
Enterprise COBOL for z/OS
6.4

Language Reference

IBM

SC27-8713-03

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 799.

Fourth edition (26 February 2024 update)

This edition applies to Version 6.4 of IBM® Enterprise COBOL for z/OS® (program number 5655-EC6) and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using the
correct edition for the level of the product.

You can view or download softcopy publications free of charge in the Enterprise COBOL for z/OS library. Because
Enterprise COBOL for z/OS supports the continuous delivery (CD) model and publications are updated to document the
features delivered under the CD model, it is a good idea to check for updates once every two months.

It is our intention to update the product documentation for this release periodically, without updating the order number.
If you need to uniquely refer to the version of your product documentation, refer to the order number with the date of
update.
© Copyright International Business Machines Corporation 1991, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/support/docview.wss?uid=swg27036733

Contents

Tables..xvii

Preface...xxi
About this information...xxi

How to read the syntax diagrams.. xxi
How to use examples... xxiii
IBM extensions...xxiii
Obsolete language elements... xxiii
DBCS notation.. xxiv
Acknowledgment... xxiv

Additional documentation and support... xxv
Summary of changes.. xxv

Enterprise COBOL for z/OS 6.4 with PTFs installed... xxv
Enterprise COBOL for z/OS 6.4.. xxvi

How to send your comments..xxvii

Part 1. COBOL language structure.. 1

Chapter 1. Characters.. 3

Chapter 2. Character sets and code pages... 7
Character encoding units... 7

Chapter 3. Character-strings: COBOL words and literals... 11
COBOL words with single-byte characters.. 11
User-defined words with DBCS characters... 12
User-defined words..12
System-names..14
Function-names... 14
Reserved words..14
Figurative constants... 15
Special registers... 17

ADDRESS OF... 19
DEBUG-ITEM...19
IGY-JAVAIOP-CALL-EXCEPTION..20
JNIENVPTR... 21
JSON-CODE...21
JSON-STATUS... 22
LENGTH OF..22
LINAGE-COUNTER..23
RETURN-CODE..24
SHIFT-OUT and SHIFT-IN.. 24
SORT-CONTROL.. 25
SORT-CORE-SIZE..25
SORT-FILE-SIZE..26
SORT-MESSAGE.. 26
SORT-MODE-SIZE... 27
SORT-RETURN.. 27
TALLY... 27
WHEN-COMPILED...28

 iii

XML-CODE...28
XML-EVENT... 29
XML-INFORMATION..34
XML-NAMESPACE... 34
XML-NNAMESPACE...35
XML-NAMESPACE-PREFIX... 36
XML-NNAMESPACE-PREFIX...36
XML-NTEXT... 37
XML-TEXT.. 37

Literals.. 38
Alphanumeric literals..38
DBCS literals... 41
UTF-8 literals.. 43
Numeric literals...45
National literals...46

PICTURE character-strings.. 48
Comments.. 48

Chapter 4. Separators..49
Rules for separators... 50

Chapter 5. Sections and paragraphs... 53
Sentences, statements, and entries.. 53

Entries... 54
Clauses..54
Sentences..54
Statements..54
Phrases..54

Chapter 6. Reference format... 55
Sequence number area.. 55
Indicator area... 55
Area A... 55

Division headers..56
Section headers.. 56
Paragraph headers or paragraph names..56
Level indicators (FD and SD) or level-numbers (01 and 77)..57
DECLARATIVES and END DECLARATIVES... 57
End program, end class, and end method markers... 57

Area B... 57
Entries, sentences, statements, clauses..57
Continuation lines... 58

Area A or Area B... 59
Level-numbers.. 60
Comment lines.. 60
Floating comment indicators (*>)...60
Compiler-directing statements.. 61
Compiler directives...61
Debugging lines...61
Pseudo-text...61
Blank lines...61

Chapter 7. Scope of names..63
Types of names...63
External and internal resources...65
Resolution of names...66

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names.......................67

iv

Uniqueness of reference.. 67
Qualification.. 67
Identical names.. 68
References to COPY libraries..68
References to PROCEDURE DIVISION names...68
References to DATA DIVISION names... 69
Condition-name.. 71
Index-name...71
Index data item...72
Subscripting.. 72
Reference modification...75
Function-identifier.. 77

Data attribute specification..78

Chapter 9. Transfer of control..79

Part 2. COBOL source unit structure... 81

Chapter 10. COBOL program structure... 83
Nested programs..85

Conventions for program-names..86

Chapter 11. COBOL class definition structure.. 89

Chapter 12. COBOL method definition structure..93

Chapter 13. COBOL user-defined function definition structure... 95

Chapter 14. COBOL function prototype definition structure.. 97

Part 3. IDENTIFICATION DIVISION..99

Chapter 15. PROGRAM-ID paragraph... 101

Chapter 16. CLASS-ID paragraph..105
General rules.. 106
Inheritance... 106

Chapter 17. FACTORY paragraph.. 107

Chapter 18. OBJECT paragraph.. 109

Chapter 19. METHOD-ID paragraph... 111

Chapter 20. FUNCTION-ID paragraph.. 113

Chapter 21. Optional paragraphs..117

Part 4. ENVIRONMENT DIVISION...119

Chapter 22. Configuration section.. 121
SOURCE-COMPUTER paragraph..122
OBJECT-COMPUTER paragraph...123
SPECIAL-NAMES paragraph.. 124
ALPHABET clause...127
CLASS clause..129
CURRENCY SIGN clause.. 129

 v

DECIMAL-POINT IS COMMA clause.. 131
SYMBOLIC CHARACTERS clause...131
XML-SCHEMA clause..131
REPOSITORY paragraph.. 132

General rules...134
Identifying and referencing a class..134

Chapter 23. Input-Output section...137
FILE-CONTROL paragraph... 138
SELECT clause..142
ASSIGN clause... 142
RESERVE clause... 146
ORGANIZATION clause..146

File organization... 146
PADDING CHARACTER clause...148
RECORD DELIMITER clause...148
ACCESS MODE clause.. 148

File organization and access modes.. 149
Access modes... 149
Relationship between data organizations and access modes.. 149

RECORD KEY clause... 150
ALTERNATE RECORD KEY clause...151
RELATIVE KEY clause...152
PASSWORD clause... 152
FILE STATUS clause... 153
I-O-CONTROL paragraph... 154
RERUN clause...155
SAME AREA clause...156
SAME RECORD AREA clause..157
SAME SORT AREA clause...157
SAME SORT-MERGE AREA clause... 158
MULTIPLE FILE TAPE clause..158
APPLY WRITE-ONLY clause... 158

Part 5. DATA DIVISION.. 159

Chapter 24. DATA DIVISION overview..161
FILE SECTION.. 163
WORKING-STORAGE SECTION... 163
LOCAL-STORAGE SECTION..165
LINKAGE SECTION...165
Data units... 165

File data.. 166
Program data.. 166
Method data..166
Factory data.. 166
Instance data..166
User-defined function data.. 167
Function prototype data... 167

Data relationships.. 167
Levels of data..167
Levels of data in a record description entry...167
Special level-numbers..169
Indentation... 169
Classes and categories of group items.. 169
Classes and categories of data...170
Category descriptions...172

vi

Alignment rules...174
Character-string and item size... 175
Signed data... 176
Dynamic-length items.. 176

Chapter 25. DATA DIVISION--file description entries..179
FILE SECTION.. 184
EXTERNAL clause...184
GLOBAL clause... 185
BLOCK CONTAINS clause.. 185
RECORD clause.. 186

Format 1..186
Format 2..187
Format 3..187

LABEL RECORDS clause...188
VALUE OF clause.. 189
DATA RECORDS clause...189
LINAGE clause..189

LINAGE-COUNTER special register..190
RECORDING MODE clause...191
CODE-SET clause... 192

Chapter 26. DATA DIVISION--data description entry.. 193
Format 1... 193
Format 2... 193
Format 3... 194
Level-numbers... 194
BLANK WHEN ZERO clause... 195
DYNAMIC LENGTH clause..195
EXTERNAL clause...197
GLOBAL clause... 197
JUSTIFIED clause.. 198
GROUP-USAGE clause... 198
OCCURS clause.. 200

Fixed-length tables...201
ASCENDING KEY and DESCENDING KEY phrases.. 201
INDEXED BY phrase... 202
Variable-length tables.. 204
OCCURS DEPENDING ON clause... 205

PICTURE clause... 207
Symbols used in the PICTURE clause..208
Character-string representation...212
Data categories and PICTURE rules...212
PICTURE clause editing..219
Simple insertion editing..220
Special insertion editing... 221
Fixed insertion editing.. 221
Floating insertion editing..222
Zero suppression and replacement editing... 224

REDEFINES clause... 225
REDEFINES clause considerations.. 227
REDEFINES clause examples...227
Undefined results... 228

RENAMES clause..228
SIGN clause..230
SYNCHRONIZED clause... 231

Slack bytes..233
Slack bytes within records... 233

 vii

Slack bytes between records... 235
USAGE clause...237

Computational items.. 238
DISPLAY phrase..240
DISPLAY-1 phrase.. 240
FUNCTION-POINTER phrase... 241
INDEX phrase... 241
NATIONAL phrase...241
OBJECT REFERENCE phrase..242
POINTER phrase...242
POINTER-32 phrase... 243
PROCEDURE-POINTER phrase.. 244
NATIVE phrase..245
UTF-8 phrase.. 245

VALUE clause..245
Format 1..245
Format 2..248
Format 3..251

VOLATILE clause.. 252

Part 6. PROCEDURE DIVISION... 255

Chapter 27. Procedure division structure... 257
Requirements for a method procedure division..258
The PROCEDURE DIVISION header.. 258

USING phrase... 260
RETURNING phrase..263
References to items in the LINKAGE SECTION... 264

Declaratives..264
Procedures... 265
Arithmetic expressions.. 266

Arithmetic operators.. 267
Conditional expressions...268

Simple conditions... 268
Class condition..269
Condition-name condition..271
Relation conditions...272
General relation conditions.. 272
Data pointer relation conditions...280
Procedure-pointer and function-pointer relation conditions..281
Object-reference relation conditions... 282
Sign condition... 283
Switch-status condition..283
Complex conditions.. 283
Negated simple conditions...284
Combined conditions..285
Abbreviated combined relation conditions..287

Statement categories...290
Imperative statements...290
Conditional statements.. 292
Delimited scope statements.. 293
Explicit scope terminators..293
Implicit scope terminators... 294
Compiler-directing statements.. 294

Statement operations.. 294
CORRESPONDING phrase.. 295
GIVING phrase..296

viii

ROUNDED phrase... 296
SIZE ERROR phrases.. 296
Arithmetic statements..297
Arithmetic statement operands... 297
Data manipulation statements...299
Input-output statements..299
Common processing facilities.. 299

Chapter 28. PROCEDURE DIVISION statements... 307
ACCEPT statement... 307

Data transfer... 307
System date-related information transfer... 309
DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, and TIME................................. 309
Example of the ACCEPT statement.. 311

ADD statement... 311
ALLOCATE statement... 313

Example: ALLOCATE and FREE storage for UNBOUNDED tables..315
ALTER statement..317

Segmentation considerations.. 318
CALL statement.. 318

Calling static Java methods from COBOL.. 324
CANCEL statement...326
CLOSE statement... 327

Effect of CLOSE statement on file types.. 328
COMPUTE statement..330
CONTINUE statement.. 331
DELETE statement... 332
DISPLAY statement..333
DIVIDE statement.. 335
ENTRY statement... 338
EVALUATE statement... 339

Determining values...341
Comparing selection subjects and objects.. 342
Executing the EVALUATE statement.. 342

EXIT statement.. 342
Format 1 (simple)... 343
Format 2 (program).. 343
Format 3 (method)..343
Format 5 (inline-perform)...344
Format 6 (procedure)... 344

FREE statement..345
GOBACK statement..345
GO TO statement..346

Unconditional GO TO.. 346
Conditional GO TO.. 347
Altered GO TO... 347

IF statement...348
Transferring control.. 348
Nested IF statements...349

INITIALIZE statement... 350
INITIALIZE statement rules...352

INSPECT statement... 353
Data flow... 360
Comparison cycle... 360
Example of the INSPECT statement.. 361

INVOKE statement... 362
Interoperable data types for OO COBOL and Java.. 366
Miscellaneous argument types for COBOL and Java...368

 ix

JSON GENERATE statement.. 369
Nested JSON GENERATE or JSON PARSE statements..380
Operation of JSON GENERATE... 380
Format conversion of elementary data.. 381
Trimming of generated JSON data... 382
JSON name formation.. 382

JSON PARSE statement... 382
Nested JSON GENERATE or JSON PARSE statements..392
Operation of JSON PARSE.. 392
Examples of matched and mismatched data definitions and JSON text....................................393
Count of table elements set by JSON PARSE.. 394
Valid and invalid elementary moves.. 395

MERGE statement.. 396
MERGE special registers...399
Segmentation considerations.. 400

MOVE statement.. 400
Elementary moves.. 401
Moves involving file record areas... 405
Group moves...405

MULTIPLY statement..406
OPEN statement...408

General rules...410
OPEN statement notes... 410

PERFORM statement..412
Basic PERFORM statement.. 413
PERFORM with TIMES phrase.. 417
PERFORM with UNTIL phrase.. 417
PERFORM with VARYING phrase... 418

READ statement... 424
Processing files with variable-length records or multiple record descriptions.......................... 426
Sequential access mode...426
Random access mode.. 428
Dynamic access mode..429
READ statement notes... 429

RELEASE statement... 429
RETURN statement.. 430
REWRITE statement...432

Reusing a logical record... 433
Sequential files... 433
Indexed files... 433
Relative files..434

SEARCH statement.. 434
Serial search... 436
Binary search.. 438
Search statement considerations.. 440

SET statement.. 440
Format 1: SET for basic table handling.. 441
Format 2: SET for adjusting indexes.. 442
Format 3: SET for external switches.. 442
Format 4: SET for condition-names... 443
Format 5: SET for USAGE IS POINTER data items.. 443
Format 6: SET for procedure-pointer and function-pointer data items......................................444
Format 7: SET for USAGE OBJECT REFERENCE data items..446
Format 8: SET for length of dynamic-length elementary items.. 446

SORT statement... 447
SORT special registers..454
Segmentation considerations.. 454

START statement..455

x

Indexed files... 456
Relative files..456

STOP statement... 457
STRING statement... 457

Data flow... 460
Example of the STRING statement.. 461

SUBTRACT statement.. 462
UNSTRING statement.. 464

Data flow... 468
Values at the end of execution of the UNSTRING statement..470
Example of the UNSTRING statement... 470

WRITE statement... 471
WRITE for sequential files..475
WRITE for indexed files.. 477
WRITE for relative files...477

XML GENERATE statement.. 478
Nested XML GENERATE or XML PARSE statements.. 485
Operation of XML GENERATE... 485
Format conversion of elementary data.. 486
Trimming of generated XML data... 487
XML element name and attribute name formation..487

XML PARSE statement... 488
Nested XML GENERATE or XML PARSE statements.. 492
Control flow...492

Part 7. Intrinsic functions.. 495

Chapter 29. Specifying a function... 497
Function definition and evaluation.. 497
Types of functions.. 498
Rules for usage...498
Arguments.. 499
Examples.. 501
ALL subscripting... 501
Format of arguments and return values for date and time intrinsic functions.................................503

Chapter 30. Function definitions...509

Chapter 31. ABS...517

Chapter 32. ACOS.. 519

Chapter 33. ANNUITY..521

Chapter 34. ASIN...523

Chapter 35. ATAN.. 525

Chapter 36. BIT-OF... 527

Chapter 37. BIT-TO-CHAR...529

Chapter 38. BYTE-LENGTH... 531

Chapter 39. CHAR..533

Chapter 40. COMBINED-DATETIME..535

 xi

Chapter 41. CONTENT-OF... 537

Chapter 42. COS.. 539

Chapter 43. CURRENT-DATE... 541

Chapter 44. DATE-OF-INTEGER..543

Chapter 45. DATE-TO-YYYYMMDD..545

Chapter 46. DAY-OF-INTEGER..547

Chapter 47. DAY-TO-YYYYDDD... 549

Chapter 48. DISPLAY-OF...551

Chapter 49. E... 553

Chapter 50. EXP...555

Chapter 51. EXP10.. 557

Chapter 52. FACTORIAL.. 559

Chapter 53. FORMATTED-CURRENT-DATE.. 561

Chapter 54. FORMATTED-DATE.. 563

Chapter 55. FORMATTED-DATETIME... 565

Chapter 56. FORMATTED-TIME.. 567

Chapter 57. HEX-OF.. 569

Chapter 58. HEX-TO-CHAR... 571

Chapter 59. INTEGER.. 573

Chapter 60. INTEGER-OF-DATE..575

Chapter 61. INTEGER-OF-DAY..577

Chapter 62. INTEGER-OF-FORMATTED-DATE... 579

Chapter 63. INTEGER-PART..581

Chapter 64. LENGTH..583

Chapter 65. LOG...585

Chapter 66. LOG10.. 587

Chapter 67. LOWER-CASE...589

Chapter 68. MAX..591

Chapter 69. MEAN... 593

xii

Chapter 70. MEDIAN... 595

Chapter 71. MIDRANGE.. 597

Chapter 72. MIN.. 599

Chapter 73. MOD... 601

Chapter 74. NATIONAL-OF..603

Chapter 75. NUMVAL... 605

Chapter 76. NUMVAL-C... 607

Chapter 77. NUMVAL-F..609

Chapter 78. ORD.. 611

Chapter 79. ORD-MAX...613

Chapter 80. ORD-MIN... 615

Chapter 81. PI..617

Chapter 82. PRESENT-VALUE..619

Chapter 83. RANDOM.. 621

Chapter 84. RANGE... 623

Chapter 85. REM..625

Chapter 86. REVERSE..627

Chapter 87. SECONDS-FROM-FORMATTED-TIME... 629

Chapter 88. SECONDS-PAST-MIDNIGHT... 631

Chapter 89. SIGN...633

Chapter 90. SIN... 635

Chapter 91. SQRT.. 637

Chapter 92. STANDARD-DEVIATION.. 639

Chapter 93. SUM..641

Chapter 94. TAN...643

Chapter 95. TEST-DATE-YYYYMMDD.. 645

Chapter 96. TEST-DAY-YYYYDDD..647

Chapter 97. TEST-FORMATTED-DATETIME..649

Chapter 98. TEST-NUMVAL... 651

 xiii

Chapter 99. TEST-NUMVAL-C..653

Chapter 100. TEST-NUMVAL-F..655

Chapter 101. TRIM.. 657

Chapter 102. ULENGTH... 659

Chapter 103. UPOS..661

Chapter 104. UPPER-CASE... 663

Chapter 105. USUBSTR... 665

Chapter 106. USUPPLEMENTARY... 667

Chapter 107. UUID4.. 669

Chapter 108. UVALID.. 671

Chapter 109. UWIDTH...675

Chapter 110. VARIANCE..677

Chapter 111. WHEN-COMPILED... 679

Chapter 112. YEAR-TO-YYYY.. 681

Part 8. Compiler-directing statements and compiler directives........................... 683

Chapter 113. Compiler-directing statements...685
BASIS statement..685
PROCESS(CBL) statement..686
*CONTROL (*CBL) statement... 686

Source code listing... 687
Object code listing.. 687
Storage map listing... 687

COPY statement... 688
Comparison and replacement rules...691
Comparison and replacement examples... 693
Copy member search order..697

DELETE statement... 697
EJECT statement..698
ENTER statement... 698
INSERT statement..699
READY or RESET TRACE statement...699
REPLACE statement... 700

Comparison rules..702
Replacement rules..702

SERVICE LABEL statement.. 703
SERVICE RELOAD statement... 704
SKIP statements.. 704
TITLE statement...704
USE statement..705

EXCEPTION/ERROR declarative...705
Precedence rules for nested programs..707

xiv

DEBUGGING declarative.. 707

Chapter 114. Compiler directives... 709
CALLINTERFACE...709
DATA... 710
INLINE.. 710
Conditional compilation... 712

DEFINE..713
EVALUATE..714
IF... 716
Examples of conditional compilation...717
Constant conditional expressions.. 718
Compile-time arithmetic expressions..719
Predefined compilation variables.. 720

COBOL/Java interoperability... 721
JAVA-CALLABLE..721
JAVA-SHAREABLE.. 723
Mapping between COBOL and Java data types for non-OO COBOL/Java interoperability........ 725

Appendix A. IBM extensions.. 729

Appendix B. Compiler limits...745

Appendix C. EBCDIC and ASCII collating sequences...751
EBCDIC collating sequence...751
US English ASCII code page..754

Appendix D. Source language debugging.. 759
Debugging lines... 759
Debugging sections... 759
DEBUG-ITEM special register... 759
Activate compile-time switch..760
Activate object-time switch...760

Appendix E. Reserved words..761

Appendix F. Context-sensitive words..779

Appendix G. ASCII considerations..781
ENVIRONMENT DIVISION...781

OBJECT-COMPUTER and SPECIAL-NAMES paragraphs...781
FILE-CONTROL paragraph... 782
I-O-CONTROL paragraph... 782

DATA DIVISION..782
FD Entry: CODE-SET clause... 782
Data description entries...782

PROCEDURE DIVISION... 783

Appendix H. Industry specifications...785

Appendix I. 2002/2014 COBOL Standard features implemented in Enterprise
COBOL 3 or later versions...787

Appendix J. Accessibility features for Enterprise COBOL for z/OS........................797

 xv

Notices..799
Programming interface information..801
Trademarks.. 801

Glossary.. 803
List of resources.. 847

Enterprise COBOL for z/OS..847
Related publications..847

Index.. 851

xvi

Tables

1. Basic COBOL character set... 3

2. DEBUG-ITEM subfield contents..20

3. XML events and associated special register contents... 29

4. Separators... 49

5. Meanings of environment names... 126

6. Types of files... 138

7. Classes and categories of group items...170

8. Class, category, and usage of elementary data items..171

9. Classes and categories of functions... 171

10. Classes and categories of literals...172

11. Where national and UTF-8 group items are processed as groups.. 200

12. PICTURE clause symbol meanings...208

13. Numeric types...217

14. Data categories... 219

15. SYNCHRONIZE clause effect on other language elements... 232

16. Clauses that can or cannot be used with USAGE IS POINTER.. 243

17. Clauses that can or cannot be used with USAGE IS POINTER-32.. 244

18. Relation test references for condition-names... 250

19. Binary and unary operators.. 267

20. Valid arithmetic symbol pairs... 268

21. Valid forms of the class condition for different types of data items..270

22. Relational operators and their meanings... 273

23. Comparisons involving data items and literals.. 275

 xvii

24. Comparisons involving figurative constants...276

25. Comparisons for index-names and index data items.. 280

26. Permissible comparisons for USAGE POINTER, NULL, and ADDRESS OF.. 281

27. Logical operators and their meanings.. 284

28. Combined conditions—permissible element sequences...285

29. Logical operators and evaluation results of combined conditions..286

30. Abbreviated combined conditions: permissible element sequences... 288

31. Abbreviated combined conditions: unabbreviated equivalents..289

32. Exponentiation size error conditions..296

33. How the composite of operands is determined...298

34. File status key values and meanings..300

35. Sequential files and CLOSE statement phrases...329

36. Indexed and relative file types and CLOSE statement phrases.. 329

37. Line-sequential file types and CLOSE statement phrases...329

38. Meanings of key letters for sequential file types... 330

39. Treatment of the content of data items... 359

40. CONVERTING example result...360

41. Interoperable Java and COBOL data types..366

42. Interoperable COBOL and Java array and String data types...367

43. COBOL miscellaneous argument types and corresponding Java types..368

44. COBOL literal argument types and corresponding Java types.. 368

45. Single byte EBCDIC coded character sets for JSON documents.. 375

46. Valid and invalid elementary moves...395

47. Valid and invalid elementary moves...404

48. Availability of a file.. 411

xviii

49. Permissible statements for sequential files...411

50. Permissible statements for indexed and relative files...412

51. Permissible statements for line-sequential files... 412

52. Sending and receiving fields for format-1 SET statement...441

53. Sending and receiving fields for format-5 SET statement...444

54. Character positions examined when DELIMITED BY is not specified...469

55. Meanings of environment-names in SPECIAL NAMES paragraph...476

56. The permissible format strings for date...504

57. The permissible format strings for integer-seconds time... 504

58. The permissible format strings for fractional-seconds time... 505

59. Table of functions..509

60. CONTENT-OF function type depending on the argument-1 types.. 537

61. FORMATTED-CURRENT-DATE function type depending on the argument types................................. 561

62. FORMATTED-DATE function type depending on the argument-1 types... 563

63. FORMATTED-DATETIME function type depending on the argument-1 types...................................... 565

64. FORMATTED-TIME function type depending on the argument-1 types... 567

65. REVERSE function of character Kä... 628

66. TRIM function types depending on the argument types... 657

67. ULENGTH function of character ä...659

68. Returned values of the UPOS function... 662

69. Returned values of the USUBSTR function.. 666

70. Returned values of the USUPPLEMENTARY function.. 668

71. Byte validity for UTF-8 data..671

72. Encoding unit validity for UTF-16 data...672

73. Returned values of the UWIDTH function.. 676

 xix

74. Execution of debugging declaratives... 708

75. Predefined compilation variables...720

76. Java-compatible elementary COBOL types... 725

77. Java-compatible array COBOL types... 726

78. Java-compatible alphanumeric group COBOL types...727

79. IBM extension language elements...729

80. Compiler limits..745

81. EBCDIC collating sequence.. 751

82. ASCII collating sequence... 755

83. Reserved words.. 761

84. Context-sensitive words... 779

85. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will
potentially affect existing programs..787

86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not
affect existing programs.. 788

xx

Preface

About this information
This information provides syntax and semantic information about IBM's implementation of the COBOL
language, including rules for writing source programs and descriptions of IBM language extensions.

Throughout this information, "COBOL" or "Enterprise COBOL" refers to "IBM Enterprise COBOL for z/OS"
or "IBM Enterprise COBOL Value Unit Edition for z/OS".

See the IBM Enterprise COBOL for z/OS Programming Guide for information and examples that will help
you write, compile, and debug programs and classes.

How to read the syntax diagrams
Throughout the document, diagrams illustrate Enterprise COBOL syntax.

Use the following description to read the syntax diagrams in this document:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a syntax diagram.

The ───► symbol indicates that the syntax diagram is continued on the next line.

The ►─── symbol indicates that the syntax diagram is continued from the previous line.

The ───►◄ symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the ►─── symbol and end with
the ───► symbol.

• Required items appear on the horizontal line (the main path).

Format
STATEMENT required item

• Optional items appear below the main path.

Format
STATEMENT

optional item

• When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

Format
STATEMENT required choice 1

required choice 2

If choosing one of the items is optional, the entire stack appears below the main path.

© Copyright IBM Corp. 1991, 2024 xxi

Format
STATEMENT

optional choice 1

optional choice 2

• An arrow returning to the left above the main line indicates an item that can be repeated.

Format

STATEMENT repeatable item

A repeat arrow above a stack indicates that you can make more than one choice from the stacked items,
or repeat a single choice.

• Variables appear in italic lowercase letters (for example, parmx). They represent user-supplied names
or values.

• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, they must
be entered as part of the syntax.

The following example shows how the syntax is used.

Format

STATEMENT
1

identifier-1
2

literal-1 item 1
3

TO identifier-3

ROUNDED

4

ON

SIZE ERROR imperative-statement-1

5

END-STATEMENT
6

item 1
identifier-2

literal-2

arithmetic-expression-1

Notes:
1 The STATEMENT keyword must be specified and coded as shown.
2 This operand is required. Either identifier-1 or literal-1 must be coded.

xxii Preface

3 The item 1 fragment is optional; it can be coded or not, as required by the application. If item
1 is coded, it can be repeated with each entry separated by one or more COBOL separators. Entry
selections allowed for this fragment are described at the bottom of the diagram.
4 The operand identifier-3 and associated TO keyword are required and can be repeated with one or
more COBOL separators separating each entry. Each entry can be assigned the keyword ROUNDED.
5 The ON SIZE ERROR phrase with associated imperative-statement-1 is optional. If the ON SIZE
ERROR phrase is coded, the keyword ON is optional.
6 The END-STATEMENT keyword can be coded to end the statement. It is not a required delimiter.

How to use examples
This information shows numerous examples of sample COBOL statements, program fragments, and small
programs to illustrate the coding techniques being described. The examples of program code are written
in lowercase, uppercase, or mixed case to demonstrate that you can write your programs in any of these
ways.

To more clearly separate some examples from the explanatory text, they are presented in a monospace
font.

COBOL keywords and compiler options that appear in text are generally shown in SMALL UPPERCASE.
Other terms such as program variable names are sometimes shown in an italic font for clarity.

If you copy and paste examples from the PDF format documentation, make sure that the spaces in the
examples (if any) are in place; you might need to manually add some missing spaces to ensure that
COBOL source text aligns to the required columns per the COBOL reference format. Alternatively, you
can copy and paste examples from the HTML format documentation and the spaces should be already in
place.

IBM extensions
IBM extensions generally add features, syntax, or rules that are not specified in the ANSI and ISO COBOL
standards that are listed in Appendix H, “Industry specifications,” on page 785. In this document, the
term 85 COBOL Standard refers to those standards.

Extensions range from minor relaxation of rules to major capabilities, such as XML support, Unicode
support, object-oriented COBOL for Java™ interoperability, and DBCS character handling.

The rest of this document describes the complete language without identifying extensions. You will need
to review Appendix A, “IBM extensions,” on page 729 and the Compiler options in the Enterprise COBOL
Programming Guide if you want to use only standard language elements.

Obsolete language elements
Obsolete language elements are elements that are categorized as obsolete in the 85 COBOL Standard.
Those elements are not part of the 2002 COBOL Standard.

This does not imply that IBM will remove the 85 COBOL Standard obsolete elements from a future release
of Enterprise COBOL.

The following language elements are categorized as obsolete by the 85 COBOL Standard:

• ALTER statement
• AUTHOR paragraph
• Comment entry
• DATA RECORDS clause
• DATE-COMPILED paragraph

Preface xxiii

• DATE-WRITTEN paragraph
• DEBUG-ITEM special register
• Debugging sections
• ENTER statement
• GO TO without a specified procedure-name
• INSTALLATION paragraph
• LABEL RECORDS clause
• MEMORY SIZE clause
• MULTIPLE FILE TAPE clause
• RERUN clause
• REVERSED phrase
• SECURITY paragraph
• Segmentation module
• STOP literal format of the STOP statement
• USE FOR DEBUGGING declarative
• VALUE OF clause
• The figurative constant ALL literal with a length greater than one, when the figurative constant is

associated with a numeric or numeric-edited item

DBCS notation
Double-Byte Character Set (DBCS) strings in literals, comments, and user-defined words are delimited by
shift-out and shift-in characters.

In this document, the shift-out delimiter is represented pictorially by the < character, and the shift-in
character is represented pictorially by the > character. The single-byte EBCDIC codes for the shift-out and
shift-in delimiters are X'0E' and X'0F', respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol denotes contiguous
shift-in and shift-out characters.

DBCS characters are shown in this form: D1D2D3. Latin alphabet characters in DBCS representation are
shown in this form: .A.B.C. The dots that precede the letters represent the hexadecimal value X'42'.

Notes:

• In EBCDIC DBCS data containing mixed single-byte and double-byte characters, double-byte character
strings are delimited by shift-out and shift-in characters.

• In ASCII DBCS data containing mixed single-byte and double-byte characters, double-byte character
strings are not delimited by shift-out and shift-in characters.

Acknowledgment
The following extract from Government Printing Office Form Number 1965-0795689 is presented for the
information and guidance of the user:

Any organization interested in reproducing the COBOL report and specifications in whole or in
part, using ideas taken from this report as the basis for an instruction manual or for any other
purpose is free to do so. However, all such organizations are requested to reproduce this section
as part of the introduction to the document. Those using a short passage, as in a book review,
are requested to mention COBOL in acknowledgment of the source, but need not quote this
entire section.

COBOL is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.

xxiv Preface

No warranty, expressed or implied, is made by any contributor or by the COBOL Committee
as to the accuracy and functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL. Inquiries concerning the
procedures for proposing changes should be directed to the Executive Committee of the
Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:

• FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the UNIVAC(R) I and
II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation

• IBM Commercial Translator, Form No. F28-8013, copyrighted 1959 by IBM
• FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL specifications
in programming manuals or similar publications.

Note: The Conference on Data Systems Languages (CODASYL), mentioned above, is no longer in
existence.

Additional documentation and support
Enterprise COBOL provides Portable Document Format (PDF) versions of the entire library for this version
and for previous versions on the library page at https://www.ibm.com/support/pages/enterprise-cobol-
zos-documentation-library. These documents are also available in Japanese.

Support information is also available at https://www.ibm.com/support/pages/node/6560933.

Summary of changes
This section lists the key changes that have been made to this document since Enterprise COBOL for
z/OS 6.4. The changes that are described in this information have an associated cross-reference for your
convenience. The latest technical changes are marked within >| and |< in the HTML version, or marked by
vertical bars (|) in the left margin in the PDF version.

For a complete list of new and improved features in Enterprise COBOL for z/OS 6.4 and COBOL 6.4 with
PTFs installed, see What is new in Enterprise COBOL for z/OS 6.4 and COBOL 6.4 with PTFs installed in
the Enterprise COBOL for z/OS What's New.

Enterprise COBOL for z/OS 6.4 with PTFs installed
• PH48667: A problem is fixed for using figurative constant HIGH-VALUES with fixed byte-length UTF-8

data items of a length not a multiple of 4 bytes. (“Figurative constants” on page 15)
• PH53631: Enhanced the ON EXCEPTION phrase support to deal with exceptions in the non-OO COBOL/

Java interoperability framework. (“CALL statement” on page 318)
• PH56036 and PH56037: An optional alternate logic path is introduced for VSAM files that use the
ACCESS IS DYNAMIC mode. The alternate logic path uses a direct read-by-key request instead of a
point to a record by key. (“Access modes” on page 149)

• PH57297: You can use UTF-8 (PIC U) data items as the arguments to the STRING and UNSTRING
statements. (“STRING statement” on page 457 and “UNSTRING statement” on page 464)

Note: COBOL Runtime LE APAR PH57264 (for AMODE 31) or APAR PH57265 (for AMODE 64) must also
be applied on all systems where programs that make use of this new feature are linked or run.

• PH57397: With a function prototype, you can define the function name, parameters, and returning value
of a user-defined function or other non-COBOL external functions such as C functions and invoke these
functions. This is part of the 2014 COBOL Standard.

Preface xxv

https://www.ibm.com/support/pages/enterprise-cobol-zos-documentation-library
https://www.ibm.com/support/pages/enterprise-cobol-zos-documentation-library
https://www.ibm.com/support/pages/node/6560933

– Part 3, “IDENTIFICATION DIVISION,” on page 99
– Chapter 20, “FUNCTION-ID paragraph,” on page 113
– Chapter 27, “Procedure division structure,” on page 257

- “The PROCEDURE DIVISION header” on page 258
- “USING phrase” on page 260
- “RETURNING phrase” on page 263

• PH57398: You can use the ENCODING phrase of the JSON GENERATE and JSON PARSE statements
to specify the encoding of the JSON document. (“JSON GENERATE statement” on page 369 and “JSON
PARSE statement” on page 382)

Note: COBOL Runtime LE APAR PH57152 must also be applied on all systems where programs that
make use of this new feature are linked or run.

• PH57400: You can use dynamic-length and UTF-8 (PIC U) data items as the arguments to the JSON
GENERATE and JSON PARSE statements. (“JSON GENERATE statement” on page 369 and “JSON
PARSE statement” on page 382)

Note: COBOL Runtime LE APAR PH57152 must also be applied on all systems where programs that
make use of this new feature are linked or run.

• PH58384: You can use the NAME IS OMITTED phrase to parse an anonymous JSON array in addition to
an anonymous JSON object. (“JSON GENERATE statement” on page 369 and “JSON PARSE statement”
on page 382)

• PH59733: You can generate and parse JSON null values by using the JSON GENERATE and JSON
PARSE statements. (“JSON GENERATE statement” on page 369 and “JSON PARSE statement” on page
382)

Enterprise COBOL for z/OS 6.4

Improved COBOL/Java interoperability
You can use JAVA-CALLABLE and JAVA-SHAREABLE directives to make your COBOL applications read/
write accessible for Java applications. The CALL statement is enhanced to enable the compiler to call a
static Java method.

• JAVA-CALLABLE
• JAVA-SHAREABLE
• “CALL statement” on page 318

User-defined functions support
You can define your own functions by specifying a FUNCTION-ID paragraph in the IDENTIFICATION
DIVISION and invoke them by using a reference to a function identifier. This is part of the 2002 COBOL
Standard.

• Part 3, “IDENTIFICATION DIVISION,” on page 99
• Chapter 20, “FUNCTION-ID paragraph,” on page 113
• “REPOSITORY paragraph” on page 132
• Chapter 27, “Procedure division structure,” on page 257

– “The PROCEDURE DIVISION header” on page 258
– “USING phrase” on page 260
– “RETURNING phrase” on page 263

• Chapter 41, “CONTENT-OF,” on page 537

xxvi Preface

PERFORM … UNTIL EXIT support
You can specify EXIT in place of a condition in a PERFORM statement. If the UNTIL phrase with the
EXIT reserved word is specified, execution proceeds exactly as if the same PERFORM statement were
coded with condition-1 specified, except that condition-1 never evaluates as true. (“PERFORM with UNTIL
phrase” on page 417)

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality information. If you have
comments about this document or any other documentation for this product, send your comments to:
compinfo@cn.ibm.com.

Be sure to include the name of the document, the publication number of the document, the version of the
product, and, if applicable, the specific location (for example, page number or section heading) of the text
that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way that IBM believes appropriate without incurring any obligation to you.

Preface xxvii

mailto:compinfo@cn.ibm.com

xxviii Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Part 1. COBOL language structure

© Copyright IBM Corp. 1991, 2024 1

2 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 1. Characters
The most basic and indivisible unit of the COBOL language is the character. The basic character set
includes the letters of the Latin alphabet, digits, and special characters.

In the COBOL language, individual characters are joined to form character-strings and separators.
Character-strings and separators, then, are used to form the words, literals, phrases, clauses, statements,
and sentences that form the language.

The basic characters used in forming character-strings and separators in source code are shown in Table
1 on page 3.

For certain language elements, the basic character set is extended with the EBCDIC Double-Byte
Character Set (DBCS).

DBCS characters can be used in forming user-defined words.

The content of alphanumeric literals, comment lines, and comment entries can include any of the
characters in the computer's compile-time character set, and can include both single-byte and DBCS
characters.

Runtime data can include any characters from the runtime character set of the computer. The
runtime character set of the computer can include alphanumeric characters, DBCS characters, national
characters, and UTF-8 characters. National characters are represented in UTF-16, a 16-bit encoding form
of Unicode. UTF-8 characters are represented in UTF-8, a variable length encoding form of Unicode (1 to 4
bytes for each character).

When the NSYMBOL (NATIONAL) compiler option is in effect, literals identified by the opening delimiter
N" or N' are national literals and can contain any single-byte or double-byte characters, or both, that are
valid for the compile-time code page in effect (either the default code page or the code page specified
for the CODEPAGE compiler option). Characters contained in national literals are represented as national
characters at run time.

For details, see “User-defined words with DBCS characters” on page 12, “DBCS literals” on page 41,
and “National literals” on page 46.

Literals identified by the opening delimiter U" or U' are UTF-8 literals. They can contain any single-byte or
double-byte characters, or both, that are valid for the compile-time code page in effect (either the default
code page or the code page specified for the CODEPAGE compiler option). Characters contained in UTF-8
literals are represented as UTF-8 characters at run time.

Table 1. Basic COBOL character set. This table lists basic COBOL character set.

Character Meaning Use Example

Space Punctuation character
01 WS-A
PIC X(10).

+ Plus sign Arithmetic operator COMPUTE WS-
A = WS-B +
WS-C.

Editing character 01 WS-A
PIC +9(3).

© Copyright IBM Corp. 1991, 2024 3

Table 1. Basic COBOL character set. This table lists basic COBOL character set. (continued)

Character Meaning Use Example

- Minus sign or hyphen Arithmetic operator
COMPUTE WS-
A = WS-B -
WS-C.

Editing character
01 WS-A
PIC -9(3).

Continuation character
 01 WS-
VAR PIC
X(27)
VALUE
-
'THIS
MULTI-LINE
TEXT'.

COBOL word element 01 WS-A
PIC 9(3).

* Asterisk Arithmetic operator COMPUTE WS-
A = WS-B *
WS-C.

Editing character 01 WS-A
PIC **9.

Comment character * THIS IS
COMMENT
LINE.

/ Forward slash or solidus Arithmetic operator COMPUTE WS-
A = WS-B /
WS-C.

Editing character 01 WS-DATE
PIC
99/99/99.

Continuation character
/01 WS-
VAR PIC
X(27)
VALUE
/
'THIS
MULTI-LINE
TEXT'.

= Equal sign Assignment character
COMPUTE WS-
A = WS-B /
WS-C.

Relation character IF WS-A =
10

4 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 1. Basic COBOL character set. This table lists basic COBOL character set. (continued)

Character Meaning Use Example

$ Currency sign1 Editing character
01 WS-DATE
PIC $$99.

, Comma Editing character
01 WS-DATE
PIC 99,999.

Punctuation character
MOVE 10 TO
WS-A, WS-B.

; Semicolon Punctuation character
MOVE 10 TO
WS-A; WS-B.

. Decimal point or period Editing character
01 WS-DATE
PIC 99.999.

Punctuation character MOVE 10 TO
WS-A, WS-B.

" Quotation mark2 Punctuation character 01 WS-VAR
PIC X(5)
VALUE
"HELLO".

' Apostrophe Punctuation character 01 WS-VAR
PIC X(5)
VALUE
'HELLO'.

(Left parenthesis Punctuation character IF (WS-A =
10) AND
(WS-B = 5)

) Right parenthesis Punctuation character IF (WS-A =
10) AND
(WS-B = 5)

> Greater than Relation character
IF WS-A >
10

< Less than Relation character IF WS-A <
10

: Colon Relation character
MOVE WS-
VAR(1:10)
TO WS-VAR1.

_ Underscore User-defined word element 01 WS_VAR
PIC X(10).

A - Z Alphabet (uppercase) Alphabetic characters /

a - z Alphabet (lowercase) Alphabetic characters /

Chapter 1. Characters 5

Table 1. Basic COBOL character set. This table lists basic COBOL character set. (continued)

Character Meaning Use Example

0 - 9 Numeric characters Numeric characters /

1. The currency sign is the character with the value X'5B', regardless of the code page in effect. The
assigned graphic character can be the dollar sign or a local currency sign.

2. The quotation mark is the character with the value X'7F'.

6 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 2. Character sets and code pages
A character set is a set of letters, numbers, special characters, and other elements used to represent
information. The term code page refers to a coded character set.

A character set is independent of a coded representation. A coded character set is the coded
representation of a set of characters, where each character is assigned a numerical position, called a
code point, in the encoding scheme. ASCII and EBCDIC are examples of types of coded character sets.
Each variation of ASCII or EBCDIC is a specific coded character set.

Each code page that IBM defines is identified by a code page name, for example IBM-1252, and a coded
character set identifier (CCSID), for example 1252.

Enterprise COBOL provides the CODEPAGE compiler option for specifying a coded character set for use at
compile time and run time for code-page-sensitive elements, such as:

• The encoding of literals in the source program
• The default encoding for data items described with USAGE DISPLAY or DISPLAY-1
• The default encoding for XML parsing and XML generation

Some COBOL operations can override the encoding established by the CODEPAGE compiler option, for
example:

• The DISPLAY-OF and NATIONAL-OF intrinsic functions can specify a CCSID as argument-2.
• The XML PARSE and XML GENERATE statements can specify a code page in the ENCODING phrase.

For further details about the CODEPAGE compiler option, see CODEPAGE in the Enterprise COBOL
Programming Guide.

If you do not specify a code page, the default is code page IBM-1140, CCSID 1140.

The encoding of national and UTF-8 data is not affected by the CODEPAGE compiler option. The encoding
for national literals and data items described with usage NATIONAL is UTF-16BE (big endian), CCSID
1200. A reference to UTF-16 in this document is a reference to UTF-16BE. The encoding for UTF-8 literals
and data items described with usage UTF-8 is UTF-8, CCSID 1208.

Character encoding units
A character encoding unit (or encoding unit) is the unit of data that COBOL treats as a single character at
run time. In this information, the terms character and character position refer to a single encoding unit.

The size of an encoding unit for data items and literals depends on the USAGE clause of the data item or
the category of the literal as follows:

• For data items described with USAGE DISPLAY and for alphanumeric literals, an encoding unit is 1 byte,
regardless of the code page used and regardless of the number of bytes used to represent a given
graphic character.

• For data items described with USAGE DISPLAY-1 (DBCS data items) and for DBCS literals, an encoding
unit is 2 bytes.

• For data items described with USAGE NATIONAL and for national literals, an encoding unit is 2 bytes.
• For data items described with USAGE UTF-8 and for UTF-8 literals, an encoding unit is 1 byte.

The relationship between a graphic character and an encoding unit depends on the type of code page
used for the data item or literal. See the following types of runtime code pages:

• Single-byte EBCDIC
• EBCDIC DBCS
• Unicode UTF-16
• Unicode UTF-8

© Copyright IBM Corp. 1991, 2024 7

See the following sections for the details of each type of code page.

Also see the section Specifying the encoding in the Enterprise COBOL Programming Guide.

Single-byte code pages
You can use a single-byte EBCDIC code page in data items described with USAGE DISPLAY and in literals
of category alphanumeric. An encoding unit is 1 byte and each graphic character is represented in 1 byte.
For these data items and literals, you need not be concerned with encoding units.

EBCDIC DBCS code pages
USAGE DISPLAY

You can use a mixture of single-byte and double-byte EBCDIC characters in data items described with
USAGE DISPLAY and in literals of category alphanumeric. Double-byte characters must be delimited by
shift-out and shift-in characters. An encoding unit is 1 byte and the size of a graphic character is 1 byte or
2 bytes.

When alphanumeric data items or literals contain DBCS data, programmers are responsible for ensuring
that operations do not unintentionally separate the multiple encoding units that form a graphic character.
Care should be taken with reference modification, and truncation during moves should be avoided.
The COBOL runtime system does not check for a split between the encoding units that form a graphic
character or for the loss of shift-out or shift-in codes.

To avoid problems, you can convert alphanumeric literals and data items described with usage DISPLAY
to national data (UTF-16) by moving the data items or literals to data items described with usage
NATIONAL or by using the NATIONAL-OF intrinsic function. You can then perform operations on the
national data with less concern for splitting graphic characters. You can convert the data back to USAGE
DISPLAY by using the DISPLAY-OF intrinsic function.

USAGE DISPLAY-1

You can use double-byte characters of an EBCDIC DBCScode page in data items described with USAGE
DISPLAY-1 and in literals of category DBCS. An encoding unit is 2 bytes and each graphic character is
represented in a single 2-byte encoding unit. For these data items and literals, you need not be concerned
with encoding units.

Unicode UTF-16
You can use UTF-16 in data items described with USAGE NATIONAL. National literals are stored as
UTF-16 characters regardless of the code page used for the source program. An encoding unit for data
items of usage NATIONAL and national literals is 2 bytes.

For most of the characters in UTF-16, a graphic character is one encoding unit. Characters converted to
UTF-16 from an EBCDIC, ASCII, or EUC code page are represented in one UTF-16 encoding unit. Some
of the other graphic characters in UTF-16 are represented by a surrogate pair or a combining character
sequence. A surrogate pair consists of two encoding units (4 bytes). A combining character sequence
consists of a base character and one or more combining marks or a sequence of one or more combining
marks (4 bytes or more, in 2-byte increments). In data items of usage NATIONAL, each 2-byte encoding
unit is treated as a character.

When national data contains surrogate pairs or combining character sequences, programmers are
responsible for ensuring that operations on national characters do not unintentionally separate the
multiple encoding units that form a graphic character. Care should be taken with reference modification,
and truncation during moves should be avoided. The COBOL runtime system does not check for a split
between the encoding units that form a graphic character.

Unicode UTF-8
You can use UTF-8 in data items described with the “U” symbol in their picture clause. These items are
usage UTF-8. UTF-8 literals are stored as UTF-8 characters regardless of the code page used for the

8 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

source program. An encoding unit for data items of usage UTF-8 and UTF-8 literals is 1 byte. In data items
of usage UTF-8, each Unicode code point represented in the data item is encoded using between 1 and 4
encoding units.

For most of the characters in UTF-8, a graphic character is 1 to 4 encoding units (i.e., a character
typically corresponds to a single Unicode code point). Characters converted to UTF-8 from an EBCDIC,
ASCII, or EUC code page are represented in 1 to 4 UTF-8 encoding units. However, some of the other
graphic characters in UTF-8 are represented by a combining character sequence, which corresponds to
a sequence of Unicode code points. In particular, a combining character sequence consists of a base
character and one or more combining marks or a sequence of one or more combining marks, with each
combining mark being represented by 1 to 4 encoding units.

When UTF-8 data contains combining character sequences, programmers are responsible for ensure that
operations on UTF-8 characters do not unintentionally separate the multiple groupings of encoding units
that form graphic characters. You must pay attention to the reference modification and avoid truncations
during moves. The COBOL runtime system does not check for a split between the groups of encoding units
that form a graphic character.

Chapter 2. Character sets and code pages 9

10 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 3. Character-strings: COBOL words and
literals

A character-string is a character or a sequence of contiguous characters that forms a COBOL word, a
literal, a PICTURE character-string, or a comment-entry. A character-string is delimited by separators.

A separator is a string of contiguous characters used to delimit character strings. Separators are
described in detail under Chapter 4, “Separators,” on page 49.

Character strings and certain separators form text words. A text word is a character or a sequence of
contiguous characters (possibly continued across lines) between character positions 8 and 72 inclusive in
source text, library text, or pseudo-text. For more information about pseudo-text, see “Pseudo-text” on
page 61.

Source text, library text, and pseudo-text can be written in single-byte EBCDIC and, for some character-
strings, DBCS. (The compiler cannot process source code written in ASCII or Unicode.)

You can use single-byte and double-byte character-strings to form the following items:

• COBOL words
• Literals
• Comment text

You can use only single-byte characters to form PICTURE character-strings.

COBOL words with single-byte characters
A COBOL word is a character-string that forms a user-defined word, a system-name, or a reserved word.
The maximum size of a COBOL user-defined word is 30 bytes. The number of characters that can be
specified depends on the code page indicated by the compile-time locale.

Except for arithmetic operators and relation characters, each character of a COBOL word is selected from
the following set:

• Latin uppercase letters A through Z
• Latin lowercase letters a through z
• digits 0 through 9
• - (hyphen)
• _ (underscore)

The hyphen cannot appear as the first or last character in such words. The underscore cannot appear as
the first character in such words. Most user-defined words (all except section-names, paragraph-names,
priority-numbers, and level-numbers) must contain at least one alphabetic character. Priority numbers
and level numbers need not be unique; a given specification of a priority-number or level-number can be
identical to any other priority-number or level-number.

In COBOL words (but not in the content of alphanumeric, DBCS, national, and UTF-8 literals), each
lowercase single-byte alphabetic letter is considered to be equivalent to its corresponding single-byte
uppercase alphabetic letter.

The following rules apply for all COBOL words:

• A reserved word cannot be used as a user-defined word or as a system-name.
• The same COBOL word, however, can be used as both a user-defined word and as a system-name. The
classification of a specific occurrence of a COBOL word is determined by the context of the clause or
phrase in which it occurs.

© Copyright IBM Corp. 1991, 2024 11

User-defined words with DBCS characters
There are the rules for forming user-defined words with DBCS characters.

The rules are:

Contained characters
DBCS user-defined words can contain only double-byte characters, and must contain at least one
DBCS character that is not in the set A through Z, a through z, 0 through 9, hyphen, and underscore
(DBCS representation of these characters has X'42' in the first byte).

DBCS user-defined words can contain characters that correspond to single-byte EBCDIC characters
and those that do not correspond to single-byte EBCDIC characters. DBCS characters that correspond
to single-byte EBCDIC characters follow the normal rules for COBOL user-defined words; that is, the
characters A - Z, a - z, 0 - 9, the hyphen (-), and the underscore (_) are allowed. The hyphen cannot
appear as the first or last character. The underscore cannot appear as the first character. Any of
the DBCS characters that have no corresponding single-byte EBCDIC character can be used in DBCS
user-defined words.

Uppercase and lowercase letters
In COBOL words, each lowercase single-byte encoded character "a" through "z" is considered to be
equivalent to its corresponding single-byte encoded uppercase character.DBCS-encoded uppercase
and lowercase letters are not equivalent.

Value range
DBCS user-defined words can contain characters whose values range from X'41' to X'FE' for both
bytes.

Maximum length
14 characters

Continuation
Words formed with DBCS characters cannot be continued across lines.

Use of shift-out and shift-in characters
DBCS user-defined words begin with a shift-out character and end with a shift-in character.

User-defined words
A user-defined word is a COBOL word that must be supplied by the user to satisfy the format of a clause
or statement.

The following sets of user-defined words are supported. The second column indicates whether DBCS
characters are allowed in words of a given set.

User-defined word DBCS characters allowed?

Alphabet-name Yes

Class-name (of data) Yes

Condition-name Yes

Data-name Yes

File-name Yes

Function-name No

Index-name Yes

Level-numbers: 01–49, 66, 77, 88 No

12 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

User-defined word DBCS characters allowed?

Library-name No

Mnemonic-name Yes

Object-oriented class-name No

Paragraph-name Yes

Priority-numbers: 00–99 No

Program-name No

Record-name Yes

Section-name Yes

Symbolic-character Yes

Text-name No

XML-schema-name Yes

The maximum length of a user-defined word is 30 bytes, except for level-numbers and priority-numbers.
Level-numbers and priority numbers must each be a one-digit or two-digit integer.

A given user-defined word can belong to only one of these sets, except that a given number can be both
a priority-number and a level-number. Each user-defined word within a set must be unique, except for
priority-numbers and level-numbers and except as specified in Chapter 8, “Referencing data names, copy
libraries, and PROCEDURE DIVISION names,” on page 67.

The following types of user-defined words can be referenced by statements and entries in the program in
which the user-defined word is declared:

• Paragraph-name
• Section-name

The following types of user-defined words can be referenced by any COBOL program, provided that the
compiling system supports the associated library or other system and that the entities referenced are
known to that system:

• Library-name
• Text-name

The following types of names, when they are declared within a configuration section, can be referenced by
statements and entries in the program that contains the configuration section or in any program contained
within that program:

• Alphabet-name
• Class-name
• Condition-name
• Mnemonic-name
• Symbolic-character
• XML-schema-name

The function of each user-defined word is described in the clause or statement in which it appears.

Related references
Appendix F, “Context-sensitive words,” on page 779

Chapter 3. Character-strings: COBOL words and literals 13

System-names
A system-name is a character string that has a specific meaning to the system.

There are three types of system-names:

• Computer-name
• Language-name
• Implementor-name

There are four types of implementer-names:

• Environment-name
• External-class-name
• External-fileid
• Assignment-name

The meaning of each system-name is described with the format in which it appears.

Computer-name can be written in DBCS characters, but the other system-names cannot.

Function-names
A function-name specifies the mechanism provided to determine the value of an intrinsic function or a
user-defined function.

The same word, in a different context, can appear in a program as a user-defined word or a system name.
For a list of intrinsic function names and their definitions, see Table 59 on page 509.

Intrinsic function names may be used as user-defined function-names, except for LENGTH, RANDOM,
SIGN, SUM, and WHEN-COMPILED.

Reserved words
A reserved word is a character-string with a predefined meaning in a COBOL source unit.

Reserved words are listed in Appendix E, “Reserved words,” on page 761. There are six types of reserved
words:

• Keywords
• Optional words
• Figurative constants
• Special character words
• Special object identifiers
• Special registers

Keywords
Keywords are reserved words that are required within a given clause, entry, or statement. Within each
format, such words appear in uppercase on the main path.

Optional words
Optional words are reserved words that can be included in the format of a clause, entry, or statement
in order to improve readability. They have no effect on the execution of the program.

Figurative constants
See “Figurative constants” on page 15.

Special character words
There are five types of special character words, which are recognized as special characters only when
represented in single-byte characters:

14 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• Arithmetic operators: + - / * **

See “Arithmetic expressions” on page 266.
• Relational operators: < > = <= >=

See “Conditional expressions” on page 268.
• Floating comment indicators: *>

See “Floating comment indicators (*>)” on page 60.
• Pseudo-text delimiters in COPY and REPLACE statements: ==

See “COPY statement” on page 688 and “REPLACE statement” on page 700.
• Compiler directive indicators: >>

See Chapter 114, “Compiler directives,” on page 709.

Special object identifiers
COBOL provides two special object identifiers, SELF and SUPER:
SELF

A special object identifier that you can use in the PROCEDURE DIVISION of a method. SELF refers
to the object instance used to invoke the currently executing method. You can specify SELF only in
places that are explicitly listed in the syntax diagrams.

SUPER
A special object identifier that you can use in the PROCEDURE DIVISION of a method only as
the object identifier in an INVOKE statement. When used in this way, SUPER refers to the object
instance used to invoke the currently executing method. The resolution of the method to be
invoked ignores any methods declared in the class definition of the currently executing method
and methods defined in any class derived from that class. Thus, the method invoked is inherited
from an ancestor class.

Special registers
See “Special registers” on page 17.

Figurative constants
Figurative constants are reserved words that name and refer to specific constant values. The reserved
words for figurative constants and their meanings are listed in this section.

ZERO, ZEROS, ZEROES
Represents the numeric value zero (0) or one or more occurrences of the character zero, depending on
context.

When the figurative constant ZERO, ZEROS, or ZEROES is used in a context that requires an
alphanumeric character, an alphanumeric character zero is used. When the context requires a national
character zero, a national character zero is used (value NX'0030'). When the context cannot be
determined, an alphanumeric character zero is used.

SPACE, SPACES
Represents one or more blanks or spaces. SPACE is treated as an alphanumeric literal when used
in a context that requires an alphanumeric character, as a DBCS literal when used in a context that
requires a DBCS character, as a national literal when used in a context that requires a national
character.

The EBCDIC DBCS space character has the value X'4040', the national space character has the value
NX'0020', and the UTF-8 space character has the value UX'20'.

HIGH-VALUE, HIGH-VALUES
Represents one or more occurrences of the character that has the highest ordinal position in the
collating sequence used.

Chapter 3. Character-strings: COBOL words and literals 15

HIGH-VALUE is treated as an alphanumeric literal in a context that requires an alphanumeric
character. For alphanumeric data with the EBCDIC collating sequence, the value is X'FF'. For other
alphanumeric data, the value depends on the collating sequence in effect.

HIGH-VALUE is treated as a national literal when used in a context that requires a national literal. The
value is national character NX'FFFF'.

HIGH-VALUE is treated as a UTF-8 literal when used in a context that requires a UTF-8 literal. The
value is UTF-8 character UX'F48FBFBF' corresponding to Unicode code point U+10FFFF, except when
HIGH-VALUE is used in a move or compare operation with a fixed byte-length UTF-8 data item that
has a length that is not a multiple of 4 bytes. In that case, when HIGH-VALUE is moved into or
compared against the final 3, 2 or 1 byte(s) of the UTF-8 data item, the value of HIGH-VALUE is
UX'EFBFBF' (U+FFFF), UX'DFBF' (U+07FF), and UX'7F' (U+007F), respectively.

When the context cannot be determined, an alphanumeric context is assumed and the value X'FF' is
used.

Usage note: You should not use HIGH-VALUE (or a value assigned from HIGH-VALUE) in a way that
results in conversion between one data representation and another. X'FF' does not represent a valid
EBCDIC character, and NX'FFFF' does not represent a valid national character. Conversion of either
the alphanumeric or the national HIGH-VALUE representation to another representation results in a
substitution character. For example, conversion of X'FF' to UTF-16 would give a substitution character,
not NX'FFFF'.

LOW-VALUE, LOW-VALUES
Represents one or more occurrences of the character that has the lowest ordinal position in the
collating sequence used.

LOW-VALUE is treated as an alphanumeric literal in a context that requires an alphanumeric character.
For alphanumeric data with the EBCDIC collating sequence, the value is X'00'. For other alphanumeric
data, the value depends on the collating sequence in effect.

LOW-VALUE is treated as a national literal when used in a context that requires a national literal. The
value is national character NX'0000'.

LOW-VALUE is treated as a UTF-8 literal when used in a context that requires a UTF-8 literal. The
value is UTF-8 character UX'00' corresponding to Unicode code point U+0000.

When the context cannot be determined, an alphanumeric context is assumed and the value X'00' is
used.

QUOTE, QUOTES
Represents one or more occurrences of:

• The quotation mark character ("), if the QUOTE compiler option is in effect
• The apostrophe character ('), if the APOST compiler option is in effect

QUOTE or QUOTES represents an alphanumeric character when used in a context that requires an
alphanumeric character, represents a national character when used in a context that requires a
national character, and represents a UTF-8 character when used in a context that requires a UTF-8
character. The national character value of quotation mark is NX'0022'. The national character value of
apostrophe is NX'0027'. The UTF-8 character value of quotation mark is UX'22'. The UTF-8 character
value of apostrophe is UX'27'.

QUOTE and QUOTES cannot be used in place of a quotation mark or an apostrophe to enclose an
alphanumeric literal, a DBCS literal, a national literal, or a UTF-8 literal.

ALL literal
literal can be an alphanumeric literal, a DBCS literal, a national literal, a UTF-8 literal, or a figurative
constant other than the ALL literal.

When literal is not a figurative constant, ALL literal represents one or more occurrences of the string of
characters that compose the literal.

When literal is a figurative constant, the word ALL has no meaning and is used only for readability.

16 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The figurative constant ALL literal must not be used with the CALL, INSPECT, INVOKE, STOP, or
STRING statements.

symbolic-character
Represents one or more of the characters specified as a value of the symbolic-character in the
SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES paragraph.

symbolic-character always represents an alphanumeric character; it can be used in a context that
requires a national or UTF-8 character only when implicit conversion of alphanumeric to national or
UTF-8 characters is defined. (It can be used, for example, in a MOVE statement where the receiving
item is of class national or UTF-8 because implicit conversion is defined when the sending item is
alphanumeric and the receiving item is national or UTF-8.)

NULL, NULLS
Represents a value used to indicate that data items defined with USAGE POINTER, USAGE
PROCEDURE-POINTER, USAGE FUNCTION-POINTER, USAGE OBJECT REFERENCE, or the ADDRESS
OF special register do not contain a valid address. NULL can be used only where explicitly allowed in
the syntax formats. NULL has the value zero.

The singular and plural forms of NULL, ZERO, SPACE, HIGH-VALUE, LOW-VALUE, and QUOTE can be
used interchangeably. For example, if DATA-NAME-1 is a five-character data item, each of the following
statements moves five spaces to DATA-NAME-1:

MOVE SPACE TO DATA-NAME-1
MOVE SPACES TO DATA-NAME-1
MOVE ALL SPACES TO DATA-NAME-1

When the rules of COBOL permit any one spelling of a figurative constant name, any alternative spelling of
that figurative constant name can be specified.

You can use a figurative constant wherever literal appears in a syntax diagram, except where explicitly
prohibited. When a numeric literal appears in a syntax diagram, only the figurative constant ZERO (or
ZEROS or ZEROES) can be used. Figurative constants are not allowed as function arguments except in an
arithmetic expression, where the expression is an argument to a function.

The length of a figurative constant depends on the context of its use. The following rules apply:

• When a figurative constant is specified in a VALUE clause or associated with a data item (for example,
when it is moved to or compared with another item), the length of the figurative constant character-
string is equal to 1 or the number of character positions in the associated data item, whichever is
greater.

• When a figurative constant, other than the ALL literal, is not associated with another data item (for
example, in a CALL, INVOKE, STOP, STRING, or UNSTRING statement), the length of the character-
string is one character.

Special registers
Special registers are reserved words that name storage areas generated by the compiler. Their primary
use is to store information produced through specific COBOL features. Each such storage area has a fixed
name, and must not be defined within the program.

For programs with the RECURSIVE attribute, for programs compiled with the THREAD option, and for
methods, storage for the following special registers is allocated on a per-invocation basis:

• ADDRESS OF
• JSON-CODE
• JSON-STATUS
• RETURN-CODE
• SORT-CONTROL
• SORT-CORE-SIZE

Chapter 3. Character-strings: COBOL words and literals 17

• SORT-FILE-SIZE
• SORT-MESSAGE
• SORT-MODE-SIZE
• SORT-RETURN
• TALLY
• XML-CODE
• XML-EVENT
• XML-INFORMATION
• XML-NAMESPACE
• XML-NAMESPACE-PREFIX
• XML-NNAMESPACE
• XML-NNAMESPACE-PREFIX
• XML-NTEXT
• XML-TEXT

For the first call to a program after a cancel of that program, or for a method invocation, the compiler
initializes the special register fields to their initial values.

For the following four cases:

• Programs that have the INITIAL clause specified
• Programs that have the RECURSIVE clause specified
• Programs compiled with the THREAD option
• Methods

the following special registers are reset to their initial value on each program or method entry:

• IGY-JAVAIOP-CALL-EXCEPTION
• JSON-CODE
• JSON-STATUS
• RETURN-CODE
• SORT-CONTROL
• SORT-CORE-SIZE
• SORT-FILE-SIZE
• SORT-MESSAGE
• SORT-MODE-SIZE
• SORT-RETURN
• TALLY
• XML-CODE
• XML-EVENT

Further, in the above four cases, values set in ADDRESS OF special registers persist only for the span of
the particular program or method invocation.

In all other cases, the special registers will not be reset; they will be unchanged from the value contained
on the previous CALL or INVOKE.

Unless otherwise explicitly restricted, a special register can be used wherever a data-name or identifier
that has the same definition as the implicit definition of the special register can be used. Implicit
definitions, if applicable, are given in the specification of each special register.

You can specify an alphanumeric special register in a function wherever an alphanumeric argument to a
function is allowed, unless specifically prohibited.

18 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If qualification is allowed, special registers can be qualified as necessary to provide uniqueness. (For
more information, see “Qualification” on page 67.)

ADDRESS OF
The ADDRESS OF special register references the address of a data item in the LINKAGE SECTION, the
LOCAL-STORAGE SECTION, or the WORKING-STORAGE SECTION.

For 01 and 77 level items in the LINKAGE SECTION, the ADDRESS OF special register can be used as
either a sending item or a receiving item. For all other operands, the ADDRESS OF special register can be
used only as a sending item.

The ADDRESS OF special register is implicitly defined as USAGE POINTER.

If LP(32) is in effect, 4 bytes are allocated for the special register; if LP(64) is in effect, 8 bytes are
allocated for the special register.

A function-identifier is not allowed as the operand of the ADDRESS OF special register.

DEBUG-ITEM
The DEBUG-ITEM special register provides information for a debugging declarative procedure about the
conditions that cause debugging section execution.

DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
 02 DEBUG-LINE PICTURE IS X(6).
 02 FILLER PICTURE IS X VALUE SPACE.
 02 DEBUG-NAME PICTURE IS X(30).
 02 FILLER PICTURE IS X VALUE SPACE.
 02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
 02 FILLER PICTURE IS X VALUE SPACE.
 02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
 02 FILLER PICTURE IS X VALUE SPACE.
 02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
 02 FILLER PICTURE IS X VALUE SPACE.
 02 DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces. The contents of the
DEBUG-ITEM subfields are updated according to the rules for the MOVE statement, with one exception:
DEBUG-CONTENTS is updated as if the move were an alphanumeric-to-alphanumeric elementary move
without conversion of data from one form of internal representation to another.

After updating, the contents of the DEBUG-ITEM subfields are:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated sequence number, depending on
the compiler option chosen) that caused execution of the debugging section.

DEBUG-NAME
The first 30 characters of the name that caused execution of the debugging section. Any qualifiers are
separated by the word 'OF'.

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3
Always set to spaces. These subfields are documented for compatibility with previous COBOL
products.

DEBUG-CONTENTS
Data is moved into DEBUG-CONTENTS, as shown in the following table.

Chapter 3. Character-strings: COBOL words and literals 19

Table 2. DEBUG-ITEM subfield contents

Cause of debugging
section execution

Statement referred to in
DEBUG-LINE

Contents of DEBUG-
NAME

Contents of DEBUG-
CONTENTS

procedure-name-1 ALTER
reference

ALTER statement procedure-name-1 procedure-name-n in TO
PROCEED TO phrase

GO TO procedure-name-n GO TO statement procedure-name-n Spaces

procedure-name-n in
SORT or MERGE input/
output procedure

SORT or MERGE
statement

procedure-name-n "SORT INPUT", "SORT
OUTPUT", or "MERGE
OUTPUT" (as applicable)

PERFORM statement
transfer of control

This PERFORM statement procedure-name-n "PERFORM LOOP"

procedure-name-n in a
USE procedure

Statement causing USE
procedure execution

procedure-name-n "USE PROCEDURE"

Implicit transfer from
a previous sequential
procedure

Previous statement
executed in previous
sequential procedure1

procedure-name-n "FALL THROUGH"

First execution of first
nondeclarative procedure

Line number of
first nondeclarative
procedure-name

Name of first
nondeclarative procedure

"START PROGRAM"

1. If this procedure is preceded by a section header, and control is passed through the section header, the
statement number refers to the section header.

IGY-JAVAIOP-CALL-EXCEPTION
The IGY-JAVAIOP-CALL-EXCEPTION special register provides access to the Java exception object
produced when an exception is encountered during a call from COBOL to a static Java method using
the CALL statement.

When a call to a static Java method is issued from a COBOL program using a CALL statement with a literal
target of the form 'Java.java-class-name.java-static-method-name' and a Java exception occurs during
the call, the IGY-JAVAIOP-CALL-EXCEPTION special register can be accessed from COBOL statements
specified in the ON EXCEPTION phrase of the CALL statement to refer to the Java exception object of the
associated Java exception. Having access to the object reference for this Java exception object allows
user exception handling code in COBOL to use JNI functions to perform various tasks during exception
handling, such as re-throwing the exception. However, it is not necessary to reference this special register
in such exception handling code. Knowing that an exception occurred and performing the appropriate
COBOL error handling is often sufficient for an interoperable application.

Notes:

• When an exception occurs in a call to a static Java method using the CALL statement, the exception
is cleared before the code specified in the ON EXECEPTION phrase is run. To propagate the exception
up the chain of callers so that other callers can provide caller-specific handling for the exception, it is
possible to re-throw the exception using the JNI Throw() function.

• Whenever a COBOL program makes calls to JNI functions, the program should either be compiled with
the DLL option in effect, or the JNI calls must be under the scope of a CALLINTERFACE DLL directive.
It is not necessary to link the program as a DLL, however. Furthermore, at runtime it is necessary to
include the directory containing the DLL file libjvm.dll in your LIBPATH environment variable. When the
JAVAIOP(...,JAVA64,...) option is in effect, the directory containing the libjvm31.dll must be added to the
front of your LIBPATH.

• Finally, you will need to link your application with side deck file igzcjni2.x (for pure AMODE 31
applications), igzxjni2.x (for mixed AMODE 31 COBOL with AMODE 64 Java applications), or igzqjni2.x

20 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

(for pure AMODE 64 applications). These side deck files reside in the lib subdirectory of the COBOL
install directory in the z/OS UNIX file system. The side deck files can also be found as members in the
relevant SCEELIB run time data set.

See the following example:

 DATA DIVISION.
 LINKAGE SECTION.
 COPY JNI SUPPRESS.
 :
 PROCEDURE DIVISION.
 :
 set address of JNIEnv to JNIEnvPtr
 set address of JNINativeInterface to JNIEnv
 :
 CALL 'Java.com.acme.MyClass.myMethod' USING ...
 ON EXCEPTION
 <user-error-handling-code>
 *> re-throw exception
 >>CALLINTERFACE DLL
 CALL THROW USING BY VALUE JNIEnvPtr
 IGY-JAVAIOP-CALL-EXCEPTION
 GOBACK
 END-CALL

When the LP(32) compiler option is in effect, IGY-JAVAIOP-CALL-EXCEPTION has the implict definition:

01 IGY-JAVAIOP-CALL-EXCEPTION PIC 9(9) USAGE COMP-5 VALUE 0.

When the LP(64) compiler option is in effect or the JAVAIOP(...,JAVA64,...) compiler option is in effect,
IGY-JAVAIOP-CALL-EXCEPTION has the implicit definition:

01 IGY-JAVAIOP-CALL-EXCEPTION PIC 9(18) USAGE COMP-5 VALUE 0.

The value of IGY-JAVAIOP-CALL-EXCEPTION is reset to 0 at the beginning of every program invocation.

JNIENVPTR
The JNIENVPTR special register references the Java Native Interface (JNI) environment pointer. The JNI
environment pointer is used in calling Java callable services.

JNIENVPTR is implicitly defined as USAGE POINTER, and cannot be specified as a receiving data item.

For information about using JNIENVPTR and JNI callable services, see Accessing JNI services in the
Enterprise COBOL Programming Guide.

JSON-CODE
The JSON-CODE special register is used to indicate either that a JSON GENERATE or JSON PARSE
statement executed successfully or that an exception occurred during JSON generation or parsing.

The JSON-CODE special register has the implicit definition:

01 JSON-CODE PICTURE S9(9) USAGE BINARY VALUE 0.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

At termination of a JSON GENERATE or JSON PARSE statement, JSON-CODE contains either zero,
indicating successful completion of JSON generation or parsing, or a nonzero error code, indicating that
an exception occurred during JSON generation or parsing. JSON GENERATE and JSON PARSE exception
codes are detailed in JSON GENERATE exceptions and JSON PARSE conditions and associated codes and
runtime messages in the Enterprise COBOL Programming Guide.

Chapter 3. Character-strings: COBOL words and literals 21

Related references
“JSON-STATUS” on page 22

JSON-STATUS
The JSON-STATUS special register is used to indicate either that a JSON PARSE statement executed
successfully or that a nonexception condition occurred during the JSON parse operation.

The JSON-STATUS special register has the implicit definition:

01 JSON-STATUS PICTURE S9(9) USAGE BINARY VALUE 0.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

During execution of a JSON PARSE statement, nonexception conditions result in reason codes in the
JSON-STATUS special register, but do not terminate execution of the statement. At termination of a JSON
PARSE statement, JSON-STATUS contains either zero, indicating successful completion of the JSON parse
operation, or a nonzero status value, representing one or more nonexception conditions that occurred
prior to the exception condition. JSON-STATUS reason codes are detailed in Nonexception conditions and
corresponding values of JSON-STATUS in the Enterprise COBOL Programming Guide.

Related references
“JSON-CODE” on page 21

LENGTH OF
The LENGTH OF special register contains the number of bytes used by a data item.

LENGTH OF creates an implicit special register that contains the current byte length of the data item
referenced by the identifier.

For example:

IDENTIFICATION DIVISION.
PROGRAM-ID. LengthOfExample.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 MyString PIC X(20) VALUE 'Hello, COBOL!'.
01 StringLength PIC 9(3).

PROCEDURE DIVISION.
 MOVE LENGTH OF MyString TO StringLength.
 DISPLAY 'Length of MyString is ' StringLength.
 STOP RUN.

The output is:

Length of MyString is 020

For data items described with usage DISPLAY-1 (DBCS data items) and data items described with usage
NATIONAL, each character occupies 2 bytes of storage.

LENGTH OF can be used in the PROCEDURE DIVISION anywhere a numeric data item that has the same
definition as the implied definition of the LENGTH OF special register can be used.

If LP(32) is in effect, the LENGTH OF special register has the implicit definition:

PICTURE 9(9) USAGE IS BINARY.

If LP(64) is in effect, the LENGTH OF special register has the implicit definition:

PICTURE 9(18) USAGE IS BINARY.

