numeric operands
	Comparing national and other character-string operands
	Comparing national data and alphanumeric-group operands

	Coding for use of DBCS support
	Defining DBCS data
	Using DBCS literals
	Testing for valid DBCS characters
	Processing alphanumeric data items that contain DBCS data

	Chapter 8. Processing files
	File organization and input-output devices
	Choosing file organization and access mode
	Format for coding input and output

	Allocating files
	Checking for input or output errors

	Chapter 9. Processing QSAM files
	Defining QSAM files and records in COBOL
	Establishing record formats
	Logical records
	Requesting fixed-length format
	Requesting variable-length format
	Requesting spanned format
	Requesting undefined format

	Setting block sizes

	Coding input and output statements for QSAM files
	Opening QSAM files
	Dynamically creating QSAM files
	Adding records to QSAM files
	Updating QSAM files
	Writing QSAM files to a printer or spooled data set
	Closing QSAM files

	Handling errors in QSAM files
	Working with QSAM files
	Defining and allocating QSAM files
	Parameters for creating QSAM files

	Retrieving QSAM files
	Parameters for retrieving QSAM files

	Ensuring that file attributes match your program
	Processing existing files
	Processing new files

	Using striped extended-format QSAM data sets
	Allocation of buffers for QSAM files

	Accessing z/OS UNIX files using QSAM
	Processing QSAM ASCII files on tape

	Chapter 10. Processing VSAM files
	VSAM files
	Defining VSAM file organization and records
	Specifying sequential organization for VSAM files
	Specifying indexed organization for VSAM files
	Using alternate keys
	Using an alternate index

	Specifying relative organization for VSAM files
	Fixed-length and variable-length RRDS
	Using variable-length RRDS

	Specifying access modes for VSAM files
	Example: using dynamic access with VSAM files

	Defining record lengths for VSAM files
	Defining fixed-length records
	Defining variable-length records

	Coding input and output statements for VSAM files
	File position indicator
	Opening a file (ESDS, KSDS, or RRDS)
	Opening an empty file
	Statements to load records into a VSAM file
	Opening a loaded file (a file with records)

	Reading records from a VSAM file
	Updating records in a VSAM file
	Adding records to a VSAM file
	Replacing records in a VSAM file
	Deleting records from a VSAM file
	Closing VSAM files

	Handling errors in VSAM files
	Protecting VSAM files with a password
	Example: password protection for a VSAM indexed file

	Working with VSAM data sets under z/OS and z/OS UNIX
	Defining VSAM files
	Creating alternate indexes
	Example: entries for alternate indexes

	Allocating VSAM files
	Sharing VSAM files through RLS
	Preventing update problems with VSAM files in RLS mode
	Restrictions when using RLS
	Handling errors in VSAM files in RLS mode

	Allocation of record areas for VSAM files
	Improving VSAM performance
	Extended addressability support

	Chapter 11. Processing line-sequential files
	Defining line-sequential files and records in COBOL
	Describing the structure of a line-sequential file
	Control characters in line-sequential files

	Allocating line-sequential files
	Coding input-output statements for line-sequential files
	Opening line-sequential files
	Reading records from line-sequential files
	Adding records to line-sequential files
	Closing line-sequential files

	Handling errors in line-sequential files

	Chapter 12. Sorting and merging files
	Sort and merge process
	Describing the sort or merge file
	Describing the input to sorting or merging
	Example: describing sort and input files for SORT

	Coding the input procedure
	Describing the output from sorting or merging
	Coding the output procedure
	Example: coding the output procedure when using DFSORT

	Restrictions on input and output procedures
	Defining sort and merge data sets
	Sorting variable-length records
	Requesting the sort or merge
	Setting sort or merge criteria
	Example: sorting with input and output procedures
	Choosing alternate collating sequences
	Preserving the original sequence of records with equal keys

	Determining whether the sort or merge was successful
	Stopping a sort or merge operation prematurely
	Improving sort performance with FASTSRT
	FASTSRT requirements for JCL
	FASTSRT requirements for sort input and output files
	QSAM requirements
	VSAM requirements

	Checking for sort errors with NOFASTSRT
	Controlling sort behavior
	Changing DFSORT defaults with control statements
	Default characteristics of the IGZSRTCD data set