22 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If the data item referenced by the identifier contains the GLOBAL clause, the LENGTH OF special register
is a global data item.

The LENGTH OF special register can appear within either the starting character position or the length
expressions of a reference-modification specification. However, the LENGTH OF special register cannot be
applied to any operand that is reference-modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special register is allowed in a function
where an integer argument is allowed.

If the LENGTH OF special register is used as the argument to the LENGTH function, the result is 4 when
LP(32) is in effect, and the result is 8 when LP(64) is in effect.

If the ADDRESS OF special register is used as the argument to the LENGTH function, the result is 4 when
LP(32) is in effect, and the result is 8 when LP(64) is in effect.

LENGTH OF cannot be either of the following items:

• A receiving data item
• A subscript

When the LENGTH OF special register is used as a parameter on a CALL statement, it must be passed BY
CONTENT or BY VALUE.

When a table element is specified, the LENGTH OF special register contains the length in bytes of one
occurrence. When referring to a table element, the element name need not be subscripted.

A value is returned for any identifier whose length can be determined, even if the area referenced by the
identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with the LENGTH OF phrase.
For example:

MOVE LENGTH OF A TO B
DISPLAY LENGTH OF A, A
ADD LENGTH OF A TO B
CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

The intrinsic function LENGTH can also be used to obtain the length of a data item. For data items
of usage NATIONAL, the length returned by the LENGTH function is the number of national character
positions, rather than bytes; thus the LENGTH OF special register and the LENGTH intrinsic function
have different results for data items of usage NATIONAL. Also, for table elements, the intrinsic function
LENGTH requires a subscript, while the LENGTH OF special register does not. For all other data items, the
result is the same.

The LENGTH intrinsic function, when applied to a null-terminated alphanumeric literal, returns the
number of bytes in the literal prior to but not including the terminating null. (The LENGTH special
register does not support literal operands.) For details about null-terminated alphanumeric literals, see
“Null-terminated alphanumeric literals” on page 41.

LINAGE-COUNTER
A separate LINAGE-COUNTER special register is generated for each FD entry that contains a LINAGE
clause. When more than one is generated, you must qualify each reference to a LINAGE-COUNTER with its
related file-name.

The implicit description of the LINAGE-COUNTER special register is in one of the following cases:

• If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same PICTURE and USAGE as
that data-name.

• If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item with the same number of
digits as that integer.

For more information, see “LINAGE clause” on page 189.

Chapter 3. Character-strings: COBOL words and literals 23

The value in LINAGE-COUNTER at any given time is the line number at which the device is positioned
within the current page. LINAGE-COUNTER can be referred to in PROCEDURE DIVISION statements; it
must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated file is executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this file. (See “WRITE
statement” on page 471.)

If the file description entry for a sequential file contains the LINAGE clause and the EXTERNAL clause,
the LINAGE-COUNTER data item is an external data item. If the file description entry for a sequential file
contains the LINAGE clause and the GLOBAL clause, the LINAGE-COUNTER data item is a global data
item.

You can specify the LINAGE-COUNTER special register wherever an integer argument to a function is
allowed.

RETURN-CODE
The RETURN-CODE special register can be used to pass a return code to the calling program or operating
system when the current COBOL program ends.

When a COBOL program ends:

• If control returns to the operating system, the value of the RETURN-CODE special register is passed to
the operating system as a user return code. The supported user return code values are determined by
the operating system, and might not include the full range of RETURN-CODE special register values.

• If control returns to a calling program, the value of the RETURN-CODE special register is passed to the
calling program. If the calling program is a COBOL program, the RETURN-CODE special register in the
calling program is set to the value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:

01 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the GLOBAL clause in the
outermost program.

The following examples show how to set the RETURN-CODE special register:

• COMPUTE RETURN-CODE = 8.
• MOVE 8 to RETURN-CODE.

The RETURN-CODE special register does not return a value from an invoked method or from a program
that uses CALL ... RETURNING. For more information, see “INVOKE statement” on page 362 or “CALL
statement” on page 318.

You can specify the RETURN-CODE special register in a function wherever an integer argument is allowed.

The RETURN-CODE special register does not return information from a service call for a Language
Environment® callable service. For more information, see Using Language Environment callable services in
the Enterprise COBOL Programming Guide and the Language Environment Programming Guide.

SHIFT-OUT and SHIFT-IN
You can specify the SHIFT-OUT and SHIFT-IN special registers in a function wherever an alphanumeric
argument is allowed.

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as alphanumeric data items of the
format:

01 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"0E".
01 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"0F".

24 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

When used in nested programs, these special registers are implicitly defined with the global attribute in
the outermost program.

These special registers represent EBCDIC shift-out and shift-in control characters, which are unprintable
characters.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN cannot be used in place of
the keyboard control characters when you are defining DBCS user-defined words or specifying EBCDIC
DBCS literals.

The following example shows how SHIFT-OUT and SHIFT-IN might be used:

DATA DIVISION.
WORKING-STORAGE.
01 DBCSGRP.
 05 SO PIC X.
 05 DBCSITEM PIC G(3) USAGE DISPLAY-1.
 05 SI PIC X.
...
PROCEDURE DIVISION.
 MOVE SHIFT-OUT TO SO
 MOVE G"<D1D2D3>" TO DBCSITEM
 MOVE SHIFT-IN TO SI
 DISPLAY DBCSGRP

SORT-CONTROL
The SORT-CONTROL special register is the name of an alphanumeric data item.

Restriction: The SORT-CONTROL special register is not applicable to sorting a table with the format 2
SORT statement.

The SORT-CONTROL special register has the implicit definition:

01 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD".

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

This register contains the ddname of the data set that holds the control statements used to improve the
performance of a sorting or merging operation.

You can provide a DD statement for the data set identified by the SORT-CONTROL special register.
Enterprise COBOL will attempt to open the data set at execution time. Any error will be diagnosed with an
informational message.

You can specify the SORT-CONTROL special register in a function wherever an alphanumeric argument is
allowed.

The SORT-CONTROL special register is not necessary for a successful sorting or merging operation.

The sort control file takes precedence over the SORT special registers.

SORT-CORE-SIZE
The SORT-CORE-SIZE special register is the name of a binary data item that you can use to specify the
number of bytes of storage available to the sort utility.

Restriction: The SORT-CORE-SIZE special register is not applicable to sorting a table with the format 2
SORT statement.

The SORT-CORE-SIZE special register has the implicit definition:

01 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

Chapter 3. Character-strings: COBOL words and literals 25

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

SORT-CORE-SIZE can be used in place of the MAINSIZE or RESINV control statements in the sort control
file:

• The 'MAINSIZE=' option control statement keyword is equivalent to SORT-CORE-SIZE with a positive
value.

• The 'RESINV=' option control statement keyword is equivalent to SORT-CORE-SIZE with a negative
value.

• The 'MAINSIZE=MAX' option control statement keyword is equivalent to SORT-CORE-SIZE with a value
of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an integer argument is
allowed.

SORT-FILE-SIZE
The SORT-FILE-SIZE special register is the name of a binary data item that you can use to specify the
estimated number of records in the sort input file, file-name-1.

Restriction: The SORT-FILE-SIZE special register is not applicable to sorting a table with the format 2
SORT statement.

The SORT-FILE-SIZE special register has the implicit definition:

01 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

SORT-FILE-SIZE is equivalent to the 'FILSZ=Ennn' control statement in the sort control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an integer argument is
allowed.

SORT-MESSAGE
The SORT-MESSAGE special register is the name of an alphanumeric data item that is available to both
sort and merge programs.

Restriction: The SORT-MESSAGE special register is not applicable to sorting a table with the format 2
SORT statement.

The SORT-MESSAGE special register has the implicit definition:

01 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT".

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

You can use the SORT-MESSAGE special register to specify the ddname of a data set that the sort utility
should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on the 'MSGDDN=' control
statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an alphanumeric argument is
allowed.

26 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

SORT-MODE-SIZE
The SORT-MODE-SIZE special register is the name of a binary data item that you can use to specify the
length of variable-length records that occur most frequently.

Restriction: The SORT-MODE-SIZE special register is not applicable to sorting a table with the format 2
SORT statement.

The SORT-MODE-SIZE special register has the implicit definition:

01 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

SORT-MODE-SIZE is equivalent to the 'SMS=' control statement in the sort control file.

You can specify the SORT-MODE-SIZE special register in a function wherever an integer argument is
allowed.

SORT-RETURN
The SORT-RETURN special register is the name of a binary data item and is available to both sort and
merge programs.

Restriction: The SORT-RETURN special register is not applicable to sorting a table with the format 2 SORT
statement.

The SORT-RETURN special register has the implicit definition:

01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

The SORT-RETURN special register contains a return code of 0 (successful) or 16 (unsuccessful) at the
completion of a sort or merge operation. If the sort or merge is unsuccessful and there is no reference to
this special register anywhere in the program, a message is displayed on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or input/output procedure to
terminate a sort or merge operation before all records are processed. The operation is terminated on the
next input or output function for the sort or merge operation.

You can specify the SORT-RETURN special register in a function wherever an integer argument is allowed.

TALLY
The TALLY special register is the name of a binary data item.

See the following definition of a binary data item:

01 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer argument is allowed.

Chapter 3. Character-strings: COBOL words and literals 27

WHEN-COMPILED
The WHEN-COMPILED special register contains the date at the start of the compilation.

WHEN-COMPILED is an alphanumeric data item that has the implicit definition:

01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

The WHEN-COMPILED special register has the format:

MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 15 October 2007, WHEN-COMPILED would contain the
value 10/15/0714.04.00.

WHEN-COMPILED can be used only as the sending field in a MOVE statement.

WHEN-COMPILED special register data cannot be reference-modified.

The compilation date and time can also be accessed with the intrinsic function WHEN-COMPILED (see
Chapter 111, “WHEN-COMPILED,” on page 679). That function supports four-digit year values and
provides additional information.

XML-CODE
The XML-CODE special register is used to communicate status between the XML parser and the
processing procedure that was identified in an XML PARSE statement, and to indicate either that an
XML GENERATE statement executed successfully or that an exception occurred during XML generation.

The XML-CODE special register has the implicit definition:

01 XML-CODE PICTURE S9(9) USAGE BINARY VALUE 0.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

When the XML parser encounters an XML event, it sets XML-CODE and then passes control to the
processing procedure. For all events except an EXCEPTION event, XML-CODE contains zero when the
processing procedure receives control.

For an EXCEPTION event, the parser sets XML-CODE to an exception code that indicates the nature of the
exception. XML PARSE exception codes are discussed in Handling XML PARSE exceptions in the Enterprise
COBOL Programming Guide.

For some XML events, you can set XML-CODE before returning to the parser to control subsequent
processing of the document. For details, see XML-CODE in the Enterprise COBOL Programming Guide.

When the parser returns control to the XML PARSE statement, XML-CODE contains the most recent value
set by the processing procedure or the parser. In some cases, the parser overrides the value set by the
processing procedure.

At termination of an XML GENERATE statement, XML-CODE contains either zero, indicating successful
completion of XML generation, or a nonzero error code, indicating that an exception occurred during XML
generation. XML GENERATE exception codes are detailed in XML GENERATE exceptions in the Enterprise
COBOL Programming Guide.

Related concepts
XML-CODE (Enterprise COBOL Programming Guide)

28 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Related tasks
Handling XML PARSE exceptions (Enterprise COBOL Programming Guide)

Related references
XML GENERATE exceptions (Enterprise COBOL Programming Guide)

XML-EVENT
The XML-EVENT special register communicates event information from the XML parser to the processing
procedure identified in the XML PARSE statement.

Before passing control to the processing procedure, the XML parser sets the XML-EVENT special register
to the name of the XML event. The specific events and the associated special registers that are set depend
on the setting of the XMLPARSE compiler option, XMLPARSE(XMLSS) or XMLPARSE(COMPAT).

The parser uses the following special registers when XMLPARSE(XMLSS) is in effect:

• XML-CODE
• XML-EVENT
• XML-TEXT or XML-NTEXT
• XML-NAMESPACE or XML-NNAMESPACE
• XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX

The parser uses the following special registers when XMLPARSE(COMPAT) is in effect:

• XML-CODE
• XML-EVENT
• XML-TEXT or XML-NTEXT

The parser sets XML-NTEXT to associated XML text when the XML document is in a national data
item, and sets XML-TEXT when the XML document is in an alphanumeric data item. When the
XMLPARSE(COMPAT) compiler option is in effect, the parser sets XML-NTEXT to the text of any
numeric character reference (for events ATTRIBUTE-NATIONAL-CHARACTER and CONTENT-NATIONAL-
CHARACTER) regardless of the type of the XML document data item.

When the XMLPARSE(XMLSS) compiler option is in effect, the parser sets XML-NNAMESPACE and XML-
NNAMESPACE-PREFIX when the XML document is in a national data item and when the RETURNING
NATIONAL phrase is specified in the XML PARSE statement; otherwise, the parser sets XML-NAMESPACE
and XML-NAMESPACE-PREFIX.

Table 3 on page 29 shows XML events and special register contents for parsing with the
XMLPARSE(XMLSS) and XMLPARSE(COMPAT) options.

XML-EVENT has the implicit definition:

01 XML-EVENT USAGE DISPLAY PICTURE X(30) VALUE SPACE.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

XML-EVENT cannot be used as a receiving data item.

Table 3. XML events and associated special register contents

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

ATTRIBUTE-CHARACTER n/a5 XML-TEXT or XML-NTEXT contains
the single character that
corresponds with the predefined
entity reference in the attribute
value.

Chapter 3. Character-strings: COBOL words and literals 29

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

ATTRIBUTE-CHARACTERS XML-TEXT or XML-NTEXT contains
the value within quotation marks or
apostrophes. This can be a substring of
the attribute value.

XML-TEXT or XML-NTEXT contains
the value within quotation marks
or apostrophes. This can be a
substring of the attribute value
if the value includes a character
reference or an entity reference.

ATTRIBUTE-NAME For attribute names that are not in a
namespace, XML-TEXT or XML-NTEXT
contains the attribute name.

For attributes with names in a nondefault
namespace, attribute names are always
prefixed and have the form: prefix:local-
part = "AttValue".

XML-TEXT or XML-NTEXT contains the
local-part, XML-NAMESPACE or XML-
NNAMESPACE contains the namespace
identifier, and XML-NAMESPACE-PREFIX
or XML-NNAMESPACE-PREFIX contains
the prefix.

XML-TEXT or XML-TEXT contains
the attribute name (the string to the
left of the equal sign).

ATTRIBUTE-NATIONAL-CHARACTER Regardless of the type of the XML
document, XML-TEXT is empty with
length zero and XML-NTEXT contains the
single national character that correponds
with the numeric character reference. 2

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

COMMENT XML-TEXT or XML-NTEXT contains the
text of the comment between the opening
character sequence "<!--" and the
closing character sequence "-->". This
can be a substring of the text.

XML-TEXT or XML-NTEXT always
contains the complete text of the
comment.

CONTENT-CHARACTER n/a5 XML-TEXT or XML-NTEXT contains
the single character that
corresponds with the predefined
entity reference in the element
content.

CONTENT-CHARACTERS XML-TEXT or XML-NTEXT contains the
character content of the element
between start and end tags. This can be
a substring of the content.

XML-TEXT or XML-NTEXT contains
the character content of the
element between start and end
tags. This can be a substring of
the character content if the content
includes a character reference or
an entity reference.

CONTENT-NATIONAL-CHARACTER Regardless of the type of the XML
document, XML-TEXT is empty with
length zero and XML-NTEXT contains
the single national character that
corresponds with the numeric character
reference.2

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

DOCUMENT-TYPE-DECLARATION XML-TEXT or XML-NTEXT contains the
name of the root element, as specified in
the document type delcaration.

XML-TEXT or XML-NTEXT contains
the entire document type
declaration, including the opening
and closing character sequences
"<!DOCTYPE" and ">".

30 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

ENCODING-DECLARATION XML-TEXT or XML-NTEXT contains the
value, between quotation marks or
apostrophes, of the encoding declaration
in the XML declaration.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

END-OF-CDATA-SECTION All XML special registers except XML-
CODE and XML-EVENT are empty with
length zero.

XML-TEXT or XML-NTEXT contains
the string "]]>".

END-OF-DOCUMENT All XML special registers except XML-
CODE and XML-EVENT are empty with
length zero.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

END-OF-ELEMENT XML-TEXT or XML-NTEXT contains the
local part of the end element tag or empty
element tag name.

If the element name is in a nondefault
namespace, XML-NAMESPACE or XML-
NNAMESPACE contains the namespace
identifier.

If the element name is in a namespace
and is prefixed (of the form prefix:local-
part), XML-NAMESPACE-PREFIX or XML-
NNAMESPACE-PREFIX contains the
prefix.

XML-TEXT or XML-NTEXT contains
the name of the end element tag or
empty element tag.

END-OF-INPUT All XML special registers except XML-
CODE and XML-EVENT are empty with
length zero.

To parse an additional segment of an
XML document, move the next segment
to identifier-1 and set XML-CODE to 1.

n/a6

EXCEPTION XML-CODE contains the unique return
code and reason code that identifies the
exception.

XML-TEXT or XML-NTEXT contains the
document fragment up to the point of
the error or anomaly that caused the
exception.4

All other XML special registers are empty
with length zero.

XML-CODE contains the unique
error code that identifies the
exception.3

XML-TEXT or XML-NTEXT contains
the part of the document that was
successfully scanned, up to and
including the point at which the
exception was detected.

Chapter 3. Character-strings: COBOL words and literals 31

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

NAMESPACE-DECLARATION XML-TEXT and XML-NTEXT are both
empty with length zero.

XML-NAMESPACE or XML-NNAMESPACE
contains the declared namespace
identifier. If the namespace is
"undeclared" by specifying the empty
string, XML-NAMESPACE and XML-
NNAMESPACE are empty with length
zero.

XML-NAMESPACE-PREFIX or XML-
NNAMESPACE-PREFIX contains the
prefix if the namespace declaration
is of the form xmlns:prefix =
"namespace-identifier"; otherwise, if
the declaration is for the default
namespace and thus the attribute
name is xmlns, XML-NAMESPACE-PREFIX
and XML-NNAMESPACE-PREFIX are both
empty with length zero.

n/a6

(ATTRIBUTE-NAME and
ATTRIBUTE-CHARACTERS events
are signaled instead.)

PROCESSING-INSTRUCTION-DATA XML-TEXT or XML-NTEXT contains the
rest of the processing instruction (after
the target name), not including the
closing sequence "?>", but including
trailing, and not leading, white space
characters. This can be a substring of the
processing instruction data.

XML-TEXT or XML-NTEXT always
contains the complete processing
instruction data.

PROCESSING-INSTRUCTION-TARGET XML-TEXT or XML-NTEXT contains the
processing instruction target name, which
occurs immediately after the processing
instruction opening sequence, "<?". This
event can occur multiple times for a given
processing instruction: one occurrence
preceding each substring of the data.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS). This event
occurs only once for a given
processing instruction.

STANDALONE-DECLARATION XML-TEXT or XML-NTEXT contains the
value, between quotation marks or
apostrophes ("yes" or "no"), of the stand-
alone declaration in the XML declaration.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

START-OF-CDATA-SECTION All XML special registers except XML-
CODE and XML-EVENT are empty with
length zero.

XML-TEXT or XML-NTEXT contains
the string "<![CDATA[".

START-OF-DOCUMENT All XML special registers except XML-
CODE and XML-EVENT are empty with
length zero.

XML-TEXT or XML-NTEXT contains
the entire document.

32 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)1 XMLPARSE(COMPAT)1

START-OF-ELEMENT XML-TEXT or XML-NTEXT contains the
local part of the start element tag name
or the local part of the empty element tag
name.

If the element name is in a namespace,
XML-NAMESPACE or XML-NNAMESPACE
contains the namespace identifier.

If the element name is in a namespace
and is prefixed (of the form prefix:local-
part, XML-NAMESPACE-PREFIX or XML-
NNAMESPACE-PREFIX contains the
prefix.

XML-TEXT or XML-NTEXT contains
the name of the start element tag
or empty element tag, also known
as the element type.

UNKNOWN-REFERENCE-IN-ATTRIBUTE n/a5

For XMLPARSE(XMLSS), the parser always
signals EXCEPTION.

XML-TEXT or XML-NTEXT contains
the entity reference name, not
including the "&" and ";" delimiters.

UNKNOWN-REFERENCE-IN-CONTENT n/a5

For XMLPARSE(XMLSS), the parser
signals UNRESOLVED-REFERENCE or
EXCEPTION instead.

See "Unresolved references" below for
additional details.

XML-TEXT or XML-NTEXT contains
the entity reference name, not
including the "&" and ";" delimiters.

UNRESOLVED-REFERENCE XML-TEXT or XML-NTEXT contains the
entity name from XML content, not
including the "&" and ";" delimiters.

See "Unresolved references" below for
additional details.

n/a6

(The parser signals UNKNOWN-
REFERENCE-IN-CONTENT instead.)

VERSION-INFORMATION XML-TEXT or XML-NTEXT contains the
value, between quotation marks or
apostrophes, of the version information in
the XML declaration.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

1. For all events except EXCEPTION, XML-CODE contains zero. Unless stated otherwise, the namespace XML registers
(XML-NAMESPACE, XML-NNAMESPACE, XML-NAMESPACE-PREFIX, and XML-NNAMESPACE-PREFIX) are empty and
have length zero.

2. National characters with scalar values greater than 65,535 (NX"FFFF") are represented using two encoding units (a
"surrogate pair"). Programmers are responsible for ensuring that operations on the content of XML-NTEXT do not split
the pair of encoding units that together form a graphic character, thereby forming invalid data.

3. For XMLPARSE(COMPAT), exceptions for encoding conflicts are signaled before parsing begins. For these exceptions,
XML-TEXT or XML-NTEXT is either zero length or contains only the encoding declaration value from the document. See
XML PARSE exceptions with XMLPARSE(COMPAT) in effect in the Enterprise COBOL Programming Guide for information
about XML exception codes.

4. If an END-OF-INPUT XML event previously occurred and the processing procedure provided a new document segment,
XML-TEXT or XML-NTEXT contains only the new segment.

If the anomaly occurs before parsing begins (for example, the encoding specification is invalid), XML-TEXT or XML-
NTEXT are empty with length zero.

The fragment might or might not include the anomaly. For a duplicate attribute name, for example, the fragment
includes the incorrect attribute. For an invalid character, the fragment includes document text up to, but not including,
the invalid character.

5. n/a. Not applicable; occurs only with XMLPARSE(COMPAT).
6. n/a. Not applicable; occurs only wtih XMLPARSE(XMLSS).

Chapter 3. Character-strings: COBOL words and literals 33

Unresolved References:

An unresolved entity reference is a reference to the name of an entity that has no declaration in the
document type definition (DTD).

The parser signals an UNRESOLVED-REFERENCE event only if all of the following conditions are true:

• The unresolved reference is within element content, not an attribute value.
• The XML document starts with an XML declaration that specifies standalone="no".
• The XML document contains a document type declaration, for example,

<!DOCTYPE rootElementName>

• If the VALIDATING phrase is specified on the XML PARSE statement, the document type declaration
must also specify an external DTD subset, for example:

<!DOCTYPE rootElementName SYSTEM "someOther.dtd">

Otherwise the parser signals an EXCEPTION event instead of UNRESOLVED-REFERENCE.

XML-INFORMATION
The XML-INFORMATION special register is used to provide additional information to an XML PARSE
processing procedure about the status of the parse.

To use XML-INFORMATION, you must compile with the XMLPARSE(XMLSS) compiler option.

The XML-INFORMATION special register has the implicit definition:

01 XML-INFORMATION PICTURE S9(9) USAGE BINARY VALUE 0.

This register provides a mechanism to easily determine whether an XML EVENT is complete. Sometimes
XML content might be split across multiple events and the application must concatenate the pieces of
content together. The XML-INFORMATION register is used to indicate whether or not content of the XML
event is complete.

The value of the XML-INFORMATION register is set as follows for the various XML events:

• ATTRIBUTE-CHARACTERS

– 1 indicates that the attribute value in XML-TEXT or XML-NTEXT special register is complete
– 2 indicates that the attribute value in XML-TEXT or XML-NTEXT special register is not complete
– 4, 8, 16, ... are reserved for future use

• CONTENT-CHARACTERS

– 1 indicates that the content value in XML-TEXT or XML-NTEXT special register is complete
– 2 indicates that the content value in XML-TEXT or XML-NTEXT special register is not complete
– 4, 8, 16, ... are reserved for future use

• All other events

– 0 indicates that no additional information is currently available
– 2, 4, 8, 16, ... are reserved for future use

XML-NAMESPACE
The XML-NAMESPACE special register is defined during XML parsing to contain the identifier of the
namespace, if any, associated with the name in XML-TEXT for XML events START-OF-ELEMENT, END-

34 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

OF-ELEMENT, and ATTRIBUTE-NAME, and to contain the declared namespace identifier for XML event
NAMESPACE-DECLARATION.

The parser sets XML-NAMESPACE to the identifier of the namespace associated with a name before
transferring control to the processing procedure when the operand of the XML PARSE statement is
an alphanumeric data item and the RETURNING NATIONAL phrase is not specified in the XML PARSE
statement.

To use XML-NAMESPACE, you must compile with the XMLPARSE(XMLSS) compiler option.

XML-NAMESPACE is an elementary data item of category alphanumeric. The length of XML-NAMESPACE
can vary from 0 through 32,768 bytes. The length at run time is the length of the contained namespace
identifier.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

XML-NAMESPACE has a length of zero for:

• The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML events if there is no
namespace associated with a name

• The NAMESPACE-DECLARATION XML event if the namespace is undeclared by specifying the empty
string

• All other XML events

When XML-NAMESPACE is set, the XML-NNAMESPACE special register has a length of zero. At any given
time, only one of the two special registers XML-NAMESPACE and XML-NNAMESPACE has a nonzero
length.

Use the LENGTH function or the LENGTH OF special register to determine the number of bytes that
XML-NAMESPACE contains.

XML-NAMESPACE cannot be used as a receiving item.

XML-NNAMESPACE
The XML-NNAMESPACE special register is defined during XML parsing to contain the identifier of the
namespace, if any, associated with the name in XML-NTEXT for XML events START-OF-ELEMENT, END-
OF-ELEMENT, and ATTRIBUTE-NAME, and to contain the declared namespace identifier for XML event
NAMESPACE-DECLARATION.

The parser sets XML-NNAMESPACE to the identifier of the namespace associated with a name before
transferring control to the processing procedure when the RETURNING NATIONAL phrase is specified in
the XML PARSE statement or the operand of the XML PARSE statement is a national data item.

To use XML-NNAMESPACE, you must compile with the XMLPARSE(XMLSS) compiler option.

XML-NNAMESPACE is an elementary data item of category national. The length of XML-NNAMESPACE can
vary from 0 through 16,384 national characters (0 through 32,768 bytes). The length at run time is the
length of the contained namespace identifier.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

XML-NNAMESPACE has a length of zero for:

• The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML events, if there is no
namespace associated with a name

• The NAMESPACE-DECLARATION XML event if the namespace is undeclared by specifying the empty
string

• All other XML events

Chapter 3. Character-strings: COBOL words and literals 35

When XML-NNAMESPACE is set, the XML-NAMESPACE special register has a length of zero. At any given
time, only one of the two special registers XML-NNAMESPACE and XML-NAMESPACE has a nonzero
length.

Use the LENGTH function to determine the number of national character positions that XML-
NNAMESPACE contains; use the LENGTH OF special register to determine the number of bytes.

XML-NNAMESPACE cannot be used as a receiving item.

XML-NAMESPACE-PREFIX
The XML-NAMESPACE-PREFIX special register is defined during XML parsing to contain the prefix, if
any, of the name in XML-TEXT for XML events START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-
NAME, and to contain the local attribute name for XML event NAMESPACE-DECLARATION.

The namespace prefix is used as an alias for the complete namespace identifier.

The parser sets XML-NAMESPACE-PREFIX before transferring control to the processing procedure when
the operand of the XML PARSE statement is an alphanumeric data item and the RETURNING NATIONAL
phrase is not specified.

To use XML-NAMESPACE-PREFIX, you must compile with the XMLPARSE(XMLSS) compiler option.

XML-NAMESPACE-PREFIX is an elementary data item of category national. The length of XML-
NAMESPACE-PREFIX can vary from 0 through 4,096 bytes. The length at run time is the length of the
contained namespace prefix.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

XML-NAMESPACE-PREFIX has a length of zero for:

• The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML events if the name does not
have a prefix

• The NAMESPACE-DECLARATION XML event if the declaration is for the default namespace, in which
case the namespace declaration attribute name is not prefixed.

• All other XML events

When XML-NAMESPACE-PREFIX is set, the XML-NNAMESPACE-PREFIX special register has a length
of zero. At any given time, only one of the two special registers XML-NAMESPACE-PREFIX and XML-
NNAMESPACE-PREFIX has a nonzero length.

Use the LENGTH function or the LENGTH OF special register to determine the number of bytes that
XML-NAMESPACE-PREFIX contains.

XML-NAMESPACE-PREFIX cannot be used as a receiving item.

XML-NNAMESPACE-PREFIX
The XML-NNAMESPACE-PREFIX special register is defined during XML parsing to contain the prefix, if
any, of the name in XML-NTEXT for XML events START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-
NAME, and to contain the local attribute name for XML event NAMESPACE-DECLARATION.

The namespace prefix is used as an alias for the complete namespace identifier.

The parser sets XML-NNAMESPACE-PREFIX before transferring control to the processing procedure when
the operand of the XML PARSE statement is a national data item or the RETURNING NATIONAL phrase is
specified in the XML PARSE statement.

To use XML-NNAMESPACE-PREFIX, you must compile with the XMLPARSE(XMLSS) compiler option.

XML-NNAMESPACE-PREFIX is an elementary data item of category national. The length of XML-
NNAMESPACE-PREFIX can vary from 0 through 2048 national character positions (0 through 4096 bytes).
The length at run time is the length of the contained namespace prefix.

36 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

XML-NNAMESPACE-PREFIX has a length of zero for:

• The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML events if the name does not
have a prefix

• NAMESPACE-DECLARATION XML event if the declaration is for the default namespace, in which case
the namespace declaration attribute name is not prefixed.

• All other XML events

When XML-NNAMESPACE-PREFIX is set, the XML-NAMESPACE-PREFIX special register has a length
of zero. At any given time, only one of the two special registers XML-NNAMESPACE-PREFIX and XML-
NAMESPACE-PREFIX has a nonzero length.

Use the LENGTH function to determine the number of national character positions that XML-
NNAMESPACE contains; use the LENGTH OF special register to determine the number of bytes.

XML-NNAMESPACE-PREFIX cannot be used as a receiving item.

XML-NTEXT
The XML-NTEXT special register is defined during XML parsing to contain document fragments that are
represented in usage NATIONAL.

XML-NTEXT is an elementary data item of category national of the length of the contained XML document
fragment. The length of XML-NTEXT can vary from 0 through 67,090,431 national character positions. The
maximum byte length is 134,180,862.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

The parser sets XML-NTEXT to the document fragment associated with an event before transferring
control to the processing procedure in these cases:

• When the operand of the XML PARSE statement is a data item of category national or the RETURNING
NATIONAL phrase is specified in the XML PARSE statement

• For the ATTRIBUTE-NATIONAL-CHARACTER event
• For the CONTENT-NATIONAL-CHARACTER event

When XML-NTEXT is set, the XML-TEXT special register has a length of zero. At any given time, only one of
the two special registers XML-NTEXT and XML-TEXT has a nonzero length.

Use the LENGTH function to determine the number of national characters that XML-NTEXT contains. Use
the LENGTH OF special register to determine the number of bytes, rather than the number of national
characters, that XML-NTEXT contains.

XML-NTEXT cannot be used as a receiving item.

XML-TEXT
The XML-TEXT special register is defined during XML parsing to contain document fragments that are
represented in usage DISPLAY.

XML-TEXT is an elementary data item of category alphanumeric of the length of the contained XML
document fragment. The length of XML-TEXT can vary from 0 through 134,180,862 bytes.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the global attribute in the
outermost program.

Chapter 3. Character-strings: COBOL words and literals 37

The parser sets XML-TEXT to the document fragment associated with an event before transferring control
to the processing procedure when the operand of the XML PARSE statement is an alphanumeric data
item and the RETURNING NATIONAL phrase is not specified in the XML PARSE statement, except for the
ATTRIBUTE-NATIONAL-CHARACTER event and the CONTENT-NATIONAL-CHARACTER event.

When XML-TEXT is set, the XML-NTEXT special register has a length of zero. At any given time, only one of
the two special registers XML-NTEXT and XML-TEXT has a nonzero length.

Use the LENGTH function or the LENGTH OF special register for XML-TEXT to determine the number of
bytes that XML-TEXT contains.

XML-TEXT cannot be used as a receiving item.

Literals
A literal is a character-string whose value is specified either by the characters of which it is composed or
by the use of a figurative constant.

For more information about figurative constants, see “Figurative constants” on page 15.

For descriptions of the different types of literals, see the following topics:

• “Alphanumeric literals” on page 38
• “DBCS literals” on page 41
• “National literals” on page 46
• “Numeric literals” on page 45

Alphanumeric literals
Enterprise COBOL provides several formats of alphanumeric literals.

The formats of alphanumeric literals are:

• Format 1: “Basic alphanumeric literals” on page 38
• Format 2: “Alphanumeric literals with DBCS characters” on page 39
• Format 3: “Hexadecimal notation for alphanumeric literals” on page 40
• Format 4: “Null-terminated alphanumeric literals” on page 41

Basic alphanumeric literals
Basic alphanumeric literals can contain any character in a single-byte EBCDIC character set.

The following format is for a basic alphanumeric literal:

Format 1: Basic alphanumeric literals

"single-byte-characters"
'single-byte-characters'

The enclosing quotation marks or apostrophes are excluded from the literal when the program is
compiled.

An embedded quotation mark or apostrophe must be represented by a pair of quotation marks ("")
or a pair of apostrophes (''), respectively, when it is the character used as the opening delimiter. For
example:

• "THIS ISN""T WRONG" returns THIS ISN"T WRONG.
• 'THIS ISN''T WRONG' returns THIS ISN'T WRONG.

This is a similar concept to an escape character or escape sequence that is used to represent certain
special characters within literals in other programming languages. Other than the quotation mark

38 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

and apostrophe, the only other consideration you need to give to special characters in literals is to
Double-Byte Character Set (DBCS) literals, which are needed for national languages that contain unique
characters or symbols. For details, See “DBCS literals” on page 41.

The delimiter character used as the opening delimiter for a literal must be used as the closing delimiter
for that literal. For example:

'THIS IS RIGHT'
"THIS IS RIGHT"
'THIS IS WRONG"

You can use apostrophes or quotation marks as the literal delimiters independent of the APOST/QUOTE
compiler option.

Any punctuation characters included within an alphanumeric literal are part of the value of the literal.

The maximum length of an alphanumeric literal is 160 bytes. The minimum length is 1 byte.

Alphanumeric literals are in the alphanumeric data class and category. (Data classes and categories are
described in “Classes and categories of data” on page 170.)

Alphanumeric literals with DBCS characters
When the DBCS compiler option is in effect, the characters X'0E' and X'0F' in an alphanumeric literal will
be recognized as shift codes for DBCS characters. That is, the characters between paired shift codes will
be recognized as DBCS characters. Unlike an alphanumeric literal compiled under the NODBCS option,
additional syntax rules apply to DBCS characters in an alphanumeric literal.

Alphanumeric literals with DBCS characters have the following format:

Format 2: Alphanumeric literals with DBCS characters

"mixed-SBCS-and-DBCS-characters"
'mixed-SBCS-and-DBCS-characters'

" or '
The opening and closing delimiter. The closing delimiter must match the opening delimiter.

mixed-SBCS-and-DBCS-characters
Any mix of single-byte and DBCS characters.

Shift-out and shift-in control characters are part of the literal and must be paired. They must contain
zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for single-byte characters in the literal follow the rules for basic alphanumeric
literals. The syntax rules for DBCS characters in the literal follow the rules for DBCS literals.

The move and comparison rules for alphanumeric literals with DBCS characters are the same as those for
any alphanumeric literal.

The length of an alphanumeric literal with DBCS characters is its byte length, including the shift control
characters. The maximum length is limited by the available space on one line in Area B. An alphanumeric
literal with DBCS characters cannot be continued.

An alphanumeric literal with DBCS characters is of the alphanumeric category.

Alphanumeric literals with DBCS characters cannot be used:

• As a literal in the following cases:

– ALPHABET clause

Chapter 3. Character-strings: COBOL words and literals 39

– ASSIGN clause
– CALL statement program-ID
– CANCEL statement
– CLASS clause
– CURRENCY SIGN clause
– END PROGRAM marker
– ENTRY statement
– PADDING CHARACTER clause
– PROGRAM-ID paragraph
– RERUN clause
– STOP statement
– XML-SCHEMA clause

• As the external class-name for an object-oriented class
• As the basis-name in a BASIS statement
• As the text-name in a COPY statement
• As the library-name in a COPY statement

Enterprise COBOL statements process alphanumeric literals with DBCS characters without sensitivity to
the shift codes and character codes. The use of statements that operate on a byte-to-byte basis (for
example, STRING and UNSTRING) can result in strings that are not valid mixtures of single-byte EBCDIC
and DBCS characters. See Processing alphanumeric data items that contain DBCS data in the Enterprise
COBOL Programming Guide for more information about using alphanumeric literals and data items with
DBCS characters in statements that operate on a byte-by-byte basis.

Hexadecimal notation for alphanumeric literals
Hexadecimal notation can be used for alphanumeric literals.

Hexadecimal notation has the following format:

Format 3: Hexadecimal notation for alphanumeric literals

X"hexadecimal-digits"
X'hexadecimal-digits'

X" or X'
The opening delimiter for the hexadecimal notation of an alphanumeric literal.

" or '
The closing delimiter for the hexadecimal notation of an alphanumeric literal. If a quotation mark is
used in the opening delimiter, a quotation mark must be used as the closing delimiter. Similarly, if an
apostrophe is used in the opening delimiter, an apostrophe must be used as the closing delimiter.

Hexadecimal digits are characters in the range '0' to '9', 'a' to 'f', and 'A' to 'F', inclusive. Two hexadecimal
digits represent one character in a single-byte character set (EBCDIC or ASCII). Four hexadecimal digits
represent one character in a DBCS character set. A string of EBCDIC DBCS characters represented
in hexadecimal notation must be preceded by the hexadecimal representation of a shift-out control
character (X'0E') and followed by the hexadecimal representation of a shift-in control character (X'0F').
An even number of hexadecimal digits must be specified. The maximum length of a hexadecimal literal is
320 hexadecimal digits.

The continuation rules are the same as those for any alphanumeric literal. The opening delimiter (X" or
X') cannot be split across lines.

40 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The DBCS compiler option has no effect on the processing of hexadecimal notation of alphanumeric
literals.

An alphanumeric literal in hexadecimal notation has data class and category alphanumeric. Hexadecimal
notation for alphanumeric literals can be used anywhere alphanumeric literals can be used.

See also “Hexadecimal notation for national literals” on page 47.

Null-terminated alphanumeric literals
Alphanumeric literals can be null-terminated.

The format for null-terminated alphanumeric literals is:

Format 4: Null-terminated alphanumeric literals

Z"mixed-characters"
Z'mixed-characters'

Z" or Z'
The opening delimiter for a null-terminated alphanumeric literal. Both characters of the opening
delimiter (Z" or Z') must be on the same source line.

" or '
The closing delimiter for a null-terminated alphanumeric literal.

If a quotation mark is used in the opening delimiter, a quotation mark must be used as the closing
delimiter. Similarly, if an apostrophe is used in the opening delimiter, an apostrophe must be used as
the closing delimiter.

mixed-characters
Can be any of the following characters:

• Solely single-byte characters
• Mixed single-byte and DBCS characters
• Solely DBCS characters

However, you cannot specify the single-byte character with the value X'00'. X'00' is the null character
automatically appended to the end of the literal. The content of the literal is otherwise subject to the
same rules and restrictions as an alphanumeric literal with DBCS characters (format 2).

The length of the string of characters in the literal content can be 0 to 159 bytes. The actual length of the
literal includes the terminating null character, and is a maximum of 160 bytes.

A null-terminated alphanumeric literal has data class and category alphanumeric. It can be used
anywhere an alphanumeric literal can be used except that null-terminated literals are not supported
in ALL literal figurative constants.

The LENGTH intrinsic function, when applied to a null-terminated alphanumeric literal, returns the
number of bytes in the literal prior to but not including the terminating null. (The LENGTH special register
does not support literal operands.)

DBCS literals
The formats and rules for DBCS literals are listed in this section.

Chapter 3. Character-strings: COBOL words and literals 41

Format for DBCS literals

G"<DBCS-characters>"
G'<DBCS-characters>'
N"<DBCS-characters>"
N'<DBCS-characters>'

G", G', N", or N'
Opening delimiters.

N" and N' identify a DBCS literal when the NSYMBOL(DBCS) compiler option is in effect. They identify
a national literal when the NSYMBOL(NATIONAL) compiler option is in effect, and the rules specified
in “National literals” on page 46 apply.

The opening delimiter must be followed immediately by a shift-out control character.

For literals with opening delimiter N" or N', when embedded quotes or apostrophes are specified
as part of DBCS characters in a DBCS literal, a single embedded DBCS quote or apostrophe is
represented by two DBCS quotes or apostrophes. If a single embedded DBCS quote or apostrophe is
found, an E-level compiler message will be issued and a second embedded DBCS quote or apostrophe
will be assumed.

<
Represents the shift-out control character (X'0E')

>
Represents the shift-in control character (X'0F')

" or '
The closing delimiter. If a quotation mark is used in the opening delimiter, a quotation mark must
be used as the closing delimiter. Similarly, if an apostrophe is used in the opening delimiter, an
apostrophe must be used as the closing delimiter.

The closing delimiter must appear immediately after the shift-in control character.

DBCS-characters
DBCS-characters can be one or more characters in the range of X'00' through X'FF' for either byte.
Any value will be accepted in the content of the literal, although whether it is a valid value at run time
depends on the CCSID in effect for the CODEPAGE compiler option.

Maximum length
28 characters

Continuation rules
Cannot be continued across lines

Where DBCS literals can be used
DBCS literals can be used in the following places:

• DATA DIVISION

– In the VALUE clause of data description entries that define a data item of class DBCS.
– In the VALUE OF clause of file description entries.

• PROCEDURE DIVISION

– In a relation condition when the comparand is a DBCS data item, an elementary data item of class
national, a national group item, or an alphanumeric group item

– As an argument passed BY CONTENT in a CALL statement
– In the DISPLAY and EVALUATE statements
– In the following statements:

- INITIALIZE; for details, see “INITIALIZE statement” on page 350.

42 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

- INSPECT; for details, see “INSPECT statement” on page 353.
- MOVE; for details, see “MOVE statement” on page 400.
- STRING; for details, see “STRING statement” on page 457.
- UNSTRING, for details, see “UNSTRING statement” on page 464.

– In figurative constant ALL
– As an argument to the NATIONAL-OF intrinsic function

• Compiler-directing statements COPY, REPLACE, and TITLE

UTF-8 literals
The UTF-8 literal formats that Enterprise COBOL provides are basic UTF-8 literals and hexadecimal
notation for UTF-8 literals.

Basic UTF-8 literals
The format and rules for basic UTF-8 literals are listed in this section.

Format 1: Basic UTF-8 literals

U"character-data"

U'character-data'

U" or U'
Opening delimiters. The opening delimiter must be coded as single-byte characters. It cannot be split
across lines.

" or '
The closing delimiter. The closing delimiter must be coded as a single-byte character. If a quotation
mark is used in the opening delimiter, it must be used as the closing delimiter. Similarly, if an
apostrophe is used in the opening delimiter, it must be used as the closing delimiter.

To include the quotation mark or apostrophe used in the opening delimiter in the content of the literal,
specify a pair of quotation marks or apostrophes, respectively. For example:

U'This literal''s content includes an apostrophe ';
U'This literal includes ", which is not used in the opening delimiter ';
U"This literal includes "", which is used in the opening delimiter ".

character-data
The source text representation of the content of the UTF-8 literal. character-data can include any
combination of EBCDIC single-byte characters and double-byte characters encoded in the Coded
Character Set ID (CCSID) specified by the CODEPAGE compiler option.

DBCS characters in the content of the literal must be delimited by shift-out and shift-in control
characters.

character-data can contain the following Unicode escape sequences:

• \uhhhh, where each h represents a hexadecimal digit in the range '0' to '9', 'a' to 'f', and 'A'
to 'F', inclusive. This Unicode escape sequence represents a Unicode code point from the Basic
Multilingual Plane (i.e., Unicode code points in the range U+0000 through U+FFFF).

• \U00hhhhh, where each h represents a hexadecimal digit in the range '0' to '9', 'a' to 'f', and 'A' to 'F'.
This Unicode escape sequence can represent any legal Unicode code point, including code points
from the Supplementary Planes, specifically, Unicode code points in the range U+10000 through
U+10FFFF (e.g., an emoji symbol).

Note:

Chapter 3. Character-strings: COBOL words and literals 43

1. Code points U+D800 through U+DFFF are reserved for the high and low halves of surrogate pairs
used by UTF-16. There is no legal encoding of these Unicode code points in UTF-8 and hence
\uD800 through \uDFFF and \U0000D800 through \U0000DFFF cannot be specified as Unicode
escape sequences in UTF-8 literals.

2. To avoid having a string of characters of the form \uhhhh or \U00hhhhhh in a UTF-8 literal be
interpreted as a Unicode escape sequence, the escape character ‘\’ can itself be escaped with ‘\’
to cause it to be interpreted literally. Thus, the sequence \\u00E9 will not be treated as a Unicode
escape sequence.

Wherever a Unicode escape sequence appears in a basic UTF-8 literal, it is replaced by the compiler
with the corresponding UTF-8 encoding of the Unicode code point, which makes it convenient to
represent general Unicode code points in the literal using only EBCDIC characters. For example,
u'caf\u00E9' represents the string 'café'.

Maximum length
The maximum number of UTF-8 characters that can be represented in a basic UTF-8 literal varies
depending on the size (1 to 4 bytes) of each UTF-8 character being represented. However, a maximum
of 160 bytes after conversion of the literal characters form the EBCDIC codepage to UTF-8 is allowed
before truncation occurs. Truncation will be performed on a character boundary.

If the source content of the literal contains one or more DBCS characters, the maximum length is
limited by the available space in Area B of a single source line.

The literal must contain at least one character. Each single-byte character in the literal counts as one
character position and each DBCS character in the literal counts as one character position. Shift-in
and shift-out delimiters for DBCS characters are not counted.

Continuation rules
When the content of the literal includes DBCS characters, the literal cannot be continued.

When the content of the literal does not include DBCS characters, normal continuation rules apply.

The source text representation of character-data is automatically converted to UTF-8 for use at run
time. For example, when the literal is moved to or compared with a data item of category UTF-8, it is
automatically converted to UTF-8.

Hexadecimal notation for UTF-8 literals
The format and rules for the hexadecimal notation format of UTF-8 literals are listed in this section.

Format 2: Hexadecimal notation for UTF-8 literals

UX"hexadecimal-digits"

UX'hexadecimal-digits'

UX" or UX'
Opening delimiters. The opening delimiter must be represented in single-byte characters. It must not
be split across lines.

" or '
The closing delimiter. The closing delimiter must be coded as a single-byte character.

If a quotation mark is used in the opening delimiter, it must be used as the closing delimiter. Similarly,
if an apostrophe is used in the opening delimiter, it must be used as the closing delimiter.

hexadecimal-digits
Hexadecimal digits in the range '0' to '9', 'a' - f', and 'A' to 'F', inclusive. Each group of two hexadecimal
digits represents a single encoding unit of a UTF-8 character.

44 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Maximum length
The length of a UTF-8 literal in hexadecimal notation must be from two to 320 hexadecimal digits,
excluding the opening and closing delimiters.

Continuation rules
Normal continuation rules apply.

The sequence of bytes represented by hexadecimal-digits is validated to ensure that it contains a legal
sequence of UTF-8 bytes.

The content of a UTF-8 literal in hexadecimal notation is stored as UTF-8 characters. The resulting
content has the same meaning as a basic UTF-8 literal that specifies the same UTF-8 characters.

A UTF-8 literal in hexadecimal notation has data class and category UTF-8 and can be used anywhere that
a basic UTF-8 literal can be used.

Numeric literals
A numeric literal is a character-string whose characters are selected from the digits 0 through 9, a sign
character (+ or -), and the decimal point.

If the literal contains no decimal point, it is an integer. (In this documentation, the word integer appearing
in a format represents a numeric literal of nonzero value that contains no sign and no decimal point,
except when other rules are included with the description of the format.) The following rules apply:

• If the ARITH(COMPAT) compiler option is in effect, one through 18 digits are allowed. If the
ARITH(EXTEND) compiler option is in effect, one through 31 digits are allowed.

• Only one sign character is allowed. If included, it must be the leftmost character of the literal. If the
literal is unsigned, it is a positive value.

• Only one decimal point is allowed. If a decimal point is included, it is treated as an assumed decimal
point (that is, as not taking up a character position in the literal). The decimal point can appear
anywhere within the literal except as the rightmost character.

The value of a numeric literal is the algebraic quantity expressed by the characters in the literal. The size
of a numeric literal is equal to the number of digits specified by the user.

Numeric literals can be fixed-point or floating-point numbers.

Numeric literals are in the numeric data class and category. (Data classes and categories are described
under “Classes and categories of data” on page 170.)

Rules for floating-point literal values
The format and rules for floating-point literals are listed below.

Format

 +
 -

mantissa E
 +
 -

exponent

• The sign is optional before the mantissa and the exponent; if you omit the sign, the compiler assumes a
positive number.

• The mantissa can contain between one and 16 digits. A decimal point must be included in the mantissa.
• The exponent is represented by an E followed by an optional sign and one or two digits.
• The magnitude of a floating-point literal value must fall between 0.54E-78 and 0.72E+76. For values

outside of this range, an E-level diagnostic message is produced and the value is replaced by either 0 or
0.72E+76, respectively.

Chapter 3. Character-strings: COBOL words and literals 45

National literals
The national literal formats that Enterprise COBOL provides are basic national literals and hexadecimal
notation for national literals.

For more information about the formats, see “Basic national literals” on page 46 and “Hexadecimal
notation for national literals” on page 47.

Basic national literals
The format and rules for basic national literals are listed in this section.

Format 1: Basic national literals

N"character-data"
N'character-data'

When the NSYMBOL(NATIONAL) compiler option is in effect, the opening delimiter N" or N' identifies a
national literal. A national literal is of the class and category national.

When the NSYMBOL(DBCS) compiler option is in effect, the opening delimiter N" or N' identifies a DBCS
literal, and the rules specified in “DBCS literals” on page 41 apply.

N" or N'
Opening delimiters. The opening delimiter must be coded as single-byte characters. It cannot be split
across lines.

" or '
The closing delimiter. The closing delimiter must be coded as a single-byte character. If a quotation
mark is used in the opening delimiter, it must be used as the closing delimiter. Similarly, if an
apostrophe is used in the opening delimiter, it must be used as the closing delimiter.

To include the quotation mark or apostrophe used in the opening delimiter in the content of the literal,
specify a pair of quotation marks or apostrophes, respectively. Examples:

N'This literal''s content includes an apostrophe'
N'This literal includes ", which is not used in the opening delimiter'
N"This literal includes "", which is used in the opening delimiter"

character-data
The source text representation of the content of the national literal. character-data can include any
combination of EBCDIC single-byte characters and double-byte characters encoded in the Coded
Character Set ID (CCSID) specified by the CODEPAGE compiler option.

DBCS characters in the content of the literal must be delimited by shift-out and shift-in control
characters.

Maximum length
The maximum length of a national literal is 80 character positions, excluding the opening and closing
delimiters. If the source content of the literal contains one or more DBCS characters, the maximum
length is limited by the available space in Area B of a single source line.

The literal must contain at least one character. Each single-byte character in the literal counts as one
character position and each DBCS character in the literal counts as one character position. Shift-in
and shift-out delimiters for DBCS characters are not counted.

Continuation rules
When the content of the literal includes DBCS characters, the literal cannot be continued. When the
content of the literal does not include DBCS characters, normal continuation rules apply.

The source text representation of character-data is automatically converted to UTF-16 for use at run time
(for example, when the literal is moved to or compared with a data item of category national).

46 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Hexadecimal notation for national literals
The format and rules for the hexadecimal notation format of national literals are listed in this section.

Format 2: Hexadecimal notation for national literals

NX"hexadecimal-digits"
NX'hexadecimal-digits'

The hexadecimal notation format of national literals is not affected by the NSYMBOL compiler option.

NX" or NX'
Opening delimiters. The opening delimiter must be represented in single-byte characters. It must not
be split across lines.

" or '
The closing delimiter. The closing delimiter must be represented as a single-byte character.

If a quotation mark is used in the opening delimiter, a quotation mark must be used as the closing
delimiter. Similarly, if an apostrophe is used in the opening delimiter, an apostrophe must be used as
the closing delimiter.

hexadecimal-digits
Hexadecimal digits in the range '0' to '9', 'a' - f', and 'A' to 'F', inclusive. Each group of four hexadecimal
digits represents a single national character and must represent a valid code point in UTF-16. The
number of hexadecimal digits must be a multiple of four.

Maximum length
The length of a national literal in hexadecimal notation must be from four to 320 hexadecimal digits,
excluding the opening and closing delimiters. The length must be a multiple of four.

Continuation rules
Normal continuation rules apply.

The content of a national literal in hexadecimal notation is stored as national characters. The resulting
content has the same meaning as a basic national literal that specifies the same national characters.

A national literal in hexadecimal notation has data class and category national and can be used anywhere
that a basic national literal can be used.

Where national literals can be used
National literals can be used in multiple ways.

National literals can be used:

• In a VALUE clause associated with a data item of class national or a VALUE clause associated with a
condition-name for a conditional variable that is defined with usage NATIONAL

• In figurative constant ALL
• In a relation condition
• In the WHEN phrase of a format-2 SEARCH statement (binary search)
• In the ALL, LEADING, or FIRST phrase of an INSPECT statement
• In the BEFORE or AFTER phrase of an INSPECT statement
• In the DELIMITED BY phrase of a STRING statement
• In the DELIMITED BY phrase of an UNSTRING statement
• As the method-name in a METHOD-ID paragraph, an END METHOD marker, and an INVOKE statement
• As an argument passed BY CONTENT in the CALL statement
• As an argument passed BY VALUE in an INVOKE or CALL statement

Chapter 3. Character-strings: COBOL words and literals 47

• In the DISPLAY and EVALUATE statements
• As a sending item in the following procedural statements:

– INITIALIZE
– INSPECT
– MOVE
– STRING
– UNSTRING

• In the argument list to the following intrinsic functions:

DISPLAY-OF, LENGTH, LOWER-CASE, MAX, MIN, ORD-MAX, ORD-MIN, REVERSE, UPPER-CASE,
USUPPLEMENTARY and UVALID

Note: DBCS literals can't be used in the USUPPLEMENTARY and UVALID functions.
• In the compiler-directing statements COPY, REPLACE, and TITLE

A national literal can be used only as specified in the detailed rules in this document.

PICTURE character-strings
A PICTURE character-string is composed of the currency symbol and certain combinations of characters in
the COBOL character set. PICTURE character-strings are delimited only by the separator space, separator
comma, separator semicolon, or separator period.

A chart of PICTURE clause symbols appears in Table 12 on page 208.

Comments
A comment is a character-string that can contain any combination of characters from the character set of
the computer.

It has no effect on the execution of the program. There are three forms of comments:

Comment entry (IDENTIFICATION DIVISION)
This form is described under Chapter 21, “Optional paragraphs,” on page 117.

Comment line (any division)
This form is described under “Comment lines” on page 60.

Inline comments (any division)
An inline comment is identified by a floating comment indicator (*>) preceded by one or more
character-strings in the program-text area, and can be written on any line of a compilation group.
All characters that follow the floating comment indicator up to the end of area B are comment text.

Character-strings that form comments can contain DBCS characters or a combination of DBCS and single-
byte EBCDIC characters.

Multiple comment lines that contain DBCS strings are allowed. The embedding of DBCS characters in
a comment line must be done on a line-by-line basis. Words containing those characters cannot be
continued to a following line. No syntax checking for valid strings is provided in comment lines.

48 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 4. Separators
A separator is a character or a string of two or more contiguous characters that delimits character-strings.

The separators are shown in the following table.

Table 4. Separators

Separator Meaning

b1 Space

,b1 Comma

.b1 Period

;b1 Semicolon

(Left parenthesis

) Right parenthesis

: Colon

"b1 Quotation mark

'b1 Apostrophe

U" Opening delimiter for UTF-8 literal

U' Opening delimiter for UTF-8 literal

UX" Opening delimiter for a hexadecimal format UTF-8 literal

UX' Opening delimiter for a hexadecimal format UTF-8 literal

X" Opening delimiter for a hexadecimal format alphanumeric literal

X' Opening delimiter for a hexadecimal format alphanumeric literal

Z" Opening delimiter for a null-terminated alphanumeric literal

Z' Opening delimiter for a null-terminated alphanumeric literal

N" Opening delimiter for a national literal2

N' Opening delimiter for a national literal2

NX" Opening delimiter for a hexadecimal format national literal

NX' Opening delimiter for a hexadecimal format national literal

G" Opening delimiter for a DBCS literal

G' Opening delimiter for a DBCS literal

== Pseudo-text delimiter

1. b represents a blank.
2. N" and N' are the opening delimiter for a DBCS literal when the NSYMBOL(DBCS) compiler option is

in effect.

© Copyright IBM Corp. 1991, 2024 49

Rules for separators
A separator is a string of one or more punctuation characters.

In the following description, {} (curly braces) enclose each separator, and b represents a space. Anywhere
a space is used as a separator or as part of a separator, more than one space can be used.

Space {b}
A space can immediately precede or follow any separator except:

• The opening pseudo-text delimiter, where the preceding space is required.
• Within quotation marks. Spaces between quotation marks are considered part of the alphanumeric

literal; they are not considered separators.

Period {.b}, Comma {,b}, Semicolon {;b}
A separator comma is composed of a comma followed by a space. A separator period is composed of
a period followed by a space. A separator semicolon is composed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence, or as shown in formats. The
separator comma and separator semicolon can be used anywhere the separator space is used.

• In the IDENTIFICATION DIVISION, each paragraph must end with a separator period.
• In the ENVIRONMENT DIVISION, the SOURCE-COMPUTER, OBJECT-COMPUTER, SPECIAL-NAMES,

and I-O-CONTROL paragraphs must each end with a separator period. In the FILE-CONTROL
paragraph, each file-control entry must end with a separator period.

• In the DATA DIVISION, file (FD), sort/merge file (SD), and data description entries must each end
with a separator period.

• In the PROCEDURE DIVISION, separator commas or separator semicolons can separate statements
within a sentence and operands within a statement. Each sentence and each procedure must end
with a separator period.

Parentheses { (} ... {) }
Except in pseudo-text, parentheses can appear only in balanced pairs of left and right parentheses.
They delimit subscripts, a list of function arguments, reference-modifiers, arithmetic expressions, or
conditions.

Colon { : }
The colon is a separator and is required when shown in general formats.

Quotation marks {"} ... {"}
An opening quotation mark must be immediately preceded by a space or a left parenthesis. A closing
quotation mark must be immediately followed by a separator space, comma, semicolon, period, right
parenthesis, or pseudo-text delimiter. Quotation marks must appear as balanced pairs. They delimit
alphanumeric literals, except when the literal is continued (see “Continuation lines” on page 58).

Apostrophes {'} ... {'}
An opening apostrophe must be immediately preceded by a space or a left parenthesis. A closing
apostrophe must be immediately followed by a separator space, comma, semicolon, period, right
parenthesis, or pseudo-text delimiter. Apostrophes must appear as balanced pairs. They delimit
alphanumeric literals, except when the literal is continued (see “Continuation lines” on page 58).

Null-terminated literal delimiters {Z"} ... {"}, {Z'} ... {'}
The opening delimiter must be immediately preceded by a space or a left parenthesis. The closing
delimiter must be immediately followed by a separator space, comma, semicolon, period, right
parenthesis, or pseudo-text delimiter.

DBCS literal delimiters {G"} ... {"}, {G'} ... {'}, {N"} ... {"}, {N'} ... {'}
The opening delimiter must be immediately preceded by a space or a left parenthesis. The
closing delimiter must be immediately followed by a separator space, comma, semicolon, period,
right parenthesis, or pseudo-text delimiter. N" and N' are DBCS literal delimiters when the
NSYMBOL(DBCS) compiler option is in effect.

50 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

UTF-8 literal delimiters {U"} ... {"}, {U'} ... {'}, {UX"} ... {"}, {UX'} ... {'}
The opening delimiter must be immediately preceded by a space or a left parenthesis. The closing
delimiter must be immediately followed by a separator space, comma, semicolon, period, right
parenthesis, or pseudo-text delimiter.

National literal delimiters {N"} ... {"}, {N'} ... {'}, {NX"} ... {"}, {NX'} ... {'}
The opening delimiter must be immediately preceded by a space or a left parenthesis. The
closing delimiter must be immediately followed by a separator space, comma, semicolon, period,
right parenthesis, or pseudo-text delimiter. N" and N' are DBCS literal delimiters when the
NSYMBOL(DBCS) compiler option is in effect.

Pseudo-text delimiters {b==} ... {==b}
An opening pseudo-text delimiter must be immediately preceded by a space. A closing pseudo-text
delimiter must be immediately followed by a separator space, comma, semicolon, or period. Pseudo-
text delimiters must appear as balanced pairs. They delimit pseudo-text. (See “COPY statement” on
page 688.)

Any punctuation character included in a PICTURE character-string, a comment character-string, or an
alphanumeric literal is not considered a punctuation character, but is part of the character-string or literal.

Chapter 4. Separators 51

52 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 5. Sections and paragraphs
Sections and paragraphs define a program. Sections and paragraphs are subdivided into sentences,
statements, and entries.

Sentences are subdivided into statements, and statements are subdivided into phrases. Entries are
subdivided into clauses.

For details, see:

• “Sentences, statements, and entries” on page 53
• “Statements” on page 54
• “Phrases” on page 54
• “Clauses” on page 54

For more information about sections, paragraphs, and statements, see “Procedures” on page 265.

Sentences, statements, and entries
Unless the associated rules explicitly state otherwise, each required clause or statement must be written
in the sequence shown in its format. If optional clauses or statements are used, they must be written in
the sequence shown in their formats. These rules are true even for clauses and statements treated as
comments.

The syntactical hierarchy follows this form:

• IDENTIFICATION DIVISION

– Paragraphs

- Entries

• Clauses
• ENVIRONMENT DIVISION

– Sections

- Paragraphs

• Entries

– Clauses

- Phrases
• DATA DIVISION

– Sections

- Entries

• Clauses

– Phrases
• PROCEDURE DIVISION

– Sections

- Paragraphs

• Sentences

– Statements

- Phrases

© Copyright IBM Corp. 1991, 2024 53

Entries
An entry is a series of clauses that ends with a separator period. Entries are constructed in the
identification, environment, and data divisions.

Clauses
A clause is an ordered set of consecutive COBOL character-strings that specifies an attribute of an entry.
Clauses are constructed in the identification, environment, and data divisions.

Sentences
A sentence is a sequence of one or more statements that ends with a separator period. Sentences are
constructed in the PROCEDURE DIVISION.

Statements
A statement specifies an action to be taken by the program. Statements are constructed in the
PROCEDURE DIVISION.

For descriptions of the different types of statements, see:

• “Imperative statements” on page 290
• “Conditional statements” on page 292
• Chapter 7, “Scope of names,” on page 63
• Chapter 113, “Compiler-directing statements,” on page 685

Phrases
Each clause or statement in a program can be subdivided into smaller units called phrases.

54 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 6. Reference format
COBOL source text must be written in COBOL reference format.

Reference format consists of the following areas in a 72-character line.

Sequence number area
Columns 1 through 6

Indicator area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

This figure illustrates reference format for a COBOL source line.

If you want to continue a literal, code a hyphen (-) in the indicator area (column 7) of each continuation
line. For details about line continuation rules, see “Continuation lines” on page 58.

The following topics provide details about these areas:

• “Sequence number area” on page 55
• “Indicator area” on page 55
• “Area A” on page 55
• “Area B” on page 57
• “Area A or Area B” on page 59

Sequence number area
The sequence number area can be used to label a source statement line. The content of this area can
consist of any character in the character set of the computer.

Indicator area
Use the indicator area to specify the continuation of words or alphanumeric literals from the previous line
onto the current line, the treatment of text as documentation, and debugging lines.

See “Continuation lines” on page 58, “Comment lines” on page 60, and “Debugging lines” on page
61.

The indicator area can be used for source listing formatting. A slash (/) placed in the indicator column
causes the compiler to start a new page for the source listing, and the corresponding source record to be
treated as a comment. The effect can be dependent on the LINECOUNT compiler option. For information
about the LINECOUNT compiler option, see LINECOUNT in the Enterprise COBOL Programming Guide.

Area A
Certain items must begin in Area A.

These items are:

• Division headers

© Copyright IBM Corp. 1991, 2024 55

• “Section headers” on page 56
• Paragraph headers or paragraph names
• Level indicators or level-numbers (01 and 77)
• DECLARATIVES and END DECLARATIVES
• End program, end class, and end method markers

Division headers
A division header is a combination of words, followed by a separator period to indicate the beginning of a
division.

See the following division headers:

• IDENTIFICATION DIVISION.
• ENVIRONMENT DIVISION.
• DATA DIVISION.
• PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a PROCEDURE DIVISION header) must
be immediately followed by a separator period. Except for the USING phrase, no text can appear on the
same line.

Section headers
In the environment and procedure divisions, a section header indicates the beginning of a series of
paragraphs.

For example:

INPUT-OUTPUT SECTION.

In the DATA DIVISION, a section header indicates the beginning of an entry; for example:

FILE SECTION.

LINKAGE SECTION.

LOCAL-STORAGE SECTION.

WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph headers or paragraph names
A paragraph header or paragraph name indicates the beginning of a paragraph.

In the ENVIRONMENT DIVISION, a paragraph consists of a paragraph header followed by one or more
entries. For example:

OBJECT-COMPUTER. computer-name.

In the PROCEDURE DIVISION, a paragraph consists of a paragraph-name followed by one or more
sentences.

56 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Level indicators (FD and SD) or level-numbers (01 and 77)
A level indicator can be either FD or SD.

A level indicator must begin in Area A and be followed by a space. (See “FILE SECTION” on page 184.) A
level-number that must begin in Area A is a one- or two-digit integer with a value of 01 or 77. It must be
followed by a space or separator period.

DECLARATIVES and END DECLARATIVES
DECLARATIVES and END DECLARATIVES are keywords that begin and end the declaratives part of the
source unit.

In the PROCEDURE DIVISION, each of the keywords DECLARATIVES and END DECLARATIVES must begin
in Area A and be followed immediately by a separator period; no other text can appear on the same line.
After the keywords END DECLARATIVES, no text can appear before the following section header. (See
“Declaratives” on page 264.)

End program, end class, and end method markers
The end markers are a combination of words followed by a separator period that indicates the end of a
COBOL program, method, class, factory, or object definition.

For example:

END PROGRAM program-name.
END CLASS class-name.
END METHOD "method-name".
END OBJECT.
END FACTORY.

For programs
program-name must be identical to the program-name of the corresponding PROGRAM-ID paragraph.
Every COBOL program, except an outermost program that contains no nested programs and is not
followed by another batch program, must end with an END PROGRAM marker.

For classes
class-name must be identical to the class-name in the corresponding CLASS-ID paragraph.

For methods
method-name must be identical to the method-name in the corresponding METHOD-ID paragraph.

For object paragraphs
There is no name in an object paragraph header or in its end marker. The syntax is simply END
OBJECT.

For factory paragraphs
There is no name in a factory paragraph header or in its end marker. The syntax is simply END
FACTORY.

Area B
Certain items must begin in Area B.

These items are:

• Entries, sentences, statements, and clauses
• Continuation lines

Entries, sentences, statements, clauses
The first entry, sentence, statement, or clause begins on either the same line as the header or paragraph-
name that it follows, or in Area B of the next nonblank line that is not a comment line. Successive

Chapter 6. Reference format 57

sentences or entries either begin in Area B of the same line as the preceding sentence or entry, or in Area
B of the next nonblank line that is not a comment line.

Within an entry or sentence, successive lines in Area B can have the same format or can be indented to
clarify program logic. The output listing is indented only if the input statements are indented. Indentation
does not affect the meaning of the program. The programmer can choose the amount of indentation,
subject only to the restrictions on the width of Area B. See also Chapter 5, “Sections and paragraphs,” on
page 53.

Continuation lines
Any sentence, entry, clause, or phrase that requires more than one line can be continued in Area B of the
next line that is neither a comment line nor a blank line.

The line being continued is a continued line; the succeeding lines are continuation lines. Area A of a
continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character of the preceding line is
assumed to be followed by a space.

The following items cannot be continued:

• DBCS user-defined words
• DBCS literals
• Alphanumeric literals containing DBCS characters
• National literals containing DBCS characters

However, alphanumeric literals and national literals in hexadecimal notation can be continued regardless
of the kind of characters expressed in hexadecimal notation.

All characters that make up an opening literal delimiter must be on the same line. For example, Z", G",
N", NX", or X".

Both characters that make up the pseudo-text delimiter separator, ==, the floating comment indicator, *>,
or the compiler directive indicator, >>, must be on the same line.

A compiler directive or compiler directive phrase, which begins with >>, must be specified on the same
line.

If there is a hyphen in the indicator area of a line, the first nonblank character of the continuation line
immediately follows the last nonblank character of the continued line without an intervening space.

Continuation of alphanumeric and national literals
Alphanumeric and national literals can be continued only when there are no DBCS characters in the
content of the literal.

The following rules apply to alphanumeric and national literals that do not contain DBCS characters:

• If the continued line contains an alphanumeric or national literal without a closing quotation mark, all
spaces at the end of the continued line (through column 72) are considered to be part of the literal. The
continuation line must contain a hyphen in the indicator area, and the first nonblank character must be
a quotation mark. The continuation of the literal begins with the character immediately following the
quotation mark.

• If an alphanumeric or national literal that is to be continued on the next line has as its last character
a quotation mark in column 72, the continuation line must start with two consecutive quotation marks.
This will result in a quotation mark as part of the value of the literal.

If the last character on the continued line of an alphanumeric or national literal is a quotation mark in
Area B, the continuation line can start with a quotation mark. This will result in two consecutive literals
instead of one continued literal.

The rules are the same when an apostrophe is used instead of a quotation mark in delimiters.

58 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If you want to continue a literal such that the continued lines and the continuation lines are part of one
literal:

• Code a hyphen in the indicator area of each continuation line.
• Code the literal value using all columns of each continued line, up to and including column 72. (Do not

terminate the continued lines with a quotation mark followed by a space.)
• Code a quotation mark before the first character of the literal on each continuation line.
• Terminate the last continuation line with a quotation mark followed by a space.

In the following examples, the number and size of literals created are indicated below the example:

|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..
000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK
 - "LLLLLLLLLLMMMMMMMMMM"

• Literal 000001 is interpreted as one alphanumeric literal that is 120 bytes long. Each character
between the starting quotation mark and up to and including column 72 of continued lines is counted as
part of the literal.

|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..
000003 N"AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
 - "GGGGGGGGGG"

• Literal 000003 is interpreted as one national literal that is 60 national character positions in length
(120 bytes). Each character between the starting quotation mark and the ending quotation mark on the
continued line is counted as part of the literal. Although single-byte characters are entered, the value of
the literals is stored as national characters.

|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..
000005 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK
 - "LLLLLLLLLLMMMMMMMMMM"

• Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at the end of each
continued line are counted as part of the literal because the continued lines do not end with a quotation
mark.

|...+.*..1....+....2....+....3....+....4....+....5....+....6....+....7..
000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK"
 - "LLLLLLLLLLMMMMMMMMMM"

• Literal 000010 is interpreted as three separate literals that have lengths of 50, 50, and 20, respectively.
The quotation mark with the following space terminates the continued line. Only the characters within
the quotation marks are counted as part of the literals. Literal 000010 is not valid as a VALUE clause
literal for non-level-88 data items.

To code a continued literal where the length of each continued part of the literal is less than the length of
Area B, adjust the starting column such that the last character of the continued part is in column 72.

Area A or Area B
Certain items can begin in either Area A or Area B.

These items are:

• Level-numbers
• Comment lines
• Floating comment indicators (*>)

Chapter 6. Reference format 59

• Compiler-directing statements
• Debugging lines
• Pseudo-text
• Blank lines

Level-numbers
A level-number that can begin in Area A or B is a one- or two-digit integer with a value of 02 through 49,
66, or 88.

A level-number that must begin in Area A is a one- or two-digit integer with a value of 01 or 77. A level-
number must be followed by a space or a separator period. For more information, see “Level-numbers” on
page 194.

Comment lines
A comment line is any line with an asterisk (*) or slash (/) in the indicator area (column 7) of the line, or
with a floating comment indicator (*>) as the first character-string in the program text area (Area A plus
Area B).

The comment can be written anywhere in the program text area of that line, and can consist of any
combination of characters from the character set of the computer.

Comment lines can be placed anywhere in a program, method, or class definition. Comment lines placed
before the IDENTIFICATION DIVISION header must follow any control cards (for example, PROCESS or
CBL).

Important: Comments intermixed with control cards could nullify some of the control cards and cause
them to be diagnosed as errors.

Multiple comment lines are allowed. Each must begin with an asterisk (*) or a slash (/) in the indicator
area, or with a floating comment indicator (*>).

For more information about floating comment indicators, see “Floating comment indicators (*>)” on page
60.

An asterisk (*) comment line is printed on the next available line in the output listing. The effect can be
dependent on the LINECOUNT compiler option. For information about the LINECOUNT compiler option,
see LINECOUNT in the Enterprise COBOL Programming Guide. A slash (/) comment line is printed on the
first line of the next page, and the current page of the output listing is ejected.

The compiler treats a comment line as documentation, and does not check it syntactically.

Floating comment indicators (*>)
In addition to the fixed indicators that can only be specified in the indicator area of the source reference
format, a floating comment indicator (*>) can be specified anywhere in the program-text area to indicate a
comment line or an inline comment.

A floating comment indicator indicates a comment line if it is the first character string in the program-text
area (Area A plus Area B), or indicates an inline comment if it is after one or more character strings in the
program-text area.

These are the rules for floating comment indicators:

• Both characters (* and >) that form the multiple-character floating indicator must be contiguous and on
the same line.

• The floating comment indicator for an inline comment must be preceded by a separator space, and can
be specified wherever a separator space can be specified.

• All characters following the floating comment indicator up to the end of Area B are comment text.

60 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Compiler-directing statements
Most compiler-directing statements, including COPY and REPLACE, can start in either Area A or Area B.

BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE, EJECT, INSERT, SKIP1, SKIP2, SKIP3, and TITLE
statements can also start in Area A or Area B.

Compiler directives
Compiler directives must start in Area B.

For more information, see Chapter 114, “Compiler directives,” on page 709.

Debugging lines
A debugging line is any line with a D (or d) in the indicator area of the line.

Debugging lines can be written in the ENVIRONMENT DIVISION (after the OBJECT-COMPUTER
paragraph), the DATA DIVISION, and the PROCEDURE DIVISION. If a debugging line contains only spaces
in Area A and Area B, it is considered a blank line.

See "WITH DEBUGGING MODE" in “SOURCE-COMPUTER paragraph” on page 122.

Pseudo-text
The character-strings and separators that comprise pseudo-text can start in either Area A or Area B.

If, however, there is a hyphen in the indicator area (column 7) of a line that follows the opening pseudo-
text delimiter, Area A of the line must be blank, and the rules for continuation lines apply to the formation
of text words. See “Continuation lines” on page 58 for details.