	Allocating storage for sort or merge operations
	Allocating space for sort files

	Using checkpoint/restart with DFSORT
	Sorting under CICS
	CICS SORT application restrictions

	Chapter 13. Handling errors
	Requesting dumps
	Handling errors in joining and splitting strings
	Handling errors in arithmetic operations
	Example: checking for division by zero

	Handling errors in input and output operations
	Using the end-of-file condition (AT END)
	Coding ERROR declaratives
	Using file status keys
	Example: file status key
	Using VSAM status codes (VSAM files only)
	Example: checking VSAM status codes
	Coding INVALID KEY phrases
	Example: FILE STATUS and INVALID KEY

	Handling errors when calling programs
	Writing routines for handling errors

	Part 2. Compiling and debugging your program
	Chapter 14. Compiling under z/OS
	Compiling with JCL
	Using a cataloged procedure
	Compile procedure (IGYWC)
	Compile and link-edit procedure (IGYWCL)
	Compile, link-edit, and run procedure (IGYWCLG)

	Writing JCL to compile programs
	Example: user-written JCL for compiling

	Compiling under TSO
	Example: ALLOCATE and CALL for compiling under TSO
	Example: CLIST for compiling under TSO

	Starting the compiler from an assembler program
	Defining compiler input and output
	Data sets used by the compiler under z/OS
	Logical record length and block size

	Defining the source code data set (SYSIN)
	Defining a compiler-option data set (SYSOPTF)
	Specifying source libraries (SYSLIB)
	Defining the output data set (SYSPRINT)
	Directing compiler messages to your terminal (SYSTERM)
	Creating object code (SYSLIN or SYSPUNCH)
	Defining an associated-data file (SYSADATA)
	Defining the Java-source output file (SYSJAVA)
	Defining the library-processing output file (SYSMDECK)

	Specifying compiler options under z/OS
	Specifying compiler options in the PROCESS (CBL) statement
	Example: specifying compiler options using JCL
	Example: specifying compiler options under TSO
	Compiler options and compiler output under z/OS

	Compiling multiple programs (batch compilation)
	Example: batch compilation
	Specifying compiler options in a batch compilation
	Example: precedence of options in a batch compilation
	Example: LANGUAGE option in a batch compilation

	Correcting errors in your source program
	Generating a list of compiler messages
	Messages and listings for compiler-detected errors
	Format of compiler diagnostic messages
	Severity codes for compiler diagnostic messages

	Chapter 15. Compiling under z/OS UNIX
	Setting environment variables under z/OS UNIX
	Specifying compiler options under z/OS UNIX
	Compiling and linking with the cob2 command
	Creating a DLL under z/OS UNIX
	Example: using cob2 to compile and link under z/OS UNIX
	cob2 syntax and options
	cob2 input and output files

	Compiling using scripts

	Chapter 16. Compiling, linking, and running OO applications
	Compiling, linking, and running OO applications under z/OS UNIX
	Compiling OO applications under z/OS UNIX
	Preparing OO applications under z/OS UNIX
	Example: compiling and linking a COBOL class definition under z/OS UNIX
	Running OO applications under z/OS UNIX
	Running OO applications that start with a main method
	Running OO applications that start with a COBOL program

	Compiling, linking, and running OO applications in JCL or TSO/E
	Compiling OO applications in JCL or TSO/E
	Preparing and running OO applications in JCL or TSO/E
	Example: compiling, linking, and running an OO application using JCL
	JCL for program TSTHELLO
	Definition of class HelloJ
	Environment variable settings file, ENV

	Using Java SDKs for z/OS
	Object-oriented syntax, and Java 6, Java 7, or Java 8

	Chapter 17. Compiler options
	Option settings for 85 COBOL Standard conformance
	Conflicting compiler options
	ADATA
	ADV
	AFP
	ARCH
	ARITH
	AWO
	BLOCK0
	BUFSIZE
	CICS
	CODEPAGE
	COMPILE
	COPYRIGHT
	CURRENCY
	DATA
	DBCS
	DECK
	DIAGTRUNC
	DISPSIGN
	DLL
	DUMP
	DYNAM
	EXIT
	EXPORTALL
	FASTSRT
	FLAG
	FLAGSTD
	HGPR
	INITCHECK
	INTDATE
	LANGUAGE
	LINECOUNT
	LIST
	MAP
	MAXPCF
	MDECK
	NAME
	NSYMBOL
	NUMBER
	NUMCHECK
	NUMPROC
	OBJECT
	OFFSET
	OPTFILE
	OPTIMIZE
	OUTDD
	PGMNAME
	PGMNAME(COMPAT)
	PGMNAME(LONGUPPER)
	PGMNAME(LONGMIXED)
	Usage notes