Blank lines
A blank line contains nothing but spaces in column 7 through column 72. A blank line can be anywhere in
a program.

Chapter 6. Reference format 61

62 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 7. Scope of names
A user-defined word names a data resource or a COBOL programming element. Examples of named data
resources are a file, a data item, or a record. Examples of named programming elements are a program, a
paragraph, a method, or a class definition.

The sections below define the types of names in COBOL and explain where the names can be referenced:

• “Types of names” on page 63
• “External and internal resources” on page 65
• “Resolution of names” on page 66

Types of names
In addition to identifying a resource, a name can have global or local attributes. Some names are
always global, some names are always local, and some names are either local or global depending on
specifications in the program in which the names are defined.

For programs
A global name can be used to refer to the resource with which it is associated both:

• From within the program in which the global name is defined
• From within any other program that is contained in the program that defines the global name

Use the GLOBAL clause in the data description entry to indicate that a name is global. For more
information about using the GLOBAL clause, see “GLOBAL clause” on page 185.

A local name can be used only to refer to the resource with which it is associated from within the
program in which the local name is defined.

By default, if a data-name, a file-name, a record-name, or a condition-name definition in a data
description entry does not include the GLOBAL clause, the name is local.

For methods
All names defined in methods are implicitly local.

For classes
Names defined in a class definition are global to all the methods contained in that class definition.

For object paragraphs
Names defined in the DATA DIVISION of an object paragraph are global to the methods contained in
that object paragraph.

For factory paragraphs
Names defined in the DATA DIVISION of a factory paragraph are global to the methods contained in
that factory paragraph.

For user-defined functions
All names defined in user-defined functions are local.

For function prototypes
All names defined in function prototypes are local.

Restriction: Specific rules sometimes prohibit specifying the GLOBAL clause for certain data description,
file description, or record description entries.

The following list indicates the names that you can use and whether the name can be local or global:

data-name
data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data description entry that
defines the data-name or in another entry to which that data description entry is subordinate.

© Copyright IBM Corp. 1991, 2024 63

file-name
file-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file description entry for that file-name.

record-name
record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record description that defines the
record-name, or in the case of record description entries in the FILE SECTION, if the GLOBAL clause is
specified in the file description entry for the file name associated with the record description entry.

condition-name
condition-name associates a value with a conditional variable.

A condition-name that is defined in a data description entry is global if that entry is subordinate to
another entry that specifies the GLOBAL clause.

A condition-name that is defined within the configuration section is always global.

program-name
program-name assigns a name to an external or internal (nested) program. For more information, see
“Conventions for program-names” on page 86.

A program-name is neither local nor global. For more information, see “Conventions for program-
names” on page 86.

method-name
method-name assigns a name to a method. method-name must be specified as the content of an
alphanumeric literal or a national literal.

section-name
section-name assigns a name to a section in the PROCEDURE DIVISION.

A section-name is always local.

paragraph-name
paragraph-name assigns a name to a paragraph in the PROCEDURE DIVISION.

A paragraph-name is always local.

basis-name
basis-name specifies the name of source text that is be included by the compiler into the source unit.
For details, see “BASIS statement” on page 685.

library-name
library-name specifies the COBOL library that the compiler uses for including COPY text. For details,
see “COPY statement” on page 688.

text-name
text-name specifies the name of COPY text to be included by the compiler into the source unit. For
details, see “COPY statement” on page 688.

alphabet-name
alphabet-name assigns a name to a specific character set or collating sequence, or both, in the
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

An alphabet-name is always global.

class-name (of data)
class-name assigns a name to the proposition in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION for which a truth value can be defined.

A class-name is always global.

class-name (object-oriented)
class-name assigns a name to an object-oriented class or subclass.

64 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

mnemonic-name
mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
symbolic-character specifies a user-defined figurative constant.

A symbolic-character is always global.

index-name
index-name assigns a name to an index associated with a specific table.

If a data item that possesses the global attribute includes a table accessed with an index, that index
also possesses the global attribute. In addition, the scope of that index-name is identical to the scope
of the data-name that includes the table.

xml-schema-name
xml-schema-name assigns a name to the system identifier of a file containing an XML schema.

An xml-schema-name is always global.

External and internal resources
The storage associated with a data item or a file connector can be external or internal to the program or
method in which the resource is declared.

A data item or file connector is external if the storage associated with that resource is associated with
the run unit rather than with any particular program or method within the run unit. An external resource
can be referenced by any program or method in the run unit that describes the resource. References to
an external resource from different programs or methods using separate descriptions of the resource are
always to the same resource. In a run unit, there is only one representation of an external resource.

A resource is internal if the storage associated with that resource is associated only with the program or
method that describes the resource.

External and internal resources can have either global or local names.

A data record described in the WORKING-STORAGE SECTION is given the external attribute by the
presence of the EXTERNAL clause in its data description entry. Any data item described by a data
description entry subordinate to an entry that describes an external record also attains the external
attribute. If a record or data item does not have the external attribute, it is part of the internal data of the
program or method in which it is described.

Two programs or methods in a run unit can reference the same file connector in the following
circumstances:

• An external file connector can be referenced from any program or method that describes that file
connector.

• If a program is contained within another program, both programs can refer to a global file connector
by referring to an associated global file-name either in the containing program or in any program that
directly or indirectly contains the containing program.

Two programs or methods in a run unit can reference common data in the following circumstances:

• The data content of an external data record can be referenced from any program or method provided
that program or method has described that data record.

• If a program is contained within another program, both programs can refer to data that possesses the
global attribute either in the program or in any program that directly or indirectly contains the containing
program.

The data records described as subordinate to a file description entry that does not contain the EXTERNAL
clause or to a sort-merge file description entry, as well as any data items described subordinate to the
data description entries for such records, are always internal to the program or method that describes the

Chapter 7. Scope of names 65

file-name. If the EXTERNAL clause is included in the file description entry, the data records and the data
items attain the external attribute.

Resolution of names
The rules for resolution of names depend on whether the names are specified in a program or in a class
definition.

Names within programs
When a program, program B, is directly contained within another program, program A, both programs can
define a condition-name, a data-name, a file-name, or a record-name using the same user-defined word.
When such a duplicated name is referenced in program B, the following steps determine the referenced
resource (these rules also apply to classes and contained methods):

1. The referenced resource is identified from the set of all names that are defined in program B and all
global names defined in program A and in any programs that directly or indirectly contain program A.
The normal rules for qualification and any other rules for uniqueness of reference are applied to this
set of names until one or more resources is identified.

2. If only one resource is identified, it is the referenced resource.
3. If more than one resource is identified, no more than one resource can have a name local to program

B. If zero or one of the resources has a name local to program B, the following rules apply:

• If the name is declared in program B, the resource in program B is the referenced resource.
• If the name is not declared in program B, the referenced resource is:

– The resource in program A if the name is declared in program A
– The resource in the containing program if the name is declared in the program that contains

program A

This rule is applied to further containing programs until a valid resource is found.

Names within a class definition
Within a class definition, resources can be defined within the following units:

• The factory data division
• The object data division
• A method data division

If a resource is defined with a given name in the DATA DIVISION of an object definition, and there is no
resource defined with the same name in an instance method of that object definition, a reference to that
name from an instance method is a reference to the resource in the object DATA DIVISION.

If a resource is defined with a given name in the DATA DIVISION of a factory definition, and there is no
resource defined with the same name in a factory method of that factory definition, a reference to that
name from a factory method is a reference to the resource in the factory data division.

If a resource is defined within a method, any reference within the method to that resource name is always
a reference to the resource in the method.

The normal rules for qualification and uniqueness of reference apply when the same name is associated
with more than one resource within a given method data division, object data division, or factory data
division.

66 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 8. Referencing data names, copy libraries,
and PROCEDURE DIVISION names

References can be made to external and internal resources. References to data and procedures can be
either explicit or implicit.

For more information about rules for qualification, and for explicit and implicit data references, see the
following topics:

• “Uniqueness of reference” on page 67
• “Data attribute specification” on page 78

Uniqueness of reference
Every user-defined name in a COBOL program is assigned by the user to name a resource for solving a
data processing problem. To use a resource, a statement in a COBOL program must contain a reference
that uniquely identifies that resource.

To ensure uniqueness of reference, a user-defined name can be qualified. A subscript is required for
unique reference to a table element, except as specified in “Subscripting” on page 72. A data-name
or function-name, any subscripts, and the specified reference-modifier uniquely reference a data item
defined by reference modification.

When the same name has been assigned in separate programs to two or more occurrences of a resource
of a given type, and when qualification by itself does not allow the references in one of those programs
to differentiate between the identically named resources, then certain conventions that limit the scope
of names apply. The conventions ensure that the resource identified is that described in the program
containing the reference. For more information about resolving program-names, see “Resolution of
names” on page 66.

Unless otherwise specified by the rules for a statement, any subscripts and reference modification are
evaluated only once as the first step in executing that statement.

Qualification
A name that exists within a hierarchy of names can be made unique by specifying one or more higher-
level names in the hierarchy. The higher-level names are called qualifiers, and the process by which such
names are made unique is called qualification.

Qualification is specified by placing one or more phrases after a user-specified name, with each phrase
made up of the word IN or OF followed by a qualifier. (IN and OF are logically equivalent.)

If there is only one 01 level with a given name, that name can be referenced even if it is not unique when
the QUALIFY(EXTEND) option is in effect.

You must specify enough qualification to make the name unique; however, it is not always necessary to
specify all the levels of the hierarchy. For example, if there is more than one file whose records contain the
field EMPLOYEE-NO, but only one of the files has a record named MAIN-RECORD:

• EMPLOYEE-NO OF MAIN-RECORD sufficiently qualifies EMPLOYEE-NO.
• EMPLOYEE-NO OF MAIN-RECORD OF MAIN-FILE is valid but unnecessary.

Qualification rules
The rules for qualifying a name are:

• A name can be qualified even though it does not need qualification except in a REDEFINES clause, in
which case it must not be qualified.

© Copyright IBM Corp. 1991, 2024 67

• Each qualifier must be of a higher level than the name it qualifies and must be within the same
hierarchy.

• If there is more than one combination of qualifiers that ensures uniqueness, any of those combinations
can be used.

• If compiler option QUALIFY(EXTEND) is in effect, and if there is only one fully qualified name that
matches your combination of qualifiers, that reference will be considered unique, even if the set of
qualifiers also matches a partial qualification for a different data item. Fully qualified means every
qualifier is specified.

Related references
QUALIFY (Enterprise COBOL Programming Guide)

Identical names
When programs are directly or indirectly contained within other programs, each program can use identical
user-defined words to name resources.

A program references the resources that program describes rather than the same-named resources
described in another program, even if the names are different types of user-defined words.

These same rules apply to classes and their contained methods.

References to COPY libraries
If library-name-1 is not specified, SYSLIB is assumed as the library name.

Format
text-name-1

IN

OF

library-name-1

For rules on referencing COPY libraries, see “COPY statement” on page 688.

References to PROCEDURE DIVISION names
PROCEDURE DIVISION names that are explicitly referenced in a program must be unique within a section.

Format 1
paragraph-name-1

IN

OF

section-name-1

Format 2
section-name-1

A section-name is the highest and only qualifier available for a paragraph-name and must be unique if
referenced. (Section-names are described under “Procedures” on page 265.)

If explicitly referenced, a paragraph-name must not be duplicated within a section. When a paragraph-
name is qualified by a section-name, the word SECTION must not appear. A paragraph-name need not be
qualified when referred to within the section in which it appears. A paragraph-name or section-name that
appears in a program cannot be referenced from any other program.

68 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

References to DATA DIVISION names
This section discusses the following types of references.

• “Simple data reference” on page 69
• “Identifiers” on page 69

Simple data reference
The most basic method of referencing data items in a COBOL program is simple data reference, which is
data-name-1 without qualification, subscripting, or reference modification. Simple data reference is used
to reference a single elementary or group item.

Format
data-name-1

data-name-1
Can be any data description entry.

data-name-1 must be unique in a program.

Identifiers
When used in a syntax diagram in this information, the term identifier refers to a valid combination of
a data-name or function-identifier with its qualifiers, subscripts, and reference-modifiers as required for
uniqueness of reference.

Rules for identifiers associated with a format can however specifically prohibit qualification, subscripting,
or reference modification.

The term data-name refers to a name that must not be qualified, subscripted, or reference modified
unless specifically permitted by the rules for the format.

• For a description of qualification, see “Qualification” on page 67.
• For a description of subscripting, see “Subscripting” on page 72.
• For a description of reference modification, see “Reference modification” on page 75.

Format 1

data-name-1

IN

OF

data-name-2 IN

OF

file-name-1

(subscript)

(leftmost-character-position :

length

)

data-name-1 , data-name-2
Can be a record-name.

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 69

file-name-1
Must be identified by an FD or SD entry in the DATA DIVISION.

file-name-1 must be unique within this program.

Format 2

condition-name-1

data-name-1 IN

OF

data-name-2

IN

OF

file-name-1

Format 3
LINAGE-COUNTER

IN

OF

file-name-2

data-name-1 , data-name-2
Can be a record-name.

condition-name-1
Can be referenced by statements and entries either in the program that contains the configuration
section or in a program contained within that program.

file-name-1
Must be identified by an FD or SD entry in the DATA DIVISION.

Must be unique within this program.

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file description entry that contains a
LINAGE clause has been specified in the source unit.

file-name-2
Must be identified by the FD or SD entry in the DATA DIVISION. file-name-2 must be unique within this
program.

Duplication of data-names must not occur in those places where the data-names cannot be made unique
by qualification.

In the same program, the data-name specified as the subject of the entry whose level-number is 01 that
includes the EXTERNAL clause must not be the same data-name specified for any other data description
entry that includes the EXTERNAL clause.

In the same DATA DIVISION, the data description entries for any two data items for which the same
data-name is specified must not include the GLOBAL clause.

DATA DIVISION names that are explicitly referenced must either be uniquely defined or made unique
through qualification. Unreferenced data items need not be uniquely defined. The highest level in a
data hierarchy (a data item associated with a level indicator (FD or SD in the FILE SECTION) or with
level-number 01) must be uniquely named if referenced. Data items associated with level-numbers 02
through 49 are successively lower levels of the hierarchy.

70 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Condition-name
See the syntax and description for details.

Format 1: condition-name in data division

condition-name-1

IN

OF

data-name-1

IN

OF

file-name-1

(subscript)

Format 2: condition-name in SPECIAL-NAMES paragraph

condition-name-1

IN

OF

mnemonic-name-1

condition-name-1
Can be referenced by statements and entries either in the program that contains the definition of
condition-name-1, or in a program contained within that program.

If explicitly referenced, a condition-name must be unique or be made unique through qualification or
subscripting (or both) except when the scope of names by itself ensures uniqueness of reference.

If qualification is used to make a condition-name unique, the associated conditional variable can
be used as the first qualifier. If qualification is used, the hierarchy of names associated with the
conditional variable itself must be used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any of its condition-names
also requires the same combination of subscripting.

In this information, condition-name refers to a condition-name qualified or subscripted, as necessary.

data-name-1
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the DATA DIVISION.

file-name-1 must be unique within this program.

mnemonic-name-1
For information about acceptable values for mnemonic-name-1, see “SPECIAL-NAMES paragraph” on
page 124.

Index-name
An index-name identifies an index. An index can be regarded as a private special register that the
compiler generates for working with a table. You name an index by specifying the INDEXED BY phrase in
the OCCURS clause that defines a table.

You can use an index-name in only the following language elements:

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 71

• SET statements
• PERFORM statements
• SEARCH statements
• Subscripts
• Relation conditions

An index-name is not the same as the name of an index data item, and an index-name cannot be used like
a data-name.

Index data item
An index data item is a data item that can hold the value of an index.

You define an index data item by specifying the USAGE IS INDEX clause in a data description entry. The
name of an index data item is a data-name. An index data item can be used anywhere a data-name or
identifier can be used, unless stated otherwise in the rules of a particular statement. You can use the SET
statement to save the value of an index (referenced by index-name) in an index data item.

Subscripting
Subscripting is a method of providing table references through the use of subscripts. A subscript is a
positive integer whose value specifies the occurrence number of a table element.

Format

condition-name-1

data-name-1 IN

OF

data-name-2

IN

OF

file-name-1

(

integer-1

ALL

data-name-3

 +
 -

integer-2

index-name-1

 +
 -

integer-3

)

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS clause or must be
subordinate to a data description entry that contains an OCCURS clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data description entry that contains an
OCCURS clause.

data-name-2 , file-name-1
Must name data items or records that contain data-name-1.

72 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

integer-1
Can be signed. If signed, it must be positive.

ALL
Shall not be specified if condition-name-1 is specified.

Must be used only when the subscripted identifier is used as an intrinsic function argument or to
identify a table in a format 2 SORT statement (table SORT statement).

If ALL is specified, the subscript is all of the possible values of a subscript for the associated table as
specified in the rules for the functions for which the subscript ALL is allowed.

data-name-3
Must be a numeric elementary item representing an integer.

data-name-3 can be qualified.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being referenced that contains an
INDEXED BY phrase that specifies that name.

integer-2 , integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any qualification for the name
of the table element. The number of subscripts in such a reference must equal the number of dimensions
in the table whose element is being referenced. That is, there must be a subscript for each OCCURS
clause in the hierarchy that contains the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of successively less inclusive
dimensions of the data organization. If a multidimensional table is thought of as a series of nested
tables and the most inclusive or outermost table in the nest is considered to be the major table with the
innermost or least inclusive table being the minor table, the subscripts are written from left to right in the
order major, intermediate, and minor.

For example, if TABLE-THREE is defined as:

01 TABLE-THREE.
 05 ELEMENT-ONE OCCURS 3 TIMES.
 10 ELEMENT-TWO OCCURS 3 TIMES.
 15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:

ELEMENT-THREE (2 2 1)

Subscripted references can also be reference modified. See the third example under “Reference
modification examples” on page 76. A reference to an item must not be subscripted unless the item
is a table element or an item or condition-name associated with a table element.

Each table element reference must be subscripted except when such reference appears:

• In a USE FOR DEBUGGING statement
• As the subject of a SEARCH statement
• In a REDEFINES clause
• In the KEY IS phrase of an OCCURS clause
• In a format 2 SORT statement (table SORT statement)

In a format 2 SORT statement, subscripting may be specified with the rightmost subscript being the word
ALL.

The lowest permissible occurrence number represented by a subscript is 1. The highest permissible
occurrence number in any particular case is the maximum number of occurrences of the item as specified
in the OCCURS clause.

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 73

Subscripting using data-names
When a data-name is used to represent a subscript, it can be used to reference items within different
tables. These tables need not have elements of the same size. The same data-name can appear as the
only subscript with one item and as one of two or more subscripts with another item. A data-name
subscript can be qualified; it cannot be subscripted or indexed. For example, valid subscripted references
to TABLE-THREE, assuming that SUB1, SUB2, and SUB3 are all items subordinate to SUBSCRIPT-ITEM,
include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,
 SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting using index-names (indexing)
Indexing allows such operations as table searching and manipulating specific items. To use indexing,
you associate one or more index-names with an item whose data description entry contains an OCCURS
clause.

An index associated with an index-name acts as a subscript, and its value corresponds to an occurrence
number for the item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its table, is an
optional part of the OCCURS clause. There is no separate entry to describe the index associated with
index-name. At run time, the contents of the index corresponds to an occurrence number for that specific
dimension of the table with which the index is associated.

The initial value of an index at run time is undefined, and the index must be initialized before it is used as
a subscript. An initial value is assigned to an index with one of the following statements:

• The PERFORM statement with the VARYING phrase
• The SEARCH statement with the ALL phrase
• The SET statement

The use of an integer or data-name as a subscript that references a table element or an item within a
table element does not cause the alteration of any index associated with that table.

An index-name can be used to reference any table. However, the element length of the table being
referenced and of the table that the index-name is associated with should match. Otherwise, the
reference will not be to the same table element in each table, and you might get runtime errors.

Data that is arranged in the form of a table is often searched. The SEARCH statement provides facilities
for producing serial and nonserial searches. It is used to search for a table element that satisfies a
specific condition and to adjust the value of the associated index to indicate that table element.

To be valid during execution, an index value must correspond to a table element occurrence of neither
less than one, nor greater than the highest permissible occurrence number.

For more information about index-names, see “Index-name” on page 71 and “INDEXED BY phrase” on
page 202.

Relative subscripting
In relative subscripting, the name of a table element is followed by a subscript of the form data-name or
index-name followed by the operator + or -, and a positive or unsigned integer literal.

The operators + and - must be preceded and followed by a space. The value of the subscript used is the
same as if the index-name or data-name had been set up or down by the value of the integer. The use of
relative indexing does not cause the program to alter the value of the index.

74 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Reference modification
Reference modification defines a data item by specifying a leftmost character and optional length for the
data item.

Format: reference modification
data-name-1

FUNCTION function-name-1

(argument-1)

(leftmost-character-position :

length

)

data-name-1
Must reference a data item described explicitly or implicitly with usage DISPLAY, DISPLAY-1,
NATIONAL, or UTF-8. A national group item is processed as an elementary data item of category
national.

data-name-1 can be qualified or subscripted.

data-name-1 cannot be a dynamic-length group item. If data-name-1 is a dynamic-length elementary
item, it is treated as though it were a fixed-length item whose length is the same as the current length
of the dynamic-length elementary item. When used as a reference modified receiver in a PROCEDURE
DIVISION statement, the current length of the dynamic-length elementary item is not modified.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-position must result in a
positive nonzero integer that is less than or equal to the number of characters in the data item
referenced by data-name-1.

length
Must be an arithmetic expression.

The evaluation of length must result in a positive nonzero integer.

The sum of leftmost-character-position and length minus the value 1 must be less than or equal to the
number of character positions in data-name-1. If length is omitted, the length used will be equal to
the number of character positions in data-name-1 plus 1, minus leftmost-character-position.

function-name-1
Must reference an alphanumeric or national function.

For usages DISPLAY-1 and NATIONAL, each character position occupies 2 bytes. Reference modification
operates on whole character positions and not on the individual bytes of the characters in usages
DISPLAY-1 and NATIONAL. For usage DISPLAY, reference modification operates as though each character
were a single-byte character.

Unless otherwise specified, reference modification is allowed anywhere an identifier or function-identifier
that references a data item or function with the same usage as the reference-modified data item is
permitted.

Each character position referenced by data-name-1 or function-name-1 is assigned an ordinal number
incrementing by one from the leftmost position to the rightmost position. The leftmost position is
assigned the ordinal number one. If the data description entry for data-name-1 contains a SIGN IS
SEPARATE clause, the sign position is assigned an ordinal number within that data item.

If data-name-1 is described with usage DISPLAY and category numeric, numeric-edited, alphabetic,
alphanumeric-edited, or external floating-point, data-name-1 is operated upon for purposes of reference

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 75

modification as if it were redefined as a data item of category alphanumeric with the same size as the data
item referenced by data-name-1.

If data-name-1 is described with usage NATIONAL and category numeric, numeric-edited, national-
edited, or external floating-point, data-name-1 is operated upon for purposes of reference modification
as if it were redefined as a data item of category national with the same size as the data item referenced
by data-name-1.

If data-name-1 is a national group item, data-name-1 is processed as an elementary data item of
category national.

Reference modification creates a unique data item that is a subset of data-name-1 or a subset of the
value referenced by function-name-1 and its arguments, if any. This unique data item is considered an
elementary data item without the JUSTIFIED clause.

When a function is reference-modified, the unique data item has class, category, and usage national if the
type of the function is national; otherwise, it has class and category alphanumeric and usage display.

When data-name-1 is reference-modified, the unique data item has the same class, category, and usage
as that defined for the data item referenced by data-name-1 except that:

• If data-name-1 has category national-edited, the unique data item has category national.
• If data-name-1 has usage NATIONAL and category numeric-edited, numeric, or external floating-point,

the unique data item has category national.
• If data-name-1 has usage DISPLAY, and category numeric-edited, alphanumeric-edited, numeric, or

external floating-point, the unique data item has category alphanumeric.
• If data-name-1 references an alphanumeric group item, the unique data item is considered to have

usage DISPLAY and category alphanumeric.
• If data-name-1 references a national group item, the unique data item has usage NATIONAL and

category national.

If length is not specified, the unique data item created extends from and includes the character position
identified by leftmost-character-position up to and including the rightmost character position of the data
item referenced by data-name-1.

Evaluation of operands
Reference modification for an operand is evaluated as follows:

• If subscripting is specified for the operand, the reference modification is evaluated immediately after
evaluation of the subscript.

• If subscripting is not specified for the operand, the reference modification is evaluated at the time
subscripting would be evaluated if subscripts had been specified.

Reference modification examples
The statements in the examples transfer the first 10 characters of the data-item referenced by WHOLE-
NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).
77 FIRST-NAME PIC X(10).

77 START-P PIC 9(4) BINARY VALUE 1.
77 STR-LENGTH PIC 9(4) BINARY VALUE 10.

...
 MOVE WHOLE-NAME(1:10) TO FIRST-NAME.
 MOVE WHOLE-NAME(START-P:STR-LENGTH) TO FIRST-NAME.

76 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The following statement transfers the last 15 characters of the data-item referenced by WHOLE-NAME to
the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME PIC X(15).
...
 MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third occurrence of TAB to the
variable SUFFIX.

01 TABLE-1.
 02 TAB OCCURS 10 TIMES PICTURE X(5).
77 SUFFIX PICTURE X(2).
...
 MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.

Function-identifier
A function-identifier is a sequence of character strings and separators that uniquely references the data
item that results from the evaluation of a function.

Format
FUNCTION function-name-1

(argument-1)

reference-modifier

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic expression.

For more information about arguments to intrinsic functions, see Part 7, “Intrinsic functions,” on page
495.

For more information about arguments to user-defined functions, see Chapter 27, “Procedure division
structure,” on page 257.

function-name-1
function-name-1 must be one of the intrinsic function names or a user-defined function name.

reference-modifier
Can be specified only for functions of the type alphanumeric or national.

A function-identifier that makes reference to an alphanumeric or national function can be specified
anywhere that a data item of category alphanumeric or category national, respectively, can be referenced
and where references to functions are not specifically prohibited, except as follows:

• As a receiving operand of any statement
• Where a data item is required to have particular characteristics (such as class and category, size, sign,

and permissible values) and the evaluation of the function according to its definition and the particular
arguments specified would not have these characteristics

A function-identifier that makes reference to an integer or numeric function can be used wherever an
arithmetic expression can be used.

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 77

Data attribute specification
Explicit data attributes are data attributes that you specify in COBOL coding. Implicit data attributes are
default values. If you do not explicitly code a data attribute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If USAGE is omitted and the symbol N or
symbol U is not specified in the PICTURE clause, the default is USAGE DISPLAY, which is the implicit data
attribute. When PICTURE symbol N is used, USAGE DISPLAY-1 is the default when the NSYMBOL(DBCS)
compiler option is in effect; USAGE NATIONAL is the default when the NSYMBOL(NATIONAL) compiler
option is in effect. Similarly, when PICTURE symbol U is used, USAGE UTF-8 is assumed. These are
implicit data attributes.

78 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 9. Transfer of control

In the PROCEDURE DIVISION, unless there is an explicit control transfer or there is no next executable
statement, program flow transfers control from statement to statement in the order in which the
statements are written. This normal program flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements, implicit transfer of control
also occurs when the normal flow is altered without the execution of a procedure branching statement.
The following examples show implicit transfers of control, overriding statement-to-statement transfer of
control:

• After execution of the last statement of a procedure that is executed under control of another COBOL
statement, control implicitly transfers. (COBOL statements that control procedure execution are, for
example, MERGE, PERFORM, SORT, and USE.) Further, if a paragraph is being executed under the
control of a PERFORM statement that causes iterative execution, and that paragraph is the first
paragraph in the range of that PERFORM statement, an implicit transfer of control occurs between the
control mechanism associated with that PERFORM statement and the first statement in that paragraph
for each iterative execution of the paragraph.

• During SORT or MERGE statement execution, control is implicitly transferred to an input or output
procedure.

• During XML PARSE statement execution, control is implicitly transferred to a processing procedure.
• During execution of any COBOL statement that causes execution of a declarative procedure, control is

implicitly transferred to that procedure.
• At the end of execution of any declarative procedure, control is implicitly transferred back to the control

mechanism associated with the statement that caused its execution.

COBOL also provides explicit control transfers through the execution of any procedure branching, program
call, or conditional statement. (Lists of procedure branching and conditional statements are contained in
“Statement categories” on page 290.)

Definition: The term next executable statement refers to the next COBOL statement to which control is
transferred, according to the rules given above. There is no next executable statement under the following
circumstances:

• When the program contains no PROCEDURE DIVISION
• Following the last statement in a declarative section when the paragraph in which it appears is not being

executed under the control of some other COBOL statement
• Following the last statement in a program or method when the paragraph in which it appears is not

being executed under the control of some other COBOL statement in that program
• Following the last statement in a declarative section when the statement is in the range of an active

PERFORM statement executed in a different section and this last statement of the declarative section is
not also the last statement of the procedure that is the exit of the active PERFORM statement

• Following a STOP RUN statement or EXIT PROGRAM statement that transfers control outside the
COBOL program

• Following a GOBACK statement that transfers control outside the COBOL program
• Following an EXIT METHOD statement that transfers control outside the COBOL method
• The end program or end method marker

When there is no next executable statement and control is not transferred outside the COBOL program,
the program flow of control is undefined unless the program execution is in the nondeclarative procedures
portion of a program under control of a CALL statement, in which case an implicit EXIT PROGRAM
statement is executed.

Similarly, if control reaches the end of the PROCEDURE DIVISION of a method and there is no next
executable statement, an implicit EXIT METHOD statement is executed.

© Copyright IBM Corp. 1991, 2024 79

80 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Part 2. COBOL source unit structure

© Copyright IBM Corp. 1991, 2024 81

82 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 10. COBOL program structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested programs
A nested program is a program that is contained in another program. Contained programs can
reference some of the resources of the programs that contain them. If program B is contained in
program A, it is directly contained if there is no program contained in program A that also contains
program B. Program B is indirectly contained in program A if there exists a program contained in
program A that also contains program B. For more information about nested programs, see Nested
programs in the Enterprise COBOL Programming Guide.

Object program
An object program is a set or group of executable machine language instructions and other material
designed to interact with data to provide problem solutions. An object program is generally the
machine language result of the operation of a COBOL compiler on a source program. The term object
program also refers to the methods that result from compiling a class definition.

Run unit
A run unit is one or more object programs that interact with one another and that function at run time
as an entity to provide problem solutions.

Sibling program
Sibling programs are programs that are directly contained in the same program.

With the exception of the COPY and REPLACE statements and the end program marker, the statements,
entries, paragraphs, and sections of a COBOL source program are grouped into the following four
divisions:

• IDENTIFICATION DIVISION
• ENVIRONMENT DIVISION
• DATA DIVISION
• PROCEDURE DIVISION

The end of a COBOL source program is indicated by the END PROGRAM marker. If there are no nested
programs, the absence of additional source program lines also indicates the end of a COBOL program.

The following format is for the entries and statements that constitute a separately compiled COBOL
source program.

© Copyright IBM Corp. 1991, 2024 83

Format: COBOL source program
IDENTIFICATION

ID

DIVISION. PROGRAM-ID
.

program-name-1

IS

RECURSIVE

INITIAL PROGRAM

.

identification-division-content

ENVIRONMENT DIVISION. environment-division-content

DATA DIVISION. data-division-content

PROCEDURE DIVISION. procedure-division-content

Nested source program

END PROGRAM program-name-1.

nested source program
IDENTIFICATION

ID

DIVISION. PROGRAM-ID
.

program-name-2

IS

COMMON

INITIAL

INITIAL

COMMON

PROGRAM

.

identification-division-content

ENVIRONMENT DIVISION. environment-division-content

DATA DIVISION. data-division-content

PROCEDURE DIVISION. procedure-division-content

| nested source program |

END PROGRAM program-name-2.

84 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

A sequence of separate COBOL programs can also be input to the compiler. The following format is for the
entries and statements that constitute a sequence of source programs (batch compile).

Format: sequence of COBOL source programs

COBOL-source-program

END PROGRAM program-name
An end program marker separates each program in the sequence of programs. program-name must
be identical to a program-name declared in a preceding program-ID paragraph.

program-name can be specified either as a user-defined word or in an alphanumeric literal. Either
way, program-name must follow the rules for forming program-names. program-name cannot be a
figurative constant. Any lowercase letters in the literal are folded to uppercase.

An end program marker is optional for the last program in the sequence only if that program does not
contain any nested source programs.

Nested programs
A COBOL program can contain other COBOL programs, which in turn can contain still other COBOL
programs. These contained programs are called nested programs. Nested programs can be directly or
indirectly contained in the containing program.

Nested programs are not supported for programs compiled with the THREAD option.

In the following code fragment, program Outer-program directly contains program Inner-1. Program
Inner-1 directly contains program Inner-1a, and Outer-program indirectly contains Inner-1a:

Id division.
Program-id. Outer-program.
 Procedure division.
 Call "Inner-1".
 Stop run.
Id division.
 Program-id. Inner-1
 ...
 Call Inner-1a.
 Stop run.
 Id division.
 Program-id. Inner-1a.
 ...
 End Inner-1a.
 End Inner-1.
End Outer-program.

The following figure describes a more complex nested program structure with directly and indirectly
contained programs.

Chapter 10. COBOL program structure 85

Conventions for program-names
The program-name of a program is specified in the PROGRAM-ID paragraph of the program's
IDENTIFICATION DIVISION. A program-name can be referenced only by the CALL statement, the CANCEL
statement, the SET statement, or the END PROGRAM marker.

Names of programs that constitute a run unit are not necessarily unique, but when two programs in a run
unit are identically named, at least one of the programs must be directly or indirectly contained within
another separately compiled program that does not contain the other of those two programs.

A separately compiled program and all of its directly and indirectly contained programs must have unique
program-names within that separately compiled program.

Rules for program-names
The following rules define the scope of a program-name:

• If the program-name is that of a program that does not possess the COMMON attribute and that
program is directly contained within another program, that program-name can be referenced only by
statements included in that containing program.

• If the program-name is that of a program that does possess the COMMON attribute and that
program is directly contained within another program, that program-name can be referenced only by
statements included in the containing program and any programs directly or indirectly contained within
that containing program, except that program possessing the COMMON attribute and any programs
contained within it.

• If the program-name is that of a program that is separately compiled, that program-name can be
referenced by statements included in any other program in the run unit, except programs it directly or
indirectly contains.

86 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The mechanism used to determine which program to call is as follows:

• If one of two programs that have the same name as that specified in the CALL statement is directly
contained within the program that includes the CALL statement, that program is called.

• If one of two programs that have the same name as that specified in the CALL statement possesses the
COMMON attribute and is directly contained within another program that directly or indirectly contains
the program that includes the CALL statement, that common program is called unless the calling
program is contained within that common program.

• Otherwise, the separately compiled program is called.

The following rules apply to referencing a program-name of a program that is contained within another
program. For this discussion, Program-A contains Program-B and Program-C; Program-C contains
Program-D and Program-F; and Program-D contains Program-E.

If Program-D does not possess the COMMON attribute, then Program-D can be referenced only by the
program that directly contains Program-D, that is, Program-C.

If Program-D does possess the COMMON attribute, then Program-D can be referenced by Program-C
(because Program-C contains Program-D) and by any programs contained in Program-C except for
programs contained in Program-D. In other words, if Program-D possesses the COMMON attribute,
Program-D can be referenced in Program-C and Program-F but not by statements in Program-E, Program-
A, or Program-B.

Chapter 10. COBOL program structure 87

88 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 11. COBOL class definition structure
Enterprise COBOL provides object-oriented syntax to facilitate interoperation of COBOL and Java
programs.

You can use object-oriented syntax to:

• Define classes, with methods and data implemented in COBOL
• Create instances of Java or COBOL classes
• Invoke methods on Java or COBOL objects
• Write classes that inherit from Java classes or from other COBOL classes
• Define and invoke overloaded methods

Basic Java-oriented object capabilities are accessed directly through COBOL language features.
Additional capabilities are available to the COBOL programmer by calling services through the Java Native
Interface (JNI), as described in Accessing JNI services in the Enterprise COBOL Programming Guide.

Java programs can be multithreaded, and Java interoperation requires toleration of asynchronous signals.
Therefore, to mix COBOL with these Java programs, you must use the thread enablement provided by the
THREAD compiler option, as described in THREAD in the Enterprise COBOL Programming Guide.

Java String data is represented at run time in Unicode. The Unicode support provided in Enterprise COBOL
with the national data type enables COBOL programs to exchange String data with Java.

The following entities and concepts are used in object-oriented COBOL for Java interoperability:

Class
The entity that defines operations and state for zero, one, or more object instances and defines
operations and state for a common object (a factory object) that is shared by multiple object
instances.

You create object instances using the NEW operand of the COBOL INVOKE statement or using a Java
class instance creation expression.

Object instances are automatically freed by the Java runtime system's garbage collection when they
are no longer in use. You cannot explicitly free individual objects.

Instance method
Procedural code that defines one of the operations supported for the object instances of a class.
Instance methods introduced by a COBOL class are defined within the object paragraph of the class
definition.

COBOL instance methods are equivalent to public nonstatic methods in Java.

You execute instance methods on a particular object instance by using a COBOL INVOKE statement or
a Java method invocation expression.

Instance data
Data that defines the state of an individual object instance. Instance data in a COBOL class is defined
in the WORKING-STORAGE SECTION of the DATA DIVISION within the object paragraph of a class
definition.

COBOL instance data is equivalent to private nonstatic member data in a Java class.

The state of an object also includes the state of the instance data introduced by inherited classes.
Each instance object has its own copy of the instance data defined within its class definition and its
own copy of the instance data defined in inherited classes.

You can access COBOL object instance data only from within COBOL instance methods defined in the
class definition that defines the data.

© Copyright IBM Corp. 1991, 2024 89

You can initialize object instance data with VALUE clauses or you can write an instance method to
perform custom initialization.

Factory method, static method
Procedural code that defines one of the operations supported for the common factory object of the
class. COBOL factory methods are defined within the factory paragraph of a class definition. Factory
methods are associated with a class, not with any individual instance object of the class.

COBOL factory methods are equivalent to public static methods in Java.

You execute COBOL factory methods from COBOL using an INVOKE statement that specifies the
class-name as the first operand. You execute them from a Java program using a static method
invocation expression.

A factory method cannot operate directly on instance data of its class, even though the data is
described in the same class definition; a factory method must invoke instance methods to act on
instance data.

COBOL factory methods are typically used to define customized methods that create object instances.
For example, you can code a customized factory method that accepts initial values as parameters,
creates an instance object using the NEW operand of the INVOKE statement, and then invokes
a customized instance method passing those initial values as arguments for use in initializing the
instance object.

Factory data, static data
Data associated with a class, rather than with an individual object instance. COBOL factory data is
defined in the WORKING-STORAGE SECTION of the DATA DIVISION within the factory paragraph of a
class definition.

COBOL factory data is equivalent to private static data in Java.

There is a single copy of factory data for a class. Factory data is associated only with the class and is
shared by all object instances of the class. It is not associated with any particular instance object. A
factory data item might be used, for example, to keep a count of the number of instance objects that
have been created.

You can access COBOL factory data only within COBOL factory methods defined in the same class
definition.

Inheritance
Inheritance is a mechanism whereby a class definition (the inheriting class) acquires the methods,
data descriptions, and file descriptions written in another class definition (the inherited class). When
two classes in an inheritance relationship are considered together, the inheriting class is the subclass
(or derived class or child class); the inherited class is the superclass (or parent class). The inheriting
class also indirectly acquires the methods, data descriptions, and file descriptions that the parent
class inherited from its parent class.

A COBOL class must inherit from exactly one parent class, which can be implemented in COBOL or
Java.

Every COBOL class must inherit directly or indirectly from the java.lang.Object class.

Instance variable
An individual data item defined in the DATA DIVISION of an object paragraph.

Java Native Interface (JNI)
A facility of Java designed for interoperation with non-Java programs.

Java Native Interface (JNI) environment pointer
A pointer used to obtain the address of the JNI environment structure used for calling JNI services.
The COBOL special register JNIENVPTR is provided for referencing the JNI environment pointer.

Object reference
A data item that contains information used to identify and reference an individual object. An object
reference can refer to an object that is an instance of a Java or COBOL class.

90 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Subclass
A class that inherits from another class; also called a derived class or child class of the inherited class.

Superclass
A class that is inherited by another class; also called a parent class of the inheriting class.

With the exception of the COPY and REPLACE statements and the END CLASS marker, the statements,
entries, paragraphs, and sections of a COBOL class definition are grouped into the following structure:

• IDENTIFICATION DIVISION
• ENVIRONMENT DIVISION (configuration section only)
• Factory definition

– IDENTIFICATION DIVISION
– DATA DIVISION
– PROCEDURE DIVISION (containing one or more method definitions)

• Object definition

– IDENTIFICATION DIVISION
– DATA DIVISION
– PROCEDURE DIVISION (containing one or more method definitions)

The end of a COBOL class definition is indicated by the END CLASS marker.

The following format is for a COBOL class definition.

Format: COBOL class definition
IDENTIFICATION

ID

DIVISION. CLASS-ID . class-name-1 INHERITS

class-name-2 .

other-identification-division-content

ENVIRONMENT DIVISION. class-environment-division-content

Factory-definition

Object-definition END CLASS class-name-1.

Factory-definition
IDENTIFICATION

ID

DIVISION. FACTORY.

DATA DIVISION. factory-data-division-content

PROCEDURE DIVISION.

method-definition

END FACTORY.

Object-definition

Chapter 11. COBOL class definition structure 91

IDENTIFICATION

ID

DIVISION. OBJECT.

DATA DIVISION. object-data-division-content

PROCEDURE DIVISION.

method-definition

END OBJECT.

END CLASS
Specifies the end of a class definition.

END FACTORY
Specifies the end of a factory definition.

END OBJECT
Specifies the end of an object definition.

92 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 12. COBOL method definition structure

A COBOL method definition describes a method. You can specify method definitions only within the
factory paragraph and the object paragraph of a class definition.

With the exception of COPY and REPLACE statements and the END METHOD marker, the statements,
entries, paragraphs, and sections of a COBOL method definition are grouped into the following four
divisions:

• IDENTIFICATION DIVISION
• ENVIRONMENT DIVISION (input-output section only)
• DATA DIVISION
• PROCEDURE DIVISION

The end of a COBOL method definition is indicated by the END METHOD marker.

The following format is for a COBOL method definition.

Format: method definition
IDENTIFICATION

ID

DIVISION. METHOD-ID
.

method-name-1
.

other-identification-division-content

ENVIRONMENT DIVISION. method-environment-division-content

DATA DIVISION. method-data-division-content

method-procedure-division-header.

method-procedure-division-content

END METHOD method-name-1.

METHOD-ID
Identifies a method definition. See Chapter 19, “METHOD-ID paragraph,” on page 111 for details.

method-procedure-division-header
Indicates the start of the PROCEDURE DIVISION and identifies method parameters and the returning
item, if any. See “The PROCEDURE DIVISION header” on page 258 for details.

END METHOD
Specifies the end of a method definition.

Methods defined in an object definition are instance methods. An instance method in a given class can
access:

• Data defined in the DATA DIVISION of the object paragraph of that class (instance data)
• Data defined in the DATA DIVISION of that instance method (method data)

An instance method cannot directly access instance data defined in a parent class, factory data defined in
its own class, or method data defined in another method of its class. It must invoke a method to access
such data.

© Copyright IBM Corp. 1991, 2024 93

Methods defined in a factory definition are factory methods. A factory method in a given class can access:

• Data defined in the DATA DIVISION of the factory paragraph of that class (factory data)
• Data defined in the DATA DIVISION of that factory method (method data)

A factory method cannot directly access factory data defined in a parent class, instance data defined in its
own class, or method data defined in another method of its class. It must invoke a method to access such
data.

Methods can be invoked from COBOL programs and methods, and they can be invoked from Java
programs. A method can execute an INVOKE statement that directly or indirectly invokes itself. Therefore,
COBOL methods are implicitly recursive (unlike COBOL programs, which support recursion only if the
RECURSIVE attribute is specified in the program-ID paragraph.)

94 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 13. COBOL user-defined function definition
structure

A COBOL user-defined function definition describes a user-defined function.

Format: COBOL user-defined function definition
IDENTIFICATION

ID

DIVISION. FUNCTION-ID
.

function-name-1

AS 'literal-1' ENTRY-NAME

IS

COMPAT

LONGUPPER

LONGMIXED

ENTRY-INTERFACE

IS

STATIC

DYNAMIC

DLL

.

other identification-division-content

ENVIRONMENT DIVISION. environment-division-content

DATA DIVISION. data-division-content

PROCEDURE DIVISION. procedure-division-content
1

END FUNCTION function-name-1.
2 3

Notes:
1 The RETURNING phrase of the PROCEDURE DIVISION header is required.
2 User-defined function definitions cannot be nested within any programs, user-defined function
definitions, methods, or classes.
3 Rules and behaviors applying to programs and program definitions generally also apply to user-defined
functions and their definitions, except where explicitly specified.

© Copyright IBM Corp. 1991, 2024 95

96 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 14. COBOL function prototype definition
structure

A COBOL function prototype definition describes a function prototype.

Format: COBOL function prototype definition
IDENTIFICATION

ID

DIVISION. FUNCTION-ID
.

function-prototype-name-1

AS 'literal-1' IS

PROTOTYPE

ENTRY-NAME

IS

COMPAT

LONGUPPER

LONGMIXED

ENTRY-INTERFACE

IS

STATIC

DYNAMIC

DLL

.

other identification-division-content

ENVIRONMENT DIVISION. environment-division-content

DATA DIVISION. data-division-content

PROCEDURE DIVISION. procedure-division-content
1

END FUNCTION function-prototype-name-1.
2

Notes:
1 The RETURNING phrase of the PROCEDURE DIVISION header is required.
2 Function prototype definitions cannot be nested within any programs, user-defined function definitions,
methods, classes, or function prototype definitions.

© Copyright IBM Corp. 1991, 2024 97

98 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Part 3. IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION must be the first division in each COBOL source program, factory
definition, object definition, method definition, and function definition. The identification division names
the program, class, or method and identifies the factory definition, object definition, or function definition.
The IDENTIFICATION DIVISION can include the date a program, class, method, or function was written,
the date of compilation, and other such documentary information.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the IDENTIFICATION DIVISION must be the PROGRAM-ID
paragraph. The other paragraphs are optional and can appear in any order.

For details, see Chapter 15, “PROGRAM-ID paragraph,” on page 101.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the IDENTIFICATION DIVISION must be the CLASS-ID paragraph.
The other paragraphs are optional and can appear in any order.

For details, see Chapter 16, “CLASS-ID paragraph,” on page 105.

Factory IDENTIFICATION DIVISION
A factory IDENTIFICATION DIVISION contains only a factory paragraph header.

For details, see Chapter 17, “FACTORY paragraph,” on page 107.

Object IDENTIFICATION DIVISION
An object IDENTIFICATION DIVISION contains only an object paragraph header.

For details, see Chapter 18, “OBJECT paragraph,” on page 109.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the IDENTIFICATION DIVISION must be the METHOD-ID
paragraph. The other paragraphs are optional and can appear in any order.

For details, see Chapter 19, “METHOD-ID paragraph,” on page 111.

Function IDENTIFICATION DIVISION
For a user-defined function or function prototype, the first paragraph of the IDENTIFICATION
DIVISION must be the FUNCTION-ID paragraph. The other paragraphs are optional and can appear in
any order.

For details, see Chapter 20, “FUNCTION-ID paragraph,” on page 113.

© Copyright IBM Corp. 1991, 2024 99

100 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 15. PROGRAM-ID paragraph
The PROGRAM-ID paragraph specifies the name by which the program is known and assigns selected
program attributes to that program. It is required and must be the first paragraph in the IDENTIFICATION
DIVISION.

The following format is for a program IDENTIFICATION DIVISION.

Format: program identification division
IDENTIFICATION

ID

DIVISION. PROGRAM-ID
.

program-name

IS

RECURSIVE

COMMON

INITIAL

INITIAL

COMMON

PROGRAM

.

AUTHOR
.

comment-entry

INSTALLATION
.

comment-entry

DATE-WRITTEN
.

comment-entry

DATE-COMPILED.

comment-entry

SECURITY
.

comment-entry

© Copyright IBM Corp. 1991, 2024 101

program-name
A user-defined word or alphanumeric literal, but not a figurative constant, that identifies your
program. It must follow the following rules of formation, depending on the setting of the PGMNAME
compiler option:
PGMNAME(COMPAT)

The name can be up to 30 characters in length.

Only the hyphen, underscore, digits 0-9, and alphabetic characters are allowed in the name when
it is specified as a user-defined word.

At least one character must be alphabetic.

The hyphen cannot be the first or last character.

If program-name is an alphanumeric literal, the rules for the name are the same except that the
extension characters $, #, and @ can be included in the name of the outermost program and the
underscore can be the first character.

PGMNAME (LONGUPPER)
If program-name is a user-defined word, it can be up to 30 characters in length.

If program-name is an alphanumeric literal, the literal can be up to 160 characters in length. The
literal cannot be a figurative constant.

Only the hyphen, underscore, digits 0-9, and alphabetic characters are allowed in the name when
the name is specified as a user-defined word.

At least one character must be alphabetic.

The hyphen cannot be the first or last character.

If program-name is an alphanumeric literal, the underscore character can be the first character.

External program-names are processed with alphabetic characters folded to uppercase.

PGMNAME (LONGMIXED)
program-name must be specified as an alphnumeric literal, which can be up to 160 characters in
length. The literal cannot be a figurative constant.

program-name can consist of any character in the range X'41' to X'FE'.

For information about the PGMNAME compiler option and how the compiler processes the names, see
PGMNAME in the Enterprise COBOL Programming Guide.

RECURSIVE
An optional clause that allows COBOL programs to be recursively reentered.

You can specify the RECURSIVE clause only on the outermost program of a compilation unit.
Recursive programs cannot contain nested subprograms.

If the RECURSIVE clause is specified, program-name can be recursively reentered while a previous
invocation is still active. If the RECURSIVE clause is not specified, an active program cannot be
recursively reentered.

The WORKING-STORAGE SECTION of a recursive program defines storage that is statically allocated
and initialized on the first entry to a program and is available in a last-used state to any of the
recursive invocations.

The LOCAL-STORAGE SECTION of a recursive program (as well as a nonrecursive program) defines
storage that is automatically allocated, initialized, and deallocated on a per-invocation basis.

Internal file connectors that correspond to an FD in the FILE SECTION of a recursive program are
statically allocated. The status of internal file connectors is part of the last-used state of a program
that persists across invocations.

The following language elements are not supported in a recursive program:

102 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• ALTER
• GO TO without a specified procedure-name
• RERUN
• SEGMENT-LIMIT
• USE FOR DEBUGGING

The RECURSIVE clause is required for programs compiled with the THREAD option.

COMMON
Specifies that the program named by program-name is contained (that is, nested) within another
program and can be called from siblings of the common program and programs contained within
them. The COMMON clause can be used only in nested programs. For more information about
conventions for program names, see “Conventions for program-names” on page 86.

INITIAL
Specifies that when program-name is called, program-name and any programs contained (nested)
within it are placed in their initial state. The initial attribute is not supported for programs compiled
with the THREAD option.

A program is in the initial state:

• The first time the program is called in a run unit
• Every time the program is called, if it possesses the initial attribute
• The first time the program is called after the execution of a CANCEL statement that references the

program or a CANCEL statement that references a program that directly or indirectly contains the
program

• The first time the program is called after the execution of a CALL statement that references a
program that possesses the initial attribute and that directly or indirectly contains the program

When a program is in the initial state:

• The program's internal data contained in the WORKING-STORAGE SECTION is initialized. If a VALUE
clause is used in the description of the data item, the data item is initialized to the defined value. If a
VALUE clause is not associated with a data item, the initial value of the data item is undefined.

• Files with internal file connectors associated with the program are not in the open mode.
• The control mechanisms for all PERFORM statements contained in the program are set to their

initial states.
• An altered GO TO statement contained in the program is set to its initial state.

For the rules governing nonunique program names, see “Rules for program-names” on page 86.

Chapter 15. PROGRAM-ID paragraph 103

104 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 16. CLASS-ID paragraph
The CLASS-ID paragraph specifies the name by which the class is known and assigns selected
attributes to that class. The CLASS-ID paragraph is required and must be the first paragraph in a class
IDENTIFICATION DIVISION.

The following format is for a class IDENTIFICATION DIVISION.

Format: class identification division
IDENTIFICATION DIVISION.

ID DIVISION.

CLASS-ID. class-name-1 INHERITS class-name-2.

AUTHOR
.

comment-entry

INSTALLATION
.

comment-entry

DATE-WRITTEN
.

comment-entry

DATE-COMPILED.

comment-entry

SECURITY
.

comment-entry

class-name-1
A user-defined word that identifies the class. class-name-1 can optionally have an entry in the
REPOSITORY paragraph of the configuration section of the class definition.

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of class-name-2 (the parent
class). class-name-1 cannot directly or indirectly inherit from class-name-1.

class-name-2
The name of a class inherited by class-name-1. You must specify class-name-2 in the REPOSITORY
paragraph of the configuration section of the class definition.

© Copyright IBM Corp. 1991, 2024 105

General rules
class-name-1 and class-name-2 must conform to the normal rules of formation for a COBOL user-defined
word, using single-byte characters.

See “REPOSITORY paragraph” on page 132 for details on specifying a class-name that is part of a Java
package or for using non-COBOL naming conventions for class-names.

You cannot include a class definition in a sequence of programs or other class definitions in a single
compilation group. Each class must be specified as a separate source file; that is, a class definition cannot
be included in a batch compile.

Inheritance
Every method available on instances of a class is also available on instances of any subclass directly or
indirectly derived from that class.

A subclass can introduce new methods that do not exist in the parent or ancestor class and can override a
method from the parent or ancestor class. When a subclass overrides an existing method, it defines a new
implementation for that method, which replaces the inherited implementation.

The instance data of class-name-1 is the instance data declared in class-name-2 together with the data
declared in the WORKING-STORAGE SECTION of class-name-1. Note, however, that instance data is
always private to the class that introduces it.

The semantics of inheritance are as defined by Java. All classes must be derived directly or directly from
the java.lang.Object class.

Java supports single inheritance; that is, no class can inherit directly from more than one parent. Only one
class-name can be specified in the INHERITS phrase of a class definition.

106 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 17. FACTORY paragraph
The factory IDENTIFICATION DIVISION introduces the factory definition, which is the portion of a class
definition that defines the factory object of the class.

A factory object is the single common object that is shared by all object instances of the class. The factory
definition contains factory data and factory methods.

The following format is for a factory IDENTIFICATION DIVISION.

Format: factory identification division
IDENTIFICATION

ID

DIVISION. FACTORY.

© Copyright IBM Corp. 1991, 2024 107

108 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 18. OBJECT paragraph
The object IDENTIFICATION DIVISION introduces the object definition, which is the portion of a class
definition that defines the instance objects of the class.

The object definition contains object data and object methods.

The following format is for an object IDENTIFICATION DIVISION.

Format: object identification division
IDENTIFICATION

ID

DIVISION. OBJECT.

© Copyright IBM Corp. 1991, 2024 109

110 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 19. METHOD-ID paragraph
The METHOD-ID paragraph specifies the name by which a method is known and assigns selected
attributes to that method. The METHOD-ID paragraph is required and must be the first paragraph in a
method IDENTIFICATION DIVISION.

The following format is for a method IDENTIFICATION DIVISION.

Format: method identification division
IDENTIFICATION

ID

DIVISION. METHOD-ID
.

method-name
.

AUTHOR
.

comment-entry

INSTALLATION
.

comment-entry

DATE-WRITTEN
.

comment-entry

DATE-COMPILED.

comment-entry

SECURITY
.

comment-entry

method-name
An alphanumeric literal or national literal that contains the name of the method. The name must
conform to the rules of formation for a Java method name. Method names are used directly, without
translation. The method name is processed in a case-sensitive manner.

Method signature
The signature of a method consists of the name of the method and the number and types of the formal
parameters to the method as specified in the PROCEDURE DIVISION USING phrase.

© Copyright IBM Corp. 1991, 2024 111

Method overloading, overriding, and hiding
COBOL methods can be overloaded, overridden, or hidden, based on the rules of the Java language.

Method overloading
Method names that are defined for a class are not required to be unique. (The set of methods defined
for a class includes the methods introduced by the class definition and the methods inherited from
parent classes.)

Method names defined for a class must have unique signatures. Two methods defined for a class and
that have the same name but different signatures are said to be overloaded.

The type of the method return value, if any, is not included in the method signature.

A class must not define two methods with the same signature but different return value types, or with
the same signature but where one method specifies a return value and the other does not.

The rules for overloaded method definitions and resolution of overloaded method invocations are
based on the corresponding rules for Java.

Method overriding (for instance methods)

An instance method in a subclass overrides an instance method with the same name that is inherited
from a parent class if the two methods have the same signature.

When a method overrides an instance method defined in a parent class, the presence or absence of a
method return value (the PROCEDURE DIVISION RETURNING data-name) must be consistent in the
two methods. Further, when method return values are specified, the return values in the overridden
method and the overriding method must have identical data types.

An instance method must not override a factory method in a COBOL parent class, or a static method in
a Java parent class.

Method hiding (for factory methods)

A factory method is said to hide any and all methods with the same signature in the superclasses of
the method definition that would otherwise be accessible. A factory method must not hide an instance
method.

112 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 20. FUNCTION-ID paragraph
The FUNCTION-ID paragraph specifies the name by which a user-defined function or function prototype
is known and assigns selected attributes to that function or function prototype. The FUNCTION-ID
paragraph is required and must be the first paragraph in the IDENTIFICATION DIVISION.

The following format is for a function IDENTIFICATION DIVISION.

© Copyright IBM Corp. 1991, 2024 113

Format: function identification division
IDENTIFICATION

ID

DIVISION. FUNCTION-ID
.

function-name

AS ' literal-1 ' .

AUTHOR
.

comment-entry

INSTALLATION
.

comment-entry

DATE-WRITTEN
.

comment-entry

DATE-COMPILED.

comment-entry

SECURITY
.

comment-entry

ENTRY-INTERFACE
.

comment-entry

ENTRY-NAME
.

comment-entry

The following format is for a function prototype definition.

114 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format: function prototype identification division
IDENTIFICATION

ID

DIVISION. FUNCTION-ID
.

function-prototype-name-1

AS ' literal-1 ' IS

PROTOTYPE

ENTRY-INTERFACE

IS

STATIC

DYNAMIC

DLL

ENTRY-NAME

IS

COMPAT

LONGUPPER

LONGMIXED

.

function-name-1 or function-prototype-name-1
A user-defined word, but not a figurative constant, that identifies your function or function prototype.
It must follow the following rules of formation:

• The name can be up to 30 characters in length.
• The name cannot be a figurative constant.
• Only the hyphen, underscore, digits 0-9, and alphabetic characters are allowed in the name.
• At least one character must be alphabetic.
• A hyphen cannot be the first or last character.

literal-1

• If literal-1 is specified, literal-1 is an alphanumeric literal providing the externalized name of the
function or function prototype to the operating environment. It may not be a figurative constant.

The externalized name depends on literal-1 and the PGMNAME option. If literal-1 is specified,
all suboptions of the PGMNAME option are allowed and apply to literal-1 and do not apply to
function-name-1 and function-prototype-name-1.

• If literal-1 is not specified, the PGMNAME(COMPAT) and PGMNAME(LONGUPPER) compiler options
are allowed and apply to function-name-1 for function definitions, or function-prototype-name-1 for
prototype definitions. The PGMNAME(LONGMIXED) compiler option, in this case, is not allowed.

For more information about the PGMNAME option, see PGMNAME in the Enterprise COBOL
Programming Guide.

ENTRY-INTERFACE
ENTRY-INTERFACE controls the type of generated code for an invocation to this user-defined function
or function prototype. The default is STATIC.

ENTRY-NAME
ENTRY-NAME provides an override of the PGMNAME compiler option for this user-defined function or
function prototype.

Chapter 20. FUNCTION-ID paragraph 115

116 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 21. Optional paragraphs
Some optional paragraphs in the IDENTIFICATION DIVISION can be omitted.

The optional paragraphs are:

AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
The DATE-COMPILED paragraph provides the compilation date in the source listing. If a comment-
entry is specified, the entire entry is replaced with the current date, even if the entry spans lines.
If the comment entry is omitted, the compiler adds the current date to the line on which DATE-
COMPILED is printed. For example:

DATE-COMPILED. 06/30/10.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of characters from the
character set of the computer. The comment-entry is written in Area B on one or more lines. The
comment-entry must not be written in Area A.

Comment-entries serve only as documentation; they do not affect the meaning of the program. A hyphen
in the indicator area (column 7) is not permitted in comment-entries.

You can include DBCS character strings as comment-entries in the IDENTIFICATION DIVISION of your
program. Multiple lines are allowed in a comment-entry that contains DBCS character strings.

A DBCS character string must be preceded by a shift-out control character and followed by a shift-in
control character. For example:

AUTHOR. <.A.U.T.H.O.R.-.N.A.M.E>, XYZ CORPORATION
DATE-WRITTEN. <.D.A.T.E>

When a comment-entry that is contained on multiple lines uses DBCS characters, shift-out and shift-in
characters must be paired on a line.

© Copyright IBM Corp. 1991, 2024 117

118 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Part 4. ENVIRONMENT DIVISION

© Copyright IBM Corp. 1991, 2024 119

120 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 22. Configuration section

The configuration section is an optional section for programs, functions, prototypes, and classes, and can
describe the computer environment on which the program or class is compiled and executed.

Program configuration section
The configuration section can be specified only in the ENVIRONMENT DIVISION of the outermost
program of a COBOL source program.

You should not specify the configuration section in a program that is contained within another
program. The entries specified in the configuration section of a program apply to any program
contained within that program.

Class configuration section
Specify the configuration section in the ENVIRONMENT DIVISION of a class definition. The repository
paragraph can be specified in the ENVIRONMENT DIVISION of a class definition.

Entries in a class configuration section apply to the entire class definition, including all methods
introduced by that class.

Method configuration section
The input-output section can be specified in a method configuration section. The entries apply only to
the method in which the configuration section is specified.

User-defined function configuration section
Specify the configuration section in the ENVIRONMENT DIVISION of a user-defined function
definition.

Function prototype configuration section
Specify the configuration section in the ENVIRONMENT DIVISION of a function prototype definition.

Format:
CONFIGURATION SECTION.

source-computer-paragraph

object-computer-paragraph special-names-paragraph

repository-paragraph

The configuration section can:

• Relate IBM-defined environment-names to user-defined mnemonic names
• Specify the collating sequence
• Specify a currency sign value, and the currency symbol used in the PICTURE clause to represent the

currency sign value
• Exchange the functions of the comma and the period in PICTURE clauses and numeric literals
• Relate alphabet-names to character sets or collating sequences
• Specify symbolic characters
• Relate class-names to sets of characters
• Relate object-oriented class names to external class-names and identify class-names that can be used

in a class definition or program

© Copyright IBM Corp. 1991, 2024 121

• Relate xml-schema-names to ddnames or environment variable names identifying files containing XML
schemas

SOURCE-COMPUTER paragraph
The SOURCE-COMPUTER paragraph describes the computer on which the source text is to be compiled.

Format
SOURCE-COMPUTER.

computer-name

WITH

DEBUGGING MODE

.

computer-name
A system-name. For example:

IBM-system

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source text.

A debugging line is a statement that is compiled only when the compile-time switch is activated.
Debugging lines allow you, for example, to check the value of a data-name at certain points in a
procedure.

To specify a debugging line in your program, code a D in column 7 (indicator area). You can include
successive debugging lines, but each must have a D in column 7, and you cannot break character
strings across lines.

All your debugging lines must be written so that the program is syntactically correct, whether the
debugging lines are compiled or treated as comments.

The presence or absence of the DEBUGGING MODE clause is logically determined after all COPY and
REPLACE statements have been processed.

You can code debugging lines in the ENVIRONMENT DIVISION (after the OBJECT-COMPUTER
paragraph), and in the data and procedure divisions.

If a debugging line contains only spaces in Area A and in Area B, the debugging line is treated the
same as a blank line.

All of the SOURCE-COMPUTER paragraph is syntax checked, but only the WITH DEBUGGING MODE clause
has an effect on the execution of the program.

The SOURCE-COMPUTER paragraph cannot be specified in a function prototype definition.

122 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

OBJECT-COMPUTER paragraph
The OBJECT-COMPUTER paragraph specifies the system for which the object program is designated.

Format
OBJECT-COMPUTER.

computer-name

MEMORY

SIZE

integer WORDS

CHARACTERS

MODULES

entry 1 .

entry 1

PROGRAM COLLATING

SEQUENCE

IS

alphabet-name

SEGMENT-LIMIT

IS

priority-number

computer-name
A system-name. For example:

IBM-system

MEMORY SIZE integer
integer specifies the amount of main storage needed to run the object program, in words, characters
or modules. The MEMORY SIZE clause is syntax checked but has no effect on the execution of the
program.

PROGRAM COLLATING SEQUENCE IS alphabet-name
The collating sequence used in this program is the collating sequence associated with the specified
alphabet-name.

The collating sequence pertains to this program and to any programs that this program might contain.

PROGRAM COLLATING SEQUENCE determines the truth value of the following alphanumeric
comparisons:

• Those explicitly specified in relation conditions
• Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any merge or sort keys described
with usage DISPLAY, unless the COLLATING SEQUENCE phrase is specified in the MERGE or SORT
statement.

The PROGRAM COLLATING SEQUENCE clause does not apply to DBCS data items or data items of
usage NATIONAL.

If the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC collating sequence is used.
(See Appendix C, “EBCDIC and ASCII collating sequences,” on page 751.)

Chapter 22. Configuration section 123

SEGMENT-LIMIT IS
The SEGMENT-LIMIT clause is syntax checked but has no effect on the execution of the program.

priority-number
An integer ranging from 1 through 49. All sections with priority-numbers 0 through 49 are fixed
permanent segments. See “Procedures” on page 265 for a description of priority-numbers and
segmentation support.

Segmentation is not supported for programs compiled with the THREAD option.

All of the OBJECT-COMPUTER paragraph is syntax checked, but only the PROGRAM COLLATING
SEQUENCE clause has an effect on the execution of the program.

The OBJECT-COMPUTER paragraph cannot be specified in a function prototype definition.

SPECIAL-NAMES paragraph
The SPECIAL-NAMES paragraph is the name of an ENVIRONMENT DIVISION paragraph in which
environment-names are related to user-specified mnemonic-names.

The SPECIAL-NAMES paragraph:

• Relates IBM-specified environment-names to user-defined mnemonic-names
• Relates alphabet-names to character sets or collating sequences
• Specifies symbolic characters
• Relates class names to sets of characters
• Specifies one or more currency sign values and defines a picture symbol to represent each currency sign

value in PICTURE clauses
• Specifies that the functions of the comma and decimal point are to be interchanged in PICTURE clauses

and numeric literals
• Relates xml-schema-names to ddnames or environment variable names identifying files containing XML

schemas

The clauses in the SPECIAL-NAMES paragraph can appear in any order.

124 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format: SPECIAL-NAMES paragraph
SPECIAL-NAMES.

environment-name-1

IS

mnemonic-name-1

environment-name-2

IS

mnemonic-name-2

entry 1

entry 1

ALPHABET alphabet-name-1

IS

STANDARD-1

STANDARD-2

NATIVE

EBCDIC

literal-1 phrase 1

SYMBOLIC

CHARACTERS

symbolic

IN alphabet-name-2

CLASS class-name-1

IS

literal-4

THROUGH

THRU

literal-5

CURRENCY

SIGN IS

literal-6

WITH

PICTURE SYMBOL literal-7

DECIMAL-POINT

IS

COMMA

XML-SCHEMA xml-schema-name-1

IS

external-fileid-1

literal-8

.
1

Notes:
1 This separator period is optional when no clauses are selected. If you use any clauses, you must
code the period after the last clause.

Chapter 22. Configuration section 125

Fragments
entry 1

ON

STATUS IS

condition-1

OFF

STATUS IS

condition-2

OFF

STATUS IS

condition-2

ON

STATUS IS

condition-1

phrase 1

THROUGH

THRU

literal-2

ALSO literal-3

symbolic

symbolic-character-1

ARE

IS

integer-1

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are shown in the following table.

Table 5. Meanings of environment names

environment-
name-1

Meaning Allowed in

SYSIN
SYSIPT

System logical input unit ACCEPT

SYSOUT
SYSLIST
SYSLST

System logical output unit DISPLAY

SYSPUNCH
SYSPCH

System punch device DISPLAY

CONSOLE Console ACCEPT and DISPLAY

C01 through C12 Skip to channel 1 through channel 12,
respectively

WRITE ADVANCING

CSP Suppress spacing WRITE ADVANCING

126 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 5. Meanings of environment names (continued)

environment-
name-1

Meaning Allowed in

S01 through S05 Pocket select 1 through 5 on punch
devices

WRITE ADVANCING

AFP-5A Advanced Function Printing WRITE ADVANCING

environment-name-2
A 1-byte user-programmable status indicator (UPSI) switch. Valid specifications for environment-
name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1 , mnemonic-name-2
mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for user-defined names.
mnemonic-name-1 can be used in ACCEPT, DISPLAY, and WRITE statements. mnemonic-name-2 can
be referenced only in the SET statement. mnemonic-name-2 can qualify condition-1 or condition-2
names.

Mnemonic-names and environment-names need not be unique. If you choose a mnemonic-name
that is also an environment-name, its definition as a mnemonic-name will take precedence over its
definition as an environment-name.

ON STATUS IS, OFF STATUS IS
UPSI switches process special conditions within a program, such as year-beginning or year-ending
processing. For example, at the beginning of the PROCEDURE DIVISION, an UPSI switch can be
tested; if it is ON, the special branch is taken. (See “Switch-status condition” on page 283.)

condition-1, condition-2
Condition-names follow the rules for user-defined names. At least one character must be alphabetic.
The value associated with the condition-name is considered to be alphanumeric. A condition-name
can be associated with the on status or off status of each UPSI switch specified.

In the PROCEDURE DIVISION, the UPSI switch status is tested through the associated condition-
name. Each condition-name is the equivalent of a level-88 item; the associated mnemonic-name, if
specified, is considered the conditional variable and can be used for qualification.

Condition-names specified in the SPECIAL-NAMES paragraph of a containing program can be
referenced in any contained program.

ALPHABET clause
The ALPHABET clause provides a means of relating an alphabet-name to a specified character code set or
collating sequence.

The related character code set or collating sequence can be used for alphanumeric data, but not for DBCS
or national data.

The ALPHABET clause cannot be specified in a function prototype definition.

ALPHABET alphabet-name-1 IS
alphabet-name-1 specifies a collating sequence when used in:

• The PROGRAM COLLATING SEQUENCE clause of the object-computer paragraph
• The COLLATING SEQUENCE phrase of the SORT or MERGE statement

alphabet-name-1 specifies a character code set when used in:

• The FD entry CODE-SET clause
• The SYMBOLIC CHARACTERS clause

Chapter 22. Configuration section 127

STANDARD-1
Specifies the ASCII character set.

STANDARD-2
Specifies the International Reference Version of ISO/IEC 646, 7-bit coded character set for
information interchange.

NATIVE
Specifies the native character code set. If the ALPHABET clause is omitted, EBCDIC is assumed.

EBCDIC
Specifies the EBCDIC character set.

literal-1 , literal-2 , literal-3
Specifies that the collating sequence for alphanumeric data is determined by the program,
according to the following rules:

• The order in which literals appear specifies the ordinal number, in ascending sequence, of the
characters in this collating sequence.

• Each numeric literal specified must be an unsigned integer.
• Each numeric literal must have a value that corresponds to a valid ordinal position within the

collating sequence in effect.

See Appendix C, “EBCDIC and ASCII collating sequences,” on page 751 for the ordinal numbers
for characters in the single-byte EBCDIC and ASCII collating sequences.

• Each character in an alphanumeric literal represents that actual character in the character set.
(If the alphanumeric literal contains more than one character, each character, starting with the
leftmost, is assigned a successively ascending position within this collating sequence.)

• Any characters that are not explicitly specified assume positions in this collating sequence
higher than any of the explicitly specified characters.

• Within one alphabet-name clause, a given character must not be specified more than once.
• Each alphanumeric literal associated with a THROUGH or ALSO phrase must be one character in

length.
• When the THROUGH phrase is specified, the contiguous characters in the native character set

beginning with the character specified by literal-1 and ending with the character specified by
literal-2 are assigned successively ascending positions in this collating sequence.

This sequence can be either ascending or descending within the original native character set.
That is, if "Z" THROUGH "A" is specified, the ascending values, left-to-right, for the uppercase
letters are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

• When the ALSO phrase is specified, the characters specified as literal-1, literal-3, ... are assigned
to the same position in this collating sequence. For example, if you specify:

"D" ALSO "N" ALSO "%"

the characters D, N, and % are all considered to be in the same position in the collating
sequence.

• When the ALSO phrase is specified and alphabet-name-1 is referenced in a SYMBOLIC
CHARACTERS clause, only literal-1 is used to represent the character in the character set.

• The character that has the highest ordinal position in this collating sequence is associated
with the figurative constant HIGH-VALUE. If more than one character has the highest position
because of specification of the ALSO phrase, the last character specified (or defaulted to when
any characters are not explicitly specified) is considered to be the HIGH-VALUE character for
procedural statements such as DISPLAY and as the sending field in a MOVE statement. (If the

128 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

ALSO phrase example given above were specified as the high-order characters of this collating
sequence, the HIGH-VALUE character would be %.)

• The character that has the lowest ordinal position in this collating sequence is associated with
the figurative constant LOW-VALUE. If more than one character has the lowest position because
of specification of the ALSO phrase, the first character specified is the LOW-VALUE character.
(If the ALSO phrase example given above were specified as the low-order characters of the
collating sequence, the LOW-VALUE character would be D.)

When literal-1, literal-2, or literal-3 is specified, the alphabet-name must not be referred to in a
CODE-SET clause (see “CODE-SET clause” on page 192).

literal-1, literal-2, and literal-3 must be alphanumeric or numeric literals. All must have the
same category. A floating-point literal, a national literal, a DBCS literal, or a symbolic-character
figurative constant must not be specified.

CLASS clause
The CLASS clause provides a means for relating a name to the specified set of characters listed in that
clause.

The CLASS clause cannot be specified in a function prototype definition.

CLASS class-name-1 IS
Provides a means for relating a name to the specified set of characters listed in that clause. class-
name-1 can be referenced only in a class condition. The characters specified by the values of the
literals in this clause define the exclusive set of characters of which this class consists.

The class-name in the CLASS clause can be a DBCS user-defined word.

literal-4, literal-5
Must be category numeric or alphanumeric, and both must be of the same category.

If numeric, literal-4 and literal-5 must be unsigned integers and must have a value that is greater
than or equal to 1 and less than or equal to the number of characters in the alphabet specified. Each
number corresponds to the ordinal position of each character in the single-byte EBCDIC or ASCII
collating sequence.

If alphanumeric, literal-4 and literal-5 are an actual single-byte EBCDIC character.

literal-4 and literal-5 must not specify a symbolic-character figurative constant. If the value of the
alphanumeric literal contains multiple characters, each character in the literal is included in the set of
characters identified by class-name.

Floating-point literals cannot be used in the CLASS clause.

If the alphanumeric literal is associated with a THROUGH phrase, the literal must be one character in
length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified, class-name includes those
characters that begin with the value of literal-4 and that end with the value of literal-5. In addition,
the characters specified by a THROUGH phrase can be in either ascending or descending order.

CURRENCY SIGN clause
The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE character-strings contain
a currency symbol.

A currency symbol represents a currency sign value that is:

• Inserted in such data items when they are used as receiving items
• Removed from such data items when they are used as sending items for a numeric or numeric-edited

receiver

Chapter 22. Configuration section 129

Typically, currency sign values identify the monetary units stored in a data item. For example: '$', 'EUR',
'CHF', 'JPY', 'HK$', 'HKD', or X'9F' (hexadecimal code point in some EBCDIC code pages for €, the Euro
currency sign). For details on programming techniques for handling the Euro, see Using currency signs in
the Enterprise COBOL Programming Guide.

The CURRENCY SIGN clause specifies a currency sign value and the currency symbol used to represent
that currency sign value in a PICTURE clause.

The SPECIAL-NAMES paragraph can contain multiple CURRENCY SIGN clauses. Each CURRENCY SIGN
clause must specify a different currency symbol. Unlike all other PICTURE clause symbols, currency
symbols are case sensitive. For example, 'D' and 'd' specify different currency symbols.

CURRENCY SIGN IS literal-6
literal-6 must be an alphanumeric literal. literal-6 must not be a figurative constant or a null-
terminated literal. literal-6 must not contain a DBCS character.

If the PICTURE SYMBOL phrase is not specified, literal-6:

• Specifies both a currency sign value and the currency symbol for this currency sign value
• Must be a single character
• Must not contain any of the following digits or characters:

– Digits 0 through 9
– Alphabetic characters A, B, C, D, E, G, N, P, R, S, U, V, X, Z, their lowercase equivalents, or the

space
– Special characters + - , . * / ; () " = ' (plus sign, minus sign, comma, period, asterisk, slash,

semicolon, left parenthesis, right parenthesis, quotation mark, equal sign, apostrophe)
• Can be one of the following lowercase alphabetic characters: f, h, i, j, k, l, m, o, q, t, w, y

If the PICTURE SYMBOL phrase is specified, literal-6:

• Specifies a currency sign value. literal-7 in the PICTURE SYMBOL phrase specifies the currency
symbol for this currency sign value.

• Can consist of one or more characters.
• Must not contain any of the following digits or characters:

– Digits 0 through 9
– Special characters + - . ,

PICTURE SYMBOL literal-7
Specifies a currency symbol that can be used in a PICTURE clause to represent the currency sign
value specified by literal-6.

literal-7 must be an alphanumeric literal consisting of one single-byte character. literal-7 must not
contain any of the following digits or characters:

• A figurative constant
• Digits 0 through 9
• Alphabetic characters A, B, C, D, E, G, N, P, R, S, U, V, X, Z, their lowercase equivalents, or the space
• Special characters + - , . * / ; () " = '

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY compiler options are
ignored. If the CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in
effect, the dollar sign ($) is used as the default currency sign value and currency symbol. For more
information about the CURRENCY and NOCURRENCY compiler options, see CURRENCY in the Enterprise
COBOL Programming Guide.

130 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

DECIMAL-POINT IS COMMA clause
The DECIMAL-POINT IS COMMA clause exchanges the functions of the period and the comma in PICTURE
character-strings and in numeric literals.

SYMBOLIC CHARACTERS clause
The SYMBOLIC CHARACTERS clause is applicable only to single-byte character sets. Each character
represented is an alphanumeric character.

The SYMBOLIC CHARACTERS clause cannot be specified in a function prototype definition.

SYMBOLIC CHARACTERS symbolic-character-1
Provides a means of specifying one or more symbolic characters. symbolic-character-1 is a user-
defined word and must contain at least one alphabetic character. The same symbolic-character
can appear only once in a SYMBOLIC CHARACTERS clause. The symbolic character can be a DBCS
user-defined word.

The internal representation of symbolic-character-1 is the internal representation of the character that
is represented in the specified character set. The following rules apply:

• The relationship between each symbolic-character-1 and the corresponding integer-1 is by their
position in the SYMBOLIC CHARACTERS clause. The first symbolic-character-1 is paired with the
first integer-1; the second symbolic-character-1 is paired with the second integer-1; and so forth.

• There must be a one-to-one correspondence between occurrences of symbolic-character-1 and
occurrences of integer-1 in a SYMBOLIC CHARACTERS clause.

• If the IN phrase is specified, integer-1 specifies the ordinal position of the character that is
represented in the character set named by alphabet-name-2. This ordinal position must exist.

• If the IN phrase is not specified, symbolic-character-1 represents the character whose ordinal
position in the native character set is specified by integer-1.

Ordinal positions are numbered starting from 1.

XML-SCHEMA clause
The XML-SCHEMA clause provides the means of relating xml-schema-name-1 to an external file identifier:
a ddname or environment variable that identifies the actual external file that contains the optimized XML
schema.

The external file identifier can be specified as a user-defined word external-fileid-1 or as an alphanumeric
literal literal-8, and identifies an existing external z/OS UNIX file or MVS™ data set that contains the
optimized XML schema.

The external file identifier must be either the name specified in the DD statement for the file or the name
of an environment variable that contains the file identification information.

The XML-SCHEMA clause cannot be specified in a function prototype definition.

For details on specifying an environment variable, see “Environment variable contents for an XML schema
file” on page 132.

XML-SCHEMA xml-schema-name-1 IS
xml-schema-name-1 can be referenced only in an XML PARSE statement.

The xml-schema-name in the XML SCHEMA clause can be a DBCS user-defined word.

external-fileid-1
Specifies a user-defined word that must conform to the following rules:

• The user-defined word can contain one to eight characters.
• The user-defined word can contain the characters, A-Z, a-z, 0-9.

Chapter 22. Configuration section 131

• The leading character must be alphabetic.

literal-8
Specifies an alphanumeric literal that must conform to the following rules:

• The literal can contain one to eight characters.
• The literal can contain the characters, A-Z, a-z, 0-9, @, #, and $.
• The leading character must be alphabetic, @, #, and $.

The compiler folds external-fileid-1 or literal-8 to uppercase to form the ddname or environment variable
name for the file.

Environment variable contents for an XML schema file

The environment variable name must be defined using only uppercase because the COBOL compiler
automatically folds the external file identifier to uppercase.

For an XML schema in an MVS data set, the environment variable must contain a DSN option in the format
shown below.

Format: environment variable for XML schema in an MVS data set, DSN option
DSN( data-set-name

( member-name)

)

data-set-name must be fully qualified. You must not code blanks within the parentheses.

For an XML schema in a z/OS UNIX file, the environment variable must contain a PATH option in the
format shown below.

Format: environment variable for XML schema in a z/OS UNIX file, PATH option
PATH( path-name)

path-name must be an absolute path name; that is, it must begin with a slash. Special characters in the
path name must be "escaped" by preceding them with a backslash. For example, to include a backslash in
the path name, code two backslashes in sequence.

For more information about specifying path-name, see the description of the PATH parameter in the z/OS
MVS JCL Reference.

For both formats, blanks at the beginning and end of the environment variable contents are ignored. You
must not code blanks between a keyword and the left parenthesis that immediately follows the keyword.

REPOSITORY paragraph
The REPOSITORY paragraph allows specification of class-names that may be used within the scope of
the environment division. It also allows declaration of intrinsic function names or user-defined function
names that may be used without specifying the keyword FUNCTION.

The REPOSITORY paragraph cannot be specified in a function prototype definition.

132 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format: REPOSITORY paragraph
REPOSITORY.

CLASS class-name-1

IS

external-class-name-1

java-array-class-reference

FUNCTION intrinsic-function-name-1

ALL

INTRINSIC

FUNCTION user-defined-function-name-1

class-name-1
A user-defined word that identifies the class.

external-class-name-1
An alphanumeric literal containing a name that enables a COBOL program to define or access classes
with class-names that are defined using Java rules of formation.

The name must conform to the rules of formation for a fully qualified Java class-name. If the class is
part of a Java package, external-class-name-1 must specify the fully qualified name of the package,
followed by a period, followed by the simple name of the Java class.

See Java Language Specification, Third Edition, by Gosling et al., for Java class-name formation rules.

java-array-class-reference
A reference that enables a COBOL program to access a class that represents an array object,
where the elements of the array are themselves objects. java-array-class-reference must be an
alphanumeric literal with content in the following format:

Format
jobjectArray

: external-class-name-2

jobjectArray
Specifies a Java object array class.

:
A required separator when external-class-name-2 is specified. The colon must not be preceded or
followed by space characters.

external-class-name-2
The external class-name of the type of the elements of the array. external-class-name-2 must
follow the same rules of formation as external-class-name-1.

When the repository entry specifies jobjectArray without the colon separator and external-class-
name-2, the elements of the object array are of type java.lang.Object.

Chapter 22. Configuration section 133

ALL
If ALL is specified, it is as if all supported Enterprise COBOL intrinsic function names listed in the Table
59 on page 509 were specified.

If ALL is specified, you shall not specify any intrinsic function name as a user-defined word, within the
scope of this REPOSITORY paragraph.

intrinsic-function-name-1
The name of a supported Enterprise COBOL intrinsic function.

If any intrinsic-function-name-1 is specified more than once in the REPOSITORY paragraph, all
specifications for that name shall be identical.

The intrinsic-function-name-1 shall not be specified as a user-defined word within the scope of this
REPOSITORY paragraph.

Within the scope of the containing ENVIRONMENT DIVISION, the intrinsic-function-name-1 may be
specified as a function-identifier without being preceded by the keyword FUNCTION, unless specific
rules require the use of the keyword FUNCTION.

Note: Since WHEN-COMPILED is both a special register and an intrinsic function name, it may not be
specified in the FUNCTION clause of the REPOSITORY paragraph.

user-defined-function-name-1
The name of a user-defined function.

The user-defined-function-name-1 shall not be specified as a user-defined word within the scope of
this REPOSITORY paragraph.

Within the scope of the containing ENVIRONMENT DIVISION, the user-defined-function-name-1 may
be specified as a function-identifier without being preceded by the keyword FUNCTION, unless
specific rules require the use of the keyword FUNCTION.

Note: user-defined-function-name-1 may not be LENGTH, RANDOM, SIGN, SUM, or WHEN-COMPILED.

General rules
This topic lists the general rules of the REPOSITORY paragraph.

1. All referenced class-names must have an entry in the repository paragraph of the COBOL program or
class definition that contains the reference. You can specify a given class-name only once in a given
repository paragraph.

2. In program definitions, the repository paragraph can be specified only in the outermost program.
3. The repository paragraph of a COBOL class definition can optionally contain an entry for the name

of the class itself, but this entry is not required. Such an entry can be used to specify an external
class-name that uses non-COBOL characters or that specifies a fully package-qualified class-name
when a COBOL class is to be part of a Java package.

4. Entries in a class repository paragraph apply to the entire class definition, including all methods
introduced by that class. Entries in a program repository paragraph apply to the entire program,
including its contained programs.

Identifying and referencing a class
An external-class-name is used to identify and reference a given class from outside the class definition
that defines the class.

The external class-name is determined by using the contents of external-class-name-1, external-class-
name-2, or class-name-1 (as specified in the repository paragraph of a class), as described below:

1. external-class-name-1 and external-class-name-2 are used directly, without translation. They are
processed in a case-sensitive manner.

134 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

2. class-name-1 is used if external-class-name-1 or java-array-class-reference is not specified. To create
an external name that identifies the class and conforms to Java rules of formation, class-name-1 is
processed as follows:

• The name is converted to uppercase.
• Hyphens are translated to zero.
• Underscores are not translated.
• If the first character of the name is a digit, it is converted as follows:

– Digits 1 though 9 are changed to A through I.
– 0 is changed to J.

The class can be implemented in Java or COBOL.

When referencing a class that is part of a Java package, external-class-name-1 must be specified and
must give the fully qualified Java class-name.

For example, the repository entry

Repository.
 Class JavaException is "java.lang.Exception"

defines local class-name JavaException for referring to the fully qualified external-class-name
"java.lang.Exception."

When defining a COBOL class that is to be part of a Java package, specify an entry in the repository
paragraph of that class itself, giving the full Java package-qualified name as the external class-name.

Chapter 22. Configuration section 135

136 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 23. Input-Output section
The input-output section of the ENVIRONMENT DIVISION contains FILE-CONTROL paragraph and I-O-
CONTROL paragraph.

The exact contents of the input-output section depend on the file organization and access methods used.
See “ORGANIZATION clause” on page 146 and “ACCESS MODE clause” on page 148.

The Input-Output section cannot be specified in a function prototype definition.

Program input-output section
The same rules apply to program, method, and user-defined function I-O sections.

Class input-output section
The input-output section is not valid for class definitions.

Method input-output section
The same rules apply to program, method, and user defined function I-O sections.

User-defined function input-output section
The same rules apply to program, method, and user-defined function I-O sections.

Format: input-output section

INPUT-OUTPUT SECTION. FILE-CONTROL. file-control-paragraph

I-O-CONTROL.

i-o-control-paragraph .

FILE-CONTROL
The keyword FILE-CONTROL identifies the file-control paragraph. This keyword can appear only once,
at the beginning of the FILE-CONTROL paragraph. It must begin in Area A and be followed by a
separator period.

The keyword FILE-CONTROL and the period can be omitted if no file-control-paragraph is specified
and there are no files defined in the program.

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator period. See “FILE-CONTROL
paragraph” on page 138.

file-control-paragraph can be omitted if there are no files defined in the program, even if the FILE-
CONTROL keyword is specified.

I-O-CONTROL
The keyword I-O-CONTROL identifies the I-O-CONTROL paragraph.

i-o-control-paragraph
Specifies information needed for efficient transmission of data between the external data set and
the COBOL program. The series of entries must end with a separator period. See “I-O-CONTROL
paragraph” on page 154.

© Copyright IBM Corp. 1991, 2024 137

FILE-CONTROL paragraph
The FILE-CONTROL paragraph associates each file in the COBOL program with an external data set, and
specifies file organization, access mode, and other information.

The following formats are for the FILE-CONTROL paragraph:

• Sequential file entries
• Indexed file entries
• Relative file entries
• Line-sequential file entries

The table below lists the different type of files available to programs and methods.

Table 6. Types of files

File organization Access method

Sequential QSAM, VSAM1

Relative VSAM1

Indexed VSAM1

Line sequential2 Text stream I-O

1. VSAM does not support z/OS UNIX files.
2. Line-sequential support is limited to z/OS UNIX files.

The FILE-CONTROL paragraph begins with the word FILE-CONTROL followed by a separator period. It
must contain one and only one entry for each file described in an FD or SD entry in the DATA DIVISION.

Within each entry, the SELECT clause must appear first. The other clauses can appear in any order, except
that the PASSWORD clause for indexed files, if specified, must immediately follow the RECORD KEY or
ALTERNATE RECORD KEY data-name with which it is associated.

The name component of assignment-name-1 cannot contain an underscore.

138 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 1: sequential-file-control-entry
SELECT

OPTIONAL

file-name-1 ASSIGN

TO

assignment-name-1

RESERVE integer

AREA

AREAS

ORGANIZATION

IS

SEQUENTIAL

PADDING

CHARACTER IS

data-name-5

literal-2

RECORD DELIMITER

IS

STANDARD-1

assignment-name-2

ACCESS

MODE IS

SEQUENTIAL

PASSWORD

IS

data-name-6

FILE

STATUS

IS

data-name-1

data-name-8

.

Chapter 23. Input-Output section 139

Format 2: indexed-file-control-entry
SELECT

OPTIONAL

file-name-1 ASSIGN

TO

assignment-name-1

RESERVE integer

AREA

AREAS

ORGANIZATION

IS

INDEXED

ACCESS

MODE IS

SEQUENTIAL

RANDOM

DYNAMIC

RECORD

KEY IS

data-name-2

PASSWORD

IS

data-name-6 entry 1

FILE

STATUS

IS

data-name-1

data-name-8

.

entry 1
ALTERNATE

RECORD KEY IS

data-name-3

WITH

DUPLICATES PASSWORD

IS

data-name-7

140 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 3: relative-file-control-entry
SELECT

OPTIONAL

file-name-1 ASSIGN

TO

assignment-name-1

RESERVE integer

AREA

AREAS

ORGANIZATION

IS

RELATIVE

ACCESS

MODE IS

SEQUENTIAL

RELATIVE

KEY IS

data-name-4

RANDOM

DYNAMIC

RELATIVE

KEY IS

data-name-4

PASSWORD

IS

data-name-6

FILE

STATUS

IS

data-name-1

data-name-8

.

Format 4: line-sequential-file-control-entry
SELECT

OPTIONAL

file-name-1 ASSIGN

TO

assignment-name-1

ORGANIZATION

IS

LINE SEQUENTIAL

ACCESS

MODE IS

SEQUENTIAL

FILE

STATUS

IS

data-name-1

.

Chapter 23. Input-Output section 141

SELECT clause
The SELECT clause identifies a file in the COBOL program to be associated with an external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode. You must specify SELECT
OPTIONAL for those input files that are not necessarily available each time the object program is
executed. For more information, see “OPEN statement notes” on page 410.

file-name-1
Must be identified by an FD or SD entry in the DATA DIVISION. A file-name must conform to the rules
for a COBOL user-defined name, must contain at least one alphabetic character, and must be unique
within this program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can follow the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all file-control entries in the
run unit that reference this file connector must have the same specification for the OPTIONAL phrase.

ASSIGN clause
The ASSIGN clause associates the name of a file in a program with the actual external name of the data
file.

assignment-name-1
Identifies the external data file. It can be specified as a name or as an alphanumeric literal.

assignment-name-1 is not the name of a data item, and assignment-name-1 cannot be contained in a
data item. It is just a character string. It cannot contain an underscore character.

Any assignment-name after the first is syntax checked, but has no effect on the execution of the
program.

assignment-name-1 has the following formats:

Format: assignment-name for QSAM files

label- S-

name

Format: assignment-name for VSAM sequential file

label-

AS- name

Format: assignment-name for line-sequential, VSAM indexed, or VSAM relative file

label-

name

label-
Documents (for the programmer) the device and device class to which a file is assigned. It must end
in a hyphen; the specified value is not otherwise checked. It has no effect on the execution of the
program. If specified, it must end with a hyphen.

S-
For QSAM files, the S- (organization) field can be omitted.

142 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

AS-
For VSAM sequential files, the AS- (organization) field must be specified.

For VSAM indexed and relative files, the organization field must be omitted.

name
A required field that specifies the external name for this file.

It must be either the name specified in the DD statement for this file or the name of an environment
variable that contains file allocation information. For details on specifying an environment variable,
see “Assignment name for environment variable” on page 143.

name must conform to the following rules of formation:

• If assignment-name-1 is a user-defined word:

– The name can contain from one to eight characters.
– The name can contain the characters A-Z, a-z, and 0-9.
– The leading character must be alphabetic.
– The name cannot contain an underscore.

• If assignment-name-1 is a literal:

– The name can contain from one to eight characters.
– The name can contain the characters A-Z, a-z, 0-9, @, #, and $.
– The leading character must be alphabetic.
– The name cannot contain an underscore.

For both user-defined words and literals, the compiler folds name to uppercase to form the ddname
for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external file connector, all
file-control entries in the run unit that reference this file connector must have a consistent specification
for assignment-name-1 in the ASSIGN clause. For QSAM files and VSAM indexed and relative files, the
name specified on the first assignment-name-1 must be identical. For VSAM sequential files, it must be
specified as AS-name.

Assignment name for environment variable
The name component of assignment-name-1 is initially treated as a ddname. If no file has been allocated
using this ddname, then name is treated as an environment variable.

The environment variable name must be defined using only uppercase because the COBOL compiler
automatically folds the external file-name to uppercase.

If this environment variable exists and contains a valid PATH or DSN option (described below), then the
file is dynamically allocated using the information supplied by that option.

If the environment variable does not contain a valid PATH or DSN option or if the dynamic allocation fails,
then attempting to open the file results in file status 98.

The contents of the environment variable are checked at each OPEN statement. If a file was dynamically
allocated by a previous OPEN statement and the contents of the environment variable have changed
since the previous OPEN, then the previous allocation is dynamically deallocated prior to dynamically
reallocating the file using the options currently set in the environment variable.

When the run unit terminates, the COBOL runtime system automatically deallocates all automatically
generated dynamic allocations.

Chapter 23. Input-Output section 143

Environment variable contents for a QSAM file
For a QSAM file, the environment variable must contain either a DSN or a PATH option in the format shown
below.

Format: environment variable for QSAM files, DSN option
DSN( data-set-name

( member-name)

)

NEW

OLD

SHR

MOD

TRACKS

CYL

SPACE( nnn , mmmm) VOL( volume-serial) UNIT( type)

KEEP

DELETE

CATALOG

UNCATALOG

STORCLAS( storage-class)

MGMTCLAS( management-class) DATACLAS( data-class)

data-set-name must be fully qualified. The data set must not be a temporary data set; that is, it must not
start with an ampersand.

After data-set-name or member-name, the data set attributes can follow in any order.

The options that follow DSN (such as NEW or TRACKS) must be separated by a comma or by one or more
blanks.

Blanks at the beginning and end of the environment variable contents are ignored. You must not code
blanks within the parentheses or between a keyword and the left parenthesis that immediately follows
the keyword.

COBOL does not provide a default for data set disposition (NEW, OLD, SHR, or MOD); however, your
operating system might provide one. To avoid unexpected results when opening the file, you should
always specify NEW, OLD, SHR, or MOD with the DSN option when you use environment variables for
dynamic allocation of QSAM files.

For information about specifying the values of the data set attributes, see the description of the DD
statement in the z/OS MVS JCL Reference.

Format: environment variable for QSAM files, PATH option
PATH( path-name)

path-name must be an absolute path name; that is, it must begin with a slash. For more information about
specifying path-name, see the description of the PATH parameter in z/OS MVS JCL Reference.

Blanks at the beginning and end of the environment variable contents are ignored. You must not code
blanks within the parentheses or between a keyword and the left parenthesis that immediately follows
the keyword.

144 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Environment variable contents for a line-sequential file
For a line-sequential file, the environment variable must contain a PATH option in the following format:

Format: environment variable for line-sequential files
PATH( path-name)

path-name must be an absolute path name; that is, it must begin with a slash. For more information about
specifying path-name, see the description of the PATH parameter in z/OS MVS JCL Reference.

Blanks at the beginning and end of the environment variable contents are ignored. You must not code
blanks within the parentheses or between a keyword and the left parenthesis that immediately follows
the keyword.

Environment variable contents for a VSAM file
For an indexed, relative, or sequential VSAM file, the environment variable must contain a DSN option in
the following format:

Format: environment variable for VSAM files, DSN option
DSN( data-set-name)

OLD

SHR

data-set-name specifies the data set name for the base cluster. data-set-name must be fully qualified and
must reference an existing predefined and cataloged VSAM data set.

If an indexed file has alternate indexes, then additional environment variables must be defined that
contain DSN options (as above) for each of the alternate index paths. The names of these environment
variables must follow the same naming convention as used for alternate index ddnames. That is:

• The environment variable name for each alternate index path is formed by concatenating the base
cluster environment variable name with an integer, beginning with 1 for the path associated with the
first alternate index and incrementing by 1 for the path associated with each successive alternate index.
(For example, if the environment variable name for the base cluster is CUST, then the environment
variable names for the alternate indexes would be CUST1, CUST2, ..., .)

• If the length of the base cluster environment variable name is already eight characters, then the
environment variable names for the alternate indexes are formed by truncating the base cluster portion
of the environment variable name on the right to reduce the concatenated result to eight characters.
(For example, if the environment variable name for the base cluster is DATAFILE, then the environment
variable names for the alternate clusters would be DATAFIL1, DATAFIL2, ..., .)

The options that follow DSN (such as SHR) must be separated by a comma or by one or more blanks.

Blanks at the beginning and end of the environment variable contents are ignored. You must not code
blanks within the parentheses or between a keyword and the left parenthesis that immediately follows
the keyword.

COBOL does not provide a default for data set disposition (OLD or SHR); however, your operating system
might provide one. To avoid unexpected results when opening the file, you should always specify OLD or
SHR with the DSN option when you use environment variables for dynamic allocation of VSAM files.

Chapter 23. Input-Output section 145

RESERVE clause
The RESERVE clause allows the user to specify the number of input/output buffers to be allocated at run
time for the files.

The RESERVE clause is not supported for line-sequential files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from the DD statement. If
none is specified, the system default is taken.

If the file connector referenced by file-name-1 in the SELECT clause is an external file connector, all
file-control entries in the run unit that reference this file connector must have the same value for the
integer specified in the RESERVE clause.

ORGANIZATION clause
The ORGANIZATION clause identifies the logical structure of the file. The logical structure is established
at the time the file is created and cannot subsequently be changed.

You can find a discussion of the different ways in which data can be organized and of the different access
methods that you can use to retrieve the data under “File organization and access modes” on page 149.

ORGANIZATION IS SEQUENTIAL (format 1)
A predecessor-successor relationship among the records in the file is established by the order in
which records are placed in the file when it is created or extended.

ORGANIZATION IS INDEXED (format 2)
The position of each logical record in the file is determined by indexes created with the file and
maintained by the system. The indexes are based on embedded keys within the file's records.

ORGANIZATION IS RELATIVE (format 3)
The position of each logical record in the file is determined by its relative record number.

ORGANIZATION IS LINE SEQUENTIAL (format 4)
A predecessor-successor relationship among the records in the file is established by the order in
which records are placed in the file when it is created or extended. A record in a LINE SEQUENTIAL
file can consist only of printable characters.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION IS SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external file connector, the
same organization must be specified for all file-control entries in the run unit that reference this file
connector.

File organization
You establish the organization of the data when you create a file. Once the file has been created, you can
expand the file, but you cannot change the organization.

Sequential organization
The physical order in which the records are placed in the file determines the sequence of records. The
relationships among records in the file do not change, except that the file can be extended. Records can
be fixed length or variable length; there are no keys.

Each record in the file except the first has a unique predecessor record; and each record except the last
has a unique successor record.

Indexed organization
Each record in the file has one or more embedded keys (referred to as key data items); each key is
associated with an index. An index provides a logical path to the data records according to the contents

146 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

of the associated embedded record key data items. Indexed files must be direct-access storage files.
Records can be fixed length or variable length.

Each record in an indexed file must have an embedded prime key data item. When records are inserted,
updated, or deleted, they are identified solely by the values of their prime keys. Thus, the value in each
prime key data item must be unique and must not be changed when the record is updated. You tell COBOL
the name of the prime key data item in the RECORD KEY clause of the file-control paragraph.

In addition, each record in an indexed file can contain one or more embedded alternate key data items.
Each alternate key provides another means of identifying which record to retrieve. You tell COBOL
the name of any alternate key data items on the ALTERNATE RECORD KEY clause of the file-control
paragraph.

The key used for any specific input-output request is known as the key of reference.

Relative organization
Think of the file as a string of record areas, each of which contains a single record. Each record area
is identified by a relative record number; the access method stores and retrieves a record based on its
relative record number. For example, the first record area is addressed by relative record number 1 and
the 10th is addressed by relative record number 10. The physical sequence in which the records were
placed in the file has no bearing on the record area in which they are stored, and thus no effect on each
record's relative record number. Relative files must be direct-access files. Records can be fixed length or
variable length.

Line-sequential organization
In a line-sequential file, each record contains a sequence of characters that ends with a record delimiter.
The delimiter is not counted in the length of the record.

When a record is written, any trailing blanks are removed prior to adding the record delimiter. The
characters in the record area from the first character up to and including the added record delimiter
constitute one record and are written to the file.

When a record is read, characters are read one at a time into the record area until:

• The first record delimiter is encountered. The record delimiter is discarded and the remainder of the
record is filled with spaces.

• The entire record area is filled with characters. If the first unread character is the record delimiter, it
is discarded. Otherwise, the first unread character becomes the first character read by the next READ
statement.

• End-of-file is encountered. The remainder of the record area is filled with spaces.

Records written to line-sequential files must consist of data items described as USAGE DISPLAY or
DISPLAY-1 or a combination of DISPLAY and DISPLAY-1 items. A zoned decimal data item either must be
unsigned or, if signed, must be declared with the SEPARATE CHARACTER phrase.

A line-sequential file can contain printable characters and control characters. Be aware though that if your
file contains a newline character (X'15'), the newline character will function as a record delimiter.

The following clauses are not supported for line-sequential files:

• APPLY WRITE-ONLY clause
• CODE-SET clause
• DATA RECORDS clause
• LABEL RECORDS clause
• LINAGE clause
• I-O phrase of the OPEN statement
• PADDING CHARACTER clause
• RECORD CONTAINS 0 clause

Chapter 23. Input-Output section 147

• RECORD CONTAINS clause format 2 (for example: RECORD CONTAINS 100 to 200 CHARACTERS)
• RECORD DELIMITER clause
• RECORDING MODE clause
• RERUN clause
• RESERVE clause
• REVERSED phrase of the OPEN statement
• REWRITE statement
• VALUE OF clause of file description entry
• WRITE ... AFTER ADVANCING mnemonic-name
• WRITE ... AT END-OF-PAGE
• WRITE ... BEFORE ADVANCING

PADDING CHARACTER clause
The PADDING CHARACTER clause specifies a character to be used for block padding on sequential files.

data-name-5
Must be defined in the DATA DIVISION as a one-character data item of category alphabetic,
alphanumeric, or national, and must not be defined in the FILE SECTION. data-name-5 can be
qualified.

literal-2
Must be a one-character alphanumeric literal or national literal.

For external files, data-name-5, if specified, must reference an external data item.

The PADDING CHARACTER clause is syntax checked, but has no effect on the execution of the program.

RECORD DELIMITER clause
The RECORD DELIMITER clause indicates the method of determining the length of a variable-length
record on an external medium. It can be specified only for variable-length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape file.

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but has no effect on the execution of the program.

ACCESS MODE clause
The ACCESS MODE clause defines the manner in which the records of the file are made available for
processing. If the ACCESS MODE clause is not specified, sequential access is assumed.

For sequentially accessed relative files, the ACCESS MODE clause does not have to precede the RELATIVE
KEY clause.

ACCESS MODE IS SEQUENTIAL
Can be specified in all formats.
Format 1: sequential

Records in the file are accessed in the sequence established when the file is created or extended.
Format 1 supports only sequential access.

Format 2: indexed
Records in the file are accessed in the sequence of ascending record key values according to the
collating sequence of the file.

148 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 3: relative
Records in the file are accessed in the ascending sequence of relative record numbers of existing
records in the file.

Format 4: line-sequential
Records in the file are accessed in the sequence established when the file is created or extended.
Format 4 supports only sequential access.

ACCESS MODE IS RANDOM
Can be specified in formats 2 and 3 only.
Format 2: indexed

The value placed in a record key data item specifies the record to be accessed.
Format 3: relative

The value placed in a relative key data item specifies the record to be accessed.
ACCESS MODE IS DYNAMIC

Can be specified in formats 2 and 3 only.
Format 2: indexed

Records in the file can be accessed sequentially or randomly, depending on the form of the
specific input-output statement used.

Format 3: relative
Records in the file can be accessed sequentially or randomly, depending on the form of the
specific input-output request.

File organization and access modes
File organization is the permanent logical structure of the file. You tell the computer how to retrieve
records from the file by specifying the access mode (sequential, random, or dynamic).

For details on the access methods and data organization, see Table 6 on page 138.

Sequentially organized data can be accessed only sequentially; however, data that has indexed or relative
organization can be accessed in any of the three access modes.

Access modes
See the descriptions of the following types of access modes.

Sequential-access mode
Allows reading and writing records of a file in a serial manner; the order of reference is implicitly
determined by the position of a record in the file.

Random-access mode
Allows reading and writing records in a programmer-specified manner; the control of successive
references to the file is expressed by specifically defined keys supplied by the user.

Dynamic-access mode
Allows the specific input-output statement to determine the access mode. Therefore, records can be
processed sequentially or randomly or both. By default, dynamic access is tuned for positioning to
a record and then performing sequential reads. This access mode is suitable for applications that
mainly use READ by key, then a few READ NEXT operations. If you access records only by key, use
the random-access mode instead. To learn other dynamic-access options to tune and optimize your
applications, see "VSAM dynamic access optional logic path" in the Performance Tuning Guide.

For external files, every file-control entry in the run unit that is associated with that external file must
specify the same access mode. In addition, for relative file entries, data-name-4 must reference an
external data item, and the RELATIVE KEY phrase in each associated file-control entry must reference
that same external data item.

Relationship between data organizations and access modes
This section discusses which access modes are valid for each type of data organization.

Chapter 23. Input-Output section 149

Sequential files
Files with sequential organization can be accessed only sequentially. The sequence in which records
are accessed is the order in which the records were originally written.

Line-sequential files
Same as for sequential files (described above).

Indexed files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the record key value. The order of retrieval within a set of records that have duplicate alternate record
key values is the order in which records were written into the set.

In the random access mode, you control the sequence in which records are accessed. A specific
record is accessed by placing the value of its key or keys in the RECORD KEY data item (and the
ALTERNATE RECORD KEY data item). If a set of records has duplicate alternate record key values, only
the first record written is available.

In the dynamic access mode, you can change as needed from sequential access to random access by
using appropriate forms of input-output statements.

Relative files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the relative record numbers of all records that exist within the file.

In the random access mode, you control the sequence in which records are accessed. A specific
record is accessed by placing its relative record number in the RELATIVE KEY data item; the RELATIVE
KEY must not be defined within the record description entry for the file.

In the dynamic access mode, you can change as needed from sequential access to random access by
using appropriate forms of input-output statements.

RECORD KEY clause
The RECORD KEY clause (format 2) specifies the data item within the record that is the prime RECORD
KEY for an indexed file. The values contained in the prime RECORD KEY data item must be unique among
records in the file.

data-name-2
The prime RECORD KEY data item.

data-name-2 must be described within a record description entry associated with the file. The key can
have any of the following data categories:

• Alphanumeric
• Numeric
• Numeric-edited (with usage DISPLAY or NATIONAL)
• Alphanumeric-edited
• Alphabetic
• External floating-point (with usage DISPLAY or NATIONAL)
• Internal floating-point
• DBCS
• National
• National-edited
• UTF-8

150 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Regardless of the category of the key data item, the key is treated as an alphanumeric item. The
collation order of the key is determined by the item's binary value order when the key is used for
locating a record or for setting the file position indicator associated with the file.

data-name-2 must not reference a variable-length data item. data-name-2 can be qualified.

If the indexed file contains variable-length records, data-name-2 need not be contained within the
minimum record size specified for the file. That is, data-name-2 can exceed the minimum record size,
but this is not recommended.

The data description of data-name-2 and its relative location within the record must be the same as
those used when the file was defined.

If the file has more than one record description entry, data-name-2 need be described in only one of
those record description entries. The identical character positions referenced by data-name-2 in any
one record description entry are implicitly referenced as keys for all other record description entries
for that file.

For files defined with the EXTERNAL clause, all file description entries in the run unit that are
associated with the file must have data description entries for data-name-2 that specify the same
relative location in the record and the same length.

ALTERNATE RECORD KEY clause
The ALTERNATE RECORD KEY clause (format 2) specifies a data item within the record that provides an
alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item.

data-name-3 must be described within a record description entry associated with the file. The key can
have any of the following data categories:

• Alphanumeric
• Numeric
• Numeric-edited (with usage DISPLAY or NATIONAL)
• Alphanumeric-edited
• Alphabetic
• External floating-point (with usage DISPLAY or NATIONAL)
• Internal floating-point
• DBCS
• National
• National-edited
• UTF-8

Regardless of the category of the key data item, the key is treated as an alphanumeric item. The
collation order of the key is determined by the item's binary value order when the key is used for
locating a record or for setting the file position indicator associated with the file.

data-name-3 must not reference a group item that contains a variable-occurrence data item. data-
name-3 can be qualified.

If the indexed file contains variable-length records, data-name-3 need not be contained within the
minimum record size specified for the file. That is, data-name-3 can exceed the minimum record size,
but this is not recommended.

If the indexed file contains variable-length records, data-name-3 need not be contained within the
minimum record size specified for the file. That is, data-name-3 can exceed the minimum record size,
but this is not recommended.

Chapter 23. Input-Output section 151

The data description of data-name-3 and its relative location within the record must be the same as
those used when the file was defined. The number of alternate record keys for the file must also be
the same as that used when the file was created.

The leftmost character position of data-name-3 must not be the same as the leftmost character
position of the prime record key, or of another alternate record key.

If the DUPLICATES phrase is not specified, the values contained in the ALTERNATE RECORD KEY data
item must be unique among records in the file.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE RECORD KEY data item
can be duplicated within any records in the file. In sequential access, the records with duplicate keys are
retrieved in the order in which they were placed in the file. In random access, only the first record written
in a series of records with duplicate keys can be retrieved.

For files defined with the EXTERNAL clause, all file description entries in the run unit that are associated
with the file must have data description entries for data-name-3 that specify the same relative location in
the record and the same length. The file description entries must specify the same number of alternate
record keys and the same DUPLICATES phrase.

RELATIVE KEY clause
The RELATIVE KEY clause (format 3) identifies a data-name that specifies the relative record number for a
specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does not contain the PICTURE
symbol P. data-name-4 must not be defined in a record description entry associated with this relative
file. That is, the RELATIVE KEY is not part of the record. data-name-4 can be qualified.

data-name-4 is required for ACCESS IS SEQUENTIAL only when the START statement is to be used.
It is always required for ACCESS IS RANDOM and ACCESS IS DYNAMIC. When the START statement
is executed, the system uses the contents of the RELATIVE KEY data item to determine the record at
which sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not executed, the value is ignored and
processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify the RELATIVE KEY clause
for that file.

For external files, data-name-4 must reference an external data item, and the RELATIVE KEY phrase
in each associated file-control entry must reference that same external data item in each case.

The ACCESS MODE IS RANDOM clause must not be specified for file-names specified in the USING or
GIVING phrase of a SORT or MERGE statement.

PASSWORD clause
The PASSWORD clause controls access to files.

data-name-6 , data-name-7
Password data items. Each must be defined in the WORKING-STORAGE SECTION of the DATA
DIVISION as a data item of category alphabetic, alphanumeric, or alphanumeric-edited. The first
eight characters are used as the password; a shorter field is padded with blanks to eight characters.
Each password data item must be equivalent to one that is externally defined.

When the PASSWORD clause is specified, at object time the PASSWORD data item must contain a valid
password for this file before the file can be successfully opened.

Format 1 considerations:

The PASSWORD clause is not valid for QSAM sequential files.

Format 2 and 3 considerations:

152 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The PASSWORD clause, if specified, must immediately follow the RECORD KEY or ALTERNATE RECORD
KEY data-name with which it is associated.

For indexed files that have been completely predefined to VSAM, only the PASSWORD data item for the
RECORD KEY need contain the valid password before the file can be successfully opened at file creation
time.

For any other type of file processing (including the processing of dynamic calls at file creation time
through a COBOL runtime subroutine), every PASSWORD data item for the file must contain a valid
password before the file can be successfully opened, regardless of whether all paths to the data are used
in this object program.

For external files, data-name-6 and data-name-7 must reference external data items. The PASSWORD
clauses in each associated file-control entry must reference the same external data items.

FILE STATUS clause
The FILE STATUS clause monitors the execution of each input-output operation for the file.

When the FILE STATUS clause is specified, the system moves a value into the file status key data item
after each input-output operation that explicitly or implicitly refers to this file. The value indicates the
status of execution of the statement. (See the file status key description under “Common processing
facilities” on page 299.)

data-name-1
The file status key data item can be defined in the WORKING-STORAGE, LOCAL-STORAGE, or
LINKAGE SECTION as one of the following items:

• A two-character data item of category alphanumeric
• A two-character data item of category national
• A two-digit data item of category numeric with usage DISPLAY or NATIONAL (an external decimal

data item)

data-name-1 must not contain the PICTURE symbol 'P'.

data-name-1 can be qualified.

The file status key data item must not be variably located; that is, the data item cannot follow a data
item that contains an OCCURS DEPENDING ON clause.

data-name-8
Must be defined as an alphanumeric group item of 6 bytes in the WORKING-STORAGE SECTION or
LINKAGE SECTION of the DATA DIVISION.

Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS, RRDS).

data-name-8 holds the 6-byte VSAM return code, which is composed as follows:

• The first 2 bytes of data-name-8 contain the VSAM return code in binary format. The value for this
code is defined (by VSAM) as 0, 8, or 12.

• The next 2 bytes of data-name-8 contain the VSAM function code in binary format. The value for this
code is defined (by VSAM) as 0, 1, 2, 3, 4, or 5.

• The last 2 bytes of data-name-8 contain the VSAM feedback code in binary format. The code value is
0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.

If FILE STATUS is returned without having called VSAM, data-name-8 is zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM status return code
information is available without transformation in the currently defined COBOL FILE STATUS code.
User identification and handling of exception conditions are allowed at the same level as that defined
by VSAM.

Chapter 23. Input-Output section 153

Function code and feedback code are set if and only if the return code is set to a nonzero value. If they
are referenced when the return code is set to zero, the contents of the fields are not dependable.

Values in the return code, function code, and feedback code fields are defined by VSAM. There are no
COBOL additions, deletions, or modifications to the VSAM definitions.

For more information, see DFSMS Macro Instructions for Data Sets.

I-O-CONTROL paragraph
The I-O-CONTROL paragraph of the input-output section specifies when checkpoints are to be taken and
the storage areas to be shared by different files. This paragraph is optional in a COBOL program.

The keyword I-O-CONTROL can appear only once, at the beginning of the paragraph. The word I-O-
CONTROL must begin in Area A and must be followed by a separator period.

The order in which I-O-CONTROL paragraph clauses are written is not significant. The I-O-CONTROL
paragraph ends with a separator period.

Format: QSAM-i-o-control-entry
RERUN

ON

assignment-name-1

file-name-1 EVERY

phrase 1

SAME

RECORD AREA FOR

file-name-3

file-name-4

MULTIPLE FILE
1

TAPE CONTAINS

file-name-5

POSITION integer-2

APPLY WRITE-ONLY
1

ON

file-name-2

phrase 1
integer-1 RECORDS

END

OF

REEL

UNIT

OF

file-name-1

Notes:
1 The MULTIPLE FILE clause and APPLY WRITE-ONLY clause are not supported for VSAM files.

Format: VSAM-i-o-control-entry
RERUN

ON

assignment-name-1

file-name-1 EVERY

phrase 1

SAME

RECORD AREA FOR

file-name-3

file-name-4

phrase 1

154 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

integer-1 RECORDS

OF

file-name-1

Format: line-sequential-i-o-control-entry

SAME

RECORD AREA FOR

file-name-3 file-name-4

Format: sort/merge-i-o-control-entry

RERUN

ON

assignment-name-1

SAME RECORD

SORT

SORT-MERGE

AREA FOR

phrase 1

phrase 1
file-name-3

file-name-4

RERUN clause
The RERUN clause specifies that checkpoint records are to be taken. Subject to the restrictions given with
each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint method required for
complete compliance to the 85 COBOL Standard, see DD statements for defining checkpoint data sets in
the Enterprise COBOL Programming Guide.

Do not use the RERUN clause:

• For files described with the EXTERNAL clause
• In programs with the RECURSIVE clause specified
• In programs compiled with the THREAD option
• In methods

file-name-1
Must be a sequentially organized file.

VSAM and QSAM considerations:

The file named in the RERUN clause must be a file defined in the same program as the I-O-CONTROL
paragraph, even if the file is defined as GLOBAL.

Chapter 23. Input-Output section 155

assignment-name-1
The external data set for the checkpoint file. It must not be the same assignment-name as that
specified in any ASSIGN clause throughout the entire program, including contained and containing
programs.

For QSAM files, assignment-name-1 has the format:

Format: assignment-name for QSAM files

label- S-

name

The QSAM file must reside on a tape or direct access device. See also Appendix G, “ASCII
considerations,” on page 781.

SORT/MERGE considerations:

When the RERUN clause is specified in the I-O-CONTROL paragraph, checkpoint records are written
at logical intervals determined by the sort/merge program during execution of each SORT or MERGE
statement in the program. When the RERUN clause is omitted, checkpoint records are not written.

There can be only one SORT/MERGE I-O-CONTROL paragraph in a program, and it cannot be specified
in contained programs. It will have a global effect on all SORT and MERGE statements in the program
unit.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 records in file-name-1 that are processed.

When multiple integer-1 RECORDS phrases are specified, no two of them can specify the same value
for file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for file-name-1 occurs. The terms REEL
and UNIT are interchangeable.

When multiple END OF REEL/UNIT phrases are specified, no two of them can specify the same value
for file-name-1.

The END OF REEL/UNIT phrase can be specified only if file-name-1 is a sequentially organized file.

SAME AREA clause
The SAME AREA clause is syntax checked, but has no effect on the execution of the program.The SAME
AREA clause specifies that two or more files that do not represent sort or merge files are to use the same
main storage area during processing.

The files named in a SAME AREA clause need not have the same organization or access.

file-name-3 , file-name-4
Must be specified in the file-control paragraph of the same program. file-name-3 and file-name-4
must not reference a file that is defined with the EXTERNAL clause.

• For QSAM files, the SAME clause is treated as documentation.
• For VSAM files, the SAME clause is treated as if equivalent to the SAME RECORD AREA clause.

More than one SAME AREA clause can be included in a program. However:

• A specific file-name must not appear in more than one SAME AREA clause.
• If one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA clause, all the
file-names in that SAME AREA clause must appear in that SAME RECORD AREA clause. However, the
SAME RECORD AREA clause can contain additional file-names that do not appear in the SAME AREA
clause.

156 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• The rule that in the SAME AREA clause only one file can be open at one time takes precedence over the
SAME RECORD AREA rule that all the files can be open at the same time.

SAME RECORD AREA clause
The SAME RECORD AREA clause specifies that two or more files are to use the same main storage area for
processing the current logical record.

The files named in a SAME RECORD AREA clause need not have the same organization or access.

file-name-3 , file-name-4
Must be specified in the file-control paragraph of the same program. file-name-3 and file-name-4
must not reference a file that is defined with the EXTERNAL clause.

All of the files can be opened at the same time. A logical record in the shared storage area is considered to
be both of the following ones:

• A logical record of each opened output file in the SAME RECORD AREA clause
• A logical record of the most recently read input file in the SAME RECORD AREA clause

More than one SAME RECORD AREA clause can be included in a program. However:

• A specific file-name must not appear in more than one SAME RECORD AREA clause.
• If one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA clause, all the
file-names in that SAME AREA clause must appear in that SAME RECORD AREA clause. However, the
SAME RECORD AREA clause can contain additional file-names that do not appear in the SAME AREA
clause.

• The rule that in the SAME AREA clause only one file can be open at one time takes precedence over the
SAME RECORD AREA rule that all the files can be open at the same time.

• If the SAME RECORD AREA clause is specified for several files, the record description entries or the file
description entries for these files must not include the GLOBAL clause.

• The SAME RECORD AREA clause must not be specified when the RECORD CONTAINS 0 CHARACTERS
clause is specified.

The files named in the SAME RECORD AREA clause need not have the same organization or access.

SAME SORT AREA clause
The SAME SORT AREA clause is syntax checked but has no effect on the execution of the program.

file-name-3 , file-name-4
Must be specified in the file-control paragraph of the same program. file-name-3 and file-name-4
must not reference a file that is defined with the EXTERNAL clause.

When the SAME SORT AREA clause is specified, at least one file-name specified must name a sort file.
Files that are not sort files can also be specified. The following rules apply:

• More than one SAME SORT AREA clause can be specified. However, a given sort file must not be named
in more than one such clause.

• If a file that is not a sort file is named in both a SAME AREA clause and in one or more SAME SORT AREA
clauses, all the files in the SAME AREA clause must also appear in that SAME SORT AREA clause.

• Files named in a SAME SORT AREA clause need not have the same organization or access.
• Files named in a SAME SORT AREA clause that are not sort files do not share storage with each other

unless they are named in a SAME AREA or SAME RECORD AREA clause.
• During the execution of a SORT or MERGE statement that refers to a sort or merge file named in this

clause, any nonsort or nonmerge files associated with file-names named in this clause must not be in
the open mode.

Chapter 23. Input-Output section 157

SAME SORT-MERGE AREA clause
The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA clause.

For more details, see “SAME SORT AREA clause” on page 157.

MULTIPLE FILE TAPE clause
The MULTIPLE FILE TAPE clause (format 1) specifies that two or more files share the same physical reel of
tape.

This clause is syntax checked, but has no effect on the execution of the program. The function is
performed by the system through the LABEL parameter of the DD statement.

APPLY WRITE-ONLY clause
The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for files that have standard
sequential organization, have variable-length records, and are blocked.

If you specify this phrase, the buffer is truncated only when the space available in the buffer is smaller
than the size of the next record. Otherwise, the buffer is truncated when the space remaining in the buffer
is smaller than the maximum record size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2
Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file description entries. For an
alternate method of achieving the APPLY WRITE-ONLY results, see the description of the compiler option,
AWO in the Enterprise COBOL Programming Guide.

158 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Part 5. DATA DIVISION

© Copyright IBM Corp. 1991, 2024 159

160 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 24. DATA DIVISION overview
This overview describes the structure of the DATA DIVISION for programs, object definitions, factory
definitions, and methods.

Each section in the DATA DIVISION has a specific logical function within a COBOL program, object
definition, factory definition, or method and can be omitted when that logical function is not needed. If
included, the sections must be written in the order shown. The DATA DIVISION is optional.

Program data division
The DATA DIVISION of a COBOL source program describes, in a structured manner, all the data to be
processed by the program.

Object data division
The object data division contains data description entries for instance object data (instance data).
Instance data is defined in the WORKING-STORAGE SECTION of the object paragraph of a class
definition.

Factory data division
The factory data division contains data description entries for factory object data (factory data).
Factory data is defined in the WORKING-STORAGE SECTION of the factory paragraph of a class
definition.

Method data division
A method data division contains data description entries for data accessible within the method. A
method data division can contain a LOCAL-STORAGE SECTION or a WORKING-STORAGE SECTION, or
both. The term method data applies to both. Method data in LOCAL-STORAGE is dynamically allocated
and initialized on each invocation of the method; method data in WORKING-STORAGE is static and
persists across invocations of the method.

User-defined function data division
The DATA DIVISION of a user-defined function describes, in a structured manner, all the data to be
processed by the function.

Function prototype data division
The function prototype data division contains data description entries in the LINKAGE SECTION that
describe the parameters and returning item of the function.

© Copyright IBM Corp. 1991, 2024 161

Format: program and method data division
DATA DIVISION.

FILE SECTION.

file-description-entry record-description-entry

WORKING-STORAGE SECTION.

record-description-entry

data-item-description-entry

LOCAL-STORAGE SECTION.

record-description-entry

data-item-description-entry

LINKAGE SECTION.

record-description-entry

data-item-description-entry

Format: object and factory data division
DATA DIVISION.

WORKING-STORAGE SECTION.

record-description-entry

data-item-description-entry

162 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format: function prototype data division
DATA DIVISION.

LINKAGE SECTION.

record-description-entry

data-item-description-entry

FILE SECTION
The FILE SECTION defines the structure of data files. The FILE SECTION must begin with the header FILE
SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the FILE SECTION. It provides information about the
physical structure and identification of a file, and gives the record-names associated with that file. For
the format and the clauses required in a file description entry, see Chapter 25, “DATA DIVISION--file
description entries,” on page 179.

record-description-entry
A set of data description entries (described in Chapter 26, “DATA DIVISION--data description entry,”
on page 193) that describe the particular records contained within a particular file.

A record in the FILE SECTION must be described as an alphanumeric group item, a national group
item, or an elementary data item of class alphabetic, alphanumeric, DBCS, national, or numeric.

More than one record description entry can be specified; each is an alternative description of the
same record storage area.

Data areas described in the FILE SECTION are not available for processing unless the file that contains
the data area is open.

A method FILE SECTION can define external files only. A single run-unit-level file connector is shared by
all programs and methods that contain a definition of a given external file.

The FILE SECTION cannot be specified in a function prototype definition.

WORKING-STORAGE SECTION
The WORKING-STORAGE SECTION describes data records that are not part of data files but are
developed and processed by a program or method. The WORKING-STORAGE SECTION also describes
data items whose values are assigned in the source program or method and do not change during
execution of the object program.

The WORKING-STORAGE SECTION must begin with the section header WORKING-STORAGE SECTION,
followed by a separator period.

Program WORKING-STORAGE
The WORKING-STORAGE SECTION for programs, functions, and methods can also describe external
data records, which are shared by programs and methods throughout the run unit. All clauses that
are used in record descriptions in the FILE SECTION and also the VALUE and EXTERNAL clauses
(which might not be specified in record description entries in the FILE SECTION) can be used in record
descriptions in the WORKING-STORAGE SECTION.

User-defined function WORKING-STORAGE
Same as program WORKING-STORAGE.

Chapter 24. DATA DIVISION overview 163

Function prototype WORKING-STORAGE
The WORKING-STORAGE SECTION cannot be specified in a function prototype definition.

Method WORKING-STORAGE
A single copy of the WORKING-STORAGE for a method is statically allocated on the first invocation of
the method and persists in a last-used state for the duration of the run unit. The same copy is used
whenever the method is invoked regardless of which object instance the method is invoked upon.

If a VALUE clause is specified on a method WORKING-STORAGE data item, the data item is initialized
to the VALUE clause value on the first invocation.

If the EXTERNAL clause is specified on a data description entry in a method WORKING-STORAGE
SECTION, a single copy of the storage for that data item is allocated once for the duration of the run
unit. That storage is shared by all programs and methods in the run unit that contain a definition for
the external data item.

Object WORKING-STORAGE
The data described in the WORKING-STORAGE SECTION of an object paragraph is object instance
data, usually called instance data. A separate copy of instance data is statically allocated for each
object instance when the object is instantiated. Instance data persists in a last-used state until the
object instance is freed by the Java runtime system.

Instance data can be initialized by VALUE clauses specified in data declarations or by logic specified in
an instance method.

Factory WORKING-STORAGE
The data described in the WORKING-STORAGE SECTION of a factory paragraph is factory data. A
single copy of factory data is statically allocated when the factory object for the class is created.
Factory data persists in a last-used state for the duration of the run unit.

Factory data can be initialized by VALUE clauses specified in data declarations or by logic specified in
a factory method.

Data storage location
By default, data items in WORKING-STORAGE are allocated above the 2 GB bar if the LP(64) compiler
option is in effect; data items in WORKING-STORAGE are allocated below the 2 GB bar if the LP(32)
compiler option is in effect. You can use the DATA compiler directive to change this default to a
different storage location. See “DATA” on page 710 for more information.
For AMODE 31 programs, you can use the DATA compiler option to control whether WORKING-
STORAGE data items are allocated below the 16 MB line (DATA(24)) or try to get storage above the 16
MB line (DATA(31)).

Note: All subordinate items belonging to the same group item will be allocated in the same data
location.

The WORKING-STORAGE SECTION contains record description entries and data description entries for
independent data items, called data item description entries.

record-description-entry
Data entries in the WORKING-STORAGE SECTION that bear a definite hierarchic relationship to one
another must be grouped into records structured by level number. See Chapter 26, “DATA DIVISION--
data description entry,” on page 193 for more information.

data-item-description-entry
Independent items in the WORKING-STORAGE SECTION that bear no hierarchic relationship to one
another need not be grouped into records provided that they do not need to be further subdivided.
Instead, they are classified and defined as independent elementary items. Each is defined in a
separate data-item description entry that begins with either the level number 77 or 01. See Chapter
26, “DATA DIVISION--data description entry,” on page 193 for more information.

164 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

LOCAL-STORAGE SECTION
The LOCAL-STORAGE SECTION defines storage that is allocated and freed on a per-invocation basis.

On each invocation, data items defined in the LOCAL-STORAGE SECTION are reallocated. Each data item
that has a VALUE clause is initialized to the value specified in that clause.

For nested programs, data items defined in the LOCAL-STORAGE SECTION are allocated upon each
invocation of the containing outermost program. However, each data item is reinitialized to the value
specified in its VALUE clause each time the nested program is invoked.

For methods, a separate copy of the data defined in LOCAL-STORAGE is allocated and initialized on each
invocation of the method. The storage allocated for the data is freed when the method returns.

Data items defined in the LOCAL-STORAGE SECTION cannot specify the EXTERNAL clause.

The LOCAL-STORAGE SECTION must begin with the header LOCAL-STORAGE SECTION, followed by a
separator period.

You can specify the LOCAL-STORAGE SECTION in recursive programs, nonrecursive programs, methods,
and user-defined functions.

Method and user-defined function LOCAL-STORAGE content is the same as program LOCAL-STORAGE
content except that the GLOBAL clause has no effect (because methods and user-defined functions
cannot be nested).

The LOCAL-STORAGE SECTION cannot be specified in a function prototype definition.

LINKAGE SECTION
The LINKAGE SECTION describes data made available from another program or method.

record-description-entry
See “WORKING-STORAGE SECTION” on page 163 for a description.

data-item-description-entry
See “WORKING-STORAGE SECTION” on page 163 for a description.

Record description entries and data item description entries in the LINKAGE SECTION provide names
and descriptions, but storage within the program or method is not reserved because the data area exists
elsewhere.

Any data description clause, except for the EXTERNAL clause, can be used to describe items in the
LINKAGE SECTION.

You can specify the GLOBAL clause in the LINKAGE SECTION. The GLOBAL clause has no effect for
methods, however.

All level 01 or 77 data description entries in the LINKAGE SECTION of a function prototype definition must
also be specified on the PROCEDURE DIVISION USING phrase or RETURNING phrase.

Data units
Data is grouped into the conceptual units as listed in the topic.

• File data
• Program data
• Method data
• Factory data
• Instance data
• User-defined function data
• Function prototype data

Chapter 24. DATA DIVISION overview 165

File data
File data is contained in files. A file is a collection of data records that exist on some input-output device.
A file can be considered as a group of physical records; it can also be considered as a group of logical
records. The DATA DIVISION describes the relationship between physical and logical records.

For more information, see “FILE SECTION” on page 184.

A physical record is a unit of data that is treated as an entity when moved into or out of storage. The size of
a physical record is determined by the particular input-output device on which it is stored. The size does
not necessarily have a direct relationship to the size or content of the logical information contained in the
file.

A logical record is a unit of data whose subdivisions have a logical relationship. A logical record can itself
be a physical record (that is, be contained completely within one physical unit of data); several logical
records can be contained within one physical record, or one logical record can extend across several
physical records.

File description entries specify the physical aspects of the data (such as the size relationship between
physical and logical records, the size and names of the logical records, labeling information, and so forth).

Record description entries describe the logical records in the file (including the category and format of
data within each field of the logical record), different values the data might be assigned, and so forth.

After the relationship between physical and logical records has been established, only logical records are
made available to you. For this reason, a reference in this information to "records" means logical records,
unless the term "physical records" is used.

Program data
Program data is created by a program instead of being read from a file.

The concept of logical records applies to program data as well as to file data. Program data can thus be
grouped into logical records, and be defined by a series of record description entries. Items that need
not be so grouped can be defined in independent data description entries (called data item description
entries).

Method data
Method data is defined in the DATA DIVISION of a method and is processed by the procedural code in
that method. Method data is organized into logical records and independent data description entries in
the same manner as program data.

Factory data
Factory data is defined in the DATA DIVISION in the factory paragraph of a class definition and is
processed by procedural code in the factory methods of that class. Factory data is organized into logical
records and independent data description entries in the same manner as program data.

There is one factory object for a given class in a run unit, and therefore only one instance of factory data in
a run unit for that class.

Instance data
Instance data is defined in the DATA DIVISION in the object paragraph of a class definition and is
processed by procedural code in the instance methods of that class. Instance data is organized into
logical records and independent data description entries in the same manner as program data.

There is one copy of instance data in each object instance of a given class. There can be many object
instances for a given class. Each has its own separate copy of instance data.

166 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

User-defined function data
Same as program data.

Function prototype data
Function prototype data is defined within the LINKAGE SECTION of the DATA DIVISION of a function
prototype definition.

Function prototype data is organized into logical records and independent data description entries in
the same manner as program data. Since no program object is produced when you compile a function
prototype, function prototype data has no representation at runtime. Rather, the data description entries
provide the information to the compiler in order to perform conformance checking between the invocation
of a function and its prototype, as well as consistency checking between prototypes of the same name.

Data relationships
The relationships among all data to be used in a program are defined in the DATA DIVISION through a
system of level indicators and level-numbers.

A level indicator, with its descriptive entry, identifies each file in a program. Level indicators represent the
highest level of any data hierarchy with which they are associated. FD is the file description level indicator
and SD is the sort-merge file description level indicator.

A level-number, with its descriptive entry, indicates the properties of specific data. Level-numbers can
be used to describe a data hierarchy; they can indicate that this data has a special purpose. Although
they can be associated with (and subordinate to) level indicators, they can also be used independently to
describe internal data or data common to two or more programs. (See “Level-numbers” on page 194 for
level-number rules.)

Levels of data
After a record has been defined, it can be subdivided to provide more detailed data references.

For example, in a customer file for a department store, one complete record could contain all data
that pertains to one customer. Subdivisions within that record could be, for example, customer name,
customer address, account number, department number of sale, unit amount of sale, dollar amount of
sale, previous balance, and other pertinent information.

The basic subdivisions of a record (that is, those fields not further subdivided) are called elementary
items. Thus a record can be made up of a series of elementary items or can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items can be combined
into group items. Groups can also be combined into a more inclusive group that contains one or more
subgroups. Thus within one hierarchy of data items, an elementary item can belong to more than one
group item.

A system of level-numbers specifies the organization of elementary and group items into records. Special
level-numbers are also used to identify data items used for special purposes.

Levels of data in a record description entry
Each group and elementary item in a record requires a separate entry, and each must be assigned a
level-number.

A level-number is a one-digit or two-digit integer between 01 and 49, or one of three special level-
numbers: 66, 77, or 88. The following level-numbers are used to structure records:

01
This level-number specifies the record itself, and is the most inclusive level-number possible. A
level-01 entry can be an alphanumeric group item, a national group item, or an elementary item. The
level number must begin in Area A.

Chapter 24. DATA DIVISION overview 167

02 through 49
These level-numbers specify group and elementary items within a record. They can begin in Area A or
Area B. Less inclusive data items are assigned higher (not necessarily consecutive) level-numbers in
this series.

The relationship between level-numbers within a group item defines the hierarchy of data within that
group.

A group item includes all group and elementary items that follow it until a level-number less than or equal
to the level-number of that group is encountered.

The following figure illustrates a group wherein all groups immediately subordinate to the level-01 entry
have the same level-number.

You can also define groups with subordinate items that have different level-numbers for the same level
in the hierarchy. For example, 05 EMPLOYEE-NAME and 04 EMPLOYEE-ADDRESS in EMPLOYEE-RECORD
below define the same level in the hierarchy. The compiler renumbers the levels in a relative fashion, as
shown in MAP output.

01 EMPLOYEE-RECORD.
 05 EMPLOYEE-NAME.
 10 FIRST-NAME PICTURE X(10).
 10 LAST-NAME PICTURE X(10).
 04 EMPLOYEE-ADDRESS.
 08 STREET PICTURE X(10).
 08 CITY PICTURE X(10).

168 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The following record description entry defines the same data hierarchy as the preceding record
description entry:

01 EMPLOYEE-RECORD.
 02 EMPLOYEE-NAME.
 03 FIRST-NAME PICTURE X(10).
 03 LAST-NAME PICTURE X(10).
 02 EMPLOYEE-ADDRESS.
 03 STREET PICTURE X(10).
 03 CITY PICTURE X(10).

Elementary items can be specified at any level within the hierarchy.

Special level-numbers
Special level-numbers identify items that do not structure a record.

The special level-numbers are:

66
Identifies items that must contain a RENAMES clause; such items regroup previously defined data
items. (For details, see “RENAMES clause” on page 228.)

77
Identifies data item description entries that are independent WORKING-STORAGE, LOCAL-STORAGE,
or LINKAGE SECTION items; they are not subdivisions of other items and are not subdivided
themselves. Level-77 items must begin in Area A.

88
Identifies any condition-name entry that is associated with a particular value of a conditional variable.
(For details, see “VALUE clause” on page 245.)

Level-77 and level-01 entries in the WORKING-STORAGE, LOCAL-STORAGE, or LINKAGE SECTION that
are referenced in a program or method must be given unique data-names because level-77 and level-01
entries cannot be qualified. Subordinate data-names that are referenced in the program or method must
be either uniquely defined, or made unique through qualification. Unreferenced data-names need not be
uniquely defined.

Indentation
Successive data description entries can begin in the same column as preceding entries, or can be
indented.

Indentation is useful for documentation but does not affect the action of the compiler.

Classes and categories of group items
Enterprise COBOL has three types of groups: alphanumeric groups, national groups, and UTF-8 groups.

Groups that do not specify a GROUP-USAGE clause are alphanumeric groups. An alphanumeric group
has class and category alphanumeric and is treated as though its usage were DISPLAY, regardless of the
representation of the elementary data items that are contained within the group. In many operations,
such as moves and compares, alphanumeric groups are treated as though they were elementary items of
category alphanumeric, except that no editing or conversion of data representation takes place. In other
operations, such as MOVE CORRESPONDING and ADD CORRESPONDING, the subordinate data items are
processed as separate elementary items.

National groups are defined by a GROUP-USAGE clause with the NATIONAL phrase at the group level. All
subordinate data items must be explicitly or implicitly described with usage NATIONAL, and subordinate
groups must be explicitly or implicitly described with GROUP-USAGE NATIONAL.

Unless stated otherwise, a national group item is processed exactly as though it were an elementary data
item of usage national, class and category national, described with PICTURE N(m), where m is the length
of the group in national character positions. Because national groups contain only national characters,

Chapter 24. DATA DIVISION overview 169

data is converted as necessary for moves and compares. The compiler ensures proper truncation
and padding. In other operations, such as MOVE CORRESPONDING and ADD CORRESPONDING, the
subordinate data items are processed as separate elementary items. See “GROUP-USAGE clause” on
page 198 for details.

UTF-8 groups are defined by a GROUP-USAGE clause with the UTF-8 phrase at the group level. All
subordinate data items must be explicitly or implicitly described with USAGE UTF-8 and must be defined
with the BYTE-LENGTH phrase of the PICTURE clause. Subordinate groups must be explicitly or implicitly
described with GROUP-USAGE UTF-8.

Unless stated otherwise, a UTF-8 group item is processed exactly as though it were an elementary data
item of usage UTF-8, class and category UTF-8, described with PICTURE U BYTE-LENGTH m, where m is
the length of the group in bytes. Because UTF-8 groups contain only UTF-8 characters, data is converted
as necessary for moves and compares. The compiler ensures proper truncation and padding. In other
operations, such as MOVE CORRESPONDING, the subordinate data items are processed as separate
elementary items. See “GROUP-USAGE clause” on page 198 for details.

The table below summarizes the classes and categories of group items.

Table 7. Classes and categories of group items

Group description Class of group Category of group USAGE of
elementary
items within a
group

USAGE of a
group

Without a GROUP-
USAGE clause

Alphanumeric Alphanumeric
(even though the
elementary items
in the group can
have any category)

Any Treated as
DISPLAY when
usage is
relevant

With explicit or implicit
GROUP-USAGE clause

National National NATIONAL NATIONAL

With explicit or implicit
GROUP-USAGE clause

UTF-8 UTF-8 UTF-8 UTF-8

Classes and categories of data
Most data and all literals used in a COBOL program are divided into classes and categories. Data classes
are groupings of data categories. Data categories are determined by the attributes of data description
entries or function definitions.

For more information about data categories, see “Category descriptions” on page 172.

The following elementary data items do not have a class and category:

• Index data items
• Items described with USAGE POINTER, USAGE FUNCTION-POINTER, USAGE PROCEDURE-POINTER, or

USAGE OBJECT REFERENCE

All other types of elementary data items have a class and category as shown in Table 8 on page 171.

A function references an elementary data item and belongs to the data class and category associated with
the type of the function, as shown in Table 9 on page 171.

Literals have a class and category as shown in Table 10 on page 172. Figurative constants (except NULL)
have a class and category that depends on the literal or value represented by the figurative constant in the
context of its use. For details, see “Figurative constants” on page 15.

170 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

All group items have a class and category, even if the subordinate elementary items belong to another
class and category. For the classification of group items, see “Classes and categories of group items” on
page 169.

Table 8. Class, category, and usage of elementary data items

Class of elementary data
items2

Category Usage

Alphabetic Alphabetic DISPLAY

Alphanumeric Alphanumeric DISPLAY

Alphanumeric-edited DISPLAY

Numeric-edited DISPLAY

Table 8. Class, category, and usage of elementary data items

Timestamp1 DISPLAY

DBCS1 DBCS1 DISPLAY-1

National1 National1 NATIONAL

National-edited1 NATIONAL

Numeric-edited1 NATIONAL

UTF-8 UTF-8 UTF-8

Numeric Numeric DISPLAY (type zoned decimal)

NATIONAL (type national decimal)

PACKED-DECIMAL (type internal decimal)

COMP-3 (type internal decimal)

BINARY

COMP

COMP-4

COMP-5

Internal floating-point1 COMP-1

COMP-2

External floating-point1 DISPLAY

NATIONAL

Table 9. Classes and categories of functions

Function type Class and category

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Chapter 24. DATA DIVISION overview 171

Table 9. Classes and categories of functions (continued)

Function type Class and category

Integer Numeric

Numeric Numeric

Table 10. Classes and categories of literals

Literal Class and category

Alphanumeric
(including hexadecimal formats)

Alphanumeric

DBCS DBCS

National
(including hexadecimal formats)

National

UTF-8
(including hexadecimal formats)

UTF-8

Numeric
(fixed-point and floating-point)

Numeric

Category descriptions
The category of a data item is established by the attributes of its data description entry (such as its
PICTURE character-string or USAGE clause) or by its function definition.

The meaning of each category is given below.

Alphabetic
A data item is described as category alphabetic by its PICTURE character-string. For PICTURE character-
string details, see “Alphabetic items” on page 213.

A data item of category alphabetic is referred to as an alphabetic data item.

Alphanumeric
Each of the following data items is of category alphanumeric:

• An elementary data item described as alphanumeric by its PICTURE character-string. For PICTURE
character-string details, see “Alphanumeric items” on page 213.

• An alphanumeric group item.
• An alphanumeric function.
• The following special registers:

– DEBUG-ITEM
– SHIFT-OUT
– SHIFT-IN
– SORT-CONTROL
– SORT-MESSAGE

172 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

– WHEN-COMPILED
– XML-EVENT
– XML-TEXT

Alphanumeric-edited
A data item is described as category alphanumeric-edited by its PICTURE character-string. For PICTURE
character-string details, see “Alphanumeric-edited items” on page 214.

A data item of category alphanumeric-edited is referred to as an alphanumeric-edited data item.

DBCS
A data item is described as category DBCS by its PICTURE character-string and the NSYMBOL(DBCS)
compiler option or by an explicit USAGE DISPLAY-1 clause. For PICTURE character-string details, see
“DBCS items” on page 214.

A data item of category DBCS is referred to as a DBCS data item.

External floating-point
A data item is described as category external floating-point by its PICTURE character-string. For PICTURE
character-string details, see “External floating-point items” on page 214. An external floating-point data
item can be described with USAGE DISPLAY or USAGE NATIONAL.

When the usage is DISPLAY, the item is referred to as a display floating-point data item.

When the usage is NATIONAL, the item is referred to as a national floating-point data item.

An external floating-point data item is of class numeric and, unless specifically excluded, is included in a
reference to a numeric data item.

Internal floating-point
A data item is described as category internal floating-point by a USAGE clause with the COMP-1 or
COMP-2 phrase.

A data item of category internal floating-point is referred to as an internal floating-point data item. An
internal floating-point data item is of class numeric and, unless specifically excluded, is included in a
reference to a numeric data item.

National
Each of the following data items is of category national:

• A data item that is described as category national by its PICTURE character-string and the
NSYMBOL(NATIONAL) compiler option or by an explicit USAGE NATIONAL clause. For PICTURE
character-string details, see “National items” on page 215.

• A group item explicitly or implicitly described with a GROUP-USAGE NATIONAL clause.
• A national function.
• The special register XML-NTEXT.

National-edited
A data item is described as category national-edited by its PICTURE character-string. For PICTURE
character-string details, see “National-edited items” on page 216.

A data item of category national-edited is referred to as a national-edited data item.

Chapter 24. DATA DIVISION overview 173

UTF-8
Each of the following data items is of category UTF-8:

• A data item is described as category UTF-8 when its PICTURE character-string contains one or more
U symbols. The explicit USAGE UTF-8 clause may be present for items containing U in their PICTURE
character-string but is not required. For PICTURE character-string details, see “UTF-8 items” on page
218.

• A group item explicitly or implicitly described with a GROUP-USAGE UTF-8 clause.
• A UTF-8 function.

Numeric
Each of the following data items is of category numeric:

• An elementary data item described as numeric by its PICTURE character-string and not described with
a BLANK WHEN ZERO clause. For PICTURE character-string details, see “Numeric items” on page 217.

• An elementary data item described with one of the following usages:

– BINARY, COMPUTATIONAL, COMPUTATIONAL-4, COMPUTATIONAL-5, COMP, COMP-4, or COMP-5
– PACKED-DECIMAL, COMPUTATIONAL-3, or COMP-3

• A special register of numeric type:

– JSON-CODE
– JSON-STATUS
– LENGTH OF
– LINAGE-COUNTER
– RETURN-CODE
– SORTCORE-SIZE
– SORT-FILE-SIZE
– SORT-MODE-SIZE
– SORT-RETURN
– TALLY
– XML-CODE

• A numeric function.
• An integer function.

A data item of category numeric is referred to as a numeric data item.

Numeric-edited
Each of the following data items is of category numeric-edited:

• A data item described as numeric-edited by its PICTURE character-string. For PICTURE character-string
details, see “Numeric-edited items” on page 218.

• A data item described as numeric by its PICTURE character-string and described with a BLANK WHEN
ZERO clause.

Alignment rules
The standard alignment rules for positioning data in an elementary item depend on the category of a
receiving item.

A receiving item is an item into which the data is moved. For more details about a receiving item, see
“Elementary moves” on page 401.

174 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Numeric
For numeric receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary, truncated or padded with
zeros. (An assumed decimal point is one that has logical meaning but that does not exist as an
actual character in the data.)

2. If an assumed decimal point is not explicitly specified, the receiving item is treated as though an
assumed decimal point is specified immediately to the right of the field. The data is then treated
according to the preceding rule.

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or padded with zeros at either
end except when editing causes replacement of leading zeros.

Internal floating-point
A decimal point is assumed immediately to the left of the field. The data is then aligned on the
leftmost digit position that follows the decimal point, with the exponent adjusted accordingly.

External floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted accordingly.

Alphanumeric, alphanumeric-edited, alphabetic, DBCS
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary) truncated or padded with
spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above rule is modified as described
in “JUSTIFIED clause” on page 198.

National, national-edited
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary) truncated or padded with
default Unicode spaces (NX'0020') at the right. Truncation occurs at the boundary of a national
character position.

2. If the JUSTIFIED clause is specified for this receiving item, the above rule is modified as described
in “JUSTIFIED clause” on page 198.

UTF-8
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary) truncated or padded with
default UTF-8 spaces (UX'20') at the right. Truncation occurs at the boundary of a UTF-8 character
position.

2. If the JUSTIFIED clause is specified for this receiving item, the above rule is modified as described
in “JUSTIFIED clause” on page 198.

Character-string and item size
For items described with a PICTURE clause, the size of an elementary item is expressed in source code
by the number of character positions described in the PICTURE character-string and a SIGN clause (if
applicable). Storage size, however, is determined by the actual number of bytes the item occupies as
determined by the combination of its PICTURE character-string, SIGN IS SEPARATE clause (if specified),
and USAGE clause.

For items described with USAGE DISPLAY (categories alphabetic, alphanumeric, alphanumeric-edited,
numeric-edited, numeric, and external floating-point), 1 byte of storage is reserved for each character
position described by the item's PICTURE character-string and SIGN IS SEPARATE clause (if applicable).

For items described with USAGE DISPLAY-1 (category DBCS), 2 bytes of storage are reserved for each
character position described by the item's PICTURE character-string.