	QUALIFY
	QUOTE/APOST
	RENT
	RMODE
	RULES
	SEQUENCE
	SERVICE
	SOURCE
	SPACE
	SQL
	SQLCCSID
	SQLIMS
	SSRANGE
	STGOPT
	TERMINAL
	TEST
	THREAD
	TRUNC
	TRUNC example 1
	TRUNC example 2

	VBREF
	VLR
	VSAMOPENFS
	WORD
	XMLPARSE
	XREF
	ZONECHECK
	ZONEDATA
	ZWB

	Chapter 18. Compiler-directing statements
	Chapter 19. Debugging
	Debugging with source language
	Tracing program logic
	Finding and handling input-output errors
	Validating data
	Moving, initializing or setting uninitialized data
	Generating information about procedures
	Example: USE FOR DEBUGGING

	Debugging using compiler options
	Finding coding errors
	Finding line sequence problems
	Checking for valid ranges
	Selecting the level of error to be diagnosed
	Example: embedded messages

	Finding program entity definitions and references
	Listing data items

	Using the debugger
	Getting listings
	Example: short listing
	Example: SOURCE and NUMBER output
	Example: MAP output
	Example: embedded map summary
	Terms used in MAP output
	Symbols used in LIST and MAP output
	Example: nested program map

	Reading LIST output
	Signature information bytes
	Example: program initialization code
	Example: MD5 signature
	Example: Timestamp and version information
	Example: Compiler options and program information
	Example: assembler code generated from source code
	Example: Program prolog areas
	Example: Static map
	Example: Constant area
	Example: Base locator table
	Example: special register table
	Example: External symbols
	Example: DSA memory map (Automatic map)

	Example: XREF output: data-name cross-references
	Example: XREF output: program-name cross-references
	Example: XREF output: COPY/BASIS cross-references
	Example: XREF output: embedded cross-reference

	Example: OFFSET compiler output
	Example: VBREF compiler output

	Part 3. Targeting COBOL programs for certain environments
	Chapter 20. Developing COBOL programs for CICS
	Coding COBOL programs to run under CICS
	Getting the system date under CICS
	Calling to or from COBOL programs
	Determining the success of ECI calls

	Compiling with the CICS option
	Separating CICS suboptions
	Integrated CICS translator

	Using the separate CICS translator
	CICS reserved-word table
	Handling errors by using CICS HANDLE
	Example: handling errors by using CICS HANDLE

	Chapter 21. Programming for a DB2 environment
	DB2 coprocessor
	Coding SQL statements
	Using SQL INCLUDE with the DB2 coprocessor
	Using character data in SQL statements
	Using national decimal data in SQL statements
	Using national group items in SQL statements
	Using binary items in SQL statements
	Determining the success of SQL statements

	Compiling with the SQL option
	Separating DB2 suboptions

	COBOL and DB2 CCSID determination
	Code-page determination for string host variables in SQL statements
	Programming with the SQLCCSID or NOSQLCCSID option

	Differences in how the DB2 precompiler and coprocessor behave
	Period at the end of EXEC SQL INCLUDE statements
	EXEC SQL INCLUDE and nested COPY REPLACING
	EXEC SQL and REPLACE or COPY REPLACING
	Source code after an END-EXEC statement
	Multiple definitions of host variables
	EXEC SQL statement continuation lines
	Bit-data host variables
	SQL-INIT-FLAG

	Choosing the DYNAM or NODYNAM compiler option

	Chapter 22. Developing COBOL programs for IMS
	IMS SQL coprocessor
	Coding SQLIMS statements
	Using SQLIMS INCLUDE with the IMS SQL coprocessor
	Using character data in SQLIMS statements
	Using binary items in SQLIMS statements
	Determining the success of SQLIMS statements