Chapter 24. DATA DIVISION overview 175

For items described with USAGE NATIONAL (categories national, national-edited, numeric-edited,
numeric, and external floating-point), 2 bytes of storage are reserved for each character position
described by the item's PICTURE character-string and SIGN IS SEPARATE clause (if specified).

For items described with USAGE UTF-8 (category UTF-8), when the BYTE-LENGTH phrase of the PICTURE
clause and the DYNAMIC LENGTH clause are not specified in the item’s definition, 4 bytes of storage are
reserved for each character position described by the item's PICTURE character-string. Note, however,
that due to the varying-length nature of UTF-8 characters, many UTF-8 strings of the specified character
length can be represented using fewer bytes than the maximum reserved. In such a case, any unused
bytes in the data item are padded with UTF-8 blanks.

For internal floating-point items, the size of the item in storage is determined by its USAGE clause. USAGE
COMPUTATIONAL-1 reserves 4 bytes of storage for the item; USAGE COMPUTATIONAL-2 reserves 8 bytes
of storage.

Normally, when an arithmetic item is moved from a longer field into a shorter one, the compiler truncates
the data to the number of digits represented in the shorter item's PICTURE character-string by truncating
leading digits. For example, if a sending field with PICTURE S99999 that contains the value +12345
is moved to a BINARY receiving field with PICTURE S99, the data is truncated to +45. For additional
information, see “USAGE clause” on page 237.

The TRUNC compiler option can affect the value of a binary numeric item. For information about TRUNC,
see TRUNC in the Enterprise COBOL Programming Guide.

Signed data
There are two categories of algebraic signs used in COBOL: operational signs and editing signs.

Operational signs
Operational signs are associated with signed numeric items, and indicate their algebraic properties.

The internal representation of an algebraic sign depends on the item's USAGE clause, its SIGN clause
(if present), and the operating environment. (For further details about the internal representation, see
Examples: numeric data and internal representation in the Enterprise COBOL Programming Guide.)

Editing signs
Editing signs are associated with numeric-edited items. Editing signs are PICTURE symbols that identify
the sign of the item in edited output.

Dynamic-length items
Enterprise COBOL supports usage of dynamic-length items. Generally, dynamic-length items are items
whose logical length might change at runtime.

Dynamic-length elementary items
A dynamic-length item is a data item whose logical length might change at runtime.

If a dynamic-length elementary item is used as a sending operand (which might be reference-modified),
the item is treated as a fixed-length data item with a length that is the same as the current length of the
dynamic-length elementary item. If a dynamic-length elementary item is used as a receiving operand and
is not reference-modified, the sender contents are moved into the receiver's content buffer.

If the length of the sender is longer than the length of the receiver, then a larger receiver content buffer
might be allocated at runtime to contain the contents of the sender, before moving any data. The length
of the receiver is then set to the length of the sender. If the length of the sender is zero, no data is
moved and the length of the receiver is set to zero. If the sender is a figurative constant, the length of the
operand is as specified in “Figurative constants” on page 15.

176 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If a dynamic-length elementary item is used as a receiving operand and is reference-modified, the item is
treated as a fixed-length item with a length that is the same as the current length of the dynamic-length
elementary item. The dynamic-length elementary item receiver buffer will not be allocated or reallocated
if it is reference-modified.

Note: Do not use dynamic-length elementary items as reference-modified receiving items before they
have been initialized. Doing so results in unpredictable behavior.

For items described with the DYNAMIC LENGTH clause, the number of bytes allocated for the item
depends on the length of the item at program runtime.

The following statements support dynamic-length elementary items:

ACCEPT statement - Format 2 (See “System date-related information transfer” on page 309)
“CALL statement” on page 318
“CANCEL statement” on page 326
“DISPLAY statement” on page 333
“EVALUATE statement” on page 339
“MOVE statement” on page 400
“SET statement” on page 440
“STOP statement” on page 457
“STRING statement” on page 457
“UNSTRING statement” on page 464

Dynamic-length group items
A dynamic-length group item is a group item that contains a subordinate dynamic-length elementary item
and whose logical length might change at runtime.

A dynamic-length group item's data description entry contains one or more subordinate dynamic-length
elementary items. A group item that is not a dynamic-length group item is considered to be a fixed-length
group item, such as group items that do not contain subordinate dynamic-length elementary items.
Fixed-length group items can contain variable length tables whose data description entry contains the
OCCURS DEPENDING ON clause.

Dynamic-length group items may not be compared to, or moved to, other group items (dynamic-length or
not).

Fixed-length group items are always compatible and comparable with other fixed-length group items.

Chapter 24. DATA DIVISION overview 177

178 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 25. DATA DIVISION--file description entries
In a COBOL program, the File Description (FD) Entry (or Sort File Description (SD) Entry for sort/merge files)
represents the highest level of organization in the FILE SECTION. The order in which the optional clauses
follow the FD or SD entry is not important.

Format 1: sequential file description entry
FD file-name-1

IS

EXTERNAL

IS

GLOBAL

BLOCK

CONTAINS integer-1 TO

integer-2 CHARACTERS

RECORDS

RECORD

CONTAINS

integer-3

CHARACTERS

CONTAINS

integer-4 TO integer-5

CHARACTERS

clause 1

DEPENDING

ON

data-name-1

LABEL RECORD

IS

RECORDS

ARE

STANDARD

OMITTED

data-name-2

VALUE OF system-name-1

IS

data-name-3

literal-1

DATA RECORD

IS

RECORDS

ARE

data-name-4

LINAGE

IS

data-name-5

integer-8 LINES

clause 2

RECORDING

MODE IS

mode

CODE-SET

IS

alphabet-name

.

clause 1

© Copyright IBM Corp. 1991, 2024 179

IS

VARYING

IN SIZE

FROM

integer-6

TO integer-7 CHARACTERS

clause 2

WITH

FOOTING

AT

data-name-6

integer-9

LINES AT

TOP data-name-7

integer-10

LINES AT

BOTTOM data-name-8

integer-11

180 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 2: relative or indexed file description entry
FD file-name-1

IS

EXTERNAL

IS

GLOBAL

BLOCK

CONTAINS integer-1 TO

integer-2 CHARACTERS

RECORDS

RECORD

CONTAINS

integer-3

CHARACTERS

CONTAINS

integer-4 TO integer-5

CHARACTERS

clause 1

DEPENDING

ON

data-name-1

LABEL RECORD

IS

RECORDS

ARE

STANDARD

OMITTED

VALUE OF system-name-1

IS

data-name-3

literal-1

DATA RECORD

IS

RECORDS

ARE

data-name-4

.

clause 1

IS

VARYING

IN SIZE

FROM

integer-6

TO integer-7 CHARACTERS

Chapter 25. DATA DIVISION--file description entries 181

Format 3: line-sequential file description entry
FD file-name-1

IS

EXTERNAL

IS

GLOBAL

RECORD

CONTAINS

integer-3

CHARACTERS

clause 1

DEPENDING

ON

data-name-1

.

clause 1

IS

VARYING

IN SIZE

FROM

integer-6

TO integer-7 CHARACTERS

182 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 4: sort/merge file description entry
SD file-name-1

RECORD

CONTAINS

integer-3

CHARACTERS

CONTAINS

integer-4 TO integer-5

CHARACTERS

clause 1

DEPENDING

ON

data-name-1

DATA RECORD

IS

RECORDS

ARE

data-name-4

BLOCK

CONTAINS integer-1 TO

integer-2 CHARACTERS

RECORDS

LABEL RECORD

IS

RECORDS

ARE

STANDARD

OMITTED

data-name-2

VALUE OF system-name-1

IS

data-name-3

literal-1

LINAGE

IS

data-name-5

integer-8 LINES

clause 2

CODE-SET

IS

alphabet-name

.

clause 1

IS

VARYING

IN SIZE

FROM

integer-6

TO integer-7 CHARACTERS

clause 2

Chapter 25. DATA DIVISION--file description entries 183

WITH

FOOTING

AT

data-name-6

integer-9

LINES AT

TOP data-name-7

integer-10

LINES AT

BOTTOM data-name-8

integer-11

FILE SECTION
The FILE SECTION must contain a level-indicator for each input and output file. For all files except sort or
merge files, the FILE SECTION must contain an FD entry. For each sort or merge file, the FILE SECTION
must contain an SD entry.

file-name
Must follow the level indicator (FD or SD), and must be the same as that specified in the associated
SELECT clause. file-name must adhere to the rules of formation for a user-defined word; at least one
character must be alphabetic. file-name must be unique within this program.

One or more record description entries must follow file-name. When more than one record description
entry is specified, each entry implies a redefinition of the same storage area.

The clauses that follow file-name are optional, and they can appear in any order.

FD (formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a separator period.

SD (format 4)
An SD entry must be written for each sort or merge file in the program. The last clause in the SD entry
must be immediately followed by a separator period.

The following example illustrates the FILE SECTION entries needed for a sort or merge file:

SD SORT-FILE.
01 SORT-RECORD PICTURE X(80).

A record in the FILE SECTION must be described as an alphanumeric group item, a national group item, or
an elementary item of class alphabetic, alphanumeric, DBCS, national, or numeric.

EXTERNAL clause
The EXTERNAL clause specifies that a file connector is external, and permits communication between two
programs by the sharing of files.

A file connector is external if the storage associated with that file is associated with the run unit rather
than with any particular program within the run unit. An external file can be referenced by any program
in the run unit that describes the file. References to an external file from different programs that use
separate descriptions of the file are always to the same file. In a run unit, there is only one representative
of an external file.

In the FILE SECTION, the EXTERNAL clause can be specified only in file description entries.

The records appearing in the file description entry need not have the same name in corresponding
external file description entries. In addition, the number of such records need not be the same in
corresponding file description entries.

184 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Use of the EXTERNAL clause does not imply that the associated file-name is a global name. See Sharing
data by using the EXTERNAL clause in the Enterprise COBOL Programming Guide for specific information
about the use of the EXTERNAL clause.

GLOBAL clause
The GLOBAL clause specifies that the file connector named by a file-name is a global name. A global
file-name is available to the program that declares it and to every program that is contained directly or
indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry for that file-name.
A record-name is global if the GLOBAL clause is specified in the record description entry by which the
record-name is declared or, in the case of record description entries in the FILE SECTION, if the GLOBAL
clause is specified in the file description entry for the file-name associated with the record description
entry. For details on using the GLOBAL clause, see Using data in input and output operations and Scope of
names in the Enterprise COBOL Programming Guide.

Two programs in a run unit can reference global file connectors in the following circumstances:

• An external file connector can be referenced from any program that describes that file connector.
• If a program is contained within another program, both programs can refer to a global file connector

by referring to an associated global file-name either in the containing program or in any program that
directly or indirectly contains the containing program.

BLOCK CONTAINS clause
The BLOCK CONTAINS clause specifies the size of the physical records.

The CHARACTERS phrase indicates that the integer specified in the BLOCK CONTAINS clause reflects the
number of bytes in the record. For example, if you have a block with 10 DBCS characters or 10 national
characters, the BLOCK CONTAINS clause should say BLOCK CONTAINS 20 CHARACTERS.

If the records in the file are not blocked, the BLOCK CONTAINS clause can be omitted. When it is omitted,
the compiler assumes that records are not blocked. Even if each physical record contains only one
complete logical record, coding BLOCK CONTAINS 1 RECORD would result in fixed blocked records.

The BLOCK CONTAINS clause can be omitted when the associated file-control entry specifies a VSAM file.
The concept of blocking has no meaning for VSAM files. The BLOCK CONTAINS clause is syntax checked
but has no effect on the execution of the program.

For external files, the value of all BLOCK CONTAINS clauses of corresponding external files must match
within the run unit. This conformance is in terms of bytes and does not depend upon whether the value
was specified as CHARACTERS or as RECORDS.

integer-1 , integer-2
Must be unsigned integers. They specify:
CHARACTERS

Specifies the number of bytes required to store the physical record, no matter what USAGE the
data items have within the data record.

If only integer-2 is specified, it specifies the exact number of bytes in the physical record. When
integer-1 and integer-2 are both specified, they represent the minimum and maximum number of
bytes in the physical record, respectively.

integer-1 and integer-2 must include any control bytes and padding contained in the physical
record. (Logical records do not include padding.)

The CHARACTERS phrase is the default. CHARACTERS must be specified when:

• The physical record contains padding.

Chapter 25. DATA DIVISION--file description entries 185

• Logical records are grouped so that an inaccurate physical record size could be implied. For
example, suppose you describe a variable-length record of 100 bytes, yet each time you write
a block of 4, one 50-byte record is written followed by three 100-byte records. If the RECORDS
phrase were specified, the compiler would calculate the block size as 420 bytes instead of the
actual size, 370 bytes. (This calculation includes block and record descriptors.)

RECORDS
Specifies the number of logical records contained in each physical record.

The compiler assumes that the block size must provide for integer-2 records of maximum size, and
provides any additional space needed for control bytes.

BLOCK CONTAINS 0 can be specified for QSAM files. If BLOCK CONTAINS 0 is specified for a QSAM file,
then:

• The block size is determined at run time from the DD parameters or the data set label of the file. For
output data sets, the DCB used by Language Environment will have a zero block size value. When the
DCB has a zero block size value, the operating system might select a system-determined block size
(SDB). See the operating system specifications for further information about SDB.

BLOCK CONTAINS can be omitted for SYSIN files and for SYSOUT files. The blocking is determined by
the operating system.

For a way to apply BLOCK CONTAINS 0 to QSAM files that do not already have a BLOCK CONTAINS clause,
see the description of the compiler option, BLOCK0 in the Enterprise COBOL Programming Guide.

The BLOCK CONTAINS clause is syntax checked but has no effect on the execution of the program when
specified under an SD.

The BLOCK CONTAINS clause cannot be used with the RECORDING MODE U clause.

RECORD clause
When the RECORD clause is used, the record size must be specified as the number of bytes needed to
store the record internally, regardless of the USAGE of the data items contained within the record.

For example, if you have a record with 10 DBCS characters, the RECORD clause should say RECORD
CONTAINS 20 CHARACTERS. For a record with 10 national characters, the RECORD clause should say
the same, RECORD CONTAINS 20 CHARACTERS.

The size of a record is determined according to the rules for obtaining the size of a group item. (See
“USAGE clause” on page 237 and “SYNCHRONIZED clause” on page 231.)

When the RECORD clause is omitted, the compiler determines the record lengths from the record
descriptions. When one of the entries within a record description contains an OCCURS DEPENDING ON
clause, the compiler uses the maximum value of the variable-length item to calculate the number of bytes
needed to store the record internally.

If the associated file connector is an external file connector, all file description entries in the run unit that
are associated with that file connector must specify the same maximum number of bytes.

The following sections describe the formats of the RECORD clause:

Format 1
Format 1 specifies the number of bytes for fixed-length records.

Format 1
RECORD

CONTAINS

integer-3

CHARACTERS

186 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

integer-3
Must be an unsigned integer that specifies the number of bytes contained in each record in the file.

The RECORD CONTAINS 0 CHARACTERS clause can be specified for input QSAM files containing
fixed-length records; the record size is determined at run time from the DD statement parameters or
the data set label. If, at run time, the actual record is larger than the 01 record description, then only
the 01 record length is available. If the actual record is shorter, then only the actual record length can
be referred to. Otherwise, uninitialized data or an addressing exception can be produced.

Usage note: If the RECORD CONTAINS 0 clause is specified, then the SAME AREA, SAME RECORD
AREA, or APPLY WRITE-ONLY clauses cannot be specified.

Do not specify the RECORD CONTAINS 0 clause for an SD entry.

Format 2
Format 2 specifies the number of bytes for either fixed-length or variable-length records.

Fixed-length records are obtained when all 01 record description entry lengths are the same. The
format-2 RECORD CONTAINS clause is never required, because the minimum and maximum record
lengths are determined from the record description entries.

Format 2
RECORD

CONTAINS

integer-4 TO integer-5

CHARACTERS

integer-4 , integer-5
Must be unsigned integers. integer-4 specifies the size of the smallest data record, and integer-5
specifies the size of the largest data record.

Format 3
Format 3 is used to specify variable-length records.

Format 3
RECORD

IS

VARYING

IN SIZE

FROM

integer-6 TO integer-7 CHARACTERS

DEPENDING

ON

data-name-1

integer-6
Specifies the minimum number of bytes to be contained in any record of the file. If integer-6 is not
specified, the minimum number of bytes to be contained in any record of the file is equal to the least
number of bytes described for a record in that file.

integer-7
Specifies the maximum number of bytes in any record of the file. If integer-7 is not specified, the
maximum number of bytes to be contained in any record of the file is equal to the greatest number of
bytes described for a record in that file.

Chapter 25. DATA DIVISION--file description entries 187

The number of bytes associated with a record description is determined by the sum of the number of
bytes in all elementary data items (excluding redefinitions and renamings), plus any implicit FILLER due
to synchronization. If a table is specified:

• The minimum number of table elements described in the record is used in the summation above to
determine the minimum number of bytes associated with the record description.

• The maximum number of table elements described in the record is used in the summation above to
determine the maximum number of bytes associated with the record description.

If data-name-1 is specified:

• data-name-1 must be an elementary unsigned integer.
• The number of bytes in the record must be placed into the data item referenced by data-name-1 before

any RELEASE, REWRITE, or WRITE statement is executed for the file.
• The execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement or the unsuccessful

execution of a READ or RETURN statement does not alter the content of the data item referenced by
data-name-1.

• After the successful execution of a READ or RETURN statement for the file, the contents of the data item
referenced by data-name-1 indicate the number of bytes in the record just read.

During the execution of a RELEASE, REWRITE, or WRITE statement, the number of bytes in the record is
determined by the following conditions:

• If data-name-1 is specified, by the content of the data item referenced by data-name-1
• If data-name-1 is not specified and the record does not contain a variable occurrence data item, by the

number of bytes positions in the record
• If data-name-1 is not specified and the record contains a variable occurrence data item, by the sum of

the fixed position and that portion of the table described by the number of occurrences at the time of
execution of the output statement

During the execution of a READ ... INTO or RETURN ... INTO statement, the number of bytes in the current
record that participate as the sending data items in the implicit MOVE statement is determined by the
following conditions:

• If data-name-1 is specified, by the content of the data item referenced by data-name-1
• If data-name-1 is not specified, by the value that would have been moved into the data item referenced

by data-name-1 had data-name-1 been specified

LABEL RECORDS clause
For sequential, relative, or indexed files, and for sort/merge SDs, the LABEL RECORDS clause is syntax
checked, but has no effect on the execution of the program.

The LABEL RECORDS clause documents the presence or absence of labels.

STANDARD
Labels conforming to system specifications exist for this file.

STANDARD is permitted for mass storage devices and tape devices.

OMITTED
No labels exist for this file.

OMITTED is permitted for tape devices.

data-name-2
User labels are present in addition to standard labels. data-name-2 specifies the name of a user label
record. data-name-2 must appear as the subject of a record description entry associated with the file.

188 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

VALUE OF clause
The VALUE OF clause describes an item in the label records associated with the file.

data-name-3
Should be qualified when necessary, but cannot be subscripted. It must be described in the
WORKING-STORAGE SECTION. It cannot be described with the USAGE IS INDEX clause.

literal-1
Can be numeric or alphanumeric, or a figurative constant of category numeric or alphanumeric.
Cannot be a floating-point literal.

The VALUE OF clause is syntax checked, but has no effect on the execution of the program.

DATA RECORDS clause
The DATA RECORDS clause is syntax checked but serves only as documentation for the names of data
records associated with the file.

data-name-4
The names of record description entries associated with the file.

The data-name need not have an associated 01 level number record description with the same name.

LINAGE clause
The LINAGE clause specifies the depth of a logical page in number of lines. Optionally, it also specifies
the line number at which the footing area begins and the top and bottom margins of the logical page. (The
logical page and the physical page cannot be the same size.)

The LINAGE clause is effective for sequential files opened as OUTPUT or EXTEND.

All integers must be unsigned. All data-names must be described as unsigned integer data items.

data-name-5 , integer-8
The number of lines that can be written or spaced on this logical page. The area of the page that these
lines represent is called the page body. The value must be greater than zero.

WITH FOOTING AT
integer-9 or the value of the data item in data-name-6 specifies the first line number of the footing
area within the page body. The footing line number must be greater than zero, and not greater than
the last line of the page body. The footing area extends between those two lines.

LINES AT TOP
integer-10 or the value of the data item in data-name-7 specifies the number of lines in the top margin
of the logical page. The value can be zero.

LINES AT BOTTOM
integer-11 or the value of the data item in data-name-8 specifies the number of lines in the bottom
margin of the logical page. The value can be zero.

The following figure illustrates the use of each phrase of the LINAGE clause.

Chapter 25. DATA DIVISION--file description entries 189

The logical page size specified in the LINAGE clause is the sum of all values specified in each phrase
except the FOOTING phrase. If the LINES AT TOP phrase is omitted, the assumed value for the top margin
is zero. Similarly, if the LINES AT BOTTOM phrase is omitted, the assumed value for the bottom margin
is zero. Each logical page immediately follows the preceding logical page, with no additional spacing
provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page body (integer-8 or
data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8, integer-9, integer-10, and
integer-11, if specified, are used to determine the page body, first footing line, top margin, and bottom
margin of the logical page for this file. (See the figure above.) These values are then used for all logical
pages printed for this file during a given execution of the program.

At the time an OPEN statement with the OUTPUT phrase is executed for the file, data-name-5, data-
name-6, data-name-7, and data-name-8 determine the page body, first footing line, top margin, and
bottom margin for the first logical page only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a page overflow
condition occurs, the values of data-name-5, data-name-6, data-name-7, and data-name-8 if specified,
are used to determine the page body, first footing line, top margin, and bottom margin for the next logical
page.

If an external file connector is associated with this file description entry, all file description entries in the
run unit that are associated with this file connector must have:

• A LINAGE clause, if any file description entry has a LINAGE clause
• The same corresponding values for integer-8, integer-9, integer-10, and integer-11, if specified
• The same corresponding external data items referenced by data-name-5, data-name-6, data-name-7,

and data-name-8

See “ADVANCING phrase” on page 473 for the behavior of carriage control characters in external files.

A LINAGE clause under an SD is syntax checked, but has no effect on the execution of the program.

LINAGE-COUNTER special register
For information about the LINAGE-COUNTER special register, see “LINAGE-COUNTER” on page 23.

190 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

RECORDING MODE clause
The RECORDING MODE clause specifies the format of the physical records in a QSAM file. The clause is
ignored for a VSAM file.

Permitted values for RECORDING MODE are:

Recording mode F (fixed)
All the records in a file are the same length and each is wholly contained within one block. Blocks can
contain more than one record, and there is usually a fixed number of records for each block. In this
mode, there are no record-length or block-descriptor fields.

Recording mode V (variable)
The records can be either fixed-length or variable-length, and each must be wholly contained within
one block. Blocks can contain more than one record. Each data record includes a record-length
field and each block includes a block-descriptor field. These fields are not described in the DATA
DIVISION. They are each 4 bytes long and provision is automatically made for them. These fields are
not available to you.

Recording mode U (fixed or variable)
The records can be either fixed-length or variable-length. However, there is only one record for each
block. There are no record-length or block-descriptor fields.

You cannot use RECORDING MODE U if you are using the BLOCK CONTAINS clause.

Recording mode S (spanned)
The records can be either fixed-length or variable-length, and can be larger than a block. If a record
is larger than the remaining space in a block, a segment of the record is written to fill the block. The
remainder of the record is stored in the next block (or blocks, if required). Only complete records are
made available to you. Each segment of a record in a block, even if it is the entire record, includes
a segment-descriptor field, and each block includes a block-descriptor field. These fields are not
described in the DATA DIVISION; provision is automatically made for them. These fields are not
available to you.

When recording mode S is used, the BLOCK CONTAINS CHARACTERS clause must be used. Recording
mode S is not allowed for ASCII files.

If the RECORDING MODE clause is not specified for a QSAM file, the Enterprise COBOL compiler
determines the recording mode as follows:

F
The compiler determines the recording mode to be F if the largest level-01 record associated with the
file is not greater than the block size specified in the BLOCK CONTAINS clause, and you do one of the
following things:

• Use the RECORD CONTAINS integer clause. (For more information, see the Enterprise COBOL
Migration Guide.)

• Omit the RECORD clause and make sure that all level-01 records associated with the file are the
same size and none contains an OCCURS DEPENDING ON clause.

V
The compiler determines the recording mode to be V if the largest level-01 record associated with the
file is not greater than the block size specified in the BLOCK CONTAINS clause, and you do one of the
following things:

• Use the RECORD IS VARYING clause.
• Omit the RECORD clause and make sure that all level-01 records associated with the file are not the

same size or some contain an OCCURS DEPENDING ON clause.
• Use the RECORD CONTAINS integer-1 TO integer-2 clause, with integer-1 the minimum length and

integer-2 the maximum length of the level-01 records associated with the file. The two integers
must be different, with values matching minimum and maximum length of either different length
records or records with an OCCURS DEPENDING ON clause.

Chapter 25. DATA DIVISION--file description entries 191

S
The compiler determines the recording mode to be S if the maximum block size is smaller than the
largest record size.

U
Recording mode U is never obtained by default. The RECORDING MODE U clause must be explicitly
specified to get recording mode U.

CODE-SET clause
The CODE-SET clause specifies the character code used to represent data on a magnetic tape file. When
the CODE-SET clause is specified, an alphabet-name identifies the character code convention used to
represent data on the input-output device.

alphabet-name must be defined in the SPECIAL-NAMES paragraph as STANDARD-1 (for ASCII-encoded
files), STANDARD-2 (for ISO 7-bit encoded files), EBCDIC (for EBCDIC-encoded files), or NATIVE. When
NATIVE is specified, the CODE-SET clause is syntax checked but has no effect on the execution of the
program.

The CODE-SET clause also specifies the algorithm for converting the character codes on the input-output
medium from and to the internal EBCDIC character set.

When the CODE-SET clause is specified for a file, all data in the file must have USAGE DISPLAY; and if
signed numeric data is present, it must be described with the SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed for the file.

If the associated file connector is an external file connector, all CODE-SET clauses in the run unit that are
associated with the file connector must have the same character set.

The CODE-SET clause is valid only for magnetic tape files.

The CODE-SET clause is syntax checked but has no effect on the execution of the program when specified
under an SD.

192 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 26. DATA DIVISION--data description entry
A data description entry specifies the characteristics of a data item. In the sections that follow, sets of
data description entries are called record description entries. The term data description entry refers to
data and record description entries.

Data description entries that define independent data items do not make up a record. These entries are
known as data item description entries.

Data description entries have three general formats, and all data description entries must end with a
separator period.

Format 1
Format 1 is used for data description entries in all DATA DIVISION sections.

Format 1: data description entry
level-number

data-name-1

FILLER

redefines-clause

blank-when-zero-clause dynamic-length-clause external-clause

global-clause group-usage-clause justified-clause

occurs-clause picture-clause sign-clause

synchronized-clause usage-clause value-clause

volatile-clause

The clauses can be written in any order, with the following exceptions:

• data-name-1 or FILLER, if specified, must immediately follow the level-number.
• When the REDEFINES clause is specified, it must immediately follow data-name-1 or FILLER, if either

is specified. If data-name-1 or FILLER is not specified, the REDEFINES clause must immediately follow
the level-number.

The level-number in format 1 can be any number in the range 01–49, or 77.

A space, a comma, or a semicolon must separate clauses.

Format 2
Format 2 regroups previously defined items.

Format 2: renames
66 data-name-1 renames-clause.

© Copyright IBM Corp. 1991, 2024 193

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01, level-77, or level-88
entry.

All level-66 entries associated with one record must immediately follow the last data description entry in
that record.

See “RENAMES clause” on page 228 for further details.

Format 3
Format 3 describes condition-names.

Format 3: condition-name
88 condition-name-1 value-clause.

condition-name-1
A user-specified name that associates a value, a set of values, or a range of values with a conditional
variable.

Level-88 entries must immediately follow the data description entry for the conditional variable with
which the condition-names are associated.

Format 3 can be used to describe elementary items, national group items, or alphanumeric group items.
Additional information about condition-name entries can be found under “VALUE clause” on page 245
and “Condition-name condition” on page 271.

Level-numbers
The level-number specifies the hierarchy of data within a record, and identifies special-purpose data
entries. A level-number begins a data description entry, a renamed or redefined item, or a condition-name
entry.

A level-number has an integer value between 1 and 49, inclusive, or one of the special level-number
values 66, 77, or 88.

Format
level-number

data-name-1

FILLER

level-number
01 and 77 must begin in Area A and be followed either by a separator period or by a space followed by
its associated data-name, FILLER, or appropriate data description clause.

Level numbers 02 through 49 can begin in Areas A or B and must be followed by a space or a
separator period.

Level numbers 66 and 88 can begin in Areas A or B and must be followed by a space.

Single-digit level-numbers 1 through 9 can be substituted for level-numbers 01 through 09.

Successive data description entries can start in the same column as the first entry or can be indented
according to the level-number. Indentation does not affect the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any number of spaces to the
right of Area A. The extent of indentation to the right is limited only by the width of Area B.

For more information, see “Levels of data” on page 167.

194 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

data-name-1
Explicitly identifies the data being described.

data-name-1, if specified, identifies a data item used in the program. data-name-1 must be the first
word following the level-number.

The data item can be changed during program execution.

data-name-1 must be specified for level-66 and level-88 items. It must also be specified for any entry
containing the GLOBAL or EXTERNAL clause, and for record description entries associated with file
description entries that have the GLOBAL or EXTERNAL clauses.

FILLER
A data item that is not explicitly referred to in a program. The keyword FILLER is optional. If specified,
FILLER must be the first word following the level-number.

The keyword FILLER can be used with a conditional variable if explicit reference is never made
to the conditional variable but only to values that it can assume. FILLER cannot be used with a
condition-name.

In a MOVE CORRESPONDING statement or in an ADD CORRESPONDING or SUBTRACT
CORRESPONDING statement, FILLER items are ignored.

In an INITIALIZE statement:

• When the FILLER phrase is not specified, elementary FILLER items are ignored.
• When the FILLER phrase is specified, the receiving elementary data items that have an explicit or

implicit FILLER clause will be initialized.

If data-name-1 or the FILLER clause is omitted, the data item being described is treated as though
FILLER had been specified.

BLANK WHEN ZERO clause
The BLANK WHEN ZERO clause specifies that an item contains only spaces when its value is zero.

Format
BLANK

WHEN

ZERO

ZEROS

ZEROES

The BLANK WHEN ZERO clause may be specified only for an elementary item described by its picture
character string as category numeric-edited or numeric, without the picture symbol S or *. These items
must be described, either implicitly or explicitly, as USAGE DISPLAY or USAGE NATIONAL.

A BLANK WHEN ZERO clause that is specified for an item defined as numeric by its picture character
string defines the item as category numeric-edited.

DYNAMIC LENGTH clause
The DYNAMIC LENGTH clause specifies a dynamic-length elementary item. The LENGTH keyword is
optional.

Chapter 26. DATA DIVISION--data description entry 195

Format
DYNAMIC

LENGTH LIMIT

IS

integer-1

LIMIT
If the LIMIT phrase is not specified, then the limit is set to the maximum value according to the data
item class. Attempts to receive into a dynamic-length elementary item more characters over the limit
will result in truncation at a character boundary on the right.

Note: In practice, the maximum length of a dynamic-length elementary item might be limited by
available runtime memory or other runtime environment limits.

integer-1
An integer specifies the maximum number of alphanumeric or national characters that the data item
can contain.

When the PICTURE clause is PIC U, integer-1 represents the maximum bytes that the data item can
contain. integer-1 must be an integer greater than or equal to 1, and less than or equal to 999999999
for alphanumeric class and 999999999 for UTF-8 class dynamic-length elementary items.

A dynamic-length elementary item is a data item whose length can vary at runtime. The length of a data
item is the current number of characters contained by this data item.

A dynamic-length elementary item has a minimum length of zero, and a maximum length that is the
smallest of the following limitations:

• integer-1 characters of the LIMIT phrase
• 999999999 characters if the PICTURE clause is 'X' (alphanumeric class) or 999999999 bytes if the

PICTURE clause is 'U' (UTF-8 class)
• The available runtime memory.

The PICTURE clause of a dynamic-length elementary item must be either PIC X or PIC U, making this
a data item of class alphanumeric or UTF-8 respectively. No other PICTURE clause strings other than a
single instance of 'X' or 'U' are allowed. PIC N is not supported in a dynamic-length elementary item.

Dynamic-length elementary items can be specified in the WORKING-STORAGE, LOCAL-STORAGE, or
LINKAGE SECTION. For LINKAGE SECTION dynamic-length elementary items, the item must also be
specified in either of the following ways:

• A PROCEDURE DIVISION USING item passed BY REFERENCE on the current program or function
PROCEDURE DIVISION header.

• A PROCEDURE DIVISION RETURNING item on the current program PROCEDURE DIVISION header.

Dynamic-length elementary items as PROCEDURE DIVISION RETURNING items can be specified for
programs only. Those programs can be called statically, dynamically, or via DLL. If called via DLL, the
calling program must use the call-by-literal syntax (rather than the call-by-identifier syntax). Programs
containing dynamic-length elementary items as PROCEDURE DIVISION RETURNING items cannot be
called using a function-pointer or procedure-pointer.

Dynamic-length elementary items can be specified as subordinate items within a group. The existence
of a dynamic-length elementary item within a group item will make it a dynamic-length group item (See
“Dynamic-length group items” on page 177).

Dynamic-length elementary items cannot be variably located or a subordinate data item within a table
containing the OCCURS DEPENDING ON phrase. When a dynamic-length elementary item appears within
a group, the content of the item can be considered logically inline within this group, even if the physical
location of the content is remotely located. Comparisons and moves between groups where one or both
groups contains a subordinate dynamic-length elementary item is not allowed. Moving a dynamic-length

196 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

elementary item to a fixed-length group is allowed, and moving any group (dynamic-length or not) to a
dynamic-length elementary item is allowed.

Usage note: Dynamic-length elementary items in the LOCAL-STORAGE section may not be freed when
the program executes unstructured GOTOs such as an EXEC CICS® HANDLE statement or the Language
Environment service CEEMRCE (Move resume cursor explicit).

EXTERNAL clause
The EXTERNAL clause specifies that the storage associated with a data item is associated with the run
unit rather than with any particular program or method within the run unit.

An external data item can be referenced by any program or method in the run unit that describes the data
item. References to an external data item from different programs or methods using separate descriptions
of the data item are always to the same data item. In a run unit, there is only one representative of an
external data item.

The EXTERNAL clause can be specified only on data description entries whose level-number is 01. It can
be specified only on data description entries that are in the WORKING-STORAGE SECTION of a program
or method. It cannot be specified in LINKAGE SECTION, LOCAL-STORAGE SECTION, or FILE SECTION
data description entries. Any data item described by a data description entry subordinate to an entry that
describes an external record also attains the external attribute. Indexes in an external data record do not
possess the external attribute.

The data contained in the record named by the data-name clause is external and can be accessed and
processed by any program or method in the run unit that describes and, optionally, redefines it. This data
is subject to the following rules:

• If two or more programs or methods within a run unit describe the same external data record, each
record-name of the associated record description entries must be the same, and the records must
define the same number of bytes. However, a program or method that describes an external record can
contain a data description entry including the REDEFINES clause that redefines the complete external
record, and this complete redefinition need not occur identically in other programs or methods in the
run unit.

• Use of the EXTERNAL clause does not imply that the associated data-name is a global name.

GLOBAL clause
The GLOBAL clause specifies that a data-name is available to every program contained within the
program that defines it, as long as the contained program does not itself have a definition for that name.
All data-names subordinate to or condition-names or indexes associated with a global name are global
names.

A data-name is global if the GLOBAL clause is specified either in the data description entry by which the
data-name is defined or in another entry to which that data description entry is subordinate. The GLOBAL
clause can be specified in the WORKING-STORAGE SECTION, the FILE SECTION, the LINKAGE SECTION,
and the LOCAL-STORAGE SECTION, but only in data description entries whose level-number is 01.

In the same DATA DIVISION, the data description entries for any two data items for which the same
data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program that describes a global name
can reference that name without describing it again.

Two programs in a run unit can reference common data in the following circumstances:

• The data content of an external data record can be referenced from any program that describes the data
record as external.

• If a program is contained within another program, both programs can refer to data that possesses the
global attribute either in the containing program or in any program that directly or indirectly contains the
containing program.

Chapter 26. DATA DIVISION--data description entry 197

JUSTIFIED clause
The JUSTIFIED clause overrides standard positioning rules for receiving items of category alphabetic,
alphanumeric, DBCS, or national.

Format
JUSTIFIED

JUST RIGHT

You can specify the JUSTIFIED clause only at the elementary level. JUST is an abbreviation for
JUSTIFIED, and has the same meaning.

You cannot specify the JUSTIFIED clause:

• For data items of category numeric, numeric-edited, alphanumeric-edited, or national-edited
• For edited DBCS items
• For index data items
• For items described as USAGE FUNCTION-POINTER, USAGE POINTER, USAGE PROCEDURE-POINTER,

or USAGE OBJECT REFERENCE
• For external floating-point or internal floating-point items
• With level-66 (RENAMES) and level-88 (condition-name) entries

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at the rightmost character
position in the receiving item. Also:

• If the sending item is larger than the receiving item, the leftmost character positions are truncated.
• If the sending item is smaller than the receiving item, the unused character positions at the left are
filled with spaces. For a DBCS item, each unused position is filled with a DBCS space (X'4040'); for
an item described with usage NATIONAL, each unused position is filled with the default UTF-16 space
(NX'0020');for an item described with USAGE UTF-8, each unused position is filled with the default
UTF-8 space (UX'20'); otherwise, each unused position is filled with an alphanumeric space.

If you omit the JUSTIFIED clause, the rules for standard alignment are followed (see “Alignment rules” on
page 174).

The JUSTIFIED clause does not affect initial settings as determined by the VALUE clause.

GROUP-USAGE clause
A GROUP-USAGE clause with the NATIONAL phrase specifies that the group item defined by the entry is
a national group item. A national group item contains national characters in all subordinate data items
and subordinate group items. A GROUP-USAGE clause with the UTF-8 phrase specifies that the group
item defined by the entry is a UTF-8 group item. A UTF-8 group item contains UTF-8 characters in all
subordinate data items and subordinate group items.

Format
GROUP-USAGE

IS

NATIONAL

UTF-8

When GROUP-USAGE NATIONAL is specified:

• The subject of the entry is a national group item. The class and category of a national group are national.
• A USAGE clause must not be specified for the subject of the entry. A USAGE NATIONAL clause is

implied.

198 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• A USAGE NATIONAL clause is implied for any subordinate elementary data items that are not described
with a USAGE NATIONAL clause.

• All subordinate elementary data items must be explicitly or implicitly described with USAGE NATIONAL.
• Any signed numeric data items must be described with the SIGN IS SEPARATE clause.
• A GROUP-USAGE NATIONAL clause is implied for any subordinate group items that are not described

with a GROUP-USAGE NATIONAL clause.
• All subordinate group items must be explicitly or implicitly described with a GROUP-USAGE NATIONAL

clause.
• The JUSTIFIED clause must not be specified.

Unless stated otherwise, a national group item is processed as though it were an elementary data item of
usage national, class and category national, described with PICTURE N(m), where m is the length of the
group in national character positions.

Usage note: When you use national groups, the compiler can ensure proper truncation and padding
of group items for statements such as MOVE and INSPECT. Groups defined without a GROUP-USAGE
NATIONAL clause are alphanumeric groups. The content of alphanumeric groups, including any national
characters, is treated as alphanumeric data, possibly leading to invalid truncation or mishandling of
national character data.

The table below summarizes the cases where a national and UTF-8 group items are processed as a group
item.

When GROUP-USAGE UTF-8 is specified:

• The subject of the entry is a UTF-8 group item. The class and category of a UTF-8 group are UTF-8.
• A USAGE clause must not be specified for the subject of the entry. A USAGE UTF-8 clause is implied.
• A USAGE UTF-8 clause is implied for any subordinate elementary data items that are not described with

a USAGE UTF-8 clause.
• All subordinate elementary data items must be explicitly or implicitly described with USAGE UTF-8 and

must be defined with either the BYTE-LENGTH phrase of the PICTURE clause or the DYNAMIC LENGTH
clause.

• A GROUP-USAGE UTF-8 clause is implied for any subordinate group items that are not described with a
GROUP-USAGE UTF-8 clause.

• All subordinate group items must be explicitly or implicitly described with a GROUP-USAGE UTF-8
clause.

• The JUSTIFIED clause must not be specified.

Unless stated otherwise, a UTF-8 group item is processed as though it were an elementary data item of
usage UTF-8, class and category UTF-8, and defined with PICTURE U BYTE-LENGTH m, where m is the
length of the group in bytes.

Usage note: When you use UTF-8 groups, the compiler can ensure proper truncation and padding of
group items for statements such as MOVE. Groups defined without a GROUP-USAGE UTF-8 or GROUP-
USAGE NATIONAL clause are alphanumeric groups. The content of alphanumeric groups, including any
UTF-8 characters, is treated as alphanumeric data, possibly leading to invalid truncation or mishandling of
UTF-8 character data.

The table below summarizes the cases where a national and UTF-8 group items are processed as a group
item.

Chapter 26. DATA DIVISION--data description entry 199

Table 11. Where national and UTF-8 group items are processed as groups

Language feature Processing of national group items

Name qualification The names of national and UTF-8 group items can be used to qualify the
names of elementary data items and subordinate group items in national
and UTF-8 groups. The rules of qualification for national and UTF-8 groups
are the same as the rules of qualification for an alphanumeric group.

RENAMES clause The rules for national and UTF-8 group items specified in the THROUGH
phrase are the same as the rules for an alphanumeric group item specified
in the THROUGH phrase. The result is an alphanumeric group item.

CORRESPONDING phrase National and UTF-8 group items are processed as a group in accordance
with the rules of the CORRESPONDING phrase. Elementary data items
within a national or UTF-8 group are processed the same as they would
be if defined within an alphanumeric group.

INITIALIZE statement National and UTF-8 group items are processed as a group in accordance
with the rules of the INITIALIZE statement. Elementary items within the
national or UTF-8 group are initialized the same as they would be if defined
within an alphanumeric group.

XML GENERATE statement A national group item specified in the FROM phrase is processed as a group
in accordance with the rules of the XML GENERATE statement. Elementary
items within the national group are processed the same as they would be if
defined within an alphanumeric group.

JSON GENERATE statement A national group item specified in the FROM phrase is processed as a group
in accordance with the rules of the JSON GENERATE statement. Elementary
items within the national group are processed the same as they would be if
defined within an alphanumeric group.

OCCURS clause
The DATA DIVISION language elements used for table handling are the OCCURS clause and the INDEXED
BY phrase.

For the INDEXED BY phrase description, see “INDEXED BY phrase” on page 202.

The OCCURS clause specifies tables whose elements can be referred to by indexing or subscripting. It
also eliminates the need for separate entries for repeated data items.

Formats for the OCCURS clause include fixed-length tables and variable-length tables.

The subject of an OCCURS clause is the data-name of the data item that contains the OCCURS clause.
Except for the OCCURS clause itself, data description clauses used with the subject apply to each
occurrence of the item described.

Whenever the subject of an OCCURS clause or any data-item subordinate to it is referenced, it must be
subscripted or indexed, with the following exceptions:

• When the subject of the OCCURS clause is used as the subject of a SEARCH statement.
• When the subject of the OCCURS clause is used as the subject of a format 2 SORT statement.
• When the subject or a subordinate data item is the object of the ASCENDING/DESCENDING KEY phrase.
• When the subordinate data item is the object of the REDEFINES clause.
• When the subordinate data item is used as the subject of a LENGTH OF special register. For details, see

“LENGTH OF” on page 22.

When subscripted or indexed, the subject refers to one occurrence within the table, unless the ALL
subscript is used in an intrinsic function.

200 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The OCCURS clause cannot be specified in a data description entry that:

• Has a level number of 01, 66, 77, or 88.
• Describes a redefined data item. (However, a redefined item can be subordinate to an item that contains

an OCCURS clause.) See “REDEFINES clause” on page 225.

Fixed-length tables
Fixed-length tables are specified using the OCCURS clause.

Because seven subscripts or indexes are allowed, six nested levels and one outermost level of the
format-1 OCCURS clause are allowed. The format-1 OCCURS clause can be specified as subordinate to
the OCCURS DEPENDING ON clause. In this way, a table of up to seven dimensions can be specified.

Format 1: fixed-length tables
OCCURS integer-2

TIMES

ASCENDING

DESCENDING KEY IS

data-name-2

INDEXED

BY

index-name-1

integer-2
The exact number of occurrences. integer-2 must be greater than zero.

ASCENDING KEY and DESCENDING KEY phrases
Data is arranged in ascending or descending order, depending on the keyword specified, according to the
values contained in data-name-2. The data-names are listed in their descending order of significance.

The order is determined by the rules for comparison of operands (see “Relation conditions” on page 272).
The ASCENDING KEY and DESCENDING KEY data items are used in OCCURS clauses, the SEARCH ALL
statements for a binary search of the table element, and the format 2 SORT statements. As an alternative,
keys can be specified with the format 2 SORT statements.

data-name-2
Must be the name of the subject entry or the name of an entry subordinate to the subject entry.
data-name-2 can be qualified.

If data-name-2 names the subject entry, that entire entry becomes the ASCENDING KEY or
DESCENDING KEY and is the only key that can be specified for this table element.

If data-name-2 does not name the subject entry, then data-name-2:

• Must be subordinate to the subject of the table entry itself
• Must not be subordinate to, or follow, any other entry that contains an OCCURS clause
• Must not contain an OCCURS clause

data-name-2 must not have subordinate items that contain OCCURS DEPENDING ON clauses.

Chapter 26. DATA DIVISION--data description entry 201

When the ASCENDING KEY or DESCENDING KEY phrase is specified, the following rules apply:

• Keys must be listed in decreasing order of significance.
• The total number of keys for a given table element must not exceed 12.
• The data in the table must be arranged in ascending or descending sequence according to the collating

sequence in use.
• The key must be described with one of the following usages:

– BINARY
– DISPLAY
– DISPLAY-1
– NATIONAL
– UTF-8
– PACKED-DECIMAL
– COMPUTATIONAL
– COMPUTATIONAL-1
– COMPUTATIONAL-2
– COMPUTATIONAL-3
– COMPUTATIONAL-4
– COMPUTATIONAL-5

• A key described with usage NATIONAL can have one of the following categories: national, national-
edited, numeric-edited, numeric, or external floating-point.

• The sum of the lengths of all the keys associated with one table element must not exceed 256.
• If a key is specified without qualifiers and it is not a unique name, the key will be implicitly qualified with

the subject of the OCCURS clause and all qualifiers of the OCCURS clause subject.

The following example illustrates the specification of ASCENDING KEY data items:

WORKING-STORAGE SECTION.
01 TABLE-RECORD.
 05 EMPLOYEE-TABLE OCCURS 100 TIMES
 ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
 INDEXED BY A, B.
 10 EMPLOYEE-NAME PIC X(20).
 10 EMPLOYEE-NO PIC 9(6).
 10 WAGE-RATE PIC 9999V99.
 10 WEEK-RECORD OCCURS 52 TIMES
 ASCENDING KEY IS WEEK-NO INDEXED BY C.
 15 WEEK-NO PIC 99.
 15 AUTHORIZED-ABSENCES PIC 9.
 15 UNAUTHORIZED-ABSENCES PIC 9.
 15 LATE-ARRIVALS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, and the key for WEEK-RECORD is
subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in ascending order of WAGE-
RATE, and in ascending order of EMPLOYEE-NO within WAGE-RATE. Records in WEEK-RECORD must be
arranged in ascending order of WEEK-NO. If they are not, results of any SEARCH ALL statement are
unpredictable.

INDEXED BY phrase
The INDEXED BY phrase specifies the indexes that can be used with a table. A table without an INDEXED
BY phrase can be referred to through indexing by using an index-name associated with another table.

For more information about using indexing, see “Subscripting using index-names (indexing)” on page 74.

202 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Indexes normally are allocated in static memory associated with the program that contains the table.
Thus indexes are in the last-used state when a program is reentered. However, in the following cases,
indexes are allocated on a per-invocation basis. Thus you must set the value of the index on every entry
for indexes on tables in the following sections:

• The LOCAL-STORAGE SECTION
• The WORKING-STORAGE SECTION of:

– A program with the IS INITIAL clause on the PROGRAM-ID phrase
– A class definition (object instance variables)

• The LINKAGE SECTION of:

– Methods
– Programs compiled with the RECURSIVE clause
– Programs compiled with the THREAD option

Indexes specified in an external data record do not possess the external attribute.

index-name-1
Each index-name specifies an index to be created by the compiler for use by the program. These
index-names are not data-names and are not identified elsewhere in the COBOL program; instead,
they can be regarded as private special registers for the use of this object program only. They are not
data and are not part of any data hierarchy.

Unreferenced index names need not be uniquely defined.

In one table entry, up to 12 index-names can be specified.

If a data item that possesses the global attribute includes a table accessed with an index, that index
also possesses the global attribute. Therefore, the scope of an index-name is the same as that of the
data-name that names the table in which the index is defined.

Chapter 26. DATA DIVISION--data description entry 203

Variable-length tables
You can specify variable-length tables by using the OCCURS DEPENDING ON clause.

Format 2: variable-length tables
OCCURS

integer-1 TO

integer-2

UNBOUNDED TIMES

DEPENDING

ON

data-name-1

ASCENDING

DESCENDING KEY IS

data-name-2

INDEXED

BY

index-name-1

integer-1
The minimum number of occurrences.

The value of integer-1 must be greater than or equal to zero, and it must also be less than the value of
integer-2.

If integer-1 is omitted, a value of 1 is assumed and the keyword TO must also be omitted.

If integer-1 is omitted, you will receive warning messages if the RULES(NOOMITODOMIN) compiler
option is in effect. For more information, see RULES in the Enterprise COBOL Programming Guide.

integer-2
The maximum number of occurrences.

integer-2 must be greater than integer-1.

The length of the subject item is fixed. Only the number of repetitions of the subject item is variable.

UNBOUNDED
Unbounded maximum number of occurrences.
Unbounded table

A table with an OCCURS clause that specifies UNBOUNDED.

You can reference unbounded tables in COBOL syntax anywhere a table can be referenced.

Unbounded group
A group that contains at least one unbounded table.

You can define unbounded groups only in the LINKAGE SECTION. Either alphanumeric groups or
national groups can be unbounded.

You can reference unbounded groups in COBOL syntax anywhere an alphanumeric or national
group can be referenced, with the following exceptions:

• You cannot specify unbounded groups as a BY CONTENT argument in a CALL statement.

204 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• You cannot specify unbounded groups as data-name-2 on the PROCEDURE DIVISION
RETURNING phrase.

• You cannot specify unbounded groups as arguments to intrinsic functions, except as an
argument to the LENGTH intrinsic function.

The total size of an unbounded group at run time must be less than 999,999,999 bytes.

For unbounded tables and groups, the effect of the SSRANGE compiler option is limited. For more
information, see SSRANGE in the Enterprise COBOL Programming Guide.

For references about working with unbounded tables and groups, see Working with unbounded
tables and groups in the Enterprise COBOL Programming Guide.

OCCURS DEPENDING ON clause
The OCCURS DEPENDING ON clause specifies variable-length tables.

data-name-1
Identifies the object of the OCCURS DEPENDING ON clause; that is, the data item whose current
value represents the current number of occurrences of the subject item. The contents of items whose
occurrence numbers exceed the value of the object are undefined.

The object of the OCCURS DEPENDING ON clause (data-name-1) must describe an integer data item.

The object of the OCCURS DEPENDING ON clause must not occupy any storage position within the
range of the table (that is, any storage position from the first character position in the table through
the last character position in the table).

The object of the OCCURS DEPENDING ON clause cannot be variably located; the object cannot follow
an item that contains an OCCURS DEPENDING ON clause.

If the OCCURS clause is specified in a data description entry included in a record description entry
that contains the EXTERNAL clause, data-name-1, if specified, must reference a data item that
possesses the external attribute. data-name-1 must be described in the same DATA DIVISION as the
subject of the entry.

If the OCCURS clause is specified in a data description entry subordinate to one that contains the
GLOBAL clause, data-name-1, if specified, must be a global name. data-name-1 must be described in
the same DATA DIVISION as the subject of the entry.

All data-names used in the OCCURS clause can be qualified; they cannot be subscripted or indexed.

At the time that the group item, or any data item that contains a subordinate OCCURS DEPENDING ON
item or that follows but is not subordinate to the OCCURS DEPENDING ON item, is referenced, the value
of the object of the OCCURS DEPENDING ON clause must fall within the range integer-1 through integer-2,
if integer-2 is specified (that is, if the table is not UNBOUNDED).

The behavior is undefined if the value of the object is outside of the range integer-1 through integer-2.

When a group item that contains a subordinate OCCURS DEPENDING ON item is referred to, the part of
the table area used in the operation is determined as follows:

• If the object is outside the group, only that part of the table area that is specified by the object at the
start of the operation is used.

• If the object is included in the same group and the group data item is referenced as a sending item, only
that part of the table area that is specified by the value of the object at the start of the operation is used
in the operation.

• If the object is included in the same group and the group data item is referenced as a receiving item, the
maximum length of the group item is used in the operation.

The following statements are affected by the maximum length rule:

• ACCEPT identifier (format 1 and 2)
• CALL ... USING BY REFERENCE identifier

Chapter 26. DATA DIVISION--data description entry 205

• INVOKE ... USING BY REFERENCE identifier
• MOVE ... TO identifier
• READ ... INTO identifier
• RELEASE identifier FROM ...
• RETURN ... INTO identifier
• REWRITE identifier FROM ...
• STRING ... INTO identifier
• UNSTRING ... INTO identifier DELIMITER IN identifier
• WRITE identifier FROM ...

If a variable-length group item is not followed by a nonsubordinate item, the maximum length of the
group is used when it appears as the identifier in CALL ... USING BY REFERENCE identifier. Therefore, the
object of the OCCURS DEPENDING ON clause does not need to be set unless the group is variably located.

If the group item is followed by a nonsubordinate item, the actual length, rather than the maximum
length, is used. At the time the subject of entry is referenced, or any data item subordinate or
superordinate to the subject of entry is referenced, the object of the OCCURS DEPENDING ON clause
must fall within the range integer-1 through integer-2, if integer-2 is specified.

Note:

The maximum length rule does not apply to unbounded groups. For unbounded groups, based on the
current run time value of the OCCURS DEPENDING ON objects, the actual length of the group is used for
all references to the group. Consequently, before any COBOL statement that references an unbounded
group runs, you must set the OCCURS DEPENDING ON objects for that group.

Certain uses of the OCCURS DEPENDING ON clause result in complex OCCURS DEPENDING ON (ODO)
items. The following items constitute complex ODO items:

• A data item described with an OCCURS DEPENDING ON clause that is followed by a nonsubordinate
elementary data item, described with or without an OCCURS clause

• A data item described with an OCCURS DEPENDING ON clause that is followed by a nonsubordinate
group item

• A group item that contains one or more subordinate items described with an OCCURS DEPENDING ON
clause

• A data item described with an OCCURS clause or an OCCURS DEPENDING ON clause that contains
a subordinate data item described with an OCCURS DEPENDING ON clause (a table that contains
variable-length elements)

• An index-name associated with a table that contains variable-length elements

The object of an OCCURS DEPENDING ON clause cannot be a nonsubordinate item that follows a complex
ODO item.

Any nonsubordinate item that follows an item described with an OCCURS DEPENDING ON clause is a
variably located item. That is, its location is affected by the value of the OCCURS DEPENDING ON object.

When implicit redefinition is used in a File Description (FD) entry, subordinate level items can contain
OCCURS DEPENDING ON clauses.

The INDEXED BY phrase can be specified for a table that has a subordinate item that contains an OCCURS
DEPENDING ON clause.

For more information about complex OCCURS DEPENDING ON, see Complex OCCURS DEPENDING ON in
the Enterprise COBOL Programming Guide.

The ASCENDING KEY phrase, the DESCENDING KEY phrase, and the INDEXED BY clause are described
under “Fixed-length tables” on page 201.

206 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

PICTURE clause
The PICTURE clause specifies the general characteristics and editing requirements of an elementary item.

Format
PICTURE

PIC IS

character-string

BYTE-LENGTH

IS

integer-1

PICTURE or PIC
The PICTURE clause must be specified for every elementary item except the following ones:

• Index data items
• The subject of the RENAMES clause
• Items described with USAGE POINTER, USAGE FUNCTION-POINTER, USAGE PROCEDURE-

POINTER, or USAGE OBJECT REFERENCE
• Internal floating-point data items

In these cases, use of the PICTURE clause is prohibited.

The PICTURE clause can be specified only at the elementary level.

PIC is an abbreviation for PICTURE and has the same meaning.

character-string
character-string is made up of certain COBOL characters used as picture symbols. The allowable
combinations determine the category of the elementary data item.

character-string can contain a maximum of 50 characters.

BYTE-LENGTH integer-1
The BYTE-LENGTH phrase is only allowed for UTF-8 data items (i.e., data items defined with the U
picture symbol) and indicates that the UTF-8 data item has a fixed byte-length but a varying number
of characters. The number of bytes occupied by a UTF-8 data item defined with the BYTE-LENGTH
phrase of the PICTURE clause is indicated by integer-1. The number of UTF-8 characters that can
be stored in a data item defined with the BYTE-LENGTH phrase of the PICTURE clause depends on
the size of each character. The maximum number of characters that can be stored is integer-1, which
happens when each UTF-8 character is a single byte in length.

The BYTE-LENGTH phrase can only be specified when the picture string consists of a single ‘U’
symbol. The DYNAMIC LENGTH clause must not also be specified.

UTF-8 data items defined with the BYTE-LENGTH phrase of the PICTURE clause are truncated on
UTF-8 character boundaries when truncation is needed and are always padded with UTF-8 spaces
(x'20') to a byte length of integer-1.

Only UTF-8 data items defined with the BYTE-LENGTH phrase of the PICTURE clause can be used as
Db2® host variables and only UTF-8 data items defined with the BYTE-LENGTH phrase of the PICTURE
clause can be part of a group defined with the GROUP-USAGE UTF-8 clause.

UTF-8 data items defined with the BYTE-LENGTH phrase of the PICTURE clause are strongly
recommended for UTF-8 items that need to function as a sort key or record key.

Chapter 26. DATA DIVISION--data description entry 207

Symbols used in the PICTURE clause
Any punctuation character that appears within the PICTURE character-string is not considered a
punctuation character, but rather is a PICTURE character-string symbol.

When specified in the SPECIAL-NAMES paragraph, DECIMAL-POINT IS COMMA exchanges the functions
of the period and the comma in PICTURE character-strings and in numeric literals.

The lowercase letters that correspond to the uppercase letters that represent the following PICTURE
symbols are equivalent to their uppercase representations in a PICTURE character-string:

A, B, E, G, N, P, S, U, V, X, Z, CR, DB

All other lowercase letters are not equivalent to their corresponding uppercase representations.

Table 12 on page 208 defines the meaning of each PICTURE clause symbol. The heading Size indicates
how the item is counted in determining the number of character positions in the item. The type of the
character positions depends on the USAGE clause specified for the item, as follows:

Usage Type of character positions Number of bytes per character

DISPLAY Alphanumeric 1

DISPLAY-1 DBCS 2

NATIONAL National 2

UTF-8 UTF-8 1 to 4 bytes

All others Conceptual Not applicable

Table 12. PICTURE clause symbol meanings

Symbol Meaning Size

A A character position that can contain only a
letter of the Latin alphabet or a space.

Each 'A' is counted as one character position in
the size of the data item.

B For usage DISPLAY, a character position into
which an alphanumeric space is inserted.

For usage DISPLAY-1, a character position into
which a DBCS space is inserted.

For usage NATIONAL, a character position into
which a national space is inserted.

Each 'B' is counted as one character position in
the size of the data item.

E Marks the start of the exponent in an
external floating-point item. For additional
details of external floating-point items, see
“Data categories and PICTURE rules” on page
212.

Each 'E' is counted as one character position in
the size of the data item.

G A DBCS character position. Each 'G' is counted as one character position in
the size of the data item.

208 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 12. PICTURE clause symbol meanings (continued)

Symbol Meaning Size

N A DBCS character position when specified with
usage DISPLAY-1 or when usage is unspecified
and the NSYMBOL(DBCS) compiler option is in
effect.

For category national, a national character
position when specified with usage NATIONAL
or when usage is unspecified and the
NSYMBOL(NATIONAL) compiler option is in
effect.

For category national-edited, a national
character position.

Each 'N' is counted as one character position in
the size of the data item.

P An assumed decimal scaling position. Used to
specify the location of an assumed decimal point
when the point is not within the number that
appears in the data item. See “P symbol” on
page 211 for further details.

Not counted in the size of the data item. Scaling
position characters are counted in determining
the maximum number of digit positions in
numeric-edited items or in items that are used
as arithmetic operands.

The size of the value is the number of
digit positions represented by the PICTURE
character-string.

S An indicator of the presence (but not the
representation, and not necessarily the position)
of an operational sign. An operational sign
indicates whether the value of an item involved
in an operation is positive or negative.

Not counted in the size of the elementary item,
unless an associated SIGN clause specifies the
SEPARATE CHARACTER phrase (which would be
counted as one character position).

U A UTF-8 character position. USAGE UTF-8 is
assumed whenever a U symbol appears in the
PICTURE character-string of a data item.

Each 'U' counts as one UTF-8 character position
in the size of the data item.

If the BYTE-LENGTH phrase of the PICTURE
clause is specified, then only one 'U' symbol can
be used in the PICTURE clause and the byte
length of the data item is indicated in the BYTE-
LENGTH phrase, and the number of characters
that can be stored in the data item varies and
depends on the size of each character.

V An indicator of the location of the assumed
decimal point. Does not represent a character
position.

When the assumed decimal point is to the right
of the rightmost symbol in the string, the V is
redundant.

Not counted in the size of the elementary item.

X A character position that can contain any
allowable character from the alphanumeric
character set of the computer.

Each 'X' is counted as one character position in
the size of the data item.

Z A leading numeric character position. When
that position contains a zero, a space character
replaces the zero.

Each 'Z' is counted as one character position in
the size of the data item.

Chapter 26. DATA DIVISION--data description entry 209

Table 12. PICTURE clause symbol meanings (continued)

Symbol Meaning Size

9 A character position that contains a numeral. Each nine specifies one decimal digit in the value
of the item. For usages DISPLAY and NATIONAL,
each nine is counted as one character position in
the size of the data item.

0 A character position into which the numeral zero
is inserted.

Each zero is counted as one character position in
the size of the data item.

/ A character position into which the slash
character is inserted.

Each slash character is counted as one character
position in the size of the data item.

, A character position into which a comma is
inserted.

Each comma is counted as one character
position in the size of the data item.

. An editing symbol that represents the decimal
point for alignment purposes. In addition, it
represents a character position into which a
period is inserted.

Each period is counted as one character position
in the size of the data item.

+
-
CR
DB

Editing sign control symbols. Each represents
the character position into which the editing sign
control symbol is placed.

Each character used in the editing sign symbol is
counted as one character position in the size of
the data item.

* A check protect symbol: a leading numeric
character position into which an asterisk is
placed when that position contains a zero.

Each asterisk is counted as one character
position in the size of the item.

cs cs can be any valid currency symbol. A
currency symbol represents a character position
into which a currency sign value is placed.
The default currency symbol is the character
assigned the value X'5B' in the code page in
effect at compile time. In this document, the
default currency symbol is represented by the
dollar sign ($) and cs stands for any valid
currency symbol. For details, see “Currency
symbol” on page 212.

The first occurrence of a currency symbol
adds the number of characters in the currency
sign value to the size of the data item. Each
subsequent occurrence adds one character
position to the size of the data item.

The following figure shows the sequences in which picture symbols can be specified to form picture
character-strings. More detailed explanations of PICTURE clause symbols follow the figure.

210 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

P symbol
The symbol P specifies a scaling position and implies an assumed decimal point (to the left of the Ps if the
Ps are leftmost PICTURE characters; to the right of the Ps if the Ps are rightmost PICTURE characters).

The assumed decimal point symbol V is redundant as either the leftmost or rightmost character within
such a PICTURE description.

The symbol P can be specified only as a continuous string of Ps in the leftmost or rightmost digit positions
within a PICTURE character-string.

In certain operations that reference a data item whose PICTURE character-string contains the symbol P,
the algebraic value of the data item is used rather than the actual character representation of the data
item. This algebraic value assumes the decimal point in the prescribed location and zero in place of the
digit position specified by the symbol P. The size of the value is the number of digit positions represented
by the PICTURE character-string. These operations are any of the following ones:

• Any operation that requires a numeric sending operand
• A MOVE statement where the sending operand is numeric and its PICTURE character-string contains the

symbol P
• A MOVE statement where the sending operand is numeric-edited and its PICTURE character-string

contains the symbol P, and the receiving operand is numeric or numeric-edited
• A comparison operation where both operands are numeric

In all other operations, the digit positions specified with the symbol P are ignored and are not counted in
the size of the operand.

Chapter 26. DATA DIVISION--data description entry 211

Currency symbol
The currency symbol in a picture character-string is represented by the default currency symbol $ or by
a single character specified either in the CURRENCY compiler option or in the CURRENCY SIGN clause in
the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Although the default currency symbol is represented by $ in this document, the actual default currency
symbol is the character with the value X'5B' in the EBCDIC code page in effect at compile time.

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY compiler options are
ignored. If the CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in
effect, the dollar sign ($) is used as the default currency sign value and currency symbol. For more
information about the CURRENCY SIGN clause, see “CURRENCY SIGN clause” on page 129. For more
information about the CURRENCY and NOCURRENCY compiler options, see CURRENCY in the Enterprise
COBOL Programming Guide.

A currency symbol can be repeated within the PICTURE character-string to specify floating insertion.
Different currency symbols must not be used in the same PICTURE character-string.

Unlike all other picture symbols, currency symbols are case sensitive. For example, 'D' and 'd' specify
different currency symbols.

A currency symbol can be used only to define a numeric-edited item with USAGE DISPLAY.

Character-string representation
The topic lists symbols that can appear once or more than once in the PICTURE character-string.

Symbols that can appear more than once
The following symbols can appear more than once in one PICTURE character-string:

A B G N P X U Z 9 0 / , + – * cs

At least one of the symbols A, G, N, X, U, Z, 9, or *, or at least two of the symbols +, –, or cs must be
present in a PICTURE string.

An unsigned nonzero integer enclosed in parentheses immediately following any of these symbols
specifies the number of consecutive occurrences of that symbol.

Example: The following two PICTURE clause specifications are equivalent:

PICTURE IS $99999.99CR
PICTURE IS $9(5).9(2)CR

Symbols that can appear only once
The following symbols can appear only once in one PICTURE character-string:

E S V . CR DB

Except for the PICTURE symbol V, each occurrence of any of the above symbols in a given PICTURE
character-string represents an occurrence of that character or set of allowable characters in the data
item.

Data categories and PICTURE rules
The allowable combinations of PICTURE symbols determine the data category of the item.

The data categories are:

• Alphabetic
• Alphanumeric

212 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• Alphanumeric-edited
• DBCS
• External floating-point
• National
• National-edited
• Numeric
• Numeric-edited
• UTF-8

Note: Category internal floating point is defined by a USAGE clause that specifies the COMP-1 or COMP-2
phrase.

Alphabetic items
The PICTURE character-string can contain only the symbol A.

The content of the item must consist only of letters of the Latin alphabet and the space character.

Other clauses

USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal containing only alphabetic
characters, SPACE, or a symbolic-character as the value of a figurative constant.

Do not include a single byte character in a DBCS data item.

When padding is required for a DBCS data item, the following rules apply:

• Padding is done using double-byte space characters until the data area is filled (based on the
number of double-byte character positions allocated for the data item).

• Padding is done using single-byte space characters when the padding needed is not an even
number of bytes (for example, when an alphanumeric group item is moved to a DBCS data item).

Alphanumeric items
The PICTURE character-string must consist of certain symbols.

The symbols are:

• One or more occurrences of the symbol X.
• Combinations of the symbols A, X, and 9. (A character-string containing all As or all 9s does not define

an alphanumeric item.)

The item is treated as if the character-string contained only the symbol X.

The contents of the item in standard data format can be any allowable characters from the character set
of the computer.

Other clauses

USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal or one of the following figurative
constants:

• ZERO
• SPACE
• QUOTE
• HIGH-VALUE
• LOW-VALUE

Chapter 26. DATA DIVISION--data description entry 213

• symbolic-character
• ALL alphanumeric-literal

Alphanumeric-edited items
The PICTURE character-string can contain the following symbols: A X 9 B 0 /.

The string must contain at least one A or X, and at least one B or 0 (zero) or /.

The contents of the item in standard data format must be two or more characters from the character set
of the computer.

Other clauses

USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal or or one of the following figurative
constants:

• ZERO
• SPACE
• QUOTE
• HIGH-VALUE
• LOW-VALUE
• symbolic-character
• ALL alphanumeric-literal

The literal is treated exactly as specified; no editing is done.

DBCS items
The PICTURE character-string can contain the symbols G, G and B, or N. Each G, B, or N represents a single
DBCS character position.

Any associated VALUE clause must contain a DBCS literal, the figurative constant SPACE, or the figurative
constant ALL DBCS-literal.

Other clauses

When PICTURE symbol G is used, USAGE DISPLAY-1 must be specified. When PICTURE symbol N is
used and the NSYMBOL(DBCS) compiler option is in effect, USAGE DISPLAY-1 is implied if the USAGE
clause is omitted.

External floating-point items
A data item is described as category external floating-point by its PICTURE character-string.

The PICTURE character-string details are described below.

Format
 +
 -

mantissa E +
 -

exponent

+ or -
A sign character must immediately precede both the mantissa and the exponent.

A + sign indicates that a positive sign will be used in the output to represent positive values and that a
negative sign will represent negative values.

214 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

A - sign indicates that a blank will be used in the output to represent positive values and that a
negative sign will represent negative values.

Each sign position occupies one byte of storage.

mantissa
The mantissa can contain the symbols:

9 . V

An actual decimal point can be represented with a period (.) while an assumed decimal point is
represented by a V.

Either an actual or an assumed decimal point must be present in the mantissa; the decimal point can
be leading, embedded, or trailing.

The mantissa can contain from 1 to 16 numeric characters.

E
Indicates the exponent.

exponent
The exponent must consist of the symbol 99.

Example: Pic -9v9(9)E-99

The DISPLAY phrase of the USAGE clause and a floating-point picture character-string define the item as
a display floating-point data item.

The NATIONAL phrase of the USAGE clause and a floating-point picture character-string define the item
as a national floating-point data item.

For items defined with usage DISPLAY, each picture symbol except V defines one alphanumeric character
position in the item.

For items defined with usage NATIONAL, each picture symbol except V defines one national character
position in the item.

Other clauses

The DISPLAY phrase or the NATIONAL phrase of the USAGE clause must be specified or implied.

The OCCURS, REDEFINES, and RENAMES clauses can be associated with external floating-point
items.

The SIGN clause is accepted as documentation and has no effect on the representation of the sign.

The SYNCHRONIZED clause is treated as documentation.

The following clauses are invalid with external floating-point items:

• BLANK WHEN ZERO
• JUSTIFIED
• VALUE

National items
The PICTURE character-string can contain one or more occurrences of the picture symbol N.

These rules apply when the NSYMBOL(NATIONAL) compiler option is in effect or the USAGE NATIONAL
clause is specified. In the absence of a USAGE NATIONAL clause, if the NSYMBOL(DBCS) compiler option
is in effect, picture symbol N represents a DBCS character and the rules of the PICTURE clause for a DBCS
item apply.

Each N represents a single national character position.

Any associated VALUE clause must specify an alphanumeric literal, a national literal, or one of the
following figurative constants:

Chapter 26. DATA DIVISION--data description entry 215

• ZERO
• SPACE
• QUOTE
• HIGH-VALUE
• LOW-VALUE
• symbolic-character
• ALL alphanumeric-literal
• ALL national-literal

Other clauses

Only the NATIONAL phrase can be specified in the USAGE clause. When PICTURE symbol N is used
and the NSYMBOL(NATIONAL) compiler option is in effect, USAGE NATIONAL is implied if the usage
clause is omitted.

The following clauses can be used:

• JUSTIFIED
• EXTERNAL
• GLOBAL
• OCCURS
• REDEFINES
• RENAMES
• SYNCHRONIZED
• VOLATILE

The following clauses cannot be used:

• BLANK WHEN ZERO
• SIGN

National-edited items
The PICTURE character-string must contain at least one symbol N, and at least one instance of one of
these symbols: B 0 (zero) or / (slash).

Each symbol represents a single national character position.

Any associated VALUE clause must specify an alphanumeric literal, a national literal, or one of the
following figurative constants:

• ZERO
• SPACE
• QUOTE
• HIGH-VALUE
• LOW-VALUE
• symbolic-character
• ALL alphanumeric-literal
• ALL national-literal

The literal is treated exactly as specified; no editing is done.

The NSYMBOL(NATIONAL) compiler option has no effect on the definition of a data item of category
national-edited.

216 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Other clauses

USAGE NATIONAL must be specified or implied.

The following clauses can be used:

• JUSTIFIED
• EXTERNAL
• GLOBAL
• OCCURS
• REDEFINES
• RENAMES
• SYNCHRONIZED
• VOLATILE

The following clauses cannot be used:

• BLANK WHEN ZERO
• SIGN

Numeric items
There are several types of numeric items.

The types are:

• Binary
• Packed decimal (internal decimal)
• Zoned decimal (external decimal)
• National decimal (external decimal)

The type of a numeric item is defined by the usage clause as shown in the table below.

Table 13. Numeric types

Type USAGE clause

Binary BINARY, COMP, COMP-4, or COMP-5

Internal decimal PACKED-DECIMAL, COMP-3

Zoned decimal (external decimal) DISPLAY

National decimal (external decimal) NATIONAL

For all numeric fields, the PICTURE character-string can contain only the symbols 9, P, S, and V.

The symbol S can be written only as the leftmost character in the PICTURE character-string.

The symbol V can be written only once in a given PICTURE character-string.

For binary items, the number of digit positions must range from 1 through 18 inclusive. For packed
decimal and zoned decimal items the number of digit positions must range from 1 through 18, inclusive,
when the ARITH(COMPAT) compiler option is in effect, or from 1 through 31, inclusive, when the
ARITH(EXTEND) compiler option is in effect.

If unsigned, the contents of the item in standard data format must contain a combination of the Arabic
numerals 0-9. If signed, it can also contain a +, -, or other representation of the operational sign.

Examples of valid ranges

 PICTURE Valid range of values
 9999 0 through 9999

Chapter 26. DATA DIVISION--data description entry 217

 S99 -99 through +99
 S999V9 -999.9 through +999.9
 PPP999 0 through .000999
S999PPP -1000 through -999000 and
 +1000 through +999000 or zero

Other clauses

The USAGE of the item can be DISPLAY, NATIONAL, BINARY, COMPUTATIONAL, PACKED-DECIMAL,
COMPUTATIONAL-3, COMPUTATIONAL-4, or COMPUTATIONAL-5.

For signed numeric items described with usage NATIONAL, the SIGN IS SEPARATE clause must be
specified or implied.

The NUMPROC and TRUNC compiler options can affect the use of numeric data items. For details, see
NUMPROC and TRUNC in the Enterprise COBOL Programming Guide.

Numeric-edited items
The PICTURE character-string can contain certain symbols.

The symbols are:

B P V Z 9 0 / , . + - CR DB * cs

The combinations of symbols allowed are determined from the PICTURE clause symbol order allowed
(see the figure in “Symbols used in the PICTURE clause” on page 208), and the editing rules (see
“PICTURE clause editing” on page 219).