	Compiling with the SQLIMS option
	Separating IMS suboptions

	Compiling and linking COBOL programs for running under IMS
	Using object-oriented COBOL and Java under IMS
	Calling a COBOL method from a Java application under IMS
	Building a mixed COBOL-Java application that starts with COBOL
	Writing mixed-language IMS applications
	Using the STOP RUN statement
	Processing messages and synchronizing transactions
	Accessing databases
	Using the application interface block

	Chapter 23. Running COBOL programs under z/OS UNIX
	Running in z/OS UNIX environments
	Setting and accessing environment variables
	Setting environment variables that affect execution
	Runtime environment variables
	Example: setting and accessing environment variables

	Calling UNIX/POSIX APIs
	Accessing main program parameters under z/OS UNIX
	Example: accessing main program parameters under z/OS UNIX

	Part 4. Structuring complex applications
	Chapter 24. Using subprograms
	Main programs, subprograms, and calls
	Ending and reentering main programs or subprograms
	Transferring control to another program
	Making static calls
	Making dynamic calls
	Canceling a subprogram
	When to use a dynamic call with subprograms

	AMODE switching
	Performance considerations of static and dynamic calls
	Making both static and dynamic calls
	Examples: static and dynamic CALL statements
	Calling nested COBOL programs
	Nested programs
	Example: structure of nested programs
	Scope of names

	Making recursive calls
	Calling to and from object-oriented programs
	Using procedure and function pointers
	Deciding which type of pointer to use
	Calling alternate entry points

	Making programs reentrant

	Chapter 25. Sharing data
	Passing data
	Describing arguments in the calling program
	Describing parameters in the called program
	Testing for OMITTED arguments

	Coding the LINKAGE SECTION
	Coding the PROCEDURE DIVISION for passing arguments
	Grouping data to be passed
	Handling null-terminated strings
	Using pointers to process a chained list
	Example: using pointers to process a chained list

	Passing return-code information
	Using the RETURN-CODE special register
	Using PROCEDURE DIVISION RETURNING . . .
	Specifying CALL . . . RETURNING

	Sharing data by using the EXTERNAL clause
	Sharing files between programs (external files)
	Example: using external files
	Input/output using external files

	Accessing main program parameters under z/OS
	Example: accessing main program parameters under z/OS

	Chapter 26. Creating a DLL or a DLL application
	Dynamic link libraries (DLLs)
	Compiling programs to create DLLs
	Linking DLLs
	Example: sample JCL for a procedural DLL application
	Using CALL identifier with DLLs
	Search order for DLLs in the z/OS UNIX file system

	Using DLL linkage and dynamic calls together
	Using procedure or function pointers with DLLs
	Calling DLLs from non-DLLs
	Example: calling DLLs from non-DLLs

	Using COBOL DLLs with C/C++ programs
	Using DLLs in OO COBOL applications

	Chapter 27. Preparing COBOL programs for multithreading
	Multithreading
	Choosing THREAD to support multithreading
	Transferring control to multithreaded programs
	Ending multithreaded programs
	Processing files with multithreading
	File-definition (FD) storage
	Serializing file access with multithreading
	Example: usage patterns of file input and output with multithreading

	Handling COBOL limitations with multithreading

	Part 5. Using XML and COBOL together
	Chapter 28. Processing XML input
	XML parser in COBOL
	Accessing XML documents
	Parsing XML documents
	Writing procedures to process XML
	XML events
	XML-CODE
	XML-INFORMATION
	XML-TEXT and XML-NTEXT
	XML-NAMESPACE and XML-NNAMESPACE
	XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX

	Transforming XML text to COBOL data items
	Parsing XML documents with validation
	XML schemas

	Parsing XML documents one segment at a time
	Handling splits using the XML-INFORMATION special register

	The encoding of XML documents
	XML input document encoding
	Determining the encoding of an input XML document
	Specifying the encoding
	EBCDIC code-page-sensitive characters in XML markup

	Parsing XML documents encoded in UTF-8

	Handling XML PARSE exceptions
	How the XML parser handles errors
	Handling encoding conflicts

	Terminating XML parsing
	XML PARSE examples
	Example: parsing a simple document
	Example: program for processing XML
	Output from parsing with XMLPARSE(XMLSS)
	Output from parsing with XMLPARSE(COMPAT)

	Example: parsing an XML document that uses namespaces
	Sample XML document
	Results from parsing
	XML PARSE example with an undeclared namespace prefix