The following rules apply:

• Either the BLANK WHEN ZERO clause must be specified for the item, or the string must contain at least
one of the following symbols:

B / Z 0 , . * + - CR DB cs

• Only one of the following symbols can be written in a given PICTURE character-string:

+ - CR DB

• If the ARITH(COMPAT) compiler option is in effect, then the number of digit positions represented in the
character-string must be in the range 1 through 18, inclusive. If the ARITH(EXTEND) compiler option is
in effect, then the number of digit positions represented in the character-string must be in the range 1
through 31, inclusive.

• The total number of character positions in the string (including editing-character positions) must not
exceed 249.

• The contents of those character positions representing digits in standard data format must be one of the
10 Arabic numerals.

Other clauses

USAGE DISPLAY or NATIONAL must be specified or implied.

If the usage of the item is DISPLAY, any associated VALUE clause must specify an alphanumeric literal
or a figurative constant. The value is assigned without editing.

If the usage of the item is NATIONAL, any associated VALUE clause must specify an alphanumeric
literal, a national literal, or a figurative constant. The value is assigned without editing.

UTF-8 items
The PICTURE character-string can contain one or more occurrences of the picture symbol U.

Each U represents a single UTF-8 character position.

218 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Any associated VALUE clause must specify an alphanumeric literal, a UTF-8 literal, or one of the following
figurative constants:

• ZERO
• SPACE
• QUOTE
• HIGH-VALUE
• LOW-VALUE
• symbolic-character
• ALL utf-8-literal

Other clauses

Only the UTF-8 phrase can be specified in the USAGE clause. USAGE UTF-8 is implied if the usage
clause is omitted.

The following clauses can be used:

• JUSTIFIED
• EXTERNAL
• GLOBAL
• OCCURS
• REDEFINES
• RENAMES
• SYNCHRONIZED
• VOLATILE

The following clauses cannot be used:

• BLANK WHEN ZERO
• SIGN

PICTURE clause editing
There are two general methods of editing in a PICTURE clause, insertion editing, and suppression and
replacement editing.

Insertion editing includes the following types of editing:

• Simple insertion
• Special insertion
• Fixed insertion
• Floating insertion

Suppression and replacement editing includes the following types of editing:

• Zero suppression and replacement with asterisks
• Zero suppression and replacement with spaces

The type of editing allowed for an item depends on its data category. The type of editing that is valid for
each category is shown in the following table. cs indicates any valid currency symbol.

Table 14. Data categories

Data category Type of editing Insertion symbol

Alphabetic None None

Chapter 26. DATA DIVISION--data description entry 219

Table 14. Data categories (continued)

Data category Type of editing Insertion symbol

Alphanumeric None None

Alphanumeric-edited Simple insertion B 0 /

DBCS Simple insertion B

External floating-point Special insertion .

National None None

National-edited Simple insertion B 0 /

Numeric None None

Numeric-edited Simple insertion

Special insertion

Fixed insertion

Floating insertion

Zero suppression

Replacement

B 0 / ,

.

cs + - CR DB

cs + -

Z *

Z * + - cs

UTF-8 None None

Types of editing are described in the following sections:

• “Simple insertion editing” on page 220
• “Special insertion editing” on page 221
• “Fixed insertion editing” on page 221
• “Floating insertion editing” on page 222
• “Zero suppression and replacement editing” on page 224

Simple insertion editing
This type of editing is valid for alphanumeric-edited, numeric-edited, and DBCS items.

Each insertion symbol is counted in the size of the item, and represents the position within the item where
the equivalent character is to be inserted. For edited DBCS items, each insertion symbol (B) is counted in
the size of the item and represents the position within the item where the DBCS space is to be inserted.

For example:

PICTURE Value of data Edited result

X(10)/XX ALPHANUMER01 ALPHANUMER/01

X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC

99,B999,B000 1234 01,b234,b0001

99,999 12345 12,345

GGBBGG D1D2D3D4 D1D2bbbbD3D41

Notes:

1. The symbol b represents a space.

220 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Special insertion editing
This type of editing is valid for either numeric-edited items or external floating-point items.

The period (.) is the special insertion symbol; it also represents the actual decimal point for alignment
purposes.

Note: If the DECIMAL-POINT IS COMMA clause is specified, then a comma will be used in place of the
period.

The period insertion symbol is counted in the size of the item, and represents the position within the item
where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but not both, must be
specified in one PICTURE character-string.

For example:

PICTURE Value of data Edited result

 999.99 1.234 001.23

 999.99 12.34 012.34

 999.99 123.45 123.45

 999.99 1234.5 234.50

 +999.99E+99 12345 +123.45E+02

Fixed insertion editing
Fixed insertion editing is valid only for numeric-edited items.

The following insertion symbols are used:

• cs
• + - CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing-sign control symbol can be specified
in a PICTURE character-string.

Unless it is preceded by a + or - symbol, the currency symbol must be the first character in the character-
string.

When either + or - is used as a symbol, it must be the first or last character in the character-string.

When CR or DB is used as a symbol, it must occupy the rightmost two character positions in the
character-string. If these two character positions contain the symbols CR or DB, the uppercase letters
are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data item, as shown below:

Chapter 26. DATA DIVISION--data description entry 221

Editing symbol in PICTURE
character-string

Result: data item positive or
zero

Result: data item negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

For example:

PICTURE Value of data Edited result

 999.99+ +6555.556 555.55+

 +9999.99 -6555.555 -6555.55

 9999.99 +1234.56 1234.56

 $999.99 -123.45 $123.45

 -$999.99 -123.456 -$123.45

 -$999.99 +123.456 $123.45

 $9999.99CR +123.45 $0123.45

 $9999.99CR -123.45 $0123.45CR

Floating insertion editing
Floating insertion editing is valid only for numeric-edited items.

The following symbols are used:

cs + -

Within one PICTURE character-string, these symbols are mutually exclusive as floating insertion
characters.

Floating insertion editing is specified by using a string of at least two of the allowable floating insertion
symbols to represent leftmost character positions into which the actual characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the leftmost limit at which the
actual character can appear in the data item. The rightmost floating insertion symbol represents the
rightmost limit at which the actual character can appear.

222 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The second leftmost floating insertion symbol in the character-string represents the leftmost limit at
which numeric data can appear within the data item. Nonzero numeric data can replace all characters at
or to the right of this limit.

Any simple-insertion symbols (B 0 / ,) within or to the immediate right of the string of floating insertion
symbols are considered part of the floating character-string. If the period (.) special-insertion symbol is
included within the floating string, it is considered to be part of the character-string.

To avoid truncation, the minimum size of the PICTURE character-string must be:

• The number of character positions in the sending item, plus
• The number of nonfloating insertion symbols in the receiving item, plus
• One character position for the floating insertion symbol

Representing floating insertion editing
In a PICTURE character-string, there are two ways to represent floating insertion editing and thus two
ways in which editing is performed:

1. Any or all leading numeric character positions to the left of the decimal point are represented by the
floating insertion symbol. When editing is performed, a single floating insertion character is placed to
the immediate left of the first nonzero digit in the data, or of the decimal point, whichever is farther to
the left. The character positions to the left of the inserted character are filled with spaces.

If all numeric character positions in the PICTURE character-string are represented by the insertion
character, then at least one of the insertion characters must be to the left of the decimal point.

2. All the numeric character positions are represented by the floating insertion symbol. When editing is
performed, then:

• If the value of the data is zero, the entire data item will contain spaces.
• If the value of the data is nonzero, the result is the same as in rule 1.

For example:

PICTURE Value of data Edited result

 $$$$.99 .123 $.12

 $$$9.99 .12 $0.12

 $,$$$,999.99 -1234.56 $1,234.56

 +,+++,999.99 -123456.789 -123,456.78

 $$,$$$,$$$.99CR -1234567 $1,234,567.00CR

 ++,+++,+++.+++ 0000.00

Chapter 26. DATA DIVISION--data description entry 223

Zero suppression and replacement editing
Zero suppression and replacement editing is valid only for numeric-edited items.

In zero suppression editing, the symbols Z and * are used. These symbols are mutually exclusive in one
PICTURE character-string.

The following symbols are mutually exclusive as floating replacement symbols in one PICTURE character-
string:

Z * + - cs

Specify zero suppression and replacement editing with a string of one or more of the allowable symbols
to represent leftmost character positions in which zero suppression and replacement editing can be
performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the string of floating editing
symbols are considered part of the string. If the period (.) special insertion symbol is included within the
floating editing string, it is considered to be part of the character-string.

Representing zero suppression
In a PICTURE character-string, there are two ways to represent zero suppression, and two ways in which
editing is performed:

1. Any or all of the leading numeric character positions to the left of the decimal point are represented by
suppression symbols. When editing is performed, the replacement character replaces any leading zero
in the data that appears in the same character position as a suppression symbol. Suppression stops at
the leftmost character:

• That does not correspond to a suppression symbol
• That contains nonzero data
• That is the decimal point

2. All the numeric character positions in the PICTURE character-string are represented by the
suppression symbols. When editing is performed and the value of the data is nonzero, the result is
the same as in the preceding rule. If the value of the data is zero, then:

• If Z has been specified, the entire data item will contain spaces.
• If * has been specified, the entire data item except the actual decimal point will contain asterisks.

For example:

PICTURE Value of data Edited result

 ****.** 0000.00 ****.**

 ZZZZ.ZZ 0000.00

 ZZZZ.99 0000.00 .00

 ****.99 0000.00 ****.00

224 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

PICTURE Value of data Edited result

 ZZ99.99 0000.00 00.00

 Z,ZZZ.ZZ+ +123.456 123.45+

 *,***.**+ -123.45 **123.45-

 ,*,***.**+ +12345678.9 12,345,678.90+

 $Z,ZZZ,ZZZ.ZZCR +12345.67 $ 12,345.67

$B*,***,***.**BBDB -12345.67 $ ***12,345.67 DB

Do not specify both the asterisk (*) as a suppression symbol and the BLANK WHEN ZERO clause for the
same entry.

REDEFINES clause
The REDEFINES clause allows you to use different data description entries to describe the same
computer storage area.

Format
level-number

data-name-1

FILLER

REDEFINES data-name-2

(level-number, data-name-1, and FILLER are not part of the REDEFINES clause, and are included in the
format only for clarity.)

When specified, the REDEFINES clause must be the first entry following data-name-1 or FILLER. If
data-name-1 or FILLER is not specified, the REDEFINES clause must be the first entry following the
level-number.

data-name-1, FILLER
Identifies an alternate description for the data area identified by data-name-2; data-name-1 is the
redefining item or the REDEFINES subject.

Neither data-name-1 nor any of its subordinate entries can contain a VALUE clause.

data-name-2
Identifies the redefined item or the REDEFINES object.

The data description entry for data-name-2 can contain a REDEFINES clause.

The data description entry for data-name-2 cannot contain an OCCURS clause. However, data-
name-2 can be subordinate to an item whose data description entry contains an OCCURS clause;
in this case, the reference to data-name-2 in the REDEFINES clause must not be subscripted.

Chapter 26. DATA DIVISION--data description entry 225

Neither data-name-1 nor data-name-2 can contain an OCCURS DEPENDING ON clause.

data-name-1 and data-name-2 must have the same level in the hierarchy; however, the level numbers
need not be the same. Neither data-name-1 nor data-name-2 can be defined with level number 66 or 88.

data-name-1 and data-name-2 can each be described with any usage.

Redefinition begins at data-name-1 and ends when a level-number less than or equal to that of data-
name-1 is encountered. No entry that has a level-number numerically lower than those of data-name-1
and data-name-2 can occur between these entries. In the following example:

05 A PICTURE X(6).
05 B REDEFINES A.
 10 B-1 PICTURE X(2).
 10 B-2 PICTURE 9(4).
05 C PICTURE 99V99.

A is the redefined item, and B is the redefining item. Redefinition begins with B and includes the two
subordinate items B-1 and B-2. Redefinition ends when the level-05 item C is encountered.

If the GLOBAL clause is used in the data description entry that contains the REDEFINES clause, only data-
name-1 (the redefining item) possesses the global attribute. For example, in the following description,
only item B possesses the GLOBAL attribute:

05 A PICTURE X(6).
05 B REDEFINES A GLOBAL PICTURE X(4).

The EXTERNAL clause must not be specified in the same data description entry as a REDEFINES clause.

If the redefined data item (data-name-2) is declared to be an external data record, the size of the
redefining data item (data-name-1) must not be greater than the size of the redefined data item. If the
redefined data item is not declared to be an external data record, there is no such constraint.

The following example shows that the redefining item, B, can occupy more storage than the redefined
item, A. The size of storage for the REDEFINED clause is determined in number of bytes. Item A occupies
6 bytes of storage and item B, a data item of category national, occupies 8 bytes of storage.

05 A PICTURE X(6).
05 B REDEFINES A GLOBAL PICTURE N(4).

One or more redefinitions of the same storage area are permitted. The entries that give the new
descriptions of the storage area must immediately follow the description of the redefined area without
intervening entries that define new character positions. Multiple redefinitions can, but need not, all use
the data-name of the original entry that defined this storage area. For example:

 05 A PICTURE 9999.
 05 B REDEFINES A PICTURE 9V999.
 05 C REDEFINES A PICTURE 99V99.

Also, multiple redefinitions can use the name of the preceding definition as shown in the following
example:

 05 A PICTURE 9999.
 05 B REDEFINES A PICTURE 9V999.
 05 C REDEFINES B PICTURE 99V99.

When more than one level-01 entry is written subordinate to an FD entry, a condition known as implicit
redefinition occurs. That is, the second level-01 entry implicitly redefines the storage allotted for the first
entry. In such level-01 entries, the REDEFINES clause must not be specified.

When the data item implicitly redefines multiple 01-level records in a file description (FD) entry, items
subordinate to the redefining or redefined item can contain an OCCURS DEPENDING ON clause.

226 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

REDEFINES clause considerations
The topic lists considerations of using the REDEFINES clause.

When an area is redefined, all descriptions of the area are always in effect; that is, redefinition does
not supersede a previous description. Thus, if B REDEFINES C has been specified, either of the two
procedural statements MOVE X TO B or MOVE Y TO C could be executed at any point in the program.
In the first case, the area described as B would receive the value and format of X. In the second case, the
same physical area (described now as C) would receive the value and format of Y. Note that if the second
statement is executed immediately after the first, the value of Y replaces the value of X in the one storage
area.

The usage of a redefining data item need not be the same as that of a redefined item. This does not,
however, cause any change in the format or content of existing data. For example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.
05 A PICTURE S99 USAGE COMPUTATIONAL-4.

Redefining B does not change the bit configuration of the data in the storage area. Therefore, the following
two statements produce different results:

ADD B TO A
ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the second statement, the
value -3848 is added to A (because C has USAGE COMPUTATIONAL-4), and the bit configuration of the
storage area has the binary value -3848. This example demonstrates how the improper use of redefinition
can give unexpected or incorrect results.

REDEFINES clause examples
The REDEFINES clause can be specified for an item within the scope of (subordinate to) an area that is
redefined.

In the following example, WEEKLY-PAY redefines SEMI-MONTHLY-PAY (which is within the scope of
REGULAR-EMPLOYEE, while REGULAR-EMPLOYEE is redefined by TEMPORARY-EMPLOYEE).

05 REGULAR-EMPLOYEE.
 10 LOCATION PICTURE A(8).
 10 GRADE PICTURE X(4).
 10 SEMI-MONTHLY-PAY PICTURE 9999V99.
 10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY
 PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
 10 LOCATION PICTURE A(8).
 10 FILLER PICTURE X(6).
 10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a redefining item, as shown for
CODE-H REDEFINES HOURLY-PAY in the following example:

05 REGULAR-EMPLOYEE.
 10 LOCATION PICTURE A(8).
 10 GRADE PICTURE X(4).
 10 SEMI-MONTHLY-PAY PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
 10 LOCATION PICTURE A(8).
 10 FILLER PICTURE X(6).
 10 HOURLY-PAY PICTURE 99V99.
 10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

Chapter 26. DATA DIVISION--data description entry 227

Data items within an area can be redefined without changing their lengths. For example:

05 NAME-2.
 10 SALARY PICTURE XXX.
 10 SO-SEC-NO PICTURE X(9).
 10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
 10 WAGE PICTURE XXX.
 10 EMP-NO PICTURE X(9).
 10 YEAR PICTURE XX.

Data item lengths and types can also be respecified within an area. For example:

05 NAME-2.
 10 SALARY PICTURE XXX.
 10 SO-SEC-NO PICTURE X(9).
 10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
 10 WAGE PICTURE 999V999.
 10 EMP-NO PICTURE X(6).
 10 YEAR PICTURE XX.

Data items can also be respecified with a length that is greater than the length of the redefined item. For
example:

05 NAME-2.
 10 SALARY PICTURE XXX.
 10 SO-SEC-NO PICTURE X(9).
 10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
 10 WAGE PICTURE 999V999.
 10 EMP-NO PICTURE X(6).
 10 YEAR PICTURE X(4).

This does not change the length of the redefined item NAME-2.

Undefined results
Undefined results can occur in the conditions as listed in the topic.

• A redefining item is moved to a redefined item (that is, if B REDEFINES C and the statement MOVE B
TO C is executed).

• A redefined item is moved to a redefining item (that is, if B REDEFINES C and the statement MOVE C
TO B is executed).

RENAMES clause
The RENAMES clause specifies alternative and possibly overlapping groupings of elementary data items.

Format
66 data-name-1 RENAMES data-name-2

THROUGH

THRU

data-name-3

The special level-number 66 must be specified for data description entries that contain the RENAMES
clause. (Level-number 66 and data-name-1 are not part of the RENAMES clause, and are included in the
format only for clarity.)

One or more RENAMES entries can be written for a logical record. All RENAMES entries associated with
one logical record must immediately follow the last data description entry of that record.

228 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

data-name-1
Identifies an alternative grouping of data items.

A level-66 entry cannot rename a level-01, level-77, level-88, or another level-66 entry.

data-name-1 cannot be used as a qualifier; it can be qualified only by the names of level indicator
entries or level-01 entries.

data-name-2, data-name-3
Identify the original grouping of elementary data items; that is, they must name elementary or group
items within the associated level-01 entry and must not be the same data-name. Both data-names
can be qualified.

data-name-2 and data-name-3 can each reference any of the following items:

• An elementary data item
• An alphanumeric group item
• A national group item

When data-name-2 or data-name-3 references a national group item, the referenced item is
processed as a group (not as an elementary data item of category national).

The OCCURS clause must not be specified in the data entries for data-name-2 and data-name-3, or
for any group entry to which they are subordinate. In addition, the OCCURS DEPENDING clause must
not be specified for any item defined between data-name-2 and data-name-3.

The keywords THROUGH and THRU are equivalent.

When the THROUGH phrase is specified:

• data-name-1 defines an alphanumeric group item that includes all the elementary items that:

– Start with data-name-2 if it is an elementary item, or the first elementary item within data-name-2 if
it is a group item

– End with data-name-3 if it is an elementary item, or the last elementary item within data-name-3 if it
is an alphanumeric group item or national group item

• The storage area occupied by the starting item through the ending item becomes the storage area
occupied by data-name-1.

Usage note: The group defined with the THROUGH phrase can include data items of usage NATIONAL.

The leftmost character position in data-name-3 must not precede the leftmost character position in data-
name-2, and the rightmost character position in data-name-3 must not precede the rightmost character
position in data-name-2. This means that data-name-3 cannot be totally subordinate to data-name-2.

When the THROUGH phrase is not specified:

• The storage area occupied by data-name-2 becomes the storage area occupied by data-name-1.
• All of the data attributes of data-name-2 become the data attributes for data-name-1. That is:

– When data-name-2 is an alphanumeric group item, data-name-1 is an alphanumeric group item.
– When data-name-2 is a national group item, data-name-1 is a national group item.
– When data-name-2 is an elementary item, data-name-1 is an elementary item.

The following figure illustrates valid and invalid RENAMES clause specifications.

Chapter 26. DATA DIVISION--data description entry 229

SIGN clause
The SIGN clause specifies the position and mode of representation of the operational sign for the signed
numeric item to which it applies.

The SIGN clause is required only when an explicit description of the properties or position of the
operational sign is necessary.

Format

SIGN

IS

LEADING

TRAILING SEPARATE

CHARACTER

The SIGN clause can be specified only for the following items:

• An elementary numeric data item of usage DISPLAY or NATIONAL that is described with an S in its
picture character string, or

• A group item that contains at least one such elementary entry as a subordinate item

When the SIGN clause is specified at the group level, that SIGN clause applies only to subordinate signed
numeric elementary data items of usage DISPLAY or NATIONAL. Such a group can also contain items that
are not affected by the SIGN clause. If the SIGN clause is specified for a group or elementary entry that

230 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

is subordinate to a group item that has a SIGN clause, the SIGN clause for the subordinate entry takes
precedence for that subordinate entry.

The SIGN clause is treated as documentation for external floating-point items.

When the SIGN clause is specified without the SEPARATE phrase, USAGE DISPLAY must be specified
explicitly or implicitly. When SIGN IS SEPARATE is specified, either USAGE DISPLAY or USAGE NATIONAL
can be specified.

If you specify the CODE-SET clause in an FD entry, any signed numeric data description entries associated
with that file description entry must be described with the SIGN IS SEPARATE clause.

If the SEPARATE CHARACTER phrase is not specified, then:

• The operational sign is presumed to be associated with the LEADING or TRAILING digit position,
whichever is specified, of the elementary numeric data item. (In this instance, specification of SIGN IS
TRAILING is the equivalent of the standard action of the compiler.)

• The character S in the PICTURE character string is not counted in determining the size of the item (in
terms of standard data format characters).

If the SEPARATE CHARACTER phrase is specified, then:

• The operational sign is presumed to be the LEADING or TRAILING character position, whichever is
specified, of the elementary numeric data item. This character position is not a digit position.

• The character S in the PICTURE character string is counted in determining the size of the data item (in
terms of standard data format characters).

• + is the character used for the positive operational sign.
• - is the character used for the negative operational sign.

SYNCHRONIZED clause
The SYNCHRONIZED clause specifies the alignment of an elementary item on a natural boundary in
storage.

Format
SYNCHRONIZED

SYNC LEFT

RIGHT

SYNC is an abbreviation for SYNCHRONIZED and has the same meaning.

The SYNCHRONIZED clause is never required, but can improve performance on some systems for binary
items used in arithmetic.

The SYNCHRONIZED clause can be specified for elementary items and for level-01 group items, in which
case every elementary item within the group item is synchronized.

LEFT
Specifies that the elementary item is to be positioned so that it will begin at the left character position
of the natural boundary in which the elementary item is placed.

RIGHT
Specifies that the elementary item is to be positioned such that it will terminate on the right character
position of the natural boundary in which it has been placed.

When specified, the LEFT and the RIGHT phrases are syntax checked but have no effect on the execution
of the program.

The length of an elementary item is not affected by the SYNCHRONIZED clause.

The following table lists the effect of the SYNCHRONIZE clause on other language elements.

Chapter 26. DATA DIVISION--data description entry 231

Table 15. SYNCHRONIZE clause effect on other language elements

Language element Comments

OCCURS clause When specified for an item within the scope of an OCCURS clause, each
occurrence of the item is synchronized.

USAGE DISPLAY or
PACKED-DECIMAL

Each item is syntax checked, but the SYNCHRONIZED clause has no effect on
execution.

USAGE NATIONAL Each item is syntax checked, but the SYNCHRONIZED clause has no effect on
execution.

USAGE BINARY or
COMPUTATIONAL

When the item is the first elementary item subordinate to an item that
contains a REDEFINES clause, the item must not require the addition of
unused character positions.

When the synchronized clause is not specified for a subordinate data item
(one with a level number of 02 through 49):

• The item is aligned at a displacement that is a multiple of 2 relative to the
beginning of the record if its USAGE is BINARY and its PICTURE is in the
range of S9 through S9(4).

• The item is aligned at a displacement that is a multiple of 4 relative to the
beginning of the record if its USAGE is BINARY and its PICTURE is in the
range of S9(5) through S9(18).

When SYNCHRONIZED is not specified for binary items, no space is reserved
for slack bytes.

USAGE POINTER,
PROCEDURE-POINTER,
FUNCTION-POINTER,
OBJECT REFERENCE,
INDEX

The data is aligned on a fullword boundary when the LP(32) compiler option is
in effect.

The data is aligned on a doubleword boundary when the LP(64) compiler
option is in effect.

USAGE
COMPUTATIONAL-1

The data is aligned on a fullword boundary.

USAGE
COMPUTATIONAL-2

The data is aligned on a doubleword boundary.

USAGE
COMPUTATIONAL-3

The data is treated the same as the SYNCHRONIZED clause for a PACKED-
DECIMAL item.

USAGE
COMPUTATIONAL-4

The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL item.

USAGE
COMPUTATIONAL-5

The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL item.

USAGE UTF-8 Each item is syntax checked, but the SYNCHRONIZED clause has no effect on
execution.

DBCS and external
floating-point items

Each item is syntax checked, but the SYNCHRONIZED clause has no effect on
execution.

232 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 15. SYNCHRONIZE clause effect on other language elements (continued)

Language element Comments

REDEFINES clause For an item that contains a REDEFINES clause, the data item that is redefined
must have the proper boundary alignment for the data item that redefines it.
For example, if you write the following, be sure that data item A begins on a
fullword boundary:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) BINARY SYNC.

In the FILE SECTION, the compiler assumes that all level-01 records that contain SYNCHRONIZED items
are aligned on doubleword boundaries in the buffer. You must provide the necessary slack bytes between
records to ensure alignment when there are multiple records in a block.

In the WORKING-STORAGE SECTION, the compiler aligns all level-01 entries on a doubleword boundary.

For the purposes of aligning binary items in the LINKAGE SECTION, all level-01 items are assumed to
begin on doubleword boundaries. Therefore, if you issue a CALL statement, such operands of any USING
phrase within it must be aligned correspondingly.

Slack bytes
There are two types of slack bytes.

• Slack bytes within records: unused character positions that precede each synchronized item in the
record

• Slack bytes between records: unused character positions added between blocked logical records

If the RULES=(NOSLACKBYTES) option is in effect, warning messages are issued for any SYNCHONIZED
data items that cause the compiler to add slack bytes, either slack bytes within records or slack bytes
between records. For details about the RULES option, see RULES in the Enterprise COBOL Programming
Guide.

Slack bytes within records
For any data description that has binary items that are not on their natural boundaries, the compiler
inserts slack bytes within a record to ensure that all SYNCHRONIZED items are on their proper
boundaries.

Because it is important that you know the length of the records in a file, you need to determine whether
slack bytes are required and, if so, how many bytes the compiler will add. The algorithm that the compiler
uses is as follows:

• The total number of bytes occupied by all elementary data items that precede the binary item are added
together, including any slack bytes that are previously added.

• This sum is divided by m, where:

– m = 2 for binary items of four-digit length or less
– m = 4 for binary items of five-digit length or more and for COMPUTATIONAL-1 data items
– m = 4 for data items described with USAGE INDEX, USAGE POINTER, USAGE PROCEDURE-POINTER,

USAGE OBJECT REFERENCE, or USAGE FUNCTION-POINTER
– m = 8 for COMPUTATIONAL-2 data items

• If the remainder (r) of this division is equal to zero, no slack bytes are required. If the remainder is not
equal to zero, the number of slack bytes that must be added is equal to m - r.

These slack bytes are added to each record immediately following the elementary data item that
precedes the binary item. They are defined as if they constitute an item with a level-number equal to

Chapter 26. DATA DIVISION--data description entry 233

that of the elementary item that immediately precedes the SYNCHRONIZED binary item, and are included
in the size of the group that contains them.

For example:

01 FIELD-A.
 05 FIELD-B PICTURE X(5).
 05 FIELD-C.
 10 FIELD-D PICTURE XX.
 [10 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
 10 FIELD-E COMPUTATIONAL PICTURE S9(6) SYNC.
01 FIELD-L.
 05 FIELD-M PICTURE X(5).
 05 FIELD-N PICTURE XX.
 [05 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
 05 FIELD-O.
 10 FIELD-P COMPUTATIONAL PICTURE S9(6) SYNC.

Slack bytes can also be added by the compiler when a group item is defined with an OCCURS clause and
contains within it a SYNCHRONIZED binary data item. To determine whether slack bytes are to be added,
the following action is taken:

• The compiler calculates the size of the group, including all the necessary slack bytes within a record.
• This sum is divided by the largest m required by any elementary item within the group.
• If r is equal to zero, no slack bytes are required. If r is not equal to zero, m - r slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the group item that contains the OCCURS
clause. For example, a record defined as follows appears in storage, as shown, in the figure after the
record:

01 WORK-RECORD.
 05 WORK-CODE PICTURE X.
 05 COMP-TABLE OCCURS 10 TIMES.
 10 COMP-TYPE PICTURE X.
 [10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
 10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
 10 COMP-HOURS PICTURE S9(3) COMP SYNC.
 10 COMP-NAME PICTURE X(5).

In order to align COMP-PAY and COMP-HOURS on their proper boundaries, the compiler added 2 slack
bytes within the record.

In the previous example, without further adjustment, the second occurrence of COMP-TABLE would begin
1 byte before a doubleword boundary, and the alignment of COMP-PAY and COMP-HOURS would not be

234 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

valid for any occurrence of the table after the first. Therefore, the compiler must add slack bytes at the
end of the group, as though the record had been written as follows:

01 WORK-RECORD.
 05 WORK-CODE PICTURE X.
 05 COMP-TABLE OCCURS 10 TIMES.
 10 COMP-TYPE PICTURE X.
 [10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
 10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
 10 COMP-HOURS PICTURE S9(3) COMP SYNC.
 10 COMP-NAME PICTURE X(5).
 [10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]

In this example, the second and each succeeding occurrence of COMP-TABLE begins 1 byte beyond a
doubleword boundary. The storage layout for the first occurrence of COMP-TABLE now appears as shown
in the following figure:

Each succeeding occurrence within the table will now begin at the same relative position as the first.

Slack bytes between records
If the file contains blocked logical records that are to be processed in a buffer, and any of the records
contain binary entries for which the SYNCHRONIZED clause is specified, you can improve performance by
adding any needed slack bytes between records for proper alignment.

The lengths of all the elementary data items in the record, including all slack bytes, are added. (For
variable-length records, it is necessary to add an additional 4 bytes for the count field.) The total is then
divided by the highest value of m for any one of the elementary items in the record.

If r (the remainder) is equal to zero, no slack bytes are required. If r is not equal to zero, m - r slack bytes
are required. These slack bytes can be specified by writing a level-02 FILLER at the end of the record.

Consider the following record description:

01 COMP-RECORD.
 05 A-1 PICTURE X(5).
 05 A-2 PICTURE X(3).
 05 A-3 PICTURE X(3).
 05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2, and A-3 totals 11. B-1 is a four-digit COMPUTATIONAL item and 1 slack
byte must therefore be added before B-1. With this byte added, the number of bytes that precede B-2
totals 14. Because B-2 is a COMPUTATIONAL item of five digits in length, 2 slack bytes must be added
before it. No slack bytes are needed before B-3.

Chapter 26. DATA DIVISION--data description entry 235

The revised record description entry now appears as:

01 COMP-RECORD.
 05 A-1 PICTURE X(5).
 05 A-2 PICTURE X(3).
 05 A-3 PICTURE X(3).
 [05 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]
 05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 [05 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]
 05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but from the rules above, it appears that m = 4 and r = 2.
Therefore, to attain proper alignment for blocked records, you must add 2 slack bytes at the end of the
record.

The final record description entry appears as:

01 COMP-RECORD.
 05 A-1 PICTURE X(5).
 05 A-2 PICTURE X(3).
 05 A-3 PICTURE X(3).
 [05 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]
 05 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 [05 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]
 05 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 05 FILLER PICTURE XX. [SLACK BYTES YOU ADD]

236 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

USAGE clause
The USAGE clause specifies the format in which data is represented in storage.

Format 1

USAGE

IS

BINARY

NATIVE

COMP

NATIVE

COMP-1

NATIVE

COMP-2

NATIVE

COMP-3

NATIVE

COMP-4

NATIVE

COMP-5

NATIVE

COMPUTATIONAL

NATIVE

COMPUTATIONAL-1

NATIVE

COMPUTATIONAL-2

NATIVE

COMPUTATIONAL-3

NATIVE

COMPUTATIONAL-4

NATIVE

COMPUTATIONAL-5

NATIVE

DISPLAY

NATIVE

DISPLAY-1

NATIVE

INDEX

NATIONAL

NATIVE

UTF-8

NATIVE

objref phrase

PACKED-DECIMAL

NATIVE

POINTER

POINTER-32

PROCEDURE-POINTER

FUNCTION-POINTER

objref phrase
OBJECT REFERENCE

class-name-1

Note: NATIVE is treated as a comment in all phrases for which NATIVE is shown in the USAGE clause.

The USAGE clause can be specified for a data description entry with any level-number other than 66 or
88.

Chapter 26. DATA DIVISION--data description entry 237

When specified at the group level, the USAGE clause applies to each elementary item in the group. The
usage of elementary items must not contradict the usage of a group to which the elementary items
belongs.

A USAGE clause must not be specified in a group level entry for which a GROUP-USAGE NATIONAL clause
is specified.

When a GROUP-USAGE NATIONAL clause is specified or implied for a group level entry, USAGE NATIONAL
must be specified or implied for every elementary item within the group. For details, see “GROUP-USAGE
clause” on page 198.

When the USAGE clause is not specified at either the group or elementary level, a usage clause is implied
with:

• Usage DISPLAY when the PICTURE clause contains only symbols other than G or N
• Usage NATIONAL when the PICTURE clause contains only one or more of the symbol N and the

NSYMBOL(NATIONAL) compiler option is in effect
• Usage DISPLAY-1 when the PICTURE clause contains one or more of the symbol N and the

NSYMBOL(DBCS) compiler option is in effect

Computational items
A computational item is a value used in arithmetic operations. It must be numeric. If a group item is
described with a computational usage, the elementary items within the group have that usage.

The maximum length of a computational item is 18 decimal digits, except for a PACKED-DECIMAL item.
If the ARITH(COMPAT) compiler option is in effect, then the maximum length of a PACKED-DECIMAL item
is 18 decimal digits. If the ARITH(EXTEND) compiler option is in effect, then the maximum length of a
PACKED-DECIMAL item is 31 decimal digits.

The PICTURE of a computational item can contain only:

9
One or more numeric character positions

S
One operational sign

V
One implied decimal point

P
One or more decimal scaling positions

COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point) cannot have PICTURE strings.

BINARY
Specified for binary data items. Such items have a decimal equivalent consisting of the decimal digits
0 through 9, plus a sign. Negative numbers are represented as the two's complement of the positive
number with the same absolute value.

The amount of storage occupied by a binary item depends on the number of decimal digits defined in
its PICTURE clause:

Digits in PICTURE clause Storage occupied

1 through 4 2 bytes (halfword)

5 through 9 4 bytes (fullword)

10 through 18 8 bytes (doubleword)

Binary data is big-endian: the operational sign is contained in the leftmost bit.

238 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

BINARY, COMPUTATIONAL, and COMPUTATIONAL-4 data items can be affected by the TRUNC
compiler option. For information about the effect of this compiler option, see TRUNC in the Enterprise
COBOL Programming Guide.

PACKED-DECIMAL
Specified for internal decimal items. Such an item appears in storage in packed decimal format. There
are two digits for each character position, except for the trailing character position, which is occupied
by the low-order digit and the sign. Such an item can contain any of the digits 0 through 9, plus a sign,
representing a value not exceeding 18 decimal digits, unless the ARTIH(EXTEND) compiler option is in
effect, in which case up to 31 digits might be represented.

The sign representation uses the same bit configuration as the 4-bit sign representation in zoned
decimal fields. For details, see Sign representation of zoned and packed-decimal data in the Enterprise
COBOL Programming Guide.

The most efficient use of packed-decimal data items is to define them with an odd number of
digits, to use all of the bits. This can also result in more efficient generated code. To find out if you
have packed-decimal data items with an even number of digits in your program, you can use the
RULES(NOEVENPACK) compiler option. For details, see RULES in the Enterprise COBOL Programming
Guide.

COMPUTATIONAL or COMP (binary)
This is the equivalent of BINARY. The COMPUTATIONAL phrase is synonymous with BINARY.

COMPUTATIONAL-1 or COMP-1 (floating-point)
Specified for internal floating-point items (single precision). COMP-1 items are 4 bytes long.

COMPUTATIONAL-2 or COMP-2 (long floating-point)
Specified for internal floating-point items (double precision). COMP-2 items are 8 bytes long.

COMPUTATIONAL-3 or COMP-3 (internal decimal)
This is the equivalent of PACKED-DECIMAL.

COMPUTATIONAL-4 or COMP-4 (binary)
This is the equivalent of BINARY.

COMPUTATIONAL-5 or COMP-5 (native binary)
These data items are represented in storage as binary data. The data items can contain values up
to the capacity of the native binary representation (2, 4, or 8 bytes), rather than being limited to the
value implied by the number of nines in the picture for the item (as is the case for USAGE BINARY
data). When numeric data is moved or stored into a COMP-5 item, truncation occurs at the binary field
size rather than at the COBOL picture size limit. When a COMP-5 item is referenced, the full binary
field size is used in the operation.

The TRUNC(BIN) compiler option causes all binary data items (USAGE BINARY, COMP, COMP-4) to be
handled as if they were declared USAGE COMP-5.

The following table shows several picture character strings, the resulting storage representation, and
the range of values for data items described with USAGE COMP-5.

Picture Storage representation Numeric values

S9(1) through S9(4) Binary halfword (2 bytes) -32768 through +32767

S9(5) through S9(9) Binary fullword (4 bytes) -2,147,483,648 through
+2,147,483,647

S9(10) through S9(18) Binary doubleword (8 bytes) -9,223,372,036,854,775,808
through
+9,223,372,036,854,775,807

9(1) through 9(4) Binary halfword (2 bytes) 0 through 65535

9(5) through 9(9) Binary fullword (4 bytes) 0 through 4,294,967,295

Chapter 26. DATA DIVISION--data description entry 239

Picture Storage representation Numeric values

9(10) through 9(18) Binary doubleword (8 bytes) 0 through
18,446,744,073,709,551,615

The picture for a COMP-5 data item can specify a scaling factor (that is, decimal positions or implied
integer positions). In this case, the maximal capacities listed in the table above must be scaled
appropriately. For example, a data item described with PICTURE S99V99 COMP-5 is represented in
storage as a binary halfword, and supports a range of values from -327.68 to +327.67.

USAGE NOTE: When the ON SIZE ERROR phrase is used on an arithmetic statement and a receiver is
defined with USAGE COMP-5, the maximum value that the receiver can contain is the value implied by
the item's decimal PICTURE character-string. Any attempt to store a value larger than this maximum
will result in a size error condition.

DISPLAY phrase
The data item is stored in character form, one character for each 8-bit byte. This corresponds to the
format used for printed output. DISPLAY can be explicit or implicit.

USAGE IS DISPLAY is valid for the following types of items:

• Alphabetic
• Alphanumeric
• Alphanumeric-edited
• Numeric-edited
• External floating-point
• External decimal

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited items are discussed in “Data
categories and PICTURE rules” on page 212.

External decimal items with USAGE DISPLAY are sometimes referred to as zoned decimal items. Each
digit of a number is represented by a single byte. The 4 high-order bits of each byte are zone bits; the
4 high-order bits of the low-order byte represent the sign of the item. The 4 low-order bits of each byte
contain the value of the digit.

If the ARITH(COMPAT) compiler option is in effect, then the maximum length of an external decimal item
is 18 digits. If the ARITH(EXTEND) compiler option is in effect, then the maximum length of an external
decimal item is 31 digits.

The PICTURE character-string of an external decimal item can contain only:

• One or more of the symbol 9
• The operational-sign, S
• The assumed decimal point, V
• One or more of the symbol P

DISPLAY-1 phrase
The DISPLAY-1 phrase defines an item as DBCS. The data item is stored in character form, with each
character occupying 2 bytes of storage.

240 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

FUNCTION-POINTER phrase
The FUNCTION-POINTER phrase defines an item as a function-pointer data item. A function-pointer data
item can contain the address of a descriptor for a procedure entry point.

A function-pointer is a 4-byte elementary item or an 8-byte elementary item depending on whether
the LP(32) or LP(64) is in effect. If LP(32) is in effect, 4 bytes are allocated for the item; otherwise, 8
bytes are allocated for the item. Function-pointers have the same capabilities as procedure-pointers.
Function-pointers are thus more easily interoperable with C function pointers.

A function-pointer can point to a function descriptor for one of the following or can contain NULL:

• The primary entry point of a COBOL program, defined by the PROGRAM-ID paragraph of the outermost
program

• An alternate entry point of a COBOL program, defined by a COBOL ENTRY statement
• An entry point in a non-COBOL program

A VALUE clause for a function-pointer data item can contain only NULL or NULLS.

The GLOBAL, EXTERNAL, OCCURS and VOLATILE clauses can be used with USAGE IS FUNCTION-
POINTER.

A function-pointer can be used in the same contexts as a procedure-pointer, as defined in “PROCEDURE-
POINTER phrase” on page 244.

INDEX phrase
A data item defined with the INDEX phrase is an index data item.

An index data item is a 4-byte elementary item or an 8-byte elementary item depending on whether the
LP(32) or LP(64) compiler option is in effect, that can be used to save index-name values for future
reference. An index data item is not necessarily connected with any specific table. Through a SET
statement, an index data item can be assigned an index-name value. Such a value corresponds to the
occurrence number in a table.

Direct references to an index data item can be made only in a SEARCH statement, a SET statement, a
relation condition, the USING phrase of the PROCEDURE DIVISION header, or the USING phrase of the
CALL or ENTRY statement.

An index data item can be part of an alphanumeric group item that is referenced in a MOVE statement or
an input/output statement.

An index data item saves values that represent table occurrences, yet is not necessarily defined as part
of any table. There is no conversion of values when an index data item is referenced in the following
circumstances:

• directly in a SEARCH or SET statement
• indirectly in a MOVE statement
• indirectly in an input or output statement

An index data item cannot be a conditional variable.

The JUSTIFIED, PICTURE, BLANK WHEN ZERO, or VALUE clauses cannot be used to describe a group item
or elementary items described with the USAGE IS INDEX clause.

SYNCHRONIZED can be used with USAGE IS INDEX to obtain efficient use of the index data item.

NATIONAL phrase
The NATIONAL phrase defines an item whose content is represented in storage in UTF-16 (CCSID
1200). The class and category of the data item depend on the picture symbols that are specified in
the associated PICTURE clause.

Chapter 26. DATA DIVISION--data description entry 241

OBJECT REFERENCE phrase
A data item defined with the OBJECT REFERENCE phrase is an object reference. An object reference data
item is a 4-byte elementary item or an 8-byte elementary item depending on whether the LP(32) or
LP(64) is in effect. If LP(32) is in effect, 4 bytes are allocated for the item; otherwise, 8 bytes are allocated
for the item.

class-name-1
An optional class name.

You must define class-name-1 in the REPOSITORY paragraph in the configuration section of the
containing class or outermost program.

If specified, class-name-1 indicates that data-name-1 always refers to an object-instance of class
class-name-1 or a class derived from class-name-1.

Important: The programmer must ensure that the referenced object meets this requirement;
violations are not diagnosed.

If class-name-1 is not specified, the object reference can refer to an object of any class. In this case,
data-name-1 is a universal object reference.

You can specify data-name-1 within an alphanumeric group item without affecting the semantics of
the group item. There is no conversion of values or other special handling of the object references
when statements are executed that operate on the group. The group continues to behave as an
alphanumeric group item.

An object reference can be defined in any section of the DATA DIVISION of a factory definition, object
definition, method, or program. An object-reference data item can be used in only:

• A SET statement (format 7 only)
• A relation condition
• An INVOKE statement
• The USING or RETURNING phrase of an INVOKE statement
• The USING or RETURNING phrase of a CALL statement
• A program procedure division or ENTRY statement USING or RETURNING phrase
• A method procedure division USING or RETURNING phrase

Object-reference data items:

• Are ignored in CORRESPONDING operations
• Are unaffected by INITIALIZE statements
• Can be the subject or object of a REDEFINES clause
• Cannot be a conditional variable
• Can be written to a file (but upon subsequent reading of the record the content of the object reference is
undefined)

A VALUE clause for an object-reference data item can contain only NULL or NULLS.

You can use the SYNCHRONIZED clause with the USAGE OBJECT REFERENCE clause to obtain efficient
alignment of the object-reference data item.

The JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot be used to describe group or
elementary items defined with the USAGE OBJECT REFERENCE clause.

POINTER phrase
A data item defined with USAGE IS POINTER is a pointer data item or data-pointer. A pointer data item
is a 4-byte elementary item or an 8-byte elementary item depending on whether the LP(32) or LP(64) is

242 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

in effect. If LP(32) is in effect, 4 bytes are allocated for the item; otherwise, 8 bytes are allocated for the
item.

You can use pointer data items to accomplish limited base addressing. Pointer data items can be
compared for equality or moved to other pointer items.

A pointer data item can be used only:

• In an ALLOCATE statement
• In a FREE statement
• In a SET statement (format 5 only)
• In a relation condition
• In the USING phrase of a CALL statement, an ENTRY statement, or the PROCEDURE DIVISION header

A POINTER data item can be set to a POINTER-32 data item, and vice versa. When the LP(32) compiler
option is in effect, USAGE POINTER and USAGE POINTER-32 are synonyms. When the LP(64) compiler
option is in effect, the following statements apply:

Note: The size of the POINTER data item is 8 bytes in the following cases.

• A POINTER data item can be SET to a value from a POINTER-32 data item. The high-order word of the
POINTER data item is cleared to zero.

• Pointer data items can be part of an alphanumeric group that is referred to in a MOVE statement or
an input/output statement. However, if a pointer data item is part of a group, there is no conversion of
values when the statement is executed.

• A pointer data item can be the subject or object of a REDEFINES clause.
• SYNCHRONIZED can be used with USAGE IS POINTER to obtain efficient use of the pointer data item.
• A VALUE clause for a pointer data item can contain only NULL or NULLS.
• A pointer data item cannot be a conditional variable.
• A pointer data item does not belong to any class or category.

The following table lists clauses that can or cannot be used to describe group or elementary items defined
with the USAGE IS POINTER.

Table 16. Clauses that can or cannot be used with USAGE IS POINTER

Can be used with USAGE IS POINTER Cannot be used with USAGE IS POINTER

GLOBAL clause
EXTERNAL clause
OCCURS clause
VOLATILE clause

JUSTIFIED clause
PICTURE clause
BLANK WHEN ZERO clause

Pointer data items are ignored in the processing of a CORRESPONDING phrase.

A pointer data item can be written to a data set, but upon subsequent reading of the record that contains
the pointer, the address contained might no longer represent a valid pointer.

USAGE IS POINTER is implicitly specified for the ADDRESS OF special register. For more information, see
Using tables (arrays) and pointers in the Enterprise COBOL Programming Guide.

POINTER-32 phrase
A data item defined with USAGE IS POINTER-32 is a pointer data item or data-pointer. A pointer data item
is a 4-byte elementary item regardless of the LP compiler option setting.

You can use POINTER-32 data items to accomplish limited base addressing. Pointer data items can be
compared for equality or moved to other pointer items.

A POINTER-32 data item can be used only:

Chapter 26. DATA DIVISION--data description entry 243

• In an ALLOCATE statement
• In a FREE statement
• In a SET statement (format 5 only)
• In a relation condition
• In the USING phrase of a CALL statement, an ENTRY statement, or the PROCEDURE DIVISION header

A POINTER-32 data item can be set to a POINTER data item, and vice versa. When the LP(32) compiler
option is in effect, USAGE POINTER and USAGE POINTER-32 are synonyms. When the LP(64) compiler
option is in effect, the following statements apply:

• A POINTER-32 data item can be SET to a value from a POINTER data item. Only the low-order word of
the POINTER data item is used in this case. It is a programming error if the high-order word of the 64-bit
pointer data item is not zero.

• A POINTER-32 data item can be compared with a POINTER data item in a relation condition. The bit
representation in the POINTER-32 data item is extended to 64-bit if the high-order word is zero before
the comparison.

• POINTER-32 data items can be part of an alphanumeric group that is referred to in a MOVE statement
or an input/output statement. However, if a pointer data item is part of a group, there is no conversion of
values when the statement is executed.

• A POINTER-32 data item can be the subject or object of a REDEFINES clause.
• SYNCHRONIZED can be used with USAGE IS POINTER-32 to obtain efficient use of the pointer data

item.
• A VALUE clause for a POINTER-32 data item can contain only NULL or NULLS.
• A POINTER-32 data item cannot be a conditional variable.
• A POINTER-32 data item does not belong to any class or category.

The following table lists clauses that can or cannot be used to describe group or elementary items defined
with the USAGE IS POINTER-32.

Table 17. Clauses that can or cannot be used with USAGE IS POINTER-32

Can be used with USAGE IS POINTER-32 Cannot be used with USAGE IS POINTER

GLOBAL clause
EXTERNAL clause
OCCURS clause
VOLATILE clause

JUSTIFIED clause
PICTURE clause
BLANK WHEN ZERO clause

POINTER-32 data items are ignored in the processing of a CORRESPONDING phrase.

A POINTER-32 data item can be written to a data set, but upon the subsequent reading of the record that
contains the pointer, the address contained might no longer represent a valid pointer.

PROCEDURE-POINTER phrase
The PROCEDURE-POINTER phrase defines an item as a procedure-pointer data item. A procedure-pointer
data item can contain the address of a descriptor for a procedure entry point.

A procedure-pointer data item is an 8-byte elementary item regardless of the LP compiler option setting.

A procedure-pointer can point to a function descriptor for one of the following or can contain NULL:

• The primary entry point of a COBOL program as defined by the program-ID paragraph of the outermost
program of a compilation unit

• An alternate entry point of a COBOL program as defined by a COBOL ENTRY statement
• An entry point in a non-COBOL program

A procedure-pointer data item can be used only:

244 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• In a SET statement (format 6 only)
• In a CALL statement (from a high-level language or LE-conforming assembler program)
• In a relation condition
• In the USING phrase of an ENTRY statement or the PROCEDURE DIVISION header

Procedure-pointer data items can be compared for equality or moved to other procedure-pointer data
items.

Procedure-pointer data items can be part of a group that is referred to in a MOVE statement or an
input/output statement. However, there is no conversion of values when the statement is executed. If a
procedure-pointer data item is written to a data set, subsequent reading of the record that contains the
procedure-pointer can result in an invalid value in the procedure-pointer.

A procedure-pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS PROCEDURE-POINTER to obtain efficient alignment of the
procedure-pointer data item.

The GLOBAL, EXTERNAL, OCCURS, and VOLATILE clauses can be used with USAGE IS PROCEDURE-
POINTER.

A VALUE clause for a procedure-pointer data item can contain only NULL or NULLS.

The JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot be used to describe group or
elementary items defined with the USAGE IS PROCEDURE-POINTER clause.

A procedure-pointer data item cannot be a conditional variable.

A procedure-pointer data item does not belong to any class or category.

Procedure-pointer data items are ignored in CORRESPONDING operations.

NATIVE phrase
The NATIVE phrase is syntax checked, but has no effect on the execution of the program.

UTF-8 phrase
The UTF-8 phrase defines an item whose content is represented in storage in UTF-8 (CCSID 1208). The
class and category of the data item are UTF-8.

VALUE clause
The VALUE clause specifies the initial contents of a data item or the values associated with a condition-
name. The use of the VALUE clause differs depending on the DATA DIVISION section in which it is
specified.

In the WORKING-STORAGE SECTION and the LOCAL-STORAGE SECTION, the VALUE clause can be used
in condition-name entries or in specifying the initial value of any data item. The data item assumes the
specified value at the beginning of program execution. If the initial value is not explicitly specified, the
value is unpredictable.

Format 1
Format 1 specifies the initial value of a data item. Initialization is independent of any BLANK WHEN ZERO
or JUSTIFIED clause that is specified.

Format 1: literal value
VALUE

IS

literal

Chapter 26. DATA DIVISION--data description entry 245

A format-1 VALUE clause specified in a data description entry that contains or is subordinate to an
OCCURS clause causes every occurrence of the associated data item to be assigned the specified value.
Each structure that contains the DEPENDING ON phrase of the OCCURS clause is assumed to contain the
maximum number of occurrences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains or is subordinate
to an entry that contains either an EXTERNAL or a REDEFINES clause. This rule does not apply to
condition-name entries.

A format-1 VALUE clause can be specified for an elementary data item or for a group item. When the
VALUE clause is specified at the group level, the group area is initialized without consideration for the
subordinate entries within the group. In addition, a VALUE clause must not be specified for subordinate
entries within the group.

For group items, the VALUE clause must not be specified if any subordinate entries contain a JUSTIFIED
or SYNCHRONIZED clause.

If the VALUE clause is specified for an alphanumeric group, all subordinate items must be explicitly or
implicitly described with USAGE DISPLAY.

The VALUE clause must not conflict with other clauses in the data description entry or in the data
description of that entry's hierarchy.

The functions of the editing characters in a PICTURE clause are ignored in determining the initial value
of the item described. However, editing characters are included in determining the size of the item.
Therefore, any editing characters must be included in the literal. For example, if the item is defined as
PICTURE +999.99 and the value is to be +12.34, then the VALUE clause should be specified as VALUE
"+012.34".

A VALUE clause cannot be specified for external floating-point items.

A data item cannot contain a VALUE clause if the prior data item contains an OCCURS clause with the
DEPENDING ON phrase.

Rules for literal values
• Wherever a literal is specified, a figurative constant can be substituted, in accordance with the rules
specified in “Figurative constants” on page 15.

• If the item is class numeric, the VALUE clause literal must be numeric. If the literal defines the value
of a WORKING-STORAGE item or LOCAL-STORAGE item, the literal is aligned according to the rules
for numeric moves, with one additional restriction: The literal must not have a value that requires
truncation of nonzero digits. If the literal is signed, the associated PICTURE character-string must
contain a sign symbol.

• With some exceptions, numeric literals in a VALUE clause must have a value within the range of values
indicated by the PICTURE clause for the item. For example, for PICTURE 99PPP, the literal must be
zero or within the range 1000 through 99000. For PICTURE PPP99, the literal must be within the range
0.00000 through 0.00099.

The exceptions are the following ones:

– Data items described with usage COMP-5 that do not have a picture symbol P in their PICTURE
clause.

– When the TRUNC(BIN) compiler option is in effect, data items described with usage BINARY, COMP,
or COMP-4 that do not have a picture symbol P in their PICTURE clause.

A VALUE clause for these items can have a value up to the capacity of the native binary
representation.

• If the VALUE clause is specified for an elementary alphabetic, alphanumeric, alphanumeric-edited, or
numeric-edited item described with usage DISPLAY, the VALUE clause literal must be an alphanumeric
literal or a figurative constant. The literal is aligned according to the alphanumeric alignment rules, with
one additional restriction: the number of characters in the literal must not exceed the size of the item.

246 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If the VALUE clause is specified for an elementary national, national-edited, or numeric-edited item
described with usage NATIONAL, the VALUE clause literal must be a national or alphanumeric literal or
a figurative constant as specified in “Figurative constants” on page 15. The value of an alphanumeric
literal is converted from its source code representation to UTF-16 representation. The literal is aligned
according to the national alignment rules, with one additional restriction: the number of characters in
the literal must not exceed the size, in character positions, of the item.

• If the VALUE clause is specified for an elementary UTF-8 item, the VALUE clause literal must be a UTF-8
or an alphanumeric literal or a figurative constant as specified in “Figurative constants” on page 15.
The value of an alphanumeric or national literal is converted from its source code representation to
UTF-8 representation. The literal is aligned according to the UTF-8 alignment rules, with one additional
restriction: if the UTF-8 item is a fixed character-length UTF-8 item (i.e., it was not defined with the
BYTE-LENGTH phrase of the PICTURE clause or the DYNAMIC LENGTH clause), then the number of
characters in the literal must not exceed the size, in character positions, of the item. Otherwise, the
number of bytes of the literal must not exceed the maximum byte length allowed by the item.

• If the VALUE clause is specified at the group level for an alphanumeric group, the literal must be an
alphanumeric literal or a figurative constant as specified in “Figurative constants” on page 15, other
than ALL national-literal or ALL utf-8-literal. The size of the literal must not exceed the size of the group
item.

• If the VALUE clause is specified at the group level for a national group, the literal can be an
alphanumeric literal, a national literal, or one of the figurative constants ZERO, SPACE, QUOTES,
HIGH-VALUE, LOW-VALUE, symbolic character, ALL national-literal, or ALL -literal. The value of an
alphanumeric literal is converted from its source code representation to UTF-16 representation. Each
figurative constant represents a national character value. The size of the literal must not exceed the size
of the group item.

• If the VALUE clause is specified at the group level for a UTF-8 group, the literal can be an alphanumeric
literal, a UTF-8 literal, or one of the figurative constants ZERO, SPACE, QUOTES, HIGH-VALUE, LOW-
VALUE, symbolic character, ALL utf-8-literal, or ALL -literal. The value of an alphanumeric literal
is converted from its source code representation to UTF-8 representation. Each figurative constant
represents a UTF-8 character value. The size of the literal must not exceed the size of the group item.

• A VALUE clause associated with a DBCS item must contain a DBCS literal, the figurative constant SPACE,
or the figurative constant ALL DBCS-literal. The length of the literal must not exceed the size indicated
by the data item's PICTURE clause.

• A VALUE clause that specifies a national literal can be associated only with a data item of class national.
• A VALUE clause that specifies a UTF-8 literal can be associated only with a data item of class UTF-8.
• A VALUE clause that specifies a DBCS literal can be associated only with a data item of class DBCS.
• A VALUE clause associated with a COMPUTATIONAL-1 or COMPUTATIONAL-2 (internal floating-point)

item must specify a floating-point literal. In addition, the figurative constant ZERO and both integer and
decimal forms of the zero literal can be specified in a floating-point VALUE clause.

You cannot specify a floating-point format numeric literal in the VALUE clause of a fixed-point numeric
item.

For information about floating-point literal values, see “Rules for floating-point literal values” on page
45.

Example
The following example illustrates the use of a format-1 VALUE clause:

IDENTIFICATION DIVISION.
PROGRAM-ID. HELLO.

DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 WS-A PIC 9(2)V9 VALUE 5.6.
 01 WS-B PIC A(15) VALUE 'Hello world'.
 01 WS-C PIC 99 VALUE ZERO.

PROCEDURE DIVISION.

Chapter 26. DATA DIVISION--data description entry 247

 DISPLAY "WS-A: " WS-A.
 DISPLAY "WS-B: " WS-B.
 DISPLAY "WS-C: " WS-C.
STOP RUN.

The output is as follows:

WS-A: 5.6
WS-B: Hello world
WS-C: 0

Format 2
This format associates a value, values, or ranges of values with a condition-name. Each such condition-
name requires a separate level-88 entry. Level-number 88 and the condition-name are not part of the
format-2 VALUE clause itself. They are included in the format only for clarity.

Format 2: condition-name value
88 condition-name-1 VALUE

IS

VALUES

ARE

literal-1

THROUGH

THRU

literal-2

WHEN SET TO

FALSE

IS

literal-3

.

condition-name-1
A user-specified name that associates a value with a conditional variable. If the associated conditional
variable requires subscripts or indexes, each procedural reference to the condition-name must be
subscripted or indexed as required for the conditional variable.

Condition-names are tested procedurally in condition-name conditions (see “Conditional expressions”
on page 268).

literal-1
Associates the condition-name with a single value.

The class of literal-1 must be a valid class for assignment to the associated conditional variable.

literal-1 THROUGH literal-2
Associates the condition-name with at least one range of values. When the THROUGH phrase is used,
literal-1 must be less than literal-2. For details, see “Rules for condition-name entries” on page 249.

literal-1 and literal-2 must be of the same class. The class of literal-1 and literal-2 must be a valid
class for assignment to the associated conditional variable.

When literal-1 and literal-2 are DBCS literals, the range of DBCS values specified by the THROUGH
phrase is based on the binary collating sequence of the hexadecimal values of the DBCS characters.

248 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

When literal-1 and literal-2 are NATIONAL literals, the range of national character values specified
by the THROUGH phrase is based on the binary collating sequence of the hexadecimal values of the
national characters represented by the literals.

When literal-1 and literal-2 are UTF-8 literals, the range of UTF-8 character values specified by the
THROUGH phrase is based on the binary collating sequence of the hexadecimal values of the UTF-8
characters represented by the literals.

If the associated conditional variable is of class DBCS, literal-1 and literal-2 must be DBCS literals.
The figurative constant SPACE or the figurative constant ALL DBCS-literal can be specified.

If the associated conditional variable is of class NATIONAL, literal-1 and literal-2 must be either both
national literals or both alphanumeric literals for a given condition-name. The figurative constants
ZERO, SPACE, QUOTE, HIGH-VALUE, LOW-VALUE, symbolic-character, ALL national-literal, or ALL
literal can be specified.

If the associated conditional variable is of class UTF-8, literal-1 and literal-2 must be either both
UTF-8 literals or both alphanumeric literals for a given condition-name. The figurative constants
ZERO, SPACE, QUOTE, HIGH-VALUE, LOW-VALUE, symbolic-character, ALL utf-8-literal, or ALL literal
can be specified.

WHEN SET TO FALSE
Allows specification of a FALSE condition value. This value is moved to the associated conditional
variable when the SET TO FALSE statement is executed for the associated condition-name.

literal-3
When a condition-name is referenced in a SET TO FALSE statement, the value of literal-3 from the
FALSE phrase is placed in the associated conditional variable.

Note: The true values of a conditional variable are all the values associated with its condition-names,
and all other values are false values. The WHEN SET TO FALSE phrase specifies just one of possibly
many false values. The purpose is to define a single value to be used by the SET TO FALSE statement.
When a condition-name condition is tested, all the non-true values give a false result, not just the one
false value defined by the WHEN SET TO FALSE phrase.

Rules for condition-name entries
There are certain rules for condition-name entries.

The rules are:

• The VALUE clause is required in a condition-name entry, and must be the only clause in the entry. Each
condition-name entry is associated with a preceding conditional variable. Thus every level-88 entry
must always be preceded either by the entry for the conditional variable or by another level-88 entry
when several condition-names apply to one conditional variable. Each such level-88 entry implicitly has
the PICTURE characteristics of the conditional variable.

• A space, a separator comma, or a separator semicolon must separate successive operands.

Each entry must end with a separator period.
• The keywords THROUGH and THRU are equivalent.
• The condition-name entries associated with a particular conditional variable must immediately follow

the conditional variable entry. The conditional variable can be any elementary data description entry
except the following ones:

– Another condition-name
– A RENAMES clause (level-66 item)
– An item described with USAGE IS INDEX
– An item described with USAGE POINTER, USAGE PROCEDURE-POINTER, USAGE FUNCTION-

POINTER, or USAGE OBJECT REFERENCE
• Condition-names can be specified both at the group level and at subordinate levels within an

alphanumeric group, national group or UTF-8 group.

Chapter 26. DATA DIVISION--data description entry 249

• When the condition-name is specified for an alphanumeric group data description entry:

– The value of literal-1 (or literal-1 and literal-2) must be specified as an alphanumeric literal or
figurative constant.

– The group can contain items of any usage.
• When the condition-name is specified for a national group data description entry:

– The value of literal-1 (or literal-1 and literal-2) must be specified as an alphanumeric literal, a national
literal, or a figurative constant.

– The group can contain only items of usage national, as specified for the “GROUP-USAGE clause” on
page 198.

• When the condition-name is specified for a UTF-8 group data description entry:

– The value of literal-1 (or literal-1 and literal-2) must be specified as an alphanumeric literal, a UTF-8
literal, or a figurative constant.

– The group can contain only items of usage UTF-8, as specified for the “GROUP-USAGE clause” on
page 198.

• When the condition-name is associated with an alphanumeric group data description entry or a national
group data description entry or a UTF-8 group data description entry:

– The size of each literal value must not exceed the sum of the sizes of all the elementary items within
the group.

– No element within the group can contain a JUSTIFIED or SYNCHRONIZED clause.
• Relation tests implied by the definition of a condition-name are performed in accordance with the rules

referenced in the table below.

Table 18. Relation test references for condition-names

Type of conditional variable Relation condition rules

Alphanumeric group item “Group comparisons” on page 279

National group item (treated as elementary data item of
class national)

“National comparisons” on page 277

Elementary data item of class alphanumeric “Alphanumeric comparisons” on page 276

Elementary data item of class national “National comparisons” on page 277

Elementary data item of class numeric “Numeric comparisons” on page 279

Elementary data item of class DBCS “DBCS comparisons” on page 277

Elementary data item of class UTF-8 “UTF-8 comparisons” on page 278

• A VALUE clause that specifies a national literal can be associated with a condition-name defined only for
a data item of class national.

• A VALUE clause that specifies a DBCS literal can be associated with a condition-name defined only for a
data item of class DBCS.

• The literals in a condition-name entry for an elementary data item of class national or a national group
item must be either national literals or alphanumeric literals, and literal-1 and literal-2 must be of the
same class. For alphanumeric groups or elementary data items of other classes, the type of literal must
be consistent with the data type of the conditional variable. In the following example:

– CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables.

The PICTURE associated with COUNTY-NO limits the condition-name value to a two-digit numeric
literal.

The PICTURE associated with CITY limits the condition-name value to a three-character
alphanumeric literal.

250 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

– The associated condition-names are level-88 entries.

Any values for the condition-names associated with CITY-COUNTY-INFO cannot exceed five
characters.

Because this is an alphanumeric group item, the literal must be alphanumeric.

 05 CITY-COUNTY-INFO.
 88 BRONX VALUE "03NYC".
 88 BROOKLYN VALUE "24NYC".
 88 MANHATTAN VALUE "31NYC".
 88 QUEENS VALUE "41NYC".
 88 STATEN-ISLAND VALUE "43NYC".
 10 COUNTY-NO PICTURE 99.
 88 DUTCHESS VALUE 14
 WHEN FALSE IS 99.
 88 KINGS VALUE 24.
 88 NEW-YORK VALUE 31.
 88 RICHMOND VALUE 43.
 10 CITY PICTURE X(3).
 88 BUFFALO VALUE "BUF".
 88 NEW-YORK-CITY VALUE "NYC".
 88 POUGHKEEPSIE VALUE "POK".
 05 POPULATION...

Example
The following example illustrates the use of a format-2 VALUE clause. This example verifies whether the
input year is between 2000 and 2023 or now.

IDENTIFICATION DIVISION.
PROGRAM-ID. LEVEL88.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 YEAR.
 05 YEAR-INIT PIC 9(4).
 88 YEAR-VALID VALUE 2000 THRU 2023.
 88 YEAR-INVALID VALUE 0001 THRU 1999
 2024 THRU 9999.

PROCEDURE DIVISION.
 DISPLAY 'Enter a year:'.
 ACCEPT YEAR.

 IF YEAR-VALID
 DISPLAY 'YEAR:' YEAR
 ELSE
 DISPLAY 'INVALID YEAR'
 END-IF.

 STOP RUN.

If the input for YEAR is 1999, below is the output:

INVALID YEAR

Format 3
This format assigns an invalid address as the initial value of an item defined as USAGE POINTER, USAGE
PROCEDURE-POINTER, or USAGE FUNCTION-POINTER. It also assigns an invalid object reference as the
initial value of an item defined as USAGE OBJECT REFERENCE.

Format 3: NULL value
VALUE

IS

NULL

NULLS

Chapter 26. DATA DIVISION--data description entry 251

VALUE IS NULL can be specified only for elementary items described implicitly or explicitly as USAGE
POINTER, USAGE PROCEDURE-POINTER, USAGE FUNCTION-POINTER, or USAGE OBJECT REFERENCE.

VOLATILE clause
The VOLATILE clause indicates that a data item's value can be modified or referenced in ways that the
compiler cannot detect, such as by a Language Environment (LE) condition handler routine or by some
other asynchronous process or thread. Thus, optimization is restricted for the data item.

Format
VOLATILE

In particular, the compiler will enforce the following restrictions:

• A volatile data item is loaded from memory each time it is referenced and stored to memory each time it
is modified.

• Loads and stores to the data item are never reordered or eliminated.
• Storage is always allocated for the data item and initialized where necessary, even when no references

to the data item are in the compilation unit.

Note: The STGOPT option is ignored for data items that have the VOLATILE clause.

The VOLATILE clause can be specified on data items that are defined in the FILE SECTION, WORKING-
STORAGE SECTION, LOCAL-STORAGE SECTION, and LINKAGE SECTION. This clause can be specified
together with any other clauses. For example, VOLATILE can be specified on tables, group data items,
elementary data items, record descriptions and variably located data items.

There are additional considerations for groups:

• When a group item is explicitly defined with the VOLATILE clause, all items subordinate to the group
item are treated as volatile by the compiler.

• When a group item has one or more subordinate items that are explicitly defined with the VOLATILE
clause, the group item is treated as volatile by the compiler.

The VOLATILE clause cannot be specified on level-66 or level-88 data items.

It is not possible to indicate that all memory associated with a class instance is volatile. However,
individual members of a class can be defined with the VOLATILE clause.

Example of using VOLATILE with groups:

Consider the following group definition:

01 DATA-COLLECTION.
 03 DATA-ITEMS-A VOLATILE.
 05 DATA-A1 PIC S9(9) BINARY.
 05 DATA-A2 PIC S9(9) BINARY.
 03 DATA-ITEMS-B.
 05 DATA-B1 PIC S9(9).
 05 DATA-B2 PIC S9(9) VOLATILE.
 03 DATA-ITEMS-C.
 05 DATA-C1 PIC S9(9).
 05 DATA-C2 PIC S9(9).

In this example:

• DATA-ITEMS-A and DATA-B2 are considered volatile because they are defined with the VOLATILE
clause.

• DATA-A1 and DATA-A2 are treated as volatile because they are both subordinate to a group item
(DATA-ITEMS-A) that has the VOLATILE clause.

• DATA-COLLECTION and DATA-ITEMS-B are treated as volatile because they are group items that have
subordinates that are defined with the VOLATILE clause. For example:

252 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

MOVE DATA-ITEMS-B TO DATA-ITEMS-C.

In this case, by treating DATA-ITEMS-B as volatile, the compiler ensures that the latest value of its
subordinate member DATA-B2 is used in the memory copy operation.

In the following LE condition handler scenario, it is necessary to specify the "STEP" data item with
the VOLATILE clause to achieve correct results. In particular, if the VOLATILE clause is not used, the
compiler might assume that "STEP" is never referenced between the assignment of "2" to "STEP" and
the assignment of "3" to "STEP" and might therefore decide to eliminate the first assignment during
optimization. Unfortunately, this could result in a problem because if a divide-by-zero condition occurs
during execution of the subsequent line of code, the condition handler will execute and reference the
external variable "STEP", which might have the incorrect value.

Main program:
IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 USER-HANDLER PROCEDURE-POINTER.
77 TOKEN PIC S9(9) COMP.
01 QTY PIC 9(8) BINARY.
01 DIVISOR PIC 9(8) BINARY VALUE 0.
01 ANSWER PIC 9(8) BINARY.
01 STEP PIC 9(8) BINARY VALUE 0 EXTERNAL VOLATILE.
:
SET USER-HANDLER TO ENTRY 'HANDLER'
CALL 'CEEHDLR' USING USER-HANDLER, TOKEN, NULL
COMPUTE STEP = 2 *> Compiler thinks this store has no purpose and may remove it
COMPUTE ANSWER = NUMBER / DIVISOR *> Divide-by-zero exception occurs here, handler is invoked,
 *> and reference to 'STEP' is made but hidden from compiler
DISPLAY 'ANSWER = ' ANSWER
COMPUTE STEP = 3
DISPLAY 'STEP = ' STEP
COMPUTE ANSWER = QTY + 2
:
Condition handler program:
IDENTIFICATION DIVISION.
PROGRAM-ID. HANDLER.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STEP PIC 9(8) BINARY EXTERNAL.
PROCEDURE DIVISION.
:
DISPLAY 'ERROR: A PROBLEM WAS ENCOUNTERED IN STEP ' STEP.

Chapter 26. DATA DIVISION--data description entry 253

254 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Part 6. PROCEDURE DIVISION

© Copyright IBM Corp. 1991, 2024 255

256 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 27. Procedure division structure
The PROCEDURE DIVISION is an optional division.

Program procedure division
The program procedure division consists of optional declaratives, and procedures that contain
sections, paragraphs, sentences, and statements.

Factory procedure division
The factory procedure division contains only factory method definitions.

Object procedure division
The object procedure division contains only object method definitions.

Method procedure division
A method procedure division consists of optional declaratives, and procedures that contain sections,
paragraphs, sentences, and statements. A method can INVOKE other methods, be recursively
invoked, and issue a CALL to a program. A method procedure division cannot contain nested programs
or methods.

For additional details on a method procedure division, see “Requirements for a method procedure
division” on page 258.

Function procedure division
The function procedure division consists of optional declaratives, and procedures that contain
sections, paragraphs, sentences, and statements.

Function prototype procedure division
The function prototype procedure division consists only of the function prototype division header.
No declaratives, sections, paragraphs, sentences, or statements are allowed. A function prototype
procedure division cannot contain nested programs or functions. The function prototype procedure
division is required in the definition of a function prototype.

Format: procedure division
procedure-division-header

factory-or-object-procedure-division-header

method-procedure-division-header

function-division-header

function-prototype-procedure-division-header

DECLARATIVES. sect . use-statement
1

para
END DECLARATIVES.

section-name
2

SECTION

priority-number
3

.
para

sect
section-name SECTION

priority-number
3

para

© Copyright IBM Corp. 1991, 2024 257

paragraph-name.

sentence

Notes:
1 The USE statement is described under “USE statement” on page 705.
2 Section-name can be omitted. If you omit section-name, paragraph-name can be omitted.
3 Priority-numbers are not valid for methods, recursive programs, or programs compiled with the THREAD
option.

Requirements for a method procedure division
There are specific requirements when you code a method procedure division.

The requirements are:

• You can use the EXIT METHOD statement or the GOBACK statement to return control to the invoking
method or program. An implicit EXIT METHOD statement is generated as the last statement of every
method procedure division.

For details on the EXIT METHOD statement, see “Format 3 (method)” on page 343.
• You can use the STOP RUN statement (which terminates the run unit) in a method.
• You can use the RETURN-CODE special register within a method procedure division to access return

codes from subprograms that are called with the CALL statement, but the RETURN-CODE value is not
returned to the invoker of the current method. Use the procedure division RETURNING data name to
return a value to the invoker of the current method. For details, see the discussion of RETURNING
data-name-2 under “The PROCEDURE DIVISION header” on page 258.

You cannot specify the following statements or clauses in a method procedure division:

• ALTER
• ENTRY
• EXIT PROGRAM
• GO TO without a specified procedure name
• SEGMENT-LIMIT
• USE FOR DEBUGGING

The PROCEDURE DIVISION header
The PROCEDURE DIVISION, if specified, is identified by one of the following headers, depending on
whether you are specifying a program, a factory definition, an object definition, a method definition, a
function definition, or a function prototype definition.

The following syntax diagram shows the format for a PROCEDURE DIVISION header in a program.

258 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format: program procedure division header
PROCEDURE DIVISION

USING

BY

REFERENCE

BY

VALUE

data-name-1

RETURNING data-name-2

.

The following syntax diagram shows the format for a PROCEDURE DIVISION header in a factory
paragraph or object paragraph.

Format: factory and object procedure division header
PROCEDURE DIVISION.

The following syntax diagram shows the format for a PROCEDURE DIVISION header in a method.

Format: method procedure division header
PROCEDURE DIVISION

USING

BY

VALUE data-name-1

RETURNING data-name-2

The following syntax diagram shows the format for a PROCEDURE DIVISION header in a user-defined
function.

Chapter 27. Procedure division structure 259

Format: function procedure division header
PROCEDURE DIVISION

USING

BY

REFERENCE

BY

VALUE

data-name-1

RETURNING data-name-2 .