	Example: parsing an XML document one segment at a time
	Content of infile
	Program PARSESEG
	Results from parsing

	Example: parsing XML documents with validation
	Program ValidCk
	Output from program ValidCk

	Chapter 29. Producing XML output
	Generating XML output
	Controlling the encoding of generated XML output
	Handling XML GENERATE exceptions
	Example: generating XML
	Program XGFX
	Program Pretty
	Output from program XGFX

	Enhancing XML output
	Example: enhancing XML output

	Part 6. Developing object-oriented programs
	Chapter 30. Writing object-oriented programs
	Example: accounts
	Subclasses

	Defining a class
	CLASS-ID paragraph for defining a class
	REPOSITORY paragraph for defining a class
	Example: external class-names and Java packages

	WORKING-STORAGE SECTION for defining class instance data
	Example: defining a class

	Defining a class instance method
	METHOD-ID paragraph for defining a class instance method
	INPUT-OUTPUT SECTION for defining a class instance method
	DATA DIVISION for defining a class instance method
	PROCEDURE DIVISION for defining a class instance method
	Overriding an instance method
	Overloading an instance method
	Coding attribute (get and set) methods
	Example: coding a get method

	Example: defining a method
	Account class
	Check class

	Defining a client
	REPOSITORY paragraph for defining a client
	DATA DIVISION for defining a client
	Choosing LOCAL-STORAGE or WORKING-STORAGE

	Comparing and setting object references
	Invoking methods (INVOKE)
	USING phrase for passing arguments
	Example: passing conforming object-reference arguments from a COBOL client
	RETURNING phrase for obtaining a returned value
	Invoking overridden superclass methods

	Creating and initializing instances of classes
	Instantiating Java classes
	Instantiating COBOL classes

	Freeing instances of classes
	Example: defining a client

	Defining a subclass
	CLASS-ID paragraph for defining a subclass
	REPOSITORY paragraph for defining a subclass
	WORKING-STORAGE SECTION for defining subclass instance data
	Defining a subclass instance method
	Example: defining a subclass (with methods)
	CheckingAccount class (subclass of Account)

	Defining a factory section
	WORKING-STORAGE SECTION for defining factory data
	Defining a factory method
	Hiding a factory or static method
	Invoking factory or static methods

	Example: defining a factory (with methods)
	Account class
	CheckingAccount class (subclass of Account)
	Check class
	TestAccounts client program
	Output produced by the TestAccounts client program

	Wrapping procedure-oriented COBOL programs
	Structuring OO applications
	Examples: COBOL applications that run using the java command
	Displaying a message
	Echoing the input strings

	Chapter 31. Communicating with Java methods
	Accessing JNI services
	Handling Java exceptions
	Example: handling Java exceptions

	Managing local and global references
	Deleting, saving, and freeing local references

	Java access controls

	Sharing data with Java
	Coding interoperable data types in COBOL and Java
	Declaring arrays and strings for Java
	Manipulating Java arrays
	Example: processing a Java integer array

	Manipulating Java strings

	Example: J2EE client written in COBOL
	COBOL client (ConverterClient.cbl)
	Java client (ConverterClient.java)

	Part 7. Specialized processing
	Chapter 32. Interrupts and checkpoint/restart
	Setting checkpoints
	Designing checkpoints
	Testing for a successful checkpoint
	DD statements for defining checkpoint data sets
	Examples: defining checkpoint data sets

	Messages generated during checkpoint

	Restarting programs
	Requesting automatic restart
	Requesting deferred restart
	Formats for requesting deferred restart
	Example: requesting a deferred restart

	Resubmitting jobs for restart
	Example: restarting a job at a specific checkpoint step
	Example: requesting a step restart
	Example: resubmitting a job for a step restart
	Example: resubmitting a job for a checkpoint restart

	Part 8. Improving performance and productivity
	Chapter 33. Tuning your program
	Using an optimal programming style
	Using structured programming
	Factoring expressions
	Using symbolic constants

	Choosing efficient data types
	Choosing efficient computational data items
	Using consistent data types
	Making arithmetic expressions efficient
	Making exponentiations efficient
	Using VOLATILE clauses efficiently

	Handling tables efficiently
	Optimization of table references
	Optimization of variable-length items
	Comparison of direct and relative indexing