The following syntax diagram shows the format for a PROCEDURE DIVISION header in a function
prototype.

Format: function prototype procedure division header
PROCEDURE DIVISION

USING

BY

REFERENCE

BY

VALUE

data-name-1

RETURNING data-name-2 .

USING phrase
The USING phrase specifies the parameters that a program, method, or user-defined function receives
when it is called or invoked. For function prototypes, the USING phrase specifies the parameters that will
be used for conformance checking during function invocation.

The USING phrase is valid in the PROCEDURE DIVISION header of a called subprogram, invoked
method entered at the beginning of the nondeclaratives portion, invoked user-defined function, or in the
PROCEDURE DIVISION header of a function prototype definition. Each USING identifier must be defined
as a level-01 or level-77 item in the LINKAGE SECTION of the called subprogram, invoked method, or
invoked function.

Data items specified as arguments to user-defined function or function prototype invocations must follow
the rules in “Conformance of parameters for user-defined functions and function prototypes” on page
262.

In a called subprogram entered at the first executable statement following an ENTRY statement, the
USING phrase is valid in the ENTRY statement. Each USING identifier must be defined as a level-01 or
level-77 item in the LINKAGE SECTION of the called subprogram.

260 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

However, a data item specified in the USING phrase of the CALL statement can be a data item of any
level in the DATA DIVISION of the calling COBOL program, method, or function. A data item specified
in the USING phrase of an INVOKE statement can be a data item of any level in the DATA DIVISION
of the invoking COBOL program, method, or function. Likewise, a data item specified as an argument to
a user-defined function invocation can be a data item of any level in the DATA DIVISION of the calling
COBOL program, method, or function.

A data item in the USING phrase of the header can have a REDEFINES clause in its data description entry.

It is possible to call COBOL programs from non-COBOL programs or to pass user parameters from a
system command to a COBOL main program. COBOL methods can be invoked only from Java or COBOL.

The order of appearance of USING identifiers in both calling and called subprograms, or invoking
methods or programs and invoked methods, determines the correspondence of single sets of data
available to both. The correspondence is positional and not by name. For calling and called subprograms,
corresponding identifiers must contain the same number of bytes although their data descriptions need
not be the same.

The order of appearance of arguments in a function invocation of a user-defined function or a
function prototype, and USING identifiers in a function definition with the same name determines the
correspondence of argument to formal parameter. That is, the order is positional and the first argument
corresponds to the first formal parameter, etc. Each argument of a user-defined function or function
prototype invocation must conform to each of its corresponding formal parameters according to the rules
in “Conformance of parameters for user-defined functions and function prototypes” on page 262. The
number of arguments must match the number of formal parameters.

For index-names, no correspondence is established. Index-names in a caller (that can be a program,
method, or function) and index-names in a called routine (that can be a program, method, or function)
always refer to separate indexes.

The identifiers specified in a CALL USING or INVOKE USING statement name the data items available
to the calling program or invoking method or program that can be referred to in the called program
or invoked method. These items can be defined in any DATA DIVISION section. Likewise, identifiers
specified as arguments in a user-defined function invocation name the data items available to the calling
program, method, or function that can be referred to in the invoked function. These items can also be
defined in any DATA DIVISION section.

A given identifier can appear more than once in a USING phrase. The last value passed to it by a CALL
statement, INVOKE statement, or user-defined function invocation is used.

The BY REFERENCE or BY VALUE phrase applies to all parameters that follow until overridden by another
BY REFERENCE or BY VALUE phrase.

BY REFERENCE (for programs and methods)

When an argument is passed BY CONTENT or BY REFERENCE, BY REFERENCE must be specified or
implied for the corresponding formal parameter on the PROCEDURE or ENTRY USING phrase.

BY REFERENCE is the default if neither BY REFERENCE nor BY VALUE is specified.

If the reference to the corresponding data item in the CALL statement declares the parameter to be
passed BY REFERENCE (explicit or implicit), the program executes as if each reference to a USING
identifier in the called subprogram is replaced by a reference to the corresponding USING identifier in
the calling program.

If the reference to the corresponding data item in the CALL statement declares the parameter to
be passed BY CONTENT, the value of the item is moved when the CALL statement is executed and
placed into a system-defined storage item that possesses the attributes declared in the LINKAGE
SECTION for data-name-1. The data description of each parameter in the BY CONTENT phrase of the
CALL statement must be the same, meaning no conversion or extension or truncation, as the data
description of the corresponding parameter in the USING phrase of the header.

Chapter 27. Procedure division structure 261

BY REFERENCE (for functions only)

When an argument is received BY REFERENCE in a function definition, BY REFERENCE must be
specified or implied for the corresponding formal parameter on the PROCEDURE DIVISION USING
phrase.

To pass an argument effectively BY CONTENT on a user-defined function invocation, use the
CONTENT-OF intrinsic function. For details about this intrinsic function, see Chapter 41, “CONTENT-
OF,” on page 537. Also find an example in Passing arguments BY CONTENT to user-defined functions in
the Enterprise COBOL Programming Guide.

BY REFERENCE is the default if neither BY REFERENCE nor BY VALUE is specified.

If the reference to the corresponding argument in the function invocation declares the parameter
to be passed BY REFERENCE explicitly or implicitly, the program executes as if each reference to a
USING identifier in the invoked function was replaced by a reference to the corresponding argument in
the calling program, method, or function.

BY VALUE (for programs and methods)

When an argument is passed BY VALUE, the value of the argument is passed, not a reference to the
sending data item. The receiving subprogram or method has access only to a temporary copy of the
sending data item. Any modifications made to the formal parameters that correspond to an argument
passed BY VALUE do not affect the argument.

Parameters specified in the USING phrase of a method procedure division header must be passed to
the method BY VALUE.

See Passing data in the Enterprise COBOL Programming Guide for examples that illustrate these
concepts.

BY VALUE (for functions only)
When an argument is received BY VALUE in a function definition, the value of the argument is passed,
not a reference to the sending data item. The receiving function has access to only a temporary copy
of the sending data item. Any modifications made to the formal parameters that correspond to an
argument passed BY VALUE do not affect the argument in the invoking program, method, or function.

data-name-1

data-name-1 must be a level-01 or level-77 item in the LINKAGE SECTION.

When data-name-1 is an object reference in a method procedure division header, an explicit class-
name must be specified in the data description entry for that object reference; that is, data-name-1
must not be a universal object reference.

For methods, the parameter data types are restricted to the data types that are interoperable
between COBOL and Java, as listed in “Interoperable data types for OO COBOL and Java” on page
366.

Conformance of parameters for user-defined functions and function prototypes
In the following section, the argument of a user-defined function or function prototype invocation
is considered the sending item, and the corresponding formal parameter defined in the function is
considered the receiving item.

The number of arguments for a user-defined function or function prototype invocation must be the same
as the number of formal parameters specified in the user-defined function definition.

If both an argument and its corresponding formal parameter are elementary items, the conformance rules
for elementary items apply. Otherwise, the conformance rules for group items apply.

Group items

If either the sender or the receiver is an alphanumeric, national, or UTF-8 group item, and:

• If the parameter is passed BY REFERENCE, then the formal parameter (the receiver) must be described
with the same or fewer number of bytes as the corresponding argument (the sender). For variable-

262 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

length data items such as those described with the OCCURS DEPENDING ON clause, the maximum
length is used. No compile-time checking is done for unbounded groups.

• Group items may not be passed BY VALUE.

Elementary items passed BY REFERENCE

For elementary items passed BY REFERENCE, the definition of the formal parameter and the definition of
the argument must have the same BLANK WHEN ZERO, DYNAMIC LENGTH, JUSTIFIED, PICTURE, SIGN,
and USAGE clauses, with the following exceptions:

• Currency symbols match only if the corresponding currency strings are the same.
• Period and comma picture symbols match only if the DECIMAL-POINT IS COMMA clause is in effect for

both the calling program, method, or function and the invoked function, or for neither of them.

Elementary items passed BY VALUE

The formal parameter must be one of the following items:

• Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)
• Floating point (USAGE COMP-1 or COMP-2)
• Function-pointer (USAGE FUNCTION-POINTER)
• Pointer (USAGE POINTER)
• Procedure-pointer (USAGE PROCEDURE-POINTER)
• One single-byte alphanumeric character (such as PIC X or PIC A)
• One national character (PIC N) that is described as an elementary data item of category national

If the formal parameter is of class pointer, the conformance rules will be as if a SET statement were
performed with the argument as the sending operand and the corresponding formal parameter as the
receiving operand.

If the formal parameter is of class numeric, the conformance rules will be as if a COMPUTE statement
were performed with the argument as the sending operand and the corresponding formal parameter as
the receiving operand.

Otherwise, the conformance rules will be as if a MOVE statement were performed with the argument as
the sending operand and the corresponding formal parameter as the receiving operand.

RETURNING phrase
The RETURNING phrase specifies a data item that is to receive the program, method, or function result.
For function prototypes, the RETURNING phrase specifies the kind of function result.

data-name-2
data-name-2 is the RETURNING data item. data-name-2 must be a level-01 or level-77 item in the
LINKAGE SECTION.

Note: An unbounded group cannot be specified as data-name-2.

In a method procedure division header, the data type of data-name-2 must be one of the types
supported for Java interoperation, as listed in “Interoperable data types for OO COBOL and Java” on
page 366.

The RETURNING data item is an output-only parameter. On entry to the method, the initial state of the
RETURNING data item has an undefined and unpredictable value. You must initialize the PROCEDURE
DIVISION RETURNING data item before you reference its value. The value that is returned to the
invoking routine is the value that the data item has at the point of exit from the method. See
“RETURNING phrase” on page 364 for further details on conformance requirements for the INVOKE
RETURNING identifier and the method RETURNING data item.

The PROCEDURE DIVISION RETURNING phrase must be specified for user-defined functions and
function prototype definitions.

Do not use the PROCEDURE DIVISION RETURNING phrase in:

Chapter 27. Procedure division structure 263

• Programs that contain the ENTRY statement.
• Nested programs.
• Main programs: Results of specifying PROCEDURE DIVISION RETURNING on a main program

are undefined. You should specify the PROCEDURE DIVISION RETURNING phrase only on called
subprograms. For main programs, use the RETURN-CODE special register to return a value to the
operating environment.

References to items in the LINKAGE SECTION
Data items defined in the LINKAGE SECTION of the called program, invoked function, or invoked method
can be referenced within the PROCEDURE DIVISION of that program if and only if they satisfy one of the
conditions as listed in the topic.

• They are operands of the USING phrase of the PROCEDURE DIVISION header or the ENTRY statement.
• They are operands of SET ADDRESS OF, ALLOCATE, CALL ... BY REFERENCE ADDRESS OF, or INVOKE ...

BY REFERENCE ADDRESS OF.
• They are defined with a REDEFINES or RENAMES clause, the object of which satisfies the above

conditions.
• They are items subordinate to any item that satisfies the condition in the rules above.
• They are condition-names or index-names associated with data items that satisfy any of the above

conditions.

Declaratives
Declaratives provide one or more special-purpose sections that are executed when an exceptional
condition occurs.

When declarative sections are specified, they must be grouped at the beginning of the procedure division
and the entire PROCEDURE DIVISION must be divided into sections.

Each declarative section starts with a USE statement that identifies the section's function. The series of
procedures that follow specify the actions that are to be taken when the exceptional condition occurs.
Each declarative section ends with another section-name followed by a USE statement, or with the
keywords END DECLARATIVES.

The entire group of declarative sections is preceded by the keyword DECLARATIVES written on the line
after the PROCEDURE DIVISION header. The group is followed by the keywords END DECLARATIVES.
The keywords DECLARATIVES and END DECLARATIVES must each begin in Area A and be followed by a
separator period. No other text can appear on the same line.

In the declaratives part of the PROCEDURE DIVISION, each section header must be followed by a
separator period, and must be followed by a USE statement followed by a separator period. No other text
can appear on the same line.

The USE statement has the following formats:

• “EXCEPTION/ERROR declarative” on page 705
• “DEBUGGING declarative” on page 707

The USE statement itself is never executed; instead, the USE statement defines the conditions that
execute the succeeding procedural paragraphs, which specify the actions to be taken. After the procedure
is executed, control is returned to the routine that activated it.

A declarative procedure can be performed from a nondeclarative procedure.

A nondeclarative procedure can be performed from a declarative procedure.

A declarative procedure can be referenced in a GO TO statement in a declarative procedure.

A nondeclarative procedure can be referenced in a GO TO statement in a declarative procedure.

264 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

You can include a statement that executes a previously called USE procedure that is still in control.
However, to avoid an infinite loop, you must be sure there is an eventual exit at the bottom.

The declarative procedure is exited when the last statement in the procedure is executed.

Procedures
Within the PROCEDURE DIVISION, a procedure consists of a section or a group of sections, and a
paragraph or group of paragraphs.

A procedure-name is a user-defined name that identifies a section or a paragraph.

Section
A section-header optionally followed by one or more paragraphs.
Section-header

A section-name followed by the keyword SECTION, optionally followed by a priority-number,
followed by a separator period.

Section-headers are optional after the keywords END DECLARATIVES or if there are no
declaratives.

Section-name
A user-defined word that identifies a section. A referenced section-name, because it cannot be
qualified, must be unique within the program in which it is defined.

Priority-number
An integer or a positive signed numeric literal ranging in value from 0 through 99. Priority-number
identifies a fixed segment or an independent segment that is to contain the section.

Sections in the declaratives portion must contain priority numbers in the range of 0 through 49.

You cannot specify priority-numbers:

• In a method definition
• In a program that is declared with the RECURSIVE attribute
• In a program compiled with the THREAD compiler option

A section ends immediately before the next section header, or at the end of the PROCEDURE
DIVISION, or, in the declaratives portion, at the keywords END DECLARATIVES.

Segments
A segment consists of all sections in a program that have the same priority-number. Priority-number
determines whether a section is stored in a fixed segment or an independent segment at run time.

Segments with a priority-number of 0 through 49 are fixed segments. Segments with a priority-
number of 50 through 99 are independent segments.

The type of segment (fixed or independent) controls the segmentation feature.

In fixed segments, procedures are always in last-used state. In independent segments, procedures
are in initial state each time the segment receives control from a segment with a different priority-
number, except when the transfer of control results from the execution of a GOBACK or EXIT
PROGRAM statement. Restrictions on the use of ALTER, SORT, and MERGE statements in independent
segments are described under those statements.

Enterprise COBOL does not support the overlay feature of the 85 COBOL Standard segmentation
module.

Paragraph
A paragraph-name followed by a separator period, optionally followed by one or more sentences.

Paragraphs must be preceded by a period because paragraphs always follow either the
IDENTIFICATION DIVISION header, a section, or another paragraph, all of which must end with a
period.

Chapter 27. Procedure division structure 265

Paragraph-name
A user-defined word that identifies a paragraph. A paragraph-name, because it can be qualified,
need not be unique.

If there are no declaratives (format 2), a paragraph-name is not required in the PROCEDURE
DIVISION.

A paragraph ends immediately before the next paragraph-name or section header, or at the end of the
PROCEDURE DIVISION, or, in the declaratives portion, at the keywords END DECLARATIVES.

Paragraphs need not all be contained within sections, even if one or more paragraphs are so
contained.

Sentence
One or more statements terminated by a separator period.

Statement
A syntactically valid combination of identifiers and symbols (literals, relational-operators, and so forth)
beginning with a COBOL statement.

Identifier
The word or words necessary to make unique reference to a data item, optionally including
qualification, subscripting, indexing, and reference-modification. In any PROCEDURE DIVISION
reference (except the class test), the contents of an identifier must be compatible with the class
specified through its PICTURE clause, otherwise results are unpredictable.

Execution begins with the first statement in the PROCEDURE DIVISION, excluding declaratives.
Statements are executed in the order in which they are presented for compilation, unless the statement
rules dictate some other order of execution.

The end of the PROCEDURE DIVISION is indicated by one of the following items:

• An IDENTIFICATION DIVISION header that indicates the start of a nested source program
• An END PROGRAM, END METHOD, END FACTORY, or END OBJECT marker
• The physical end of a program; that is, the physical position in a source program after which no further

source program lines occur

Arithmetic expressions
Arithmetic expressions are used as operands of certain conditional and arithmetic statements.

An arithmetic expression can consist of any of the following items:

1. An identifier described as a numeric elementary item (including numeric functions)
2. A numeric literal
3. The figurative constant ZERO
4. Identifiers and literals, as defined in items 1, 2, and 3, separated by arithmetic operators
5. Two arithmetic expressions, as defined in items 1, 2, 3, or 4, separated by an arithmetic operator
6. An arithmetic expression, as defined in items 1, 2, 3, 4, or 5, enclosed in parentheses

Any arithmetic expression can be preceded by a unary operator.

Identifiers and literals that appear in arithmetic expressions must represent either numeric elementary
items or numeric literals on which arithmetic can be performed.

If an exponential expression is evaluated as both a positive and a negative number, the result is always
the positive number. For example, the square root of 4:

4 ** 0.5

is evaluated as +2 and -2. Enterprise COBOL always returns +2.

266 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If the value of an expression to be raised to a power is zero, the exponent must have a value greater than
zero. Otherwise, the size error condition exists. In any case where no real number exists as the result of
an evaluation, the size error condition exists.

Arithmetic operators
Five binary arithmetic operators and two unary arithmetic operators can be used in arithmetic
expressions. These operators are represented by specific characters that must be preceded and followed
by a space.

These binary and unary arithmetic operators are shown in Table 19 on page 267.

Table 19. Binary and unary operators

Binary operator Meaning Unary operator Meaning

+ Addition + Multiplication by +1

- Subtraction - Multiplication by -1

* Multiplication

/ Division

** Exponentiation

Limitation: Exponents in fixed-point exponential expressions cannot contain more than nine digits. The
compiler will truncate any exponent with more than nine digits. In the case of truncation, the compiler
will issue a diagnostic message if the exponent is a literal or constant; if the exponent is a variable or
data-name, a diagnostic message is issued at run time.

Parentheses can be used in arithmetic expressions to specify the order in which elements are to be
evaluated.

Expressions within parentheses are evaluated first. When expressions are contained within nested
parentheses, evaluation proceeds from the least inclusive to the most inclusive set.

When parentheses are not used, or parenthesized expressions are at the same level of inclusiveness, the
following hierarchic order is implied:

1. Unary operator
2. Exponentiation
3. Multiplication and division
4. Addition and subtraction

Parentheses either eliminate ambiguities in logic where consecutive operations appear at the same
hierarchic level, or modify the normal hierarchic sequence of execution when this is necessary. When the
order of consecutive operations at the same hierarchic level is not completely specified by parentheses,
the order is from left to right.

An arithmetic expression can begin only with a left parenthesis, a unary operator, or an operand (that is,
an identifier or a literal). It can end only with a right parenthesis or an operand. An arithmetic expression
must contain at least one reference to an identifier or a literal.

There must be a one-to-one correspondence between left and right parentheses in an arithmetic
expression, with each left parenthesis placed to the left of its corresponding right parenthesis.

If the first operator in an arithmetic expression is a unary operator, it must be immediately preceded by
a left parenthesis if that arithmetic expression immediately follows an identifier or another arithmetic
expression.

The following table shows permissible arithmetic symbol pairs. An arithmetic symbol pair is the
combination of two such symbols in sequence. In the table:

Chapter 27. Procedure division structure 267

Yes
Indicates a permissible pairing.

No
Indicates that the pairing is not permitted.

Table 20. Valid arithmetic symbol pairs

 Identifier or
literal second
symbol

* / ** + -
second
symbol

Unary + or
unary -
second
symbol

(second
symbol

) second
symbol

Identifier or literal
first symbol

No Yes No No Yes

* / ** + -
first symbol

Yes No Yes Yes No

Unary + or unary -
first symbol

Yes No No Yes No

(
first symbol

Yes No Yes Yes No

)
first symbol

No Yes No No Yes

Conditional expressions
A conditional expression causes the object program to select alternative paths of control, depending on
the truth value of a test. Conditional expressions are specified in EVALUATE, IF, PERFORM, and SEARCH
statements.

A conditional expression can be specified in either simple conditions or complex conditions. Both simple
and complex conditions can be enclosed within any number of paired parentheses; the parentheses do
not change whether the condition is simple or complex.

Simple conditions
There are five simple conditions.

The simple conditions are:

• Class condition
• Condition-name condition
• Relation condition
• Sign condition
• Switch-status condition

A simple condition has a truth value of either true or false.

268 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Class condition
The class condition determines whether the content of a data item is alphabetic, alphabetic-lower,
alphabetic-upper, numeric, DBCS, KANJI, or contains only the characters in the set of characters specified
by the CLASS clause as defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Format
identifier-1

IS NOT

NUMERIC

ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name

DBCS

KANJI

identifier-1
Must reference a data item described with one of the following usages:

• DISPLAY, NATIONAL, COMPUTATIONAL-3, or PACKED-DECIMAL when NUMERIC is specified
• DISPLAY-1 when DBCS or KANJI is specified
• DISPLAY or NATIONAL when ALPHABETIC, ALPHABETIC-UPPER, or ALPHABETIC-LOWER is
specified

• DISPLAY when class-name is specified

Must not be of class alphabetic when NUMERIC is specified.

Must not be of class numeric when ALPHABETIC, ALPHABETIC-UPPER, or ALPHABETIC-LOWER is
specified.

Table 21 on page 270 lists the forms of class condition that are valid for each type of identifier.

If identifier-1 is a function-identifier, it must reference an alphanumeric or national function.

An alphanumeric group item can be used in a class condition where an elementary alphanumeric item
can be used, except that the NUMERIC class condition cannot be used if the group contains one or
more signed elementary items.

When identifier-1 is described with usage NATIONAL, the class-condition tests for the national
character representation of the characters associated with the specified character class. For example,
specifying a class condition of the form IF national-item IS ALPHABETIC is a test for the
lowercase and uppercase letters Latin capital letter A through Latin capital letter Z and the space, as
represented in national characters. Specifying IF national-item is NUMERIC is a test for the
characters 0 through 9.

When identifier-1 is described with usage UTF-8, the class-condition tests for the UTF-8 character
representation of the characters associated with the specified character class. For example,
specifying a class condition of the form IF utf8-item IS ALPHABETIC is a test for the lowercase
and uppercase letters Latin capital letter A through Latin capital letter Z and the space, as represented
by UTF-8 characters.

NOT
When used, NOT and the next keyword define the class test to be executed for truth value. For
example, NOT NUMERIC is a truth test for determining that the result of a NUMERIC class test is false
(in other words, the item contains data that is nonnumeric).

NUMERIC
identifier-1 consists entirely of the characters 0 through 9, with or without an operational sign.

Chapter 27. Procedure division structure 269

If its PICTURE does not contain an operational sign, the identifier being tested is determined to be
numeric only if the contents are numeric and an operational sign is not present.

If its PICTURE does contain an operational sign, the identifier being tested is determined to be
numeric only if the item is an elementary item, the contents are numeric, and a valid operational sign
is present.

Usage note: Valid operational signs are determined from the setting of the NUMCLS installation
option and the NUMPROC compiler option. For more information, see Checking for incompatible data
(numeric class test) in the Enterprise COBOL Programming Guide.

ALPHABETIC
identifier-1 consists entirely of any combination of the lowercase or uppercase Latin alphabetic
characters A through Z and the space.

ALPHABETIC-LOWER
identifier-1 consists entirely of any combination of the lowercase Latin alphabetic characters a
through z and the space.

ALPHABETIC-UPPER
identifier-1 consists entirely of any combination of the uppercase Latin alphabetic characters A
through Z and the space.

class-name
identifier-1 consists entirely of the characters listed in the definition of class-name in the SPECIAL-
NAMES paragraph.

DBCS
identifier-1 consists entirely of DBCS characters.

A range check is performed on the item for valid character representation. The valid range is X'41'
through X'FE' for both bytes of each DBCS character and X'4040' for the DBCS blank.

KANJI
identifier-1 consists entirely of DBCS characters.

A range check is performed on the item for valid character representation. The valid range is from
X'41' through X'7E' for the first byte, from X'41' through X'FE' for the second byte, and X'4040' for the
DBCS blank.

Table 21. Valid forms of the class condition for different types of data items

Type of data item referenced by
identifier-1

Valid forms of the class condition

Alphabetic ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
class-name

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER
NOT class-name

Alphanumeric, alphanumeric-
edited, or numeric-edited

ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
NUMERIC
class-name

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER
NOT NUMERIC
NOT class-name

External-decimal
or internal-decimal

NUMERIC NOT NUMERIC

DBCS DBCS
KANJI

NOT DBCS
NOT KANJI

270 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 21. Valid forms of the class condition for different types of data items (continued)

Type of data item referenced by
identifier-1

Valid forms of the class condition

National NUMERIC
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER

NOT NUMERIC
NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER

Numeric NUMERIC
class-name

NOT NUMERIC
NOT class-name

Condition-name condition
A condition-name condition tests a conditional variable to determine whether its value is equal to any
values that are associated with the condition-name.

Format
condition-name-1

A condition-name is used in conditions as an abbreviation for the relation condition. The rules for
comparing a conditional variable with a condition-name value are the same as those specified for relation
conditions.

If condition-name-1 has been associated with a range of values (or with several ranges of values), the
conditional variable is tested to determine whether its value falls within the ranges, including the end
values. The result of the test is true if one of the values that corresponds to the condition-name equals the
value of its associated conditional variable.

Condition-names are allowed for alphanumeric, DBCS, national, UTF-8, and floating-point data items, as
well as others, as defined for the condition-name format of the VALUE clause.

The following example illustrates the use of conditional variables and condition-names:

01 AGE-GROUP PIC 99.
 88 INFANT VALUE 0.
 88 BABY VALUE 1, 2.
 88 CHILD VALUE 3 THRU 12.
 88 TEENAGER VALUE 13 THRU 19.

AGE-GROUP is the conditional variable; INFANT, BABY, CHILD, and TEENAGER are condition-names.
For individual records in the file, only one of the values specified in the condition-name entries can be
present.

The following IF statements can be added to the above example to determine the age group of a specific
record:

IF INFANT... (Tests for value 0)
IF BABY... (Tests for values 1, 2)
IF CHILD... (Tests for values 3 through 12)
IF TEENAGER... (Tests for values 13 through 19)

Depending on the evaluation of the condition-name condition, alternative paths of execution are taken by
the object program.

Chapter 27. Procedure division structure 271

Relation conditions
A relation condition specifies the comparison of two operands. The relational operator that joins the two
operands specifies the type of comparison. The relation condition is true if the specified relation exists
between the two operands; the relation condition is false if the specified relation does not exist.

Comparisons are defined for the following cases:

• Two operands of class alphabetic
• Two operands of class alphanumeric
• Two operands of class DBCS
• Two operands of class national
• Two operands of class numeric
• Two operands of class UTF-8.
• Two operands of different classes where each operand is one of the classes alphabetic, alphanumeric,

national or UTF-8
• Two operands where one is a numeric integer and the other is class alphanumeric or national
• Two operands where one is class DBCS and the other is class national
• Comparisons involving indexes or index data items
• Two data pointer operands
• Two procedure pointer operands
• Two function pointer operands
• Two object reference operands
• An alphanumeric group and any operand that has usage DISPLAY, DISPLAY-1, NATIONAL, or UTF-8.

The following relation condition formats are defined:

• A general relation condition, for comparisons that involve only data items, literals, index-names, or
index data items. For details, see “General relation conditions” on page 272.

• A data pointer relation condition. For details, see “Data pointer relation conditions” on page 280.
• A program pointer relation condition, for comparison of procedure pointers or function pointers. For

details, see “Procedure-pointer and function-pointer relation conditions” on page 281.
• An object-reference relation condition. For details, see “Object-reference relation conditions” on page

282.

General relation conditions
A general relation condition compares two operands, either of which can be an identifier, literal,
arithmetic expression, or index-name.

272 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 1: general relation condition
operand-1

IS NOT

GREATER

THAN

 >

LESS

THAN

 <

EQUAL

TO

 =

GREATER

THAN

OR EQUAL

TO

 >=

LESS

THAN

OR EQUAL

TO

 <=

operand-2

operand-1
The subject of the relation condition. Can be an identifier, literal, function-identifier, arithmetic
expression, or index-name.

operand-2
The object of the relation condition. Can be an identifier, literal, function-identifier, arithmetic
expression, or index-name.

An alphanumeric literal can be enclosed in parentheses within a relation condition.

The relation condition must contain at least one reference to an identifier.

The relational operators, shown in Table 22 on page 273, specify the type of comparison to be made.
Each relational operator must be preceded and followed by a space. The two characters of the relational
operators >= and <= must not have a space between them.

Table 22. Relational operators and their meanings

Relational operator Can be written Meaning

IS GREATER THAN IS > Greater than

IS NOT GREATER THAN IS NOT > Not greater than

IS LESS THAN IS < Less than

IS NOT LESS THAN IS NOT < Not less than

IS EQUAL TO IS = Equal to

IS NOT EQUAL TO IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO IS >= Is greater than or equal to

IS LESS THAN OR EQUAL TO IS <= Is less than or equal to

In a general relation condition, data items, literals, and figurative constants of class alphabetic,
alphanumeric, DBCS, national, UTF-8, and numeric are compared using the following comparison types:

Chapter 27. Procedure division structure 273

Comparison type Meaning

Alphanumeric Comparison of the alphanumeric character value of two operands

DBCS Comparison of the DBCS character value of two operands

National Comparison of the national character value of two operands

UTF-8 Comparison of the UTF-8 character value of two operands

Numeric Comparison of the algebraic value of two operands

Group Comparison of the alphanumeric character value of two operands,
where one or both operands is an alphanumeric group item

Table 23 on page 275 and Table 24 on page 276 show the permissible pairs for comparisons with
different types of operands. The comparison type is indicated at the row and column intersection for
permitted comparisons, using the following key:

Alph
Comparison of alphanumeric characters (further described in “Alphanumeric comparisons” on page
276)

DBCS
Comparison of DBCS characters (further described in “DBCS comparisons” on page 277)

Nat
Comparison of national characters (further described in “National comparisons” on page 277)

UTF-8
Comparison of UTF-8 characters (further described in “UTF-8 comparisons” on page 278)

Num
Comparison of algebraic value (further described in “Numeric comparisons” on page 279)

Group
Comparison of alphanumeric characters involving an alphanumeric group (further described in “Group
comparisons” on page 279)

(Int)
Integer items only (combined with comparison type Alph, Nat, Num, or Group)

Blank
Comparison is not allowed

For rules and restrictions for comparisons involving index-names and index data items, see “Comparison
of index-names and index data items” on page 279.

Introduction to Table 23 on page 275: This table is organized in the following manner:

• In the first column, under "Type of data item or literal", each row identifies a type of operand. In
some cases, the type of operand references a grouping of operands that have common properties
for comparison. For example, the row for "Alphanumeric character items" references all the types of
operands that are listed in the cell, as follows:

– Data items of category:

- Alphanumeric
- Alphanumeric- edited
- Numeric-edited with usage DISPLAY

– Alphanumeric functions
• Subsequent column headings refer to the type of an operand or a grouping of operands. For example,

the column heading "Alphabetic and alphanumeric character items" refers to the types of operands
identified as "Alphabetic data items" and all the types of operands that are grouped under the operand
titled "Alphanumeric character items".

274 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• Literals are listed as a type of operand only in the first column. They do not appear as column headings
because literals cannot be used as both operands of a relation condition.

Table 23. Comparisons involving data items and literals

Type of data item or literal Alpha-
numeric
group
items

Alpha-
betic and
alpha-
numeric
characte
r items

Zoned
decimal
items

Native
numeri
c items

Alpha-
numeric
floating-
point
items

National
characte
r items

National
decimal
items

National
floating-
point
items

DBC
S
item
s

UTF-
8
char
acter
item
s

Alphanumeric group item Group Group Group
(Int)

 Group Group Group
(Int)

Group Grou
p

Grou
p

Alphabetic data items Group Alph Alph
(Int)

 Alph Nat Alph (Int) Nat

Alphanumeric character
items:

• Data items of category:

– Alphanumeric
– Alphanumeric- edited
– Numeric-edited with

usage DISPLAY
• Alphanumeric functions

Group Alph Alph
(Int)

 Alph Nat Alph (Int) Nat UTF-
8

Alphanumeric literals Group Alph Alph
(Int)

 Alph Nat Alph (Int) Nat UTF-
8

Numeric literals Group
(Int)

Alph (Int) Num Num Num Nat (Int) Num Num

Zoned decimal data items Group
(Int)

Alph (Int) Num Num Num Nat (Int) Num Num

Native numeric items:

• Binary
• Arithmetic expression
• Internal decimal
• Internal floating point

Numeric and integer intrinsic
functions

Num Num Num Num Num

Display floating-point items Group Alph Num Num Num Nat Num Num

Floating-point literals Num Num Num Num Num

National character items:

• Data items of category:

– National
– National- edited
– Numeric- edited with

usage NATIONAL
• National intrinsic functions
• National groups (treated as

elementary item)

Group Nat Nat
(Int)

 Nat Nat Nat (Int) Nat Nat Grou
p

National literals Group Nat Nat
(Int)

 Nat Nat Nat (Int) Nat Nat UTF-
8

National decimal items Group
(Int)

Alph (Int) Num Num Num Nat (Int) Num Num

National floating-point items Group Nat Num Num Num Nat Num Num

Chapter 27. Procedure division structure 275

Table 23. Comparisons involving data items and literals (continued)

Type of data item or literal Alpha-
numeric
group
items

Alpha-
betic and
alpha-
numeric
characte
r items

Zoned
decimal
items

Native
numeri
c items

Alpha-
numeric
floating-
point
items

National
characte
r items

National
decimal
items

National
floating-
point
items

DBC
S
item
s

UTF-
8
char
acter
item
s

DBCS data items Group Nat DBC
S

DBCS literals Group Nat DBC
S

UTF-8 character items Group UTF-8 UTF-8 UTF-
8

UTF-8 literals Group UTF-8 UTF-8 UTF-
8

Table 24. Comparisons involving figurative constants

 Figurative constant Alpha-
numeric
group
items

Alpha-
betic and
alpha-
numeric
character
items

Zoned
decimal
items

Native
numeric
items

Alpha-
numeric
floating
point
items

National
character
items

National
decimal
items

National
floating
point
items

DBCS
items

UTF-8
data
items

ZERO Group Alph Num Num Num Nat Num Num UTF-8

SPACE Group Alph Alph (Int) Alph Nat Nat (Int) Nat DBCS UTF-8

HIGH-VALUE,
LOW-VALUE
QUOTE

Group Alph Alph (Int) Alph Nat Nat (Int) Nat UTF-8

Symbolic character Group Alph Alph (Int) Alph Nat Nat (Int) Nat UTF-8

ALL alphanumeric literal Group Alph Alph (Int) Alph Nat Nat (Int) Nat UTF-8

ALL national literal Group Nat Nat (Int) Nat Nat Nat (Int) Nat Nat UTF-8

ALL UTF-8 literal UTF-8 UTF-8 UTF-8 UTF-8 UTF-8 UTF-8 UTF-8 UTF-8 UTF-8

ALL DBCS literal Group Nat DBCS

Alphanumeric comparisons
An alphanumeric comparison is a comparison of the single-byte character values of two operands.

When one of the operands is neither class alphanumeric nor class alphabetic, that operand is processed
as follows:

• A display floating-point data item is treated as though it were a data item of category alphanumeric,
rather than as a numeric value.

• A zoned decimal integer operand is treated as though it were moved to a temporary elementary data
item of category alphanumeric with a length the same as the total number of digits in the number,
according to the rules of the MOVE statement.

When the ZWB compiler option is in effect, the unsigned value of the integer operand is moved to the
temporary data item. When the NOZWB compiler option is specified, the signed value is moved to the
temporary data item. See ZWB in the Enterprise COBOL Programming Guide for more details about the
ZWB (NOZWB) compiler option.

Comparison then proceeds with the temporary data item of category alphanumeric.

Comparison of two alphanumeric operands
Alphanumeric comparisons are made with respect to the collating sequence of the character set in use as
follows:

276 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• For the EBCDIC character set, the EBCDIC collating sequence is used.
• For the ASCII character set, the ASCII collating sequence is used. (See Appendix C, “EBCDIC and ASCII

collating sequences,” on page 751.)
• When the PROGRAM COLLATING SEQUENCE clause is specified in the object-computer paragraph,

the collating sequence used is the one associated in the special-names paragraph with the specified
alphabet-name.

The size of each operand is the total number of character positions in that operand; the size affects the
result of the comparison. There are two cases to consider:

Operands of equal size
Characters in corresponding positions of the two operands are compared, beginning with the leftmost
character and continuing through the rightmost character.

If all pairs of characters through the last pair evaluate as equal, the operands are equal.

If a pair of unequal characters is encountered, the characters are tested to determine their relative
positions in the collating sequence. The operand that contains the character higher in the sequence is
considered the greater operand.

Operands of unequal size
If the operands are of unequal size, the comparison is made as though the shorter operand were
extended to the right with enough spaces to make the operands equal in size.

The higher collating value is determined using the hexadecimal value of characters.

Standard comparison

A standard comparison is any comparison that is not based on a locale. The standard comparison
method depends on whether the operands to be compared are of equal length or unequal length.

If the operands are of unequal length, the comparison proceeds as though the shorter operand were
padded on the right with appropriate space characters to make the operands of equal length. The
comparison then proceeds according to the rules for the comparison of operands of equal length.

If the operands are of equal length, the comparison proceeds by comparing corresponding character
positions in the two operands, starting from the leftmost position, until either unequal characters are
encountered or the rightmost character position is reached, whichever comes first. The operands are
determined to be equal if all corresponding characters are equal.

The first-encountered unequal character in the operands is compared to determine the relation of
the operands. The operand that contains the character with the higher collating value is the greater
operand.

DBCS comparisons
A DBCS comparison is a comparison of two DBCS operands.

The following rules apply to a DBCS comparison:

• If the DBCS operands are not the same length, the comparison is made as though the shorter operand
were padded on the right with DBCS spaces to the length of the longer operand.

• The comparison is based on the binary collating sequence of the hexadecimal values of the DBCS
characters.

National comparisons
A national comparison is a comparison of the national character value of two operands of class national.

When the relation condition specifies an operand that is neither class national nor class UTF-8, that
operand is converted to a data item of category national before the comparison. When a UTF-8 item is

Chapter 27. Procedure division structure 277

compared with a national item, the comparison is always done in UTF-8. The following list describes the
conversion of operands to category national.

DBCS
A DBCS operand is treated as though it were moved to a temporary data item of category national of
the same length as the DBCS operand. DBCS characters are converted to the corresponding national
characters. The source code page used for the conversion is the one in effect for the CODEPAGE
compiler option when the source code was compiled.

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited with usage DISPLAY and UTF-8
The operand is treated as though it were moved to a temporary data item of category national of
the length needed to represent the number of character positions in that operand. Alphanumeric
characters are converted to the corresponding national characters. The source code page used for
the conversion is the one in effect for the CODEPAGE compiler option when the source code was
compiled.

Numeric integer
A numeric integer operand is treated as though it were moved to a temporary data item of category
alphanumeric of a length the same as the number of digits in the integer. The unsigned value is used.
The resulting temporary data item is then converted as an alphanumeric operand.

External floating-point
A display floating-point item is treated as though it were a data item of category alphanumeric, rather
than as a numeric value, and then converted as an alphanumeric operand.

A national floating-point item is treated as though it were a data item of category national, rather than
as a numeric value.

The implicit moves for the conversions are carried out in accordance with the rules of the MOVE
statement.

The resulting category national data item is used in the comparison of two national operands.

Comparison of two national operands
If the operands are of unequal length, the comparison proceeds as though the shorter operand were
padded on the right with the default national space character (NX'0020') to make the operands of equal
length. The comparison then proceeds according to the rules for the comparison of operands of equal
length.

If the operands are of equal length, the comparison proceeds by comparing corresponding national
character positions in the two operands, starting from the leftmost position, until either unequal national
characters are encountered or the rightmost national character position is reached, whichever comes
first. The operands are determined to be equal if all corresponding national characters are equal.

The first-encountered unequal national character in the operands is compared to determine the relation
of the operands. The operand that contains the national character with the higher collating value is the
greater operand.

The higher collating value is determined using the hexadecimal value of characters.

The PROGRAM COLLATING SEQUENCE clause has no effect on comparisons of national operands.

UTF-8 comparisons
A UTF-8 comparison is a comparison of two operands of class UTF-8. When the relation condition
specifies an operand that is not class UTF-8, that operand is converted to a data item of category UTF-8
before the comparison.

Alphabetic, alphanumeric, alphanumeric-edited, numeric-edited with usage DISPLAY, national,
national-edited and numeric-edited with usage NATIONAL

The operand is treated as though it were moved to a temporary data item of category UTF-8 of
the length needed to represent the number of character positions in that operand. Alphanumeric

278 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

characters are converted to the corresponding UTF-8 characters. The source code page used for
the conversion is the one in effect for the CODEPAGE compiler option when the source code was
compiled.

The implicit moves for the conversions are carried out in accordance with the rules of the MOVE
statement.

The resulting category UTF-8 data item is used in the comparison of two UTF-8 operands.

Comparison of two UTF-8 operands
If the operands are of unequal length, the comparison proceeds as though the shorter operand were
padded on the right with the default UTF-8 space character (UX'20') to make the operands of equal
length. The comparison then proceeds according to the rules for the comparison of operands of equal
length.

If the operands are of equal length, the comparison proceeds by comparing corresponding UTF-8
character positions in the two operands, starting from the leftmost position, until either unequal
UTF-8 characters are encountered or the rightmost UTF-8 character position is reached, whichever
comes first. The operands are determined to be equal if all corresponding UTF-8 characters are equal.

The first-encountered unequal UTF-8 character in the operands is compared to determine the relation
of the operands. The operand that contains the UTF-8 character with the higher collating value is the
greater operand.

Note: The higher collating value is determined using the hexadecimal value of characters, and the
PROGRAM COLLATING SEQUENCE clause has no effect on comparisons of UTF-8 operands.

Numeric comparisons
A numeric comparison is a comparison of the algebraic value of two operands of class numeric.

When the algebraic values of numeric operands are compared:

• The length (number of digits) of the operands is not significant.
• The usage of the operands is not significant.
• Unsigned numeric operands are considered positive.
• All zero values compare equal; the presence or absence of a sign does not affect the result.

The behavior of numeric comparisons depends on the settings of the NUMPROC and INVDATA compiler
options. For details, see NUMPROC and INVDATA in the Enterprise COBOL Programming Guide.

Group comparisons
A group comparison is a comparison of the alphanumeric character values of two group item operands.

For the comparison operation between fixed-length groups, each operand is treated as though it were an
elementary data item of category alphanumeric of the same size as the operand, in bytes. The comparison
then proceeds as for two elementary operands of category alphanumeric, as described in “Alphanumeric
comparisons” on page 276.

Comparing a dynamic-length group with another group is not allowed.

Usage note: There is no conversion of data for group comparisons. The comparison operates on bytes of
data without regard to data representation. The result of comparing an elementary item or literal operand
to an alphanumeric group item is predictable when that operand and the content of the group item have
the same data representation.

Comparison of index-names and index data items
Comparisons involving index-names, index data items, or both conform to rules.

The rules for comparisons are:

Chapter 27. Procedure division structure 279

• The comparison of two index-names is actually the comparison of the corresponding occurrence
numbers.

• In the comparison of an index-name with a data item (other than an index data item), or in the
comparison of an index-name with a literal, the occurrence number that corresponds to the value of the
index-name is compared with the data item or literal.

• In the comparison of an index-name with an arithmetic expression, the occurrence number that
corresponds to the value of the index-name is compared with the arithmetic expression.

Because an integer function can be used wherever an arithmetic expression can be used, you can
compare an index-name to an integer or numeric function.

• In the comparison of an index data item with an index-name or another index data item, the actual
values are compared without conversion. Results of any other comparison involving an index data item
are undefined.

Valid comparisons for index-names and index data items are shown in the following table.

Table 25. Comparisons for index-names and index data items

Operands
compared

Index-name Index data
item

Data-name
(numeric
integer only)

Literal (numeric
integer only)

Arithmetic
Expression

Index-name Compare
occurrence
number

Compare
without
conversion

Compare
occurrence
number with
content of
referenced
data item

Compare
occurrence
number with
literal

Compare
occurrence
number with
arithmetic
expression

Index data
item

Compare
without
conversion

Compare
without
conversion

Invalid Invalid Invalid

Data pointer relation conditions
Only EQUAL and NOT EQUAL are allowed as relational operators when specifying pointer data items.

Pointer data items are items defined explicitly as USAGE POINTER, or are ADDRESS OF special registers,
which are implicitly defined as USAGE POINTER.

The operands are equal if the two addresses used in the comparison would both result in the same
storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH format-1 statements. It is not
allowed in SEARCH format-2 (SEARCH ALL) statements because there is no meaningful ordering that can
be applied to pointer data items.

280 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 2: data-pointer relation condition
ADDRESS OF identifier-1

identifier-2

NULL

NULLS

IS NOT

EQUAL

TO

 =

ADDRESS OF identifier-3

identifier-4

NULL

NULLS

identifier-1 , identifier-3
Can specify any level item defined in the LINKAGE SECTION, except 66 and 88.

identifier-2 , identifier-4
Must be described as USAGE POINTER.

NULL, NULLS
Can be used only if the other operand is defined as USAGE POINTER. That is, NULL=NULL is not
allowed.

The following table summarizes the permissible comparisons for USAGE POINTER, NULL, and ADDRESS
OF.

Table 26. Permissible comparisons for USAGE POINTER, NULL, and ADDRESS OF

 Permissible
comparisons USAGE POINTER

second operand
ADDRESS OF
second operand

NULL or NULLS
second operand

USAGE POINTER
first operand

Yes Yes Yes

ADDRESS OF
first operand

Yes Yes Yes

NULL/NULLS
first operand

Yes Yes No

Yes
Comparison allowed only for EQUAL, NOT EQUAL

No
No comparison allowed

Procedure-pointer and function-pointer relation conditions
Only EQUAL and NOT EQUAL are allowed as relational operators when specifying procedure-pointer or
function-pointer data items in a relation condition.

Procedure-pointer data items are defined explicitly as USAGE PROCEDURE-POINTER. Function-pointer
data items are defined explicitly as USAGE FUNCTION-POINTER.

Chapter 27. Procedure division structure 281

The operands are equal if the two addresses used in the comparison would both result in the same
storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH format-1 statements. It is not
allowed in SEARCH format-2 (SEARCH ALL) statements, because there is no meaningful ordering that can
be applied to procedure-pointer data items.

Format 3: procedure-pointer and function-pointer relation condition

identifier-1

NULL

NULLS

IS NOT

EQUAL

TO

 =

identifier-2

NULL

NULLS

identifier-1 , identifier-2
Must be described as USAGE PROCEDURE-POINTER or USAGE FUNCTION-POINTER. identifier-1 and
identifier-2 need not be described the same.

NULL, NULLS
Can be used only if the other operand is defined as USAGE FUNCTION-POINTER or USAGE
PROCEDURE-POINTER. That is, NULL=NULL is not allowed.

Object-reference relation conditions
A data item of usage OBJECT REFERENCE can be compared for equality or inequality with another data
item of usage OBJECT REFERENCE or with NULL, NULLS, or SELF.

Format 4: object-reference relation condition
object-reference-identifier-1

SELF

NULL

NULLS

IS NOT

EQUAL

TO

 =

object-reference-identifier-2

SELF

NULL

NULLS

A comparison with SELF is allowed only in a method.

Two object-references compare equal only if the data items identify the same object.

282 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Sign condition
The sign condition determines whether the algebraic value of a numeric operand is greater than, less
than, or equal to zero.

Format: sign condition
operand-1

IS NOT

POSITIVE

NEGATIVE

ZERO

operand-1
Must be defined as a numeric identifier, or as an arithmetic expression that contains at least one
reference to a variable. operand-1 can be defined as a floating-point identifier.

The operand is:

• POSITIVE if its value is greater than zero
• NEGATIVE if its value is less than zero
• ZERO if its value is equal to zero

An unsigned operand is either POSITIVE or ZERO.

NOT
One algebraic test is executed for the truth value of the sign condition. For example, NOT ZERO is
regarded as true when the operand tested is positive or negative in value.

The results of the sign condition test depend on the setting of the NUMPROC compiler option. For details,
see NUMPROC in the Enterprise COBOL Programming Guide.

Switch-status condition
The switch-status condition determines the on or off status of a UPSI switch.

Format
condition-name

condition-name
Must be defined in the special-names paragraph as associated with the on or off value of an UPSI
switch. (See “SPECIAL-NAMES paragraph” on page 124.)

The switch-status condition tests the value associated with condition-name. (The value is considered to
be alphanumeric.) The result of the test is true if the UPSI switch is set to the value (0 or 1) corresponding
to condition-name.

Complex conditions
A complex condition is formed by combining simple conditions, combined conditions, or complex
conditions with logical operators, or negating those conditions with logical negation.

Each logical operator must be preceded and followed by a space. The following table shows the logical
operators and their meanings.

Chapter 27. Procedure division structure 283

Table 27. Logical operators and their meanings

Logical
operator

Name Meaning

AND Logical
conjunction

The truth value is true when both conditions are true.

OR Logical
inclusive OR

The truth value is true when either or both conditions are true.

NOT Logical
negation

Reversal of truth value (the truth value is true if the condition is false).

Unless modified by parentheses, the following list is the order of precedence (from highest to lowest):

1. Arithmetic operations
2. Simple conditions
3. NOT
4. AND
5. OR

The truth value of a complex condition (whether parenthesized or not) is the truth value that results from
the interaction of all the stated logical operators on either of the following options:

• The individual truth values of simple conditions
• The intermediate truth values of conditions logically combined or logically negated

A complex condition can be either of the following options:

• A negated simple condition
• A combined condition (which can be negated)

Negated simple conditions
A simple condition is negated through the use of the logical operator NOT.

Format
NOT condition-1

The negated simple condition gives the opposite truth value of the simple condition. That is, if the truth
value of the simple condition is true, then the truth value of that same negated simple condition is false,
and vice versa.

Placing a negated simple condition within parentheses does not change its truth value. That is, the
following two statements are equivalent:

NOT A IS EQUAL TO B.
NOT (A IS EQUAL TO B).

284 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Combined conditions
Two or more conditions can be logically connected to form a combined condition.

Format

condition-1 AND

OR

condition-2

The condition to be combined can be any of the following ones:

• A simple-condition
• A negated simple-condition
• A combined condition
• A negated combined condition (that is, the NOT logical operator followed by a combined condition

enclosed in parentheses)
• A combination of the preceding conditions that is specified according to the rules in the following table

Table 28. Combined conditions—permissible element sequences

Combined
condition element

Left
most

When not leftmost, can be
immediately preceded by:

Right
most

When not rightmost, can be
immediately followed by:

simple-condition Yes OR
NOT
AND
(

Yes OR
AND
)

OR
AND

No simple-condition
)

No simple-condition
NOT
(

NOT Yes OR
AND
(

No simple-condition
(

(Yes OR
NOT
AND
(

No simple-condition
NOT
(

) No simple-condition
)

Yes OR
AND
)

Parentheses are never needed when either ANDs or ORs (but not both) are used exclusively in one
combined condition. However, parentheses might be needed to modify the implicit precedence rules to
maintain the correct logical relation of operators and operands.

There must be a one-to-one correspondence between left and right parentheses, with each left
parenthesis to the left of its corresponding right parenthesis.

Chapter 27. Procedure division structure 285

The following table illustrates the relationships between logical operators and conditions C1 and C2.

Table 29. Logical operators and evaluation results of combined conditions

Value
for C1

Value
for C2

C1
AND
C2

C1 OR
C2

NOT
(C1
AND
C2)

NOT
C1
AND
C2

NOT
(C1
OR
C2)

NOT C1
OR C2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True

Order of evaluation of conditions
Parentheses, both explicit and implicit, define the level of inclusiveness within a complex condition. Two
or more conditions connected by only the logical operators AND or OR at the same level of inclusiveness
establish a hierarchical level within a complex condition. Therefore an entire complex condition is
a nested structure of hierarchical levels, with the entire complex condition being the most inclusive
hierarchical level.

Within this context, the evaluation of the conditions within an entire complex condition begins at the left
of the condition. The constituent connected conditions within a hierarchical level are evaluated in order
from left to right, and evaluation of that hierarchical level terminates as soon as a truth value for it is
determined, regardless of whether all the constituent connected conditions within that hierarchical level
have been evaluated.

Values are established for arithmetic expressions and functions if and when the conditions that contain
them are evaluated. Similarly, negated conditions are evaluated if and when it is necessary to evaluate the
complex condition that they represent. For example:

NOT A IS GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE

is evaluated as if parenthesized as follows:

(NOT (A IS GREATER THAN B)) OR
(((A + B) IS EQUAL TO C) AND (D IS POSITIVE))

Order of evaluation:

1. (NOT (A IS GREATER THAN B)) is evaluated, giving some intermediate truth value, t1. If t1 is
true, the combined condition is true, and no further evaluation takes place. If t1 is false, evaluation
continues as follows.

2. (A + B) is evaluated, giving some intermediate result, x.
3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth value, t2. If t2 is false, the

combined condition is false, and no further evaluation takes place. If t2 is true, the evaluation
continues as follows.

4. (D IS POSITIVE) is evaluated, giving some intermediate truth value, t3. If t3 is false, the combined
condition is false. If t3 is true, the combined condition is true.

286 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Example
The following example depicts an IF statement with two conditions combined with the logical AND
operator.

IDENTIFICATION DIVISION.
PROGRAM-ID. COMBINE.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 N1 PIC 9(2) VALUE 30.
01 N2 PIC 9(2) VALUE 45.
01 N3 PIC 9(2) VALUE 30.

PROCEDURE DIVISION.
A000-FIRST-PARA.

 IF N1 IS LESS THAN N2 AND N1 = N3 THEN
 DISPLAY 'BOTH CONDITIONS OK'
 ELSE
 DISPLAY 'EITHER OR BOTH CONDITIONS FAILED'
 END-IF.

 STOP RUN.

The example produces the following output:

BOTH CONDITIONS OK

Abbreviated combined relation conditions
When relation-conditions are written consecutively, any relation-condition after the first can be
abbreviated by omission of the subject, or by omission of the subject and relational operator.

Format

relation-condition AND

OR NOT relational-operator

object

In any consecutive sequence of relation-conditions, both forms of abbreviation can be specified. The
abbreviated condition is evaluated as if:

1. The last stated subject is the missing subject.
2. The last stated relational operator is the missing relational operator.

The resulting combined condition must comply with the rules for element sequences in combined
conditions, as shown in “Combined conditions” on page 285.

If NOT is immediately followed by GREATER THAN, >, LESS THAN, <, EQUAL TO, or =, then the NOT
participates as part of the relational operator. NOT in any other position is considered a logical operator
(and thus results in a negated relation condition).

Using parentheses
You can use parentheses in combined relation conditions to specify an intended order of evaluation. Using
parentheses can also help improve the readability of conditional expressions.

The following rules govern the use of parentheses in abbreviated combined relation conditions:

1. Parentheses can be used to change the order of evaluation of the logical operators AND and OR.
2. The word NOT participates as part of the relational operator when it is immediately followed by

GREATER THAN, >, LESS THAN, <, EQUAL TO, or =.

Chapter 27. Procedure division structure 287

3. NOT in any other position is considered a logical operator and thus results in a negated relation
condition. If you use NOT as a logical operator, only the relation condition immediately following the
NOT is negated; the negation is not propagated through the abbreviated combined relation condition
along with the subject and relational operator.

4. The logical NOT operator can appear within a parenthetical expression that immediately follows a
relational operator.

5. When a left parenthesis appears immediately after the relational operator, the relational operator
is distributed to all objects enclosed in the parentheses. In the case of a "distributed" relational
operator, the subject and relational operator remain current after the right parenthesis which ends
the distribution. The following three restrictions apply to cases where the relational operator is
distributed throughout the expression:

a. A simple condition cannot appear within the scope of the distribution.
b. Another relational operator cannot appear within the scope of the distribution.
c. The logical operator NOT cannot appear immediately after the left parenthesis, which defines the

scope of the distribution.
6. Evaluation proceeds from the least to the most inclusive condition.
7. There must be a one-to-one correspondence between left and right parentheses, with each left

parenthesis to the left of its corresponding right parenthesis. If the parentheses are unbalanced, the
compiler inserts a parenthesis and issues an E-level message. However, if the compiler-inserted
parenthesis results in the truncation of the expression, you will receive an S-level diagnostic
message.

8. The last stated subject is inserted in place of the missing subject.
9. The last stated relational operator is inserted in place of the missing relational operator.

10. Insertion of the omitted subject or relational operator ends when:

a. Another simple condition is encountered.
b. A condition-name is encountered.
c. A right parenthesis is encountered that matches a left parenthesis that appears to the left of the

subject.
11. In any consecutive sequence of relation conditions, you can use both abbreviated relation conditions

that contain parentheses and those that do not.
12. Consecutive logical NOT operators cancel each other and result in an S-level message. Note,

however, that an abbreviated combined relation condition can contain two consecutive NOT
operators when the second NOT is part of a relational operator. For example, you can abbreviate
the first condition as the second condition listed below.

A = B and not A not = C
A = B and not not = C

The following table summarizes the rules for forming an abbreviated combined relation condition.

Table 30. Abbreviated combined conditions: permissible element sequences

Combined
condition
element

Left- most When not leftmost, can be
immediately preceded by:

Right-
most

When not rightmost, can be
immediately followed by:

Subject Yes NOT
(

No Relational operator

288 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 30. Abbreviated combined conditions: permissible element sequences (continued)

Combined
condition
element

Left- most When not leftmost, can be
immediately preceded by:

Right-
most

When not rightmost, can be
immediately followed by:

Object No Relational operator
AND
OR
NOT
(

Yes AND
OR
)

Relational
operator

No Subject
AND
OR
NOT

No Object
(

AND
OR

No Object
)

No Object
Relational operator
NOT
(

NOT Yes AND
OR
(

No Subject
Object
Relational operator
(

(Yes Relational operator
AND
OR
NOT
(

No Subject
Object
NOT
(

) No Object
)

Yes AND
OR
)

The following table shows examples of abbreviated combined relation conditions, with and without
parentheses, and their unabbreviated equivalents.

Table 31. Abbreviated combined conditions: unabbreviated equivalents

Abbreviated combined relation condition Equivalent

A = B AND NOT < C OR D ((A = B) AND (A NOT < C)) OR (A NOT < D)

A NOT > B OR C (A NOT > B) OR (A NOT > C)

NOT A = B OR C (NOT (A = B)) OR (A = C)

NOT (A = B OR < C) NOT ((A = B) OR (A < C))

NOT (A NOT = B AND C AND NOT D) NOT ((((A NOT = B) AND (A NOT = C)) AND (NOT (A
NOT = D))))

Chapter 27. Procedure division structure 289

Statement categories
There are four categories of COBOL statements: imperative statements, conditional statements, delimited
scope statements, and compiler-directing statements. See the following topics for more details.

Imperative statements
An imperative statement either specifies an unconditional action to be taken by the program, or is a
conditional statement terminated by its explicit scope terminator.

A series of imperative statements can be specified wherever an imperative statement is allowed. A
conditional statement that is terminated by its explicit scope terminator is also classified as an imperative
statement.

For more information about explicit scope terminator, see “Delimited scope statements” on page 293.

The following lists contain the COBOL imperative statements.

Arithmetic
• ADD1

• COMPUTE1

• DIVIDE1

• MULTIPLY1

• SUBTRACT1

1. Without the ON SIZE ERROR or the NOT ON SIZE ERROR phrase.

Data movement
• ACCEPT (DATE, DAY, DAY-OF-WEEK, TIME)
• INITIALIZE
• INSPECT
• JSON GENERATE3

• JSON PARSE3

• MOVE
• SET
• STRING2

• UNSTRING2

• XML GENERATE3

• XML PARSE3

2. Without the ON OVERFLOW or the NOT ON OVERFLOW phrase.

3. Without the ON EXCEPTION or NOT ON EXCEPTION phrase.

Ending
• STOP RUN
• EXIT PROGRAM
• EXIT METHOD
• GOBACK

290 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Input-output
• ACCEPT identifier
• CLOSE
• DELETE4

• DISPLAY
• OPEN
• READ5

• REWRITE4

• START4

• STOP literal
• WRITE6

4. Without the INVALID KEY or the NOT INVALID KEY phrase.

5. Without the AT END or NOT AT END, and INVALID KEY or NOT INVALID KEY phrases.

6. Without the INVALID KEY or NOT INVALID KEY, and END-OF-PAGE or NOT END-OF-PAGE phrases.

Ordering
• ALLOCATE
• Format 1 SORT
• FREE
• MERGE
• RELEASE
• RETURN7

7. Without the AT END or NOT AT END phrase.

Procedure-branching
• ALTER
• CONTINUE
• Format 1 EXIT
• GO TO
• PERFORM

Program or method linkage
• CALL8

• CANCEL
• INVOKE

8. Without the ON OVERFLOW phrase, and without the ON EXCEPTION or NOT ON EXCEPTION phrase.

Table-handling
• Format 2 SORT (table SORT)
• SET

Chapter 27. Procedure division structure 291

Conditional statements
A conditional statement specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program is dependent on this truth value.

For more information about conditional expressions, see “Conditional expressions” on page 268.

The following lists contain COBOL statements that become conditional when a condition (for example, ON
SIZE ERROR or ON OVERFLOW) is included and when the statement is not terminated by its explicit scope
terminator.

Arithmetic
• ADD ... ON SIZE ERROR
• ADD ... NOT ON SIZE ERROR
• COMPUTE ... ON SIZE ERROR
• COMPUTE ... NOT ON SIZE ERROR
• DIVIDE ... ON SIZE ERROR
• DIVIDE ... NOT ON SIZE ERROR
• MULTIPLY ... ON SIZE ERROR
• MULTIPLY ... NOT ON SIZE ERROR
• SUBTRACT ... ON SIZE ERROR
• SUBTRACT ... NOT ON SIZE ERROR

Data movement
• JSON GENERATE ... ON EXCEPTION
• JSON GENERATE ... NOT ON EXCEPTION
• JSON PARSE ... ON EXCEPTION
• JSON PARSE ... NOT ON EXCEPTION
• STRING ... ON OVERFLOW
• STRING ... NOT ON OVERFLOW
• UNSTRING ... ON OVERFLOW
• UNSTRING ... NOT ON OVERFLOW
• XML GENERATE ... ON EXCEPTION
• XML GENERATE ... NOT ON EXCEPTION
• XML PARSE ... ON EXCEPTION
• XML PARSE ... NOT ON EXCEPTION

Decision
• IF
• EVALUATE

Input-output
• DELETE ... INVALID KEY
• DELETE ... NOT INVALID KEY
• READ ... AT END
• READ ... NOT AT END
• READ ... INVALID KEY

292 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• READ ... NOT INVALID KEY
• REWRITE ... INVALID KEY
• REWRITE ... NOT INVALID KEY
• START ... INVALID KEY
• START ... NOT INVALID KEY
• WRITE ... AT END-OF-PAGE
• WRITE ... NOT AT END-OF-PAGE
• WRITE ... INVALID KEY
• WRITE ... NOT INVALID KEY

Ordering
• RETURN ... AT END
• RETURN ... NOT AT END

Program or method linkage
• CALL ... ON OVERFLOW
• CALL ... ON EXCEPTION
• CALL ... NOT ON EXCEPTION
• INVOKE ... ON EXCEPTION
• INVOKE ... NOT ON EXCEPTION

Table-handling
• SEARCH

Delimited scope statements
In general, a DELIMITED SCOPE statement uses an explicit scope terminator to turn a conditional
statement into an imperative statement.

The resulting imperative statement can then be nested. Explicit scope terminators can also be used to
terminate the scope of an imperative statement. Explicit scope terminators are provided for all COBOL
statements that can have conditional phrases.

Unless explicitly specified otherwise, a delimited scope statement can be specified wherever an
imperative statement is allowed by the rules of the language.

Explicit scope terminators
An explicit scope terminator marks the end of certain PROCEDURE DIVISION statements.

A conditional statement that is delimited by its explicit scope terminator is considered an imperative
statement and must follow the rules for imperative statements.

These are the explicit scope terminators:

• END-ADD
• END-CALL
• END-COMPUTE
• END-DELETE
• END-DIVIDE
• END-EVALUATE

Chapter 27. Procedure division structure 293

• END-IF
• END-INVOKE
• END-JSON
• END-MULTIPLY
• END-PERFORM
• END-READ
• END-RETURN
• END-REWRITE
• END-SEARCH
• END-START
• END-STRING
• END-SUBTRACT
• END-UNSTRING
• END-WRITE
• END-XML

Implicit scope terminators
At the end of any sentence, an implicit scope terminator is a separator period that terminates the scope of
all previous statements not yet terminated.

An unterminated conditional statement cannot be contained by another statement.

Except for nesting conditional statements within IF statements, nested statements must be imperative
statements and must follow the rules for imperative statements. You should not nest conditional
statements.

Related references
RULES (Enterprise COBOL Programming Guide)

Compiler-directing statements
A compiler-directing statement is a statement that causes the compiler to take a specific action during
compilation.

For more information about statements that direct the compiler to take a specified action, see Chapter
113, “Compiler-directing statements,” on page 685.

Statement operations
The topic shows types of operations performed by COBOL statements.

COBOL statements perform the following types of operations:

• Arithmetic
• Data manipulation
• Input/output
• Procedure branching

There are several phrases common to arithmetic and data manipulation statements, such as:

• CORRESPONDING phrase
• GIVING phrase
• ROUNDED phrase
• SIZE ERROR phrases

294 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

CORRESPONDING phrase
The CORRESPONDING (CORR) phrase causes ADD, SUBTRACT, and MOVE operations to be performed on
elementary data items of the same name if the alphanumeric group item or national group item to which
they belong is specified.

A national group is processed as a group item when the CORRESPONDING phrase is used.

Both identifiers that follow the keyword CORRESPONDING must name group items. In this discussion,
these identifiers are referred to as identifier-1 and identifier-2. identifier-1 references the sending group
item. identifier-2 references the receiving group item.

Two subordinate data items, one from identifier-1 and one from identifier-2, correspond if the following
conditions are true:

• In an ADD or SUBTRACT statement, both of the data items are elementary numeric data items. Other
data items are ignored.

• In a MOVE statement, at least one of the data items is an elementary item, and the move is permitted by
the move rules.

• The two subordinate items have the same name and the same qualifiers up to but not including
identifier-1 and identifier-2.

• The subordinate items are not identified by the keyword FILLER.
• Neither identifier-1 nor identifier-2 is described as a level 66, 77, or 88 item, and neither is described as

an index data item. Neither identifier-1 nor identifier-2 can be reference-modified.
• Neither identifier-1 nor identifier-2 is described with USAGE POINTER, USAGE FUNCTION-POINTER,

USAGE PROCEDURE-POINTER, or USAGE OBJECT REFERENCE.
• The subordinate items do not include a REDEFINES, RENAMES, OCCURS, USAGE INDEX, USAGE

POINTER, USAGE PROCEDURE-POINTER, USAGE FUNCTION-POINTER, or USAGE OBJECT REFERENCE
clause in their descriptions.

However, identifier-1 and identifier-2 themselves can contain or be subordinate to items that contain a
REDEFINES or OCCURS clause in their descriptions.

• The name of each subordinate data item that satisfies these conditions is unique after application of
implicit qualifiers.

identifier-1, identifier-2, or both can be subordinate to a FILLER item.

For example, consider two data hierarchies defined as follows:

05 ITEM-1 OCCURS 6.
 10 ITEM-A PIC S9(3).
 10 ITEM-B PIC +99.9.
 10 ITEM-C PIC X(4).
 10 ITEM-D REDEFINES ITEM-C PIC 9(4).
 10 ITEM-E USAGE COMP-1.
 10 ITEM-F USAGE INDEX.
05 ITEM-2.
 10 ITEM-A PIC 99.
 10 ITEM-B PIC +9V9.
 10 ITEM-C PIC A(4).
 10 ITEM-D PIC 9(4).
 10 ITEM-E PIC 9(9) USAGE COMP.
 10 ITEM-F USAGE INDEX.

If ADD CORR ITEM-2 TO ITEM-1(x) is specified, ITEM-A and ITEM-A(x), ITEM-B and ITEM-B(x),
and ITEM-E and ITEM-E(x) are considered to be corresponding and are added together. ITEM-C and
ITEM-C(x) are not included because they are not numeric. ITEM-D and ITEM-D(x) are not included
because ITEM-D(x) includes a REDEFINES clause in its data description. ITEM-F and ITEM-F(x)
are not included because they are index data items. Note that ITEM-1 is valid as either identifier-1 or
identifier-2.

Chapter 27. Procedure division structure 295

If any of the individual operations in the ADD CORRESPONDING statement produces a size error
condition, imperative-statement-1 in the ON SIZE ERROR phrase is not executed until all of the individual
additions are completed.

GIVING phrase
For arithmetic statements, the value of the identifier that follows the word GIVING is set equal to the
calculated result of the arithmetic operation. Because this identifier is not involved in the computation, it
can be a numeric-edited item.

ROUNDED phrase
After decimal point alignment, the number of places in the fraction of the result of an arithmetic operation
is compared with the number of places provided for the fraction of the resultant identifier.

When the size of the fractional result exceeds the number of places provided for its storage, truncation
occurs unless ROUNDED is specified. When ROUNDED is specified, the least significant digit of the
resultant identifier is increased by 1 whenever the most significant digit of the excess is greater than or
equal to 5.

When the resultant identifier is described by a PICTURE clause that contains rightmost Ps and when the
number of places in the calculated result exceeds the number of integer positions specified, rounding or
truncation occurs relative to the rightmost integer position for which storage is allocated.

In a floating-point arithmetic operation, the ROUNDED phrase has no effect; the result of a floating-point
operation is always rounded. For more information on floating-point arithmetic expressions, see Fixed-
point contrasted with floating-point arithmetic in the Enterprise COBOL Programming Guide.

When the ARITH(EXTEND) compiler option is in effect, the ROUNDED phrase is not supported for
arithmetic receivers with 31 digit positions to the right of the decimal point. For example, neither X
nor Y below is valid as a receiver with the ROUNDED phrase:

01 X PIC V31.
01 Y PIC P(30)9(1).
 . . .
 COMPUTE X ROUNDED = A + B
 COMPUTE Y ROUNDED = A - B

Otherwise, the ROUNDED phrase is fully supported for extended-precision arithmetic statements.

SIZE ERROR phrases
A size error condition can occur in different ways.

• When the absolute value of the result of an arithmetic evaluation, after decimal point alignment,
exceeds the largest value that can be contained in the result field.

• When division by zero occurs.
• In an exponential expression, as indicated in the following table:

Table 32. Exponentiation size error conditions

Size error Action taken when a SIZE
ERROR clause is present

Action taken when a SIZE
ERROR clause is not present

Zero raised to zero power The SIZE ERROR imperative is
executed.

The value returned is 1, and a
message is issued.

Zero raised to a negative number The SIZE ERROR imperative is
executed.

The program is terminated
abnormally.

296 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 32. Exponentiation size error conditions (continued)

Size error Action taken when a SIZE
ERROR clause is present

Action taken when a SIZE
ERROR clause is not present

A negative number raised to a
fractional power

The SIZE ERROR imperative is
executed.

The absolute value of the base is
used, and a message is issued.

The size error condition applies only to final results, not to any intermediate results.

If the resultant identifier is defined with usage BINARY, COMPUTATIONAL, COMPUTATIONAL-4, or
COMPUTATIONAL-5, the largest value that the resultant data item can contain is the value implied by
the item's decimal PICTURE character-string, regardless of the TRUNC compiler option in effect.

If the ROUNDED phrase is specified, rounding takes place before size error checking.

When a size error occurs, the subsequent action of the program depends on whether the ON SIZE ERROR
phrase is specified.

If the ON SIZE ERROR phrase is not specified and a size error condition occurs, truncation rules apply and
the value of the affected resultant identifier is computed.

If the ON SIZE ERROR phrase is specified and a size error condition occurs, the value of the resultant
identifier affected by the size error is not altered; that is, the error results are not placed in the receiving
identifier. After completion of the execution of the arithmetic operation, the imperative statement in the
ON SIZE ERROR phrase is executed, control is transferred to the end of the arithmetic statement, and the
NOT ON SIZE ERROR phrase, if specified, is ignored.

For ADD CORRESPONDING and SUBTRACT CORRESPONDING statements, if an individual arithmetic
operation causes a size error condition, the ON SIZE ERROR imperative statement is not executed until all
the individual additions or subtractions have been completed.

If the NOT ON SIZE ERROR phrase has been specified and, after execution of an arithmetic operation, a
size error condition does not exist, the NOT ON SIZE ERROR phrase is executed.

When both the ON SIZE ERROR and NOT ON SIZE ERROR phrases are specified, and the statement in
the phrase that is executed does not contain any explicit transfer of control, then if necessary an implicit
transfer of control is made after execution of the phrase to the end of the arithmetic statement.

Arithmetic statements
The arithmetic statements are used for computations. Individual operations are specified by the
ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. These individual operations can be combined
symbolically in a formula that uses the COMPUTE statement.

Arithmetic statement operands
The data descriptions of operands in an arithmetic statement need not be the same. Throughout the
calculation, the compiler performs any necessary data conversion and decimal point alignment.

Size of operands
If the ARITH(COMPAT) compiler option is in effect, the maximum size of each operand is 18 decimal
digits. If the ARITH(EXTEND) compiler option is in effect, the maximum size of each operand is 31
decimal digits.

The composite of operands is a hypothetical data item resulting from aligning the operands at the decimal
point and then superimposing them on one another.

If the ARITH(COMPAT) compiler option is in effect, the composite of operands can be a maximum of 30
digits. If the ARITH(EXTEND) compiler option is in effect, the composite of operands can be a maximum of
31 digits.

The following table shows how the composite of operands is determined for arithmetic statements:

Chapter 27. Procedure division structure 297

Table 33. How the composite of operands is determined

Statement Determination of the composite of operands

SUBTRACT
ADD

Superimposing all operands in a given statement except those following the word
GIVING

MULTIPLY Superimposing all receiving data items

DIVIDE Superimposing all receiving data items except the REMAINDER data item

COMPUTE Restriction does not apply

For example, assume that each item is defined as follows in the DATA DIVISION:

A PICTURE 9(7)V9(5).
B PICTURE 9(11)V99.
C PICTURE 9(12)V9(3).

If the following statement is executed, the composite of operands consists of 17 decimal digits:

ADD A B TO C

It has the following implicit description:

COMPOSITE-OF-OPERANDS PICTURE 9(12)V9(5).

In the ADD and SUBTRACT statements, if the composite of operands is 30 digits or less with the
ARITH(COMPAT) compiler option, or 31 digits or less with the ARITH(EXTEND) compiler option, the
compiler ensures that enough places are carried so that no significant digits are lost during execution.

In all arithmetic statements, it is important to define data with enough digits and decimal places to ensure
the required accuracy in the final result. For more information, see Appendix A. Intermediate results and
arithmetic precision in the Enterprise COBOL Programming Guide.

Overlapping operands
When operands in an arithmetic statement share part of their storage (that is, when the operands
overlap), the result of the execution of such a statement is unpredictable.

Multiple results
When an arithmetic statement has multiple results, execution conceptually proceeds as follows:

1. The statement performs all arithmetic operations to find the result to be placed in the receiving items,
and stores that result in a temporary location.

2. A sequence of statements transfers or combines the value of this temporary result with each single
receiving field. The statements are considered to be written in the same left-to-right order in which the
multiple results are listed.

For example, executing the following statement:

ADD A, B, C, TO C, D(C), E.

is equivalent to executing the following series of statements:

ADD A, B, C GIVING TEMP.
ADD TEMP TO C.

298 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

ADD TEMP TO D(C).
ADD TEMP TO E.