	Optimizing your code
	Optimization
	Contained program procedure integration
	PERFORM procedure integration

	Choosing compiler features to enhance performance
	Performance-related compiler options
	Evaluating performance

	Running efficiently with CICS, IMS, or VSAM
	Choosing static or dynamic calls

	Chapter 34. Simplifying coding
	Eliminating repetitive coding
	Example: using the COPY statement

	Using Language Environment callable services
	Sample list of Language Environment callable services
	Calling Language Environment services
	Example: Language Environment callable services

	Using the format 2 SORT statement to sort a table

	Part 9. Appendixes
	Appendix A. Intermediate results and arithmetic precision
	Terminology used for intermediate results
	Example: calculation of intermediate results
	Fixed-point data and intermediate results
	Addition, subtraction, multiplication, and division
	Exponentiation
	Example: exponentiation in fixed-point arithmetic
	Truncated intermediate results
	Binary data and intermediate results

	Intrinsic functions evaluated in fixed-point arithmetic
	Integer functions
	Mixed functions

	Floating-point data and intermediate results
	Exponentiations evaluated in floating-point arithmetic
	Intrinsic functions evaluated in floating-point arithmetic

	Arithmetic expressions in nonarithmetic statements

	Appendix B. Converting double-byte character set (DBCS) data
	DBCS notation
	Alphanumeric to DBCS data conversion (IGZCA2D)
	IGZCA2D syntax
	IGZCA2D return codes
	Example: IGZCA2D

	DBCS to alphanumeric data conversion (IGZCD2A)
	IGZCD2A syntax
	IGZCD2A return codes
	Example: IGZCD2A

	Appendix C. XML reference material
	XML PARSE exceptions with XMLPARSE(XMLSS) in effect
	XML PARSE exceptions with XMLPARSE(COMPAT) in effect
	XML PARSE exceptions that allow continuation
	XML PARSE exceptions that do not allow continuation

	XML GENERATE exceptions

	Appendix D. EXIT compiler option
	Using the user-exit work area
	Calling from exit modules
	Processing of INEXIT
	INEXIT parameters

	Processing of LIBEXIT
	Processing of LIBEXIT with nested COPY statements
	LIBEXIT parameters

	Processing of PRTEXIT
	PRTEXIT parameters

	Processing of ADEXIT
	ADEXIT parameters

	Processing of MSGEXIT
	MSGEXIT parameters
	Customizing compiler-message severities
	Customizable compiler-message severities
	Effect of message customization on compilation return code

	Example: MSGEXIT user exit

	Error handling for exit modules
	Using the EXIT compiler option with CICS, SQL and SQLIMS statements

	Appendix E. JNI.cpy copybook
	Appendix F. COBOL SYSADATA file contents
	Compiler options that affect the SYSADATA file
	SYSADATA record types
	Example: SYSADATA
	SYSADATA record descriptions
	Common header section
	Job identification record: X'0000'
	ADATA identification record: X'0001'
	Compilation unit start | end record: X'0002'
	Options record: X'0010'
	External symbol record: X'0020'
	Parse tree record: X'0024'
	Token record: X'0030'
	Source error record: X'0032'
	Source record: X'0038'
	COPY REPLACING record: X'0039'
	Symbol record: X'0042'
	Symbol cross-reference record: X'0044'
	Nested program record: X'0046'
	Library record: X'0060'
	Statistics record: X'0090'
	EVENTS record: X'0120'

	Appendix G. Using sample programs
	IGYTCARA: batch application
	Input data for IGYTCARA
	Report produced by IGYTCARA
	Preparing to run IGYTCARA
	Running IGYTCARA

	IGYTCARB: interactive program
	Preparing to run IGYTCARB
	Running IGYTCARB

	IGYTSALE: nested program application
	Input data for IGYTSALE
	Reports produced by IGYTSALE
	Example: IGYTSALE transaction errors
	Example: IGYTSALE sales analysis by product by area
	Example: IGYTSALE sales and commissions
	Example: IGYTSALE response time from sale to ship

	Preparing to run IGYTSALE
	Running IGYTSALE

	Language elements and concepts that are illustrated

	Notices
	Trademarks

	Glossary
	List of resources
	Enterprise COBOL for z/OS
	Related publications

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