In the above example, TEMP is a compiler-supplied temporary result field. When the addition operation
for D(C) is performed, the subscript C contains the new value of C.

Data manipulation statements
The following COBOL statements move and inspect data: ACCEPT, INITIALIZE, INSPECT, JSON
GENERATE, JSON PARSE, MOVE, READ, RELEASE, RETURN, REWRITE, SET, STRING, UNSTRING, WRITE,
XML PARSE, and XML GENERATE.

Overlapping operands
When the sending and receiving fields of a data manipulation statement share a part of their storage (that
is, when the operands overlap), the result of the execution of such a statement is unpredictable.

Input-output statements
COBOL input-output statements transfer data to and from files stored on external media, and also control
low-volume data that is obtained from or sent to an input/output device.

In COBOL, the unit of file data made available to the program is a record. You need only be concerned
with such records. Provision is automatically made for such operations as the movement of data into
buffers, internal storage, validity checking, error correction (where feasible), blocking and deblocking, and
volume-switching procedures.

The description of the file in the ENVIRONMENT DIVISION and the DATA DIVISION governs which
input-output statements are allowed in the PROCEDURE DIVISION. Permissible statements for sequential
files are shown in Table 49 on page 411 , and permissible statements for indexed files and relative files
are shown in Table 50 on page 412. Permissible statements for line sequential files are shown in Table 51
on page 412.

Common processing facilities
Several common processing facilities apply to more than one input-output statement.

The common processing facilities provided are:

• “File status key” on page 299
• “Invalid key condition” on page 303
• “INTO and FROM phrases” on page 304
• “File position indicator” on page 305

Discussions in the following sections use the terms volume and reel. The term volume refers to all non-
unit-record input-output devices. The term reel applies only to tape devices. Treatment of direct-access
devices in the sequential access mode is logically equivalent to the treatment of tape devices.

File status key
If the FILE STATUS clause is specified in the file-control entry, a value is placed in the specified file status
key (the two-character data item named in the FILE STATUS clause) during execution of any request on
that file; the value indicates the status of that request.

The value is placed in the file status key before execution of any EXCEPTION/ERROR declarative, INVALID
KEY phrase, or AT END phrase associated with the request.

There are two file status key data-names. One is described by data-name-1 in the FILE STATUS clause
of the file-control entry. This is a two-character data item with the first character known as file status
key 1 and the second character known as file status key 2. The combinations of possible values and their
meanings are shown in Table 34 on page 300.

Chapter 27. Procedure division structure 299

The other file status key is described by data-name-8 in the FILE STATUS clause of the file-control entry.
data-name-8 does not apply to QSAM files. For more information about data-name-8, see “FILE STATUS
clause” on page 153.

Table 34. File status key values and meanings

High-
order
digit

Meaning Low-
order
digit

Meaning

0 Successful
completion

0 No further information

2 This file status value applies only to indexed files with alternate
keys that allow duplicates.

The input-output statement was successfully executed, but a
duplicate key was detected. For a READ statement, the key value
for the current key of reference was equal to the value of the same
key in the next record within the current key of reference. For a
REWRITE or WRITE statement, the record just written created a
duplicate key value for at least one alternate record key for which
duplicates are allowed.

4 A READ statement was successfully executed, but the number of
character positions that were read was less than the minimum
size or was greater than the maximum size specified by the record
description entries associated with the FD for the file.

Note: If the VLR(COMPAT) option is in effect, you will get the status
value of 00 when READ statements encounter a record length
conflict. For details about the VLR option, see VLR in the Enterprise
COBOL Programming Guide.

5 An OPEN statement was successfully executed, but the referenced
optional file was unavailable at the time the OPEN statement was
executed. The file had been created if the open mode was I-O or
EXTEND. This does not apply to VSAM sequential files.

7 For a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR
REMOVAL phrase or for an OPEN statement with the NO REWIND
phrase, the referenced file was on a non-reel/unit medium.

1 At-end condition 0 A sequential READ statement was attempted and no next logical
record existed in the file because the end of the file had been
reached. Or the first READ was attempted on an optional input file
that was unavailable.

4 A sequential READ statement was attempted for a relative file, and
the number of significant digits in the relative record number was
larger than the size of the relative key data item described for the
file.

300 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 34. File status key values and meanings (continued)

High-
order
digit

Meaning Low-
order
digit

Meaning

2 Invalid key
condition

1 A sequence error exists for a sequentially accessed indexed file.
The prime record key value was changed by the program between
the successful execution of a READ statement and the execution
of the next REWRITE statement for that file. Or the ascending
requirements for successive record key values were violated.

2 An attempt was made to write a record that would create a
duplicate key in a relative file. Or an attempt was made to write
or rewrite a record that would create a duplicate prime record key
or a duplicate alternate record key without the DUPLICATES phrase
in an indexed file.

3 An attempt was made to randomly access a record that does
not exist in the file. Or a START or random READ statement was
attempted on an optional input file that was unavailable.

4 An attempt was made to write beyond the externally defined
boundaries of a relative or indexed file. Or a sequential WRITE
statement was attempted for a relative file and the number of
significant digits in the relative record number was larger than the
size of the relative key data item described for the file.

3 Permanent error
condition

0 No further information

4 A permanent error exists because of a boundary violation;
an attempt was made to write beyond the externally defined
boundaries of a sequential file.

5 An OPEN statement with the INPUT, I-O, or EXTEND phrase was
attempted on a nonoptional file that was unavailable.

7 An OPEN statement was attempted on a file that would not
support the open mode specified in the OPEN statement. Possible
violations are:

• The EXTEND or OUTPUT phrase was specified but the file would
not support write operations.

• The I-O phrase was specified but the file would not support the
input and output operations permitted.

• The INPUT phrase was specified but the file would not support
read operations.

8 An OPEN statement was attempted on a file previously closed with
lock.

9 The OPEN statement was unsuccessful because a conflict was
detected between the fixed file attributes and the attributes
specified for that file in the program. These attributes include the
organization of the file (sequential, relative, or indexed), the prime
record key, the alternate record keys, the code set, the maximum
record size, the record type (fixed or variable), and the blocking
factor.

Chapter 27. Procedure division structure 301

Table 34. File status key values and meanings (continued)

High-
order
digit

Meaning Low-
order
digit

Meaning

4 Logic error
condition

1 An OPEN statement was attempted for a file in the open mode.

2 A CLOSE statement was attempted for a file not in the open mode.

3 For a mass storage file in the sequential access mode, the last
input-output statement executed for the associated file prior to
the execution of a REWRITE statement was not a successfully
executed READ statement.

For relative and indexed files in the sequential access mode,
the last input-output statement executed for the file prior to
the execution of a DELETE or REWRITE statement was not a
successfully executed READ statement.

4 A boundary violation exists because an attempt was made to
rewrite a record to a file and the record was not the same size
as the record being replaced. Or an attempt was made to write or
rewrite a record that was larger than the largest or smaller than the
smallest record allowed by the RECORD IS VARYING clause of the
associated file-name.

6 A sequential READ statement was attempted on a file open in the
input or I-O mode and no valid next record had been established
because:

• The preceding READ statement was unsuccessful but did not
cause an at-end condition.

• The preceding READ statement caused an at-end condition.

7 The execution of a READ statement was attempted on a file not
open in the input or I-O mode.

8 The execution of a WRITE statement was attempted on a file not
open in the I-O, output, or extend mode.

9 The execution of a DELETE or REWRITE statement was attempted
on a file not open in the I-O mode.

302 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 34. File status key values and meanings (continued)

High-
order
digit

Meaning Low-
order
digit

Meaning

9 Implementor-
defined condition

0 • For multithreading only: A CLOSE of a VSAM or QSAM file was
attempted on a thread that did not open the file.

• Without multithreading: For VSAM only: See the information
about VSAM return codes in Using VSAM status codes (VSAM files
only) in the Enterprise COBOL Programming Guide.

• QSAM files: No further information available. See the DFSMS
error message for more information.

1 For VSAM only: Password failure

2 Logic error

3 For all files, except QSAM: Resource unavailable

5 For all files except QSAM: Invalid or incomplete file information

6 For VSAM file: An OPEN statement with the OUTPUT phrase was
attempted, or an OPEN statement with the I-O or EXTEND phrase
was attempted for an optional file but no DD statement was
specified for the file.

For QSAM file: An OPEN statement with the OUTPUT phrase was
attempted, or an OPEN statement with the I-O or EXTEND phrase
was attempted for an optional file but no DD statement was
specified for the file and the CBLQDA(OFF) runtime option was
specified.

7 For VSAM only: OPEN statement execution successful: File
integrity verified

Note: If the VSAMOPENFS(SUCC) option is in effect, you will
get the status value of 00 when a VSAM OPEN statement is
successfully verified. For details about the VSAMOPENFS option,
see VSAMOPENFS in the Enterprise COBOL Programming Guide.

8 Open failed due to the invalid contents of an environment variable
specified in a SELECT ... ASSIGN clause or due to dynamic
allocation failure. For more information about the contents of
environment variables, see “ASSIGN clause” on page 142.

Invalid key condition
The invalid key condition can occur during execution of a START, READ, WRITE, REWRITE, or DELETE
statement. When an invalid key condition occurs, the input-output statement that caused the condition is
unsuccessful.

When the invalid key condition is recognized, actions are taken in the following order:

1. If the FILE STATUS clause is specified in the file-control entry, a value is placed into the file status key
to indicate an invalid key condition, as shown in Table 34 on page 300.

2. If the INVALID KEY phrase is specified in the statement that caused the condition, control is
transferred to the INVALID KEY imperative statement. Any EXCEPTION/ERROR declarative procedure
specified for this file is not executed. Execution then continues according to the rules for each
statement specified in the imperative statement.

Chapter 27. Procedure division structure 303

3. If the INVALID KEY phrase is not specified in the input-output statement for a file and an applicable
EXCEPTION/ERROR procedure exists, that procedure is executed. The NOT INVALID KEY phrase, if
specified, is ignored.

Both the INVALID KEY phrase and the EXCEPTION/ERROR procedure can be omitted.

If the invalid key condition does not exist after execution of the input-output operation, the INVALID KEY
phrase is ignored, if specified, and the following actions are taken:

• If an exception condition that is not an invalid key condition exists, control is transferred according to
the rules of the USE statement following the execution of any USE AFTER EXCEPTION procedure.

• If no exception condition exists, control is transferred to the end of the input-output statement or the
imperative statement specified in the NOT INVALID KEY phrase, if it is specified.

INTO and FROM phrases
The INTO and FROM phrases are valid for READ, RETURN, RELEASE, REWRITE, and WRITE statements.

You must specify an identifier that is the name of an entry in the WORKING-STORAGE SECTION or the
LINKAGE SECTION, or of a record description for another previously opened file.

Format: INTO and FROM phrases of input-output statements
READ

RETURN

file-name-1

RECORD INTO identifier-1

RELEASE

REWRITE

WRITE

record-name-1

FROM identifier-1

• record-name-1 and identifier-1 must not refer to the same storage area.
• If record-name-1 or identifier-1 refers to a national group item, the item is processed as an elementary

data item of category national.
• The INTO phrase can be specified in a READ or RETURN statement.

The result of the execution of a READ or RETURN statement with the INTO phrase is equivalent to the
application of the following rules in the order specified:

– The execution of the same READ or RETURN statement without the INTO phrase.
– The current record is moved from the record area to the area specified by identifier-1 according

to the rules for the MOVE statement without the CORRESPONDING phrase. The size of the current
record is determined by rules specified in the RECORD clause. If the file description entry contains a
RECORD IS VARYING clause, the implied move is a group move. The implied MOVE statement does
not occur if the execution of the READ or RETURN statement was unsuccessful. Any subscripting
or reference-modification associated with identifier-1 is evaluated after the record has been read or
returned and immediately before it is moved to the data item. The record is available in both the
record area and the data item referenced by identifier-1.

• The FROM phrase can be specified in a RELEASE, REWRITE, or WRITE statement.

The result of the execution of a RELEASE, REWRITE, or WRITE statement with the FROM phrase is
equivalent to the execution of the following statements in the order specified:

1. MOVE identifier-1 TO record-name-1
2. The same RELEASE, REWRITE, or WRITE statement without the FROM phrase

After the execution of the RELEASE, REWRITE or WRITE statement is complete, the information in
the area referenced by identifier-1 is available even though the information in the area referenced by
record-name-1 is unavailable, except as specified by the SAME RECORD AREA clause.

304 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

File position indicator
The file position indicator is a conceptual entity used in this document to facilitate exact specification of
the next record to be accessed within a given file during certain sequences of input-output operations.

The setting of the file position indicator is affected only by the OPEN, CLOSE, READ and START
statements. The concept of a file position indicator has no meaning for a file opened in the output or
extend mode.

Chapter 27. Procedure division structure 305

306 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 28. PROCEDURE DIVISION statements

Statements, sentences, and paragraphs in the PROCEDURE DIVISION are executed sequentially except
when a procedure branching statement such as EXIT, GO TO, PERFORM, GOBACK, or STOP is used.

ACCEPT statement
The ACCEPT statement transfers data or system date-related information into the data area referenced by
the specified identifier. There is no editing or error checking of the incoming data.

Data transfer
Format 1 transfers data from an input source into the data item referenced by identifier-1 (the receiving
area). When the FROM phrase is omitted, the system input device is assumed.

Format 1: data transfer
ACCEPT identifier-1

FROM mnemonic-name-1

environment-name

Format 1 is useful for exceptional situations in a program when operator intervention (to supply a given
message, code, or exception indicator) is required. The operator must of course be supplied with the
appropriate messages with which to reply.

identifier-1
The receiving area. Can be:

• An alphanumeric group item
• A national group item
• An elementary data item of usage DISPLAY, DISPLAY-1, or NATIONAL

A national group item is processed as an elementary data item of category national.

identifier-1 must not be a dynamic-length group item or a dynamic-length elementary item.

mnemonic-name-1
Specifies the input device. mnemonic-name-1 must be associated in the SPECIAL-NAMES paragraph
with an environment-name. See “SPECIAL-NAMES paragraph” on page 124.

• System input device

The length of a data transfer is the same as the length of the record on the input device, with a
maximum of 32,760 bytes.

The system input device is read until the receiving area is filled or EOF is encountered. If the length
of the receiving area is not an even multiple of the system input device record length, the final
record will be truncated as required. If EOF is encountered after data has been moved and before
the receiving area has been filled, the receiving area is padded with spaces of the appropriate
representation for the receiving area. If EOF is encountered before any data has been moved to the

© Copyright IBM Corp. 1991, 2024 307

receiving area, padding will not take place and the contents of the receiving area are unchanged.
Each input record is concatenated with the previous input record.

If the input record is of a fixed-length format, the entire input record is used. No editing is
performed to remove trailing or leading blanks.

If the input record is of the variable-length format, the actual record length is used to determine
the amount of data received. With variable-format records, the Record Definition Word (RDW)
is removed from the beginning of the input record. Only the actual input data is transferred to
identifier-1.

If the data item referenced by identifier-1 is of usage national, data is transferred without
conversion and without checking for validity. The input data is assumed to be in UTF-16 format.

• Console

1. A system-generated message code is automatically displayed, followed by the literal AWAITING
REPLY.

The maximum length of an input message is 114 characters.
2. Execution is suspended.
3. After the message code (the same code as in item 1) is entered from the console and recognized

by the system, ACCEPT statement execution is resumed. The message is moved to the receiving
area and left-justified regardless of its PICTURE clause.

If identifier-1 references a data item of usage NATIONAL, the message is converted from the
native code page representation to national character representation. The native code page
is the one that was specified by the CODEPAGE compiler option when the source code was
compiled.

The ACCEPT statement is terminated if any of the following conditions occurs:

– No data is received from the console; for example, if the operator hits the Enter key. The target
data item does not receive a new value and retains the value it had prior to the ACCEPT.

– The receiving data item is filled with data.
– Fewer than 114 characters of data are entered.

If 114 bytes of data are entered and the receiving area is still not filled with data, more requests
for data are issued to the console.

If more than 114 characters of data are entered, only the first 114 characters will be recognized
by the system.

If the receiving area is longer than the incoming message, the rightmost characters are padded
with spaces of the appropriate representation for the receiving area.

If the incoming message is longer than the receiving area, the character positions beyond the
length of the receiving area are truncated.

For information about obtaining ACCEPT input from a z/OS UNIX file or stdin, see Assigning input
from a screen or file (ACCEPT) in the Enterprise COBOL Programming Guide.

environment-name
Identifies the source of input data. An environment-name from the names given in Table 5 on page
126 can be specified.

If the device is the same as that used for READ statements for a LINE SEQUENTIAL file, results are
unpredictable.

308 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

System date-related information transfer
System information contained in the specified conceptual data items DATE, DATE YYYYMMDD, DAY, DAY
YYYYDDD, DAY-OF-WEEK, or TIME, can be transferred into the data item referenced by identifier-2. The
transfer must follow the rules for the MOVE statement without the CORRESPONDING phrase.

For more information, see “MOVE statement” on page 400.

Format 2: system information transfer
ACCEPT identifier-2 FROM DATE

YYYYMMDD

DAY

YYYYDDD

DAY-OF-WEEK

TIME

identifier-2
The receiving area. Can be:

• An alphanumeric group item
• A national group item
• An elementary data item of one of the following categories:

– alphanumeric
– alphanumeric-edited
– numeric-edited (with usage DISPLAY or NATIONAL)
– national
– national-edited
– numeric
– internal floating-point
– external floating-point (with usage DISPLAY or NATIONAL)

A national group item is processed as an elementary data item of category national.

identifier-2 cannot be a dynamic-length group item, but can be a dynamic-length elementary item.

Format 2 accesses the current date in two formats: the day of the week or the time of day as carried by
the system (which can be useful in identifying when a particular run of an object program was executed).
You can also use format 2 to supply the date in headings and footings.

The current date and time can also be accessed with the intrinsic function CURRENT-DATE, which also
supports four-digit year values and provides additional information (see Chapter 43, “CURRENT-DATE,”
on page 541).

DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, and TIME
The conceptual data items DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, and TIME
implicitly have USAGE DISPLAY. Because these are conceptual data items, they cannot be described
in the COBOL program.

The content of the conceptual data items is moved to the receiving area using the rules of the MOVE
statement. If the receiving area is of usage NATIONAL, the data is converted to national character
representation.

DATE
Has the implicit PICTURE 9(6).

Chapter 28. PROCEDURE DIVISION statements 309

The sequence of data elements (from left to right) is:

Two digits for the year
Two digits for the month
Two digits for the day

Thus 27 April 2003 is expressed as 030427.

DATE YYYYMMDD
Has the implicit PICTURE 9(8).

The sequence of data elements (from left to right) is:

Four digits for the year
Two digits for the month
Two digits for the day

Thus 27 April 2003 is expressed as 20030427.

DAY
Has the implicit PICTURE 9(5).

The sequence of data elements (from left to right) is:

Two digits for the year
Three digits for the day

Thus 27 April 2003 is expressed as 03117.

DAY YYYYDDD
Has the implicit PICTURE 9(7).

The sequence of data elements (from left to right) is:

Four digits for the year
Three digits for the day

Thus 27 April 2003 is expressed as 2003117.

DAY-OF-WEEK
Has the implicit PICTURE 9(1).

The single data element represents the day of the week according to the following values:

1 represents Monday 5 represents Friday
2 represents Tuesday 6 represents Saturday
3 represents Wednesday 7 represents Sunday
4 represents Thursday

Thus Wednesday is expressed as 3.

TIME
Has the implicit PICTURE 9(8).

The sequence of data elements (from left to right) is:

Two digits for hour of day
Two digits for minute of hour
Two digits for second of minute
Two digits for hundredths of second

Thus 2:41 PM is expressed as 14410000.

310 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Example of the ACCEPT statement
This topic lists an example for the ACCEPT statement.

//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ACCPTST.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 AGE PIC 9(3).
 01 GENDER PIC X(1).
 PROCEDURE DIVISION.
 ACCEPT AGE.
 ACCEPT GENDER.
 EVALUATE TRUE ALSO TRUE
 WHEN AGE > 60 ALSO GENDER = 'M'
 DISPLAY 'THE MAN IS RETIRED '
 WHEN AGE > 60 ALSO GENDER = 'F'
 DISPLAY 'THE WOMAN IS RETIRED '
 WHEN AGE <= 60 ALSO GENDER = 'M'
 DISPLAY 'THE MAN IS NOT RETIRED '
 WHEN AGE <= 60 ALSO GENDER = 'F'
 DISPLAY 'THE WOMAN IS NOT RETIRED '
 WHEN OTHER
 DISPLAY 'INVALID INPUT '
 DISPLAY 'AGE =' AGE ' and GENDER =' GENDER
 END-EVALUATE.
 STOP RUN.
/*
//GO.SYSIN DD *
 64
M
//*

ADD statement
The ADD statement sums two or more numeric operands and stores the result.

Format 1: ADD statement

ADD identifier-1

literal-1

TO identifier-2

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2 END-ADD

All identifiers or literals that precede the keyword TO are added together, and this sum is added to
and stored in identifier-2. This process is repeated for each successive occurrence of identifier-2 in the
left-to-right order in which identifier-2 is specified.

Chapter 28. PROCEDURE DIVISION statements 311

Format 2: ADD statement with GIVING phrase

ADD identifier-1

literal-1 TO

identifier-2

literal-2

GIVING

identifier-3

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2 END-ADD

The values of the operands that precede the word GIVING are added together, and the sum is stored as
the new value of each data item referenced by identifier-3.

Format 3: ADD statement with CORRESPONDING phrase
ADD CORRESPONDING

CORR

identifier-1 TO identifier-2

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2 END-ADD

Elementary data items within identifier-1 are added to and stored in the corresponding elementary items
within identifier-2.

For all formats:

identifier-1, identifier-2
In format 1, must name an elementary numeric item.

In format 2, must name an elementary numeric item except when following the word GIVING. Each
identifier that follows the word GIVING must name an elementary numeric or numeric-edited item.

In format 3, must name an alphanumeric group item or national group item.

literal
Must be a numeric literal.

Floating-point data items and literals can be used anywhere that a numeric data item or literal can be
specified.

When the ARITH(COMPAT) compiler option is in effect, the composite of operands can contain a
maximum of 30 digits. When the ARITH(EXTEND) compiler option is in effect, the composite of operands
can contain a maximum of 31 digits. For more information, see “Arithmetic statement operands” on page

312 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

297 and the details on arithmetic intermediate results in Appendix A. Intermediate results and arithmetic
precision in the Enterprise COBOL Programming Guide.

ROUNDED phrase
For formats 1, 2, and 3, see “ROUNDED phrase” on page 296.

SIZE ERROR phrases
For formats 1, 2, and 3, see “SIZE ERROR phrases” on page 296.

CORRESPONDING phrase (format 3)
See “CORRESPONDING phrase” on page 295.

END-ADD phrase
This explicit scope terminator serves to delimit the scope of the ADD statement. END-ADD permits a
conditional ADD statement to be nested in another conditional statement. END-ADD can also be used
with an imperative ADD statement.

For more information, see “Delimited scope statements” on page 293.

ALLOCATE statement
The ALLOCATE statement obtains dynamic storage.

Format
ALLOCATE arithmetic-expression-1 CHARACTERS

data-name-1 INITIALIZED

LOC integer-1 RETURNING data-name-2

If data-name-1 is specified, the address of the data item is set to the address of the obtained storage, as
if the "SET ADDRESS OF data-name-1 TO address" statement was used. If a RETURNING data item is also
specified, the pointer data item will contain that address.

If arithmetic-expression-1 CHARACTERS is specified, the RETURNING data-item-2 will be set to the
address of the obtained storage.

data-name-1

Must be a level-01 or level-77 item defined in the LINKAGE SECTION.

If data-name-1 is specified, the RETURNING phrase can be omitted. Otherwise, the RETURNING
phrase must be specified.

Cannot be reference modified.

Cannot be a group item that contains an unbounded table.

integer-1

Must be an unsigned integer with value of 24, 31 or 64. The default for LP(64) is 64, and for LP(32) is
31. The value 64 is not supported in LP(32).

data-name-2

Must be defined as USAGE POINTER or USAGE POINTER-32.

Chapter 28. PROCEDURE DIVISION statements 313

Can be qualified or subscripted.

arithmetic-expression-1

Specifies a number of bytes of storage to be allocated:

• If arithmetic-expression-1 does not evaluate to an integer, the result is rounded up to the next whole
number.

• If arithmetic-expression-1 evaluates to 0 or a negative value, the data item referenced by data-
name-2 is set to the predefined address NULL.

INITIALIZED phrase
The INITIALIZED phrase initializes the allocated storage:

• If the INITIALIZED phrase is not specified, the content of the allocated storage is undefined.
• If both arithmetic-expression-1 and the INITIALIZED phrase are specified, all bytes of the allocated

storage are initialized to binary zeros.
• If both data-name-1 and the INITIALIZED phrase are specified, the allocated storage is initialized as if

an INITIALIZE data-name-1 WITH FILLER ALL TO VALUE THEN TO DEFAULT statement were executed.

LOC phrase
The LOC phrase controls how ALLOCATE acquires storage:

• LOC 24 causes ALLOCATE to acquire storage from below the 16 MB line, regardless of the setting of the
DATA compiler option.

• LOC 31 causes ALLOCATE to attempt to acquire storage from above the 16 MB line, regardless of the
setting of the DATA compiler option.

Note: It is still possible that storage is acquired below the 16 MB line with LOC 31 if storage above the
16 MB line is exhausted.

• LOC 64 causes ALLOCATE to attempt to acquire storage from above the 2 GB bar, regardless of the
setting of the DATA compiler option.

When the LOC phrase is not specified:

• LOC 31 is assumed to be specified whenever the DATA(31) compiler option is in effect.
• LOC 24 is assumed to be specified whenever the DATA(24) compiler option is in effect.
• LOC 64 is assumed to be specified whenever the LP(64) compiler option is in effect.

Note: It is recommended to use the default value of LOC unless dynamic storage below the 16 MB line is
required when the DATA(31) option is in effect, or dynamic storage above the 16 MB line is desired when
the DATA(24) option is in effect.

If LOC 64 is specified and data-name-2 references a USAGE POINTER-32 data item, a diagnostic
message will be issued, because the size of the data item is too small for the 64-bit address.

If LOC 64 is specified and LP(32) is in effect, a diagnostic message will be issued.

If data-name-1 is specified, the amount of storage to be allocated is the number of bytes required to
hold an item as described by data-name-1. If a data description entry that is subordinate to data-name-1
contains an OCCURS DEPENDING ON clause, the maximum length of the record is allocated.

If the LOC phrase is omitted and data-name-2 references a USAGE POINTER data item:

• If LP(64) is in effect, the allocated storage will be above the 2 GB bar.
• If LP(32) is in effect, the allocated storage will be below the 2 GB bar.

If the LOC phrase is omitted and data-name-2 references a USAGE POINTER-32 data item, the allocated
storage will always be below the 2 GB bar regardless of the setting of the LP compiler option.

If the specified amount of storage is available for allocation:

314 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If the RETURNING phrase is specified, the data item referenced by data-name-2 is set to the address of
that storage.

• If data-name-1 is specified, the address of the 01 or 77 LINKAGE SECTION data item referenced
by data-name-1 is set to the address of that storage, as if the "SET ADDRESS OF data-name-1 TO
address-of-obtained-storage" statement was used.

If the specified amount of storage is not available for allocation:

• If the RETURNING phrase is specified, the data item referenced by data-name-2 is set to the predefined
address NULL.

• If data-name-1 is specified, the address of the 01 or 77 LINKAGE SECTION data item referenced by
data-name-1 is set to the predefined address NULL.

The allocated storage persists until explicitly released with a FREE statement or the run unit is
terminated, whichever occurs first.

You can use ALLOCATE to dynamically increase the size of an UNBOUNDED table, see “Example:
ALLOCATE and FREE storage for UNBOUNDED tables” on page 315.

Related references
“FREE statement” on page 345
“INITIALIZE statement” on page 350
POINTER phrase
POINTER-32 phrase
DATA (Enterprise COBOL Programming Guide)
Storage and its addressability
(Enterprise COBOL Programming Guide)

Example: ALLOCATE and FREE storage for UNBOUNDED tables
This example illustrates one way to manage an UNBOUNDED table that needs to be dynamically
increased in size by using the ALLOCATE and FREE statements.

*---
* ALLOC: An example using the ALLOCATE and FREE statements to
* allocate and resize an unbounded table.
*A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|
 identification division.
 program-id. ALLOC.
*
 environment division.
 data division.

 working-storage section.

 77 k pic 9(4) binary.
 77 move-size pic 9(4) binary.
 77 num-elements pic 9(4) binary.
*
 77 vargrp-ptr pointer.
 77 vargrp-size pic 9(4) binary.
 77 vargrp-old-ptr pointer.
 77 vargrp-old-size pic 9(4) binary.

 linkage section.

 01 vargrp.
 02 vartab-bound pic 9(4) comp.
 02 vartab-group.
 03 vartab occurs 1 to unbounded
 depending on vartab-bound.
 04 t1 pic 9(4).
 04 t2 pic x(8).
 04 t3 pic 9(4) comp.

 01 vargrp-old pic x(999999999).

/***
* main
**

Chapter 28. PROCEDURE DIVISION statements 315

 procedure division.

 display "Start testcase ALLOC"

 *> allocate a table with 20 elements
 compute num-elements = 20
 perform vargrp-alloc

 *> Set some test values to validate re-allocated table
 compute t1(12) = 9999
 move "HI MOM" to t2(17)
 move "END-VGRP" to t2(20)
 perform vargrp-display

 *> allocate a bigger table and show content
 compute num-elements = 30
 perform vargrp-realloc
 perform vargrp-display

 *> allocate a smaller table and show content
 compute num-elements = 17
 perform vargrp-realloc
 perform vargrp-display

 display " "
 display "End testcase ALLOC"

 goback.

/***
* vargrp-alloc(num-elements)
**
 vargrp-alloc.

 compute vargrp-size = length of vartab-bound
 + length of vartab * num-elements
 allocate vargrp-size characters
 initialized
 returning vargrp-ptr
 set address of vargrp to vargrp-ptr
 move num-elements to vartab-bound

 exit.

**
* vargrp-realloc(num-elements)
**
 vargrp-realloc.

 *> save the address/length of the current table
 set vargrp-old-ptr to vargrp-ptr
 compute vargrp-old-size = vargrp-size

 *> allocate the new copy
 perform vargrp-alloc

 *> copy the old data to the new area
 compute move-size =
 function min(vargrp-old-size, vargrp-size)
 set address of vargrp-old to vargrp-old-ptr
 move vargrp-old(1:move-size)
 to vargrp(1:move-size)
 set address of vargrp-old to null
 move num-elements to vartab-bound

 *> free the old area
 free vargrp-old-ptr

 exit.

**
* vargrp-display
**
 vargrp-display.

 display "VARGRP is at 0x"
 function hex-of(vargrp-ptr)
 " with " vartab-bound " elements,"
 " size " vargrp-size " bytes."
 perform varying k from 1 by 1 until k > vartab-bound
 display "vartab(" k ") =" vartab(k)
 end-perform

316 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

 display " "

 exit.

 end program alloc.

Related references
“ALLOCATE statement” on page 313
“FREE statement” on page 345
“MOVE statement” on page 400
Working with unbounded tables and groups
(Enterprise COBOL Programming Guide)

ALTER statement
The ALTER statement changes the transfer point specified in a GO TO statement.

The ALTER statement encourages the use of unstructured programming practices; the EVALUATE
statement provides the same function as the ALTER statement but helps to ensure that a program is
well-structured.

Note: When the LP(64) compiler option is in effect, a compiler diagnostic message will be issued if the
ALTER statement is specified. The EVALUATE statement should be used instead.

Format

ALTER procedure-name-1 TO

PROCEED TO

procedure-name-2

The ALTER statement modifies the GO TO statement in the paragraph named by procedure-name-1.
Subsequent executions of the modified GO TO statement transfer control to procedure-name-2.

procedure-name-1
Must name a PROCEDURE DIVISION paragraph that contains only one sentence: a GO TO statement
without the DEPENDING ON phrase.

procedure-name-2
Must name a PROCEDURE DIVISION section or paragraph.

Before the ALTER statement is executed, when control reaches the paragraph specified in procedure-
name-1, the GO TO statement transfers control to the paragraph specified in the GO TO statement.
After execution of the ALTER statement however, the next time control reaches the paragraph specified
in procedure-name-1, the GO TO statement transfers control to the paragraph specified in procedure-
name-2.

The ALTER statement acts as a program switch, allowing, for example, one sequence of execution during
initialization and another sequence during the bulk of file processing.

Altered GO TO statements in programs with the INITIAL attribute are returned to their initial states each
time the program is entered.

Do not use the ALTER statement in programs that have the RECURSIVE attribute, in methods, or in
programs compiled with the THREAD option.

Chapter 28. PROCEDURE DIVISION statements 317

Segmentation considerations
A GO TO statement that is coded in an independent segment must not be referenced by an ALTER
statement in a segment with a different priority-number. All other uses of the ALTER statement are valid
and are performed even if the GO TO referenced by the ALTER statement is in a fixed segment.

Altered GO TO statements in independent segments are returned to their initial state when control is
transferred to the independent segment that contains the ALTERED GO TO from another independent
segment with a different priority-number.

This transfer of control can take place because of:

• The effect of previous statements
• An explicit transfer of control with a PERFORM or GO TO statement
• A sort or merge statement with the INPUT or OUTPUT phrase specified

CALL statement
The CALL statement transfers control from one program to another within a run unit.

The program containing the CALL statement is the calling program; the program identified in the CALL
statement is the called subprogram. Called programs can contain CALL statements; however, only a
program defined with the RECURSIVE clause can execute a CALL statement that directly or indirectly calls
itself.

Format
CALL identifier-1

literal-1

procedure-pointer-1

function-pointer-1

USING

BY

REFERENCE ADDRESS OF

identifier-2

fixed-phrase

file-name-1

OMITTED

BY

CONTENT

ADDRESS OF

LENGTH OF

identifier-3

fixed-phrase

literal-2

OMITTED

BY

VALUE

ADDRESS OF

LENGTH OF

identifier-4

literal-3

RETURNING identifier-5 exception-phrases END-CALL

fixed-phrase
AS FIXED LENGTH integer-4

exception-phrases

318 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

ON

EXCEPTION imperative-statement-1 not-exception-phrase

ON

OVERFLOW imperative-statement-3

not-exception-phrase

NOT

ON

EXCEPTION imperative-statement-2

identifier-1, literal-1
literal-1 must be an alphanumeric literal. identifier-1 must be an alphanumeric, alphabetic, or numeric
data item described with USAGE DISPLAY such that its value can be a program-name.

The rules of formation for program-names are dependent on the PGMNAME compiler option. For
details, see the discussion of program-names in Chapter 15, “PROGRAM-ID paragraph,” on page 101
and also the description of PGMNAME in the Enterprise COBOL Programming Guide.

If the value of literal-1 is of the form 'Java.java-class-name-1.java-static-method-name-1',
then the call will be interpreted as a call to the static Java method with class name
‘java-class-name-1' and method name 'java-static-method-name-1. For details, see #unique_19/
unique_19_Connect_42_LSH-CALL-JAVA.

Usage note: Do not specify the name of a class or method in the CALL statement.

procedure-pointer-1
Must be defined with USAGE IS PROCEDURE-POINTER and must be set to a valid program entry point;
otherwise, the results of the CALL statement are undefined.

After a program has been canceled by COBOL, released by PL/I or C, or deleted by assembler, any
procedure-pointers that had been set to that program's entry point are no longer valid.

function-pointer-1
Must be defined with USAGE IS FUNCTION-POINTER and must be set to a valid function or program
entry point; otherwise, the results of the CALL statement are undefined.

After a program has been canceled by COBOL, released by PL/I or C, or deleted by the assembler, any
function-pointers that had been set to that function or program's entry point are no longer valid.

When the called subprogram is to be entered at the beginning of the PROCEDURE DIVISION, literal-1 or
the contents of identifier-1 must specify the program-name of the called subprogram.

When the called subprogram is entered through an ENTRY statement, literal-1 or the contents of
identifier-1 must be the same as the name specified in the called subprogram's ENTRY statement.

AMODE 64 considerations
For AMODE 64 COBOL programs, both static and dynamic calls support calling other AMODE 64 Language
Environment conforming programs.

AMODE 64 COBOL programs cannot be called by non-Language Environment conforming programs. CALL
using file-name is not supported with LP(64). An assembler program using LOAD and then branch to an
entry point of an LP(64) COBOL subprogram will not work. Instead, use the LE macro CEEFETCH to fetch
and call AMODE 64 COBOL programs.

Parameter passing convention is XPLINK.

The AS FIXED LENGTH phrase is not currently supported for programs compiled with LP(64).

Chapter 28. PROCEDURE DIVISION statements 319

For information about using dynamic call in an environment with mixed AMODE 31 and AMODE 64
support, see Dynamic call between AMODE 31 and AMODE 64 programs in the Enterprise COBOL
Programming Guide.

USING phrase
The USING phrase specifies arguments that are passed to the target program.

Include the USING phrase in the CALL statement only if there is a USING phrase in the PROCEDURE
DIVISION header or the ENTRY statement through which the called program is run. The number of
operands in each USING phrase must be identical.

For more information about the USING phrase, see “The PROCEDURE DIVISION header” on page 258.

The sequence of the operands in the USING phrase of the CALL statement and in the corresponding
USING phrase in the called subprogram's PROCEDURE DIVISION header or ENTRY statement determines
the correspondence between the operands used by the calling and called programs. This correspondence
is positional.

The values of the parameters referenced in the USING phrase of the CALL statement are made available
to the called subprogram at the time the CALL statement is executed. The description of the data items
in the called program must describe the same number of character positions as the description of the
corresponding data items in the calling program.

The BY CONTENT, BY REFERENCE, and BY VALUE phrases apply to parameters that follow them until
another BY CONTENT, BY REFERENCE, or BY VALUE phrase is encountered. BY REFERENCE is assumed if
you do not specify a BY CONTENT, BY REFERENCE, or BY VALUE phrase prior to the first parameter.

BY REFERENCE phrase
If the BY REFERENCE phrase is either specified or implied for a parameter, the corresponding data item in
the calling program occupies the same storage area as the data item in the called program.

identifier-2
Can be any data item of any level in the DATA DIVISION. identifier-2 cannot be a function-identifier.

Note: identifier-2 can only be a dynamic length elementary item if the AS FIXED LENGTH phrase is
specified.

If it is defined in the LINKAGE SECTION or FILE SECTION, you must have already provided
addressability for identifier-2 prior to invocation of the CALL statement. You can do this by coding
either one of the following: SET ADDRESS OF identifier-2 TO pointer or PROCEDURE/ENTRY
USING.

file-name-1
A file-name for a QSAM file. See Passing data in the Enterprise COBOL Programming Guide for details
on using file-name with the CALL statement. This phrase is not supported with AMODE 64 (LP(64)).

ADDRESS OF identifier-2
identifier-2 must be a level-01 or level-77 item defined in the LINKAGE SECTION.

OMITTED
Indicates that no argument is passed.

AS FIXED LENGTH phrase
If the AS FIXED LENGTH phrase is specified, then the corresponding data item must be a dynamic-length
elementary item.

integer-4
The value of integer-4 represents the number of characters for items of class alphanumeric or
national, or bytes for items of class UTF-8. integer-4 must be an integer greater than zero, and less
than the value implied or specified on the LIMIT phrase of the dynamic-length elementary item.

320 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If the item is of class alphanumeric, national, or UTF-8, then the padding character is EBCDIC blanks,
UTF-16 blanks, or UTF-8 blanks respectively.

When the AS FIXED LENGTH phrase is specified, the address of the dynamic-length elementary item is
passed to the callee as if the equivalent fixed-length alphanumeric, national, or UTF-8 class data item
would be whose length is integer-4. If integer-4 is larger than the current length of the dynamic-length
elementary item, then the item is extended and padded on the right with blanks to either integer-4
characters. After execution of the CALL statement the current length of the dynamic-length elementary
item remains as it was before the execution of the CALL statement.

When the BY CONTENT phrase is specified or implied for a dynamic-length elementary item parameter,
then the AS FIXED LENGTH phrase must be specified.

BY CONTENT phrase
If the BY CONTENT phrase is specified or implied for a parameter, the called program cannot change
the value of this parameter as referenced in the CALL statement's USING phrase, though the called
program can change the value of the data item referenced by the corresponding data-name in the called
program's PROCEDURE DIVISION header. Changes to the parameter in the called program do not affect
the corresponding argument in the calling program.

identifier-3
Can be any data item of any level in the DATA DIVISION. identifier-3 cannot be a function identifier or
an unbounded group.

If defined in the LINKAGE SECTION or FILE SECTION, you must have already provided addressability
for identifier-3 prior to invocation of the CALL statement. You can do this by coding one of the
following phrases:

• SET ADDRESS OF identifier-3 TO pointer
• PROCEDURE DIVISION USING
• ENTRY USING

literal-2
Can be:

• An alphanumeric literal
• A figurative constant (except ALL literal or NULL/NULLS)
• A DBCS literal
• A national literal

LENGTH OF special register
For information about the LENGTH OF special register, see “LENGTH OF” on page 22.

ADDRESS OF identifier-3
identifier-3 must be a data item of any level except 66 or 88 defined in the LINKAGE SECTION, the
WORKING-STORAGE SECTION, or the LOCAL-STORAGE SECTION.

OMITTED
Indicates that no argument is passed.

For alphanumeric literals, the called subprogram should describe the parameter as PIC X(n) USAGE
DISPLAY, where n is the number of characters in the literal.

For DBCS literals, the called subprogram should describe the parameter as PIC G(n) USAGE
DISPLAY-1, or PIC N(n) with implicit or explicit USAGE DISPLAY-1, where n is the length of the literal.

For national literals, the called subprogram should describe the parameter as PIC N(n) with implicit or
explicit USAGE NATIONAL, where n is the length of the literal.

Chapter 28. PROCEDURE DIVISION statements 321

BY VALUE phrase
The BY VALUE phrase applies to all arguments that follow until overridden by another BY REFERENCE or
BY CONTENT phrase.

If the BY VALUE phrase is specified or implied for an argument, the value of the argument is passed,
not a reference to the sending data item. The called program can modify the formal parameter that
corresponds to the BY VALUE argument, but any such changes do not affect the argument because the
called program has access to a temporary copy of the sending data item.

Although BY VALUE arguments are primarily intended for communication with non-COBOL programs
(such as C), they can also be used for COBOL-to-COBOL invocations. In this case, BY VALUE must be
specified or implied for both the argument in the CALL USING phrase and the corresponding formal
parameter in the PROCEDURE DIVISION USING phrase.

identifier-4
Must be an elementary data item in the DATA DIVISION. It must be one of the following items:

• Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)
• Floating point (USAGE COMP-1 or COMP-2)
• Function-pointer (USAGE FUNCTION-POINTER)
• Pointer (USAGE POINTER)
• Procedure-pointer (USAGE PROCEDURE-POINTER)
• Object reference (USAGE OBJECT REFERENCE)
• One single-byte alphanumeric character (such as PIC X or PIC A)
• One national character (PIC N), described as an elementary data item of category national.

The following items can also be passed BY VALUE:

• Reference-modified item of USAGE DISPLAY and length 1
• Reference-modified item of USAGE NATIONAL and length 1
• SHIFT-IN and SHIFT-OUT special registers
• LINAGE-COUNTER special register when it is USAGE BINARY

ADDRESS OF identifier-4
identifier-4 must be a data item of any level except 66 or 88 defined in the LINKAGE SECTION, the
WORKING-STORAGE SECTION, or the LOCAL-STORAGE SECTION.

LENGTH OF special register
A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9) binary. For information about
the LENGTH OF special register, see “LENGTH OF” on page 22.

literal-3
Must be of one of the following types:

• A numeric literal
• A figurative constant ZERO
• A one-character alphanumeric literal
• A one-character national literal
• A symbolic character
• A single-byte figurative constant

– SPACE
– QUOTE
– HIGH-VALUE
– LOW-VALUE

ZERO is treated as a numeric value; a fullword binary zero is passed.

322 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If literal-3 is a fixed-point numeric literal, it must have a precision of nine or fewer digits. In this case,
a fullword binary representation of the literal value is passed.

If literal-3 is a floating-point numeric literal, an 8-byte internal floating-point (COMP-2) representation
of the value is passed.

literal-3 must not be a DBCS literal.

RETURNING phrase

identifier-5
The RETURNING data item, which can be any data item defined in the DATA DIVISION. The return
value of the called program is implicitly stored into identifier-5.

You can specify the RETURNING phrase for calls to functions written in COBOL, C, or in other
programming languages that use C linkage conventions. If you specify the RETURNING phrase on a CALL
to a COBOL subprogram:

• The called subprogram must specify the RETURNING phrase on its PROCEDURE DIVISION header.
• identifier-5 and the corresponding PROCEDURE DIVISION RETURNING identifier in the target program

must have the same PICTURE, USAGE, SIGN, SYNCHRONIZE, JUSTIFIED, and BLANK WHEN ZERO
clauses (except that PICTURE clause currency symbols can differ, and periods and commas can be
interchanged due to the DECIMAL POINT IS COMMA clause).

When the target returns, its return value is assigned to identifier-5 using the rules for the SET statement
if identifier-6 is of usage INDEX, POINTER, FUNCTION-POINTER, PROCEDURE-POINTER, or OBJECT
REFERENCE. When identifier-5 is of any other usage, the rules for the MOVE statement are used.

The CALL ... RETURNING data item is an output-only parameter. On entry to the called program, the
initial state of the PROCEDURE DIVISION RETURNING data item has an undefined and unpredictable
value. You must initialize the PROCEDURE DIVISION RETURNING data item in the called program before
you reference its value. The value that is passed back to the calling program is the final value of the
PROCEDURE DIVISION RETURNING data item when the called program returns.

Note: If a COBOL program returns a doubleword binary item via a PROCEDURE DIVISION RETURNING
header to a calling COBOL program with a CALL ... RETURNING statement, an issue occurs if only one
of the programs is recompiled with Enterprise COBOL V6. Both the called and calling programs must be
recompiled with Enterprise COBOL V6 together, so that the linkage convention for the RETURNING item is
consistent.

If an EXCEPTION or OVERFLOW occurs, identifier-5 is not changed. identifier-5 must not be reference-
modified.

The RETURN-CODE special register is not set by execution of CALL statements that include the
RETURNING phrase.

ON EXCEPTION phrase
An exception condition occurs under the following two conditions:

• When the target of the CALL statement is a literal of the form 'Java.java-class-name.java-static-method-
name' and a Java exception occurs during any part of the call as determined by the JNI function
ExceptionOccurred.

• When the called subprogram cannot be made available.

When one of above exception conditions is true, one of the following two actions will occur:

1. If the ON EXCEPTION phrase is specified, control is transferred to imperative-statement-1. Execution
then continues according to the rules for each statement specified in imperative-statement-1. If a
procedure branching or conditional statement that causes explicit transfer of control is executed,
control is transferred in accordance with the rules for that statement. Otherwise, upon completion of

Chapter 28. PROCEDURE DIVISION statements 323

the execution of imperative-statement-1, control is transferred to the end of the CALL statement and
the NOT ON EXCEPTION phrase, if specified, is ignored.

2. If the ON EXCEPTION phrase is not specified in the CALL statement, the NOT ON EXCEPTION phrase, if
specified, is ignored.

Note: In the case of an exception during a call to a static Java method, the exception could occur
while executing the JNI functions that facilitate the call to Java, or the exception could be an exception
thrown in application-level Java code. In all cases, before control is transferred to user exception
handling statements, the Java exception is automatically cleared via the JNI function ExceptionClear(). In
imperative-statement-1, the Java exception object can be referenced from special register IGY-JAVAIOP-
CALL-EXCEPTION. See “IGY-JAVAIOP-CALL-EXCEPTION” on page 20 special register for details.

NOT ON EXCEPTION phrase
If an exception condition does not occur, control is transferred to the called program. After control is
returned from the called program, control is transferred to:

• imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.
• The end of the CALL statement in any other case. (If the ON EXCEPTION phrase is specified, it is

ignored.)

If control is transferred to imperative-statement-2, execution continues according to the rules for each
statement specified in imperative-statement-2. If a procedure branching or conditional statement that
causes explicit transfer of control is executed, control is transferred in accordance with the rules for that
statement. Otherwise, upon completion of the execution of imperative-statement-2, control is transferred
to the end of the CALL statement.

ON OVERFLOW phrase
The ON OVERFLOW phrase has the same effect as the ON EXCEPTION phrase.

END-CALL phrase
This explicit scope terminator serves to delimit the scope of the CALL statement. END-CALL permits a
conditional CALL statement to be nested in another conditional statement. END-CALL can also be used
with an imperative CALL statement.

For more information, see “Delimited scope statements” on page 293.

Related references
“Mapping between COBOL and Java data types for non-OO COBOL/Java interoperability” on page 725
Compiling, linking, and running non-OO COBOL applications that interoperate with Java (Enterprise
COBOL Programming Guide)
Running the cjbuild utility to build a DLL of Java stub programs (Enterprise COBOL Programming Guide)
JAVAIOP (Enterprise COBOL Programming Guide)
PARMCHECK (Enterprise COBOL Programming Guide)

Calling static Java methods from COBOL
In a CALL statement where the called subprogram is identified by a literal of the form 'Java.java-class-
name-1.java-static-method-name-1', the call is interpreted as a call from COBOL to a static Java method
with class name 'java-class-name-1' and method name 'java-static-method-name-1', where 'java-class-
name-1' is a Java class name that must be fully-qualified with its package name if it belongs to a package.

Note:

• The literal prefix "Java." is not case sensitive, so prefixes like 'JAVA.' and 'jaVA.' are accepted. However,
the remaining portion of the string is case sensitive and the fully-qualified class name and static method
name must match what is used in Java.

324 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If the static method being called is part of one or more nested classes, then the name of each nested
class involved must be introduced in the literal with a $ character. For example, to call static method
"dumpData()" in class Util which is nested inside an outer class TestApp, the CALL statement should be
as follows:

CALL 'Java.TestApp$Util.dumpData' USING ...

If TestApp is part of a package named com.acme, the CALL statement should be as follows:

CALL 'Java.com.acme.TestApp$Util.dumpData' USING

In this scenario, a Java call stub program that is automatically generated by the COBOL compiler will
serve as an interface between the COBOL calling program and the static Java method that is the intended
target of the call. At run time, when the CALL statement is executed, the call stub program is executed
first, and the call stub program then uses Java Native Interface (JNI) routines to make the call to the
specified static Java method.

The generated Java method call stub program is written to a z/OS UNIX directory that is specified by the
JAVAIOP(OUTPATH(zos-unix-directory)) option. If that option is not in effect, the default output location is
the current directory if the compiler is being run from the cob2 utility; otherwise, the output location is the
home directory of the userid under which the compiler is running.

The name of the Java call stub program that is generated will be of the following form:

Java.java-class-name-1.java-method_name-1.cbl

Handling parameters and returned values

• If the CALL statement contains the USING phrase, indicating that arguments are being passed to the
static Java method, the Java call stub program that is generated by the compiler automatically handles
conversions between outgoing COBOL argument types and their corresponding Java types before calling
the Java method. The conversions are performed according to the COBOL/Java type mapping defined
in Legal COBOL types for Java interoperability and corresponding Java types. The conversion code is
generated accordingly.

• If the CALL statement contains a RETURNING phrase, then after the Java static method is called, the
Java call stub program will automatically convert the returned Java value to the type of the COBOL
receiver indicated in the RETURNING phrase. This conversion is performed according to the mapping
defined in Legal COBOL types for Java interoperability and corresponding Java types.

Note: There is no type conformance checking at compile time or run time between outgoing COBOL
arguments and Java method parameters or between incoming Java returned value and the type of the
corresponding COBOL receiver. If outgoing COBOL arguments or incoming Java returned values are not
in the correct format for the corresponding Java or COBOL receiver, unpredictable results, including
program abend, can occur at run time.

Building Java call stub programs

Java call stub programs must be compiled along with any other stub programs for the application into a
DLL using the cjbuild utility. See for details.

If it is possible for this call to Java to be executed in the application before any Java code is executed
in the application, then it will be the Java call stub program for this call that is responsible for starting
the Java virtual machine (JVM) for the enclave in these scenarios. To specify that non-default JVM
initialization options are to be used when starting the JVM at run time, in addition to any other options
used to compile the program making the call, specify option "JAVIOP(JVMINITOPTIONS(jvm-init-string))"
as well. Alternatively, the COBJVMINITOPTIONS environment variable can be set at run time for the
application.

Restrictions

• Literals of any kind are not permitted as arguments in calls to static Java methods.
• A single Java call stub program is generated for all calls to a particular static Java method in an

application, so the static Java method cannot be overloaded and all calls to the static method must
have the same argument types across the entire application; otherwise there may be unpredictable

Chapter 28. PROCEDURE DIVISION statements 325

results at run time. It is the user's responsibility to ensure that this condition is met because the
compiler cannot easily enforce this across all files of the application.

• All Java interoperability-related stub programs generated by the compiler for an application, including
all Java call stub programs, must be built into a DLL using the cjbuild utility. If cjbuild is instructed to
output the DLL to the z/OS UNIX file system, then the location of this DLL must be reflected in your
LIBPATH environment variable at run time. On the other hand, if cjbuild is instructed to output the DLL
to an MVS data set, then that data set must be included in your STEPLIB at run time. Furthermore,
the CALL statement in the user COBOL program that calls the static Java method is always treated
as a DLL call, regardless of the current value of the DYNAM and DLL compiler options in effect or any
CALLINTERFACE directive that may be in effect at the time of the call.

Related references
“Mapping between COBOL and Java data types for non-OO COBOL/Java interoperability” on page 725
Compiling, linking, and running non-OO COBOL applications that interoperate with Java (Enterprise
COBOL Programming Guide)
Running the cjbuild utility to build a DLL of Java stub programs (Enterprise COBOL Programming Guide)
JAVAIOP (Enterprise COBOL Programming Guide)
PARMCHECK (Enterprise COBOL Programming Guide)

CANCEL statement
The CANCEL statement ensures that the referenced subprogram is entered in initial state the next time
that it is called.

Format

CANCEL identifier-1

literal-1

identifier-1, literal-1
literal-1 must be an alphanumeric literal. identifier-1 must be an alphanumeric, alphabetic, or zoned
decimal data item such that its value can be a program-name or user-defined function name.
The rules of formation for program-names and user-defined function names are dependent on
the PGMNAME compiler option. For details, see the discussion of program-names in Chapter 15,
“PROGRAM-ID paragraph,” on page 101 and the description of PGMNAME in the Enterprise COBOL
Programming Guide.

literal-1 or the contents of identifier-1 must be the same as a literal or the contents of an identifier
specified in an associated CALL statement.

User-defined functions can only be specified by identifier-1.

Do not specify the name of a class or a method in the CANCEL statement.

Note: The following rules for called subprograms also apply to invoked user-defined functions.

After a CANCEL statement for a called subprogram has been executed, that subprogram no longer has a
logical connection to the program. The contents of data items in external data records described by the
subprogram are not changed when that subprogram is canceled. If a CALL statement is executed later by
any program in the run unit naming the same subprogram, that subprogram is entered in its initial state.

When a CANCEL statement is executed, all programs contained within the program referenced in the
CANCEL statement are also canceled. The result is the same as if a valid CANCEL were executed for
each contained program in the reverse order in which the programs appear in the separately compiled
program.

A CANCEL statement frees all allocated buffers for dynamic-length elementary items that are associated
with the named program, including buffers for dynamic-length elementary items in its nested programs.

326 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

A CANCEL statement closes all open files that are associated with an internal file connector in the
program named in an explicit CANCEL statement. USE procedures associated with those files are not
executed.

You can cancel a called subprogram in any of the following ways:

• By referencing it as the operand of a CANCEL statement
• By terminating the run unit of which the subprogram is a member
• By executing an EXIT PROGRAM statement or a GOBACK statement in the called subprogram if that

subprogram possesses the initial attribute

No action is taken when a CANCEL statement is executed if the specified program:

• Has not been dynamically called in this run unit by another COBOL program
• Has been called and subsequently canceled

In a multithreaded environment, a program cannot execute a CANCEL statement naming a program that is
active on any thread. The named program must be completely inactive.

Called subprograms can contain CANCEL statements. However, a called subprogram must not execute
a CANCEL statement that directly or indirectly cancels the calling program itself or that cancels any
program higher than itself in the calling hierarchy. In such a case, the run unit is terminated.

A program named in a CANCEL statement must be a program that has been called and has executed an
EXIT PROGRAM statement or a GOBACK statement.

A program can cancel a program that it did not call, provided that, in the calling hierarchy, the program
that executes the CANCEL statement is higher than or equal to the program it is canceling. For example:

A calls B and B calls C (When A receives control, it can cancel C.)
A calls B and A calls C (When C receives control, it can cancel B.)

CLOSE statement
The CLOSE statement terminates the processing of volumes and files.

Format 1: CLOSE statement for sequential files

CLOSE file-name-1

REEL
1

UNIT
1

FOR

REMOVAL

WITH NO REWIND

WITH

NO REWIND
1

LOCK

Notes:
1 The REEL, UNIT, and NO REWIND phrases are not valid for VSAM files.

Chapter 28. PROCEDURE DIVISION statements 327

Format 2: CLOSE statement for indexed and relative files

CLOSE file-name-1

WITH

LOCK

Format 3: CLOSE statement for line-sequential files

CLOSE file-name-1

REEL

UNIT
FOR

REMOVAL

WITH NO REWIND

WITH

NO REWIND

LOCK

file-name-1
Designates the file upon which the CLOSE statement is to operate. If more than one file-name is
specified, the files need not have the same organization or access. file-name-1 must not be a sort or
merge file.

REEL and UNIT
You can specify these phrases only for QSAM multivolume or single volume files. The terms REEL and
UNIT are interchangeable.

WITH NO REWIND and FOR REMOVAL
These phrases apply only to QSAM tape files. If they are specified for storage devices to which they do
not apply, the close operation is successful and a status key value is set to indicate the file was on a
non-reel medium.

A CLOSE statement can be executed only for a file in an open mode. After successful execution of a CLOSE
statement (without the REEL/UNIT phrase if using format 1):

• The record area associated with the file-name is no longer available. Unsuccessful execution of a CLOSE
statement leaves availability of the record data undefined.

• An OPEN statement for the file must be executed before any other input/output statement can be
executed for the file and before data is moved to a record description entry associated with the file.

If the FILE STATUS clause is specified in the file-control entry, the associated file status key is updated
when the CLOSE statement is executed.

If the file is in an open status and the execution of a CLOSE statement is unsuccessful, the EXCEPTION/
ERROR procedure (if specified) for this file is executed.

Effect of CLOSE statement on file types
If the SELECT OPTIONAL clause is specified in the file-control entry for a file, and the file is not available
at run time, standard end-of-file processing is not performed. For QSAM files, the file position indicator
and current volume pointer are unchanged.

Files are divided into the following types:

328 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Non-reel/unit
A file whose input or output medium is such that rewinding, reels, and units have no meaning. All
VSAM files are of non-reel/unit file types. QSAM files can be of non-reel/unit file types.

Sequential single volume
A sequential file that is contained entirely on one volume. More than one file can be contained on this
volume. All VSAM files are single volume. QSAM files can be single volume.

Sequential multivolume
A sequential file that is contained on more than one volume. QSAM files are the only files that can be
multivolume. The concept of volume has no meaning for VSAM files.

The permissible combinations of CLOSE statement phrases are shown in the following tables:

• For sequential files: Sequential files and CLOSE statement phrases
• For indexed and relative files: Table 36 on page 329
• For line-sequential files: Table 37 on page 329

The meaning of each key letter is shown in Table 38 on page 330.

Table 35. Sequential files and CLOSE statement phrases

CLOSE statement phrases Non-reel/ unit Sequential single-
volume

Sequential
multivolume

CLOSE C C, G A, C, G

CLOSE REEL/UNIT F F, G F, G

CLOSE REEL/UNIT WITH NO REWIND F B, F B, F

CLOSE REEL/UNIT FOR REMOVAL D D D

CLOSE WITH NO REWIND C, H B, C A, B, C

CLOSE WITH LOCK C, E C, E, G A, C, E, G

Table 36. Indexed and relative file types and CLOSE statement phrases

CLOSE statement phrases Action

CLOSE C

CLOSE WITH LOCK C,E

Table 37. Line-sequential file types and CLOSE statement phrases

CLOSE statement phrases Action

CLOSE C

CLOSE WITH LOCK C,E

Chapter 28. PROCEDURE DIVISION statements 329

Table 38. Meanings of key letters for sequential file types

Key Actions taken

 A Previous volumes unaffected

Input and input-output files: Standard volume-switch processing is performed for all
previous volumes (except those controlled by a previous CLOSE REEL/UNIT statement). Any
subsequent volumes are not processed.

Output files: Standard volume-switch processing is performed for all previous volumes
(except those controlled by a previous CLOSE REEL/UNIT statement).

 B No rewinding of current reel: The current volume is left in its current position.

 C Close file

Standard system closing procedures are performed.

 D Volume removal: Treated as a comment.

 E File lock: The compiler ensures that this file cannot be opened again during this execution of
the object program. If the file is a tape unit, it will be rewound and unloaded.

 F Close volume

Input and input-output files: If the current reel/unit is the last or only reel/unit for the file
or if the reel is on a non-reel/unit medium, no volume switching is performed. If another
reel/unit exists for the file, the following operations are performed: a volume switch, and the
first record on the new volume is made available for reading. If no data records exist for the
current volume, another volume switch occurs.

Output (reel/unit media) files: The following operations are performed: a volume switch.
The next executed WRITE statement places the next logical record on the next direct access
volume available. A close statement with the REEL phrase does not close the output file; only
an end-of-volume condition occurs.

Output (non-reel/unit media) files: Execution of the CLOSE statement is considered
successful. The file remains in the open mode and no action takes place except that the
value of the I-O status associated with the file is updated.

 G Rewind: The current volume is positioned at its physical beginning.

 H Optional phrases ignored: The CLOSE statement is executed as if none of the optional
phrases were present.

COMPUTE statement
The COMPUTE statement assigns the value of an arithmetic expression to one or more data items.

With the COMPUTE statement, arithmetic operations can be combined without the restrictions on
receiving data items imposed by the rules for the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements.

When arithmetic operations are combined, the COMPUTE statement can be more efficient than the
separate arithmetic statements written in a series.

330 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format

COMPUTE identifier-1

ROUNDED

 =

EQUAL

arithmetic-expression

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2

END-COMPUTE

identifier-1
Must name an elementary numeric item or an elementary numeric-edited item.

Can name an elementary floating-point data item.

arithmetic-expression
Can be any arithmetic expression, as defined in “Arithmetic expressions” on page 266.

When the COMPUTE statement is executed, the value of arithmetic expression is calculated and stored
as the new value of each data item referenced by identifier-1.

An arithmetic expression consisting of a single identifier, numeric function, or literal allows the user to
set the value of the data items that are referenced by identifier-1 equal to the value of that identifier,
function, or literal.

ROUNDED phrase
For a discussion of the ROUNDED phrase, see “ROUNDED phrase” on page 296.

SIZE ERROR phrases
For a discussion of the SIZE ERROR phrases, see “SIZE ERROR phrases” on page 296.

END-COMPUTE phrase
This explicit scope terminator serves to delimit the scope of the COMPUTE statement. END-COMPUTE
permits a conditional COMPUTE statement to be nested in another conditional statement. END-COMPUTE
can also be used with an imperative COMPUTE statement.

For more information, see “Delimited scope statements” on page 293.

CONTINUE statement
The CONTINUE statement is a no operation statement. CONTINUE indicates that no executable
instruction is present.

Format
CONTINUE

Chapter 28. PROCEDURE DIVISION statements 331

DELETE statement
The DELETE statement removes a record from an indexed or relative file. For indexed files, the key can
then be reused for record addition. For relative files, the space is then available for a new record with the
same RELATIVE KEY value.

When the DELETE statement is executed, the associated file must be open in I-O mode.

Format
DELETE file-name-1

RECORD

INVALID

KEY

imperative-statement-1

NOT INVALID

KEY

imperative-statement-2 END-DELETE

file-name-1
Must be defined in an FD entry in the DATA DIVISION and must be the name of an indexed or relative
file.

After successful execution of a DELETE statement, the record is removed from the file and can no longer
be accessed.

Execution of the DELETE statement does not affect the contents of the record area associated with
file-name-1 or the content of the data item referenced by the data-name specified in the DEPENDING ON
phrase of the RECORD clause associated with file-name-1.

If the FILE STATUS clause is specified in the file-control entry, the associated file status key is updated
when the DELETE statement is executed.

The file position indicator is not affected by execution of the DELETE statement.

Sequential access mode
For a file in sequential access mode, the previous input/output statement must be a successfully
executed READ statement. When the DELETE statement is executed, the system removes the record
that was retrieved by that READ statement.

For a file in sequential access mode, the INVALID KEY and NOT INVALID KEY phrases must not be
specified. An EXCEPTION/ERROR procedure can be specified.

Random or dynamic access mode
In random or dynamic access mode, DELETE statement execution results depend on the file organization:
indexed or relative.

When the DELETE statement is executed, the system removes the record identified by the contents of the
prime RECORD KEY data item for indexed files, or the RELATIVE KEY data item for relative files. If the file
does not contain such a record, an INVALID KEY condition exists. (See “Invalid key condition” on page
303.)

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure can be omitted.

Transfer of control after the successful execution of a DELETE statement, with the NOT INVALID KEY
phrase specified, is to the imperative statement associated with the phrase.

332 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

END-DELETE phrase
This explicit scope terminator serves to delimit the scope of the DELETE statement. END-DELETE permits
a conditional DELETE statement to be nested in another conditional statement. END-DELETE can also be
used with an imperative DELETE statement.

For more information, see “Delimited scope statements” on page 293.

DISPLAY statement
The DISPLAY statement transfers the contents of each operand to the output device. The contents are
displayed on the output device in the order, left to right, in which the operands are listed.

Format

DISPLAY identifier-1

literal-1 UPON mnemonic-name-1

environment-name-1

WITH

NO ADVANCING

identifier-1
Identifier-1 references the data that is to be displayed. Identifier-1 can reference any data item except
an item of usage PROCEDURE-POINTER, FUNCTION-POINTER, OBJECT REFERENCE, or INDEX.
Identifier-1 cannot be an index-name.

If identifier-1 is a binary, internal decimal, or internal floating-point data item, identifier-1 is converted
automatically to external format as follows:

• Binary and internal decimal items are converted to zoned decimal. Negative signed values cause
a low-order sign overpunch. This can cause unreadable output if the DISPSIGN(COMPAT) compiler
option is used. If the DISPSIGN(SEP) compiler option is in effect, the sign is displayed separately
from the data, as if SIGN IS SEPARATE was specified. For details, see DISPSIGN in the Enterprise
COBOL Programming Guide.

• Internal floating-point numbers are converted to external floating-point numbers for display such
that:

– A COMP-1 item will display as if it had an external floating-point PICTURE clause of -.9(8)E-99.
– A COMP-2 item will display as if it had an external floating-point PICTURE clause of -.9(17)E-99.

Data items defined with USAGE POINTER are converted to a zoned decimal number that has an
implicit PICTURE clause of PIC 9(10).

If the output is directed to CONSOLE, data items described with usage NATIONAL are converted from
national character representation to EBCDIC. The conversion uses the EBCDIC code page that was
specified in the CODEPAGE compiler option when the source code was compiled. National characters
without EBCDIC counterparts are converted to default substitution characters; no exception condition
is indicated or raised.

If the output is not directed to CONSOLE, data items described with usage NATIONAL are written
without conversion and without data validation.

No other categories of data require conversion.

Chapter 28. PROCEDURE DIVISION statements 333

DBCS data items, explicitly or implicitly defined as USAGE DISPLAY-1, are transferred to the sending
field of the output device. For proper results, the output device must have the capability to recognize
DBCS shift-out and shift-in control characters.

Both DBCS and non-DBCS operands can be specified in a single DISPLAY statement.

identifier-1 must not be a dynamic-length group item.

literal-1
Can be any literal or any figurative constant as specified in “Figurative constants” on page 15. When a
figurative constant is specified, only a single occurrence of that figurative constant is displayed.

UPON
environment-name-1 or the environment name associated with mnemonic-name-1 must be
associated with an output device. See “SPECIAL-NAMES paragraph” on page 124.

A default logical record size is assumed for each device, as follows:

The system logical output device
120 characters

The system punch device
80 characters

The console
100 characters

A maximum logical record size is allowed for each device, as follows:

The system logical output device
255 characters

The system punch device
255 characters

The console
100 characters

On the system punch device, the last eight characters are used for PROGRAM-ID name.

When the UPON phrase is omitted, the system's logical output device is assumed. The list of valid
environment-names in a DISPLAY statement is shown in Table 5 on page 126.

For details on routing DISPLAY output to stdout, see Displaying values on a screen or in a file
(DISPLAY) in the Enterprise COBOL Programming Guide.

WITH NO ADVANCING
When specified, the positioning of the output device will not be changed in any way following the
display of the last operand.

If the WITH NO ADVANCING phrase is not specified, after the last operand has been transferred to
the output device, the positioning of the output device will be reset to the leftmost position of the next
line of the device.

Enterprise COBOL does not support output devices that are capable of positioning to a specific
character position. See Displaying values on a screen or in a file (DISPLAY) in the Enterprise COBOL
Programming Guide for more information about the DISPLAY statement.

The DISPLAY statement transfers the data in the sending field to the output device. The size of the
sending field is the total byte count of all operands listed. If the output device is capable of receiving
data of the same size as the data item being transferred, then the data item is transferred. If the output
device is not capable of receiving data of the same size as the data item being transferred, then one of the
following applies:

• If the total count is less than the device maximum, the remaining rightmost positions are padded with
spaces.

334 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If the total count exceeds the maximum, as many records are written as are needed to display all
operands. Any operand being printed or displayed when the end of a record is reached is continued in
the next record.

If a DBCS operand must be split across multiple records, it will be split only on a double-byte boundary.

Shift code insertion is required for splitting DBCS items. That is, when a DBCS operand is split across
multiple records, the shift-in character is inserted at the end of the current record, and the shift-out
character is inserted at the beginning of the next record. A space is padded after the shift-in character, if
necessary. These inserted shift codes and spaces are included in the total byte count of the sending data
items.

After the last operand has been transferred to the output device, the device is reset to the leftmost
position of the next line of the device.

If a DBCS data item or literal is specified in a DISPLAY statement, the size of the sending field is the total
byte count of all operands listed, with each DBCS character counted as two bytes, plus the necessary shift
codes and spaces for DBCS.

DIVIDE statement
The DIVIDE statement divides one numeric data item into or by others and sets the values of data items
equal to the quotient and remainder.

Format 1: DIVIDE statement

DIVIDE identifier-1

literal-1

INTO identifier-2

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2 END-DIVIDE

In format 1, the value of identifier-1 or literal-1 is divided into the value of identifier-2, and the quotient
is then stored in identifier-2. For each successive occurrence of identifier-2, the division takes place in the
left-to-right order in which identifier-2 is specified.

Format 1 example:

DIVIDE A INTO B

The value in A is divided into the value in B and the result is stored in B. The value in A is unchanged.

DIVIDE C INTO D E

The value in C is divided into the value in D, storing the answer in D. The value of C is also divided into E,
storing the value in E. The value in C is unchanged.

Chapter 28. PROCEDURE DIVISION statements 335

Format 2: DIVIDE statement with INTO and GIVING phrases
DIVIDE identifier-1

literal-1

INTO identifier-2

literal-2

GIVING

identifier-3

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2 END-DIVIDE

In format 2, the value of identifier-1 or literal-1 is divided into the value of identifier-2 or literal-2. The
value of the quotient is stored in each data item referenced by identifier-3.

Format 2 example:

DIVIDE A INTO B GIVING C

The value in A is divided into the value in B and the result is stored in C. The values in A and B are
unchanged.

Format 3: DIVIDE statement with BY and GIVING phrases
DIVIDE identifier-1

literal-1

BY identifier-2

literal-2

GIVING

identifier-3

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2 END-DIVIDE

In format 3, the value of identifier-1 or literal-1 is divided by the value of identifier-2 or literal-2. The value
of the quotient is stored in each data item referenced by identifier-3.

Format 3 example:

DIVIDE A BY B GIVING C

The value in A is divided by the value in B and the result is stored in C. The values in A and B are
unchanged.

336 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 4: DIVIDE statement with INTO and REMAINDER phrases
DIVIDE identifier-1

literal-1

INTO identifier-2

literal-2

GIVING identifier-3

ROUNDED

REMAINDER identifier-4

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2 END-DIVIDE

In format 4, the value of identifier-1 or literal-1 is divided into identifier-2 or literal-2. The value of the
quotient is stored in identifier-3, and the value of the remainder is stored in identifier-4.

Format 4 example:

DIVIDE A INTO B GIVING C REMAINDER D

The value in A is divided into the value in B and the results stored in C with the remainder being stored in
D. The values in A and B are unchanged.

Format 5: DIVIDE statement with BY and REMAINDER phrases
DIVIDE identifier-1

literal-1

BY identifier-2

literal-2

GIVING identifier-3

ROUNDED

REMAINDER identifier-4

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2 END-DIVIDE

In format 5, the value of identifier-1 or literal-1 is divided by identifier-2 or literal-2. The value of the
quotient is stored in identifier-3, and the value of the remainder is stored in identifier-4.

Format 5 example:

DIVIDE A BY B GIVING C REMAINDER D

The value in A is divided by the value in B and the result is stored in C with the remainder being stored in
D. The values in A and B are unchanged.

For all formats:

identifier-1, identifier-2
Must name an elementary numeric data item.

Chapter 28. PROCEDURE DIVISION statements 337

identifier-3, identifier-4
Must name an elementary numeric or numeric-edited item.

literal-1, literal-2
Must be a numeric literal.

In formats 1, 2, and 3, floating-point data items and literals can be used anywhere that a numeric data
item or literal can be specified.

In formats 4 and 5, floating-point data items or literals cannot be used.

ROUNDED phrase
For formats 1, 2, and 3, see “ROUNDED phrase” on page 296.

For formats 4 and 5, the quotient used to calculate the remainder is in an intermediate field. The value of
the intermediate field is truncated rather than rounded.

REMAINDER phrase
The result of subtracting the product of the quotient and the divisor from the dividend is stored in
identifier-4. If identifier-3, the quotient, is a numeric-edited item, the quotient used to calculate the
remainder is an intermediate field that contains the unedited quotient.

The REMAINDER phrase is invalid if the receiver or any of the operands is a floating-point item.

Any subscripts for identifier-4 in the REMAINDER phrase are evaluated after the result of the divide
operation is stored in identifier-3 of the GIVING phrase.

SIZE ERROR phrases
For formats 1, 2, and 3, see “SIZE ERROR phrases” on page 296.

For formats 4 and 5, if a size error occurs in the quotient, no remainder calculation is meaningful.
Therefore, the contents of the quotient field (identifier-3) and the remainder field (identifier-4) are
unchanged.

If size error occurs in the remainder, the contents of the remainder field (identifier-4) are unchanged.

In either of these cases, you must analyze the results to determine which situation has actually occurred.

For information about the NOT ON SIZE ERROR phrase, see “SIZE ERROR phrases” on page 296.

END-DIVIDE phrase
This explicit scope terminator serves to delimit the scope of the DIVIDE statement. END-DIVIDE turns
a conditional DIVIDE statement into an imperative statement that can be nested in another conditional
statement. END-DIVIDE can also be used with an imperative DIVIDE statement.

For more information, see “Delimited scope statements” on page 293.

ENTRY statement
The ENTRY statement establishes an alternate entry point into a COBOL called subprogram.

The ENTRY statement cannot be used in:

• Programs that specify a return value using the PROCEDURE DIVISION RETURNING phrase. For details,
see the discussion of the RETURNING phrase under “The PROCEDURE DIVISION header” on page 258.

• Nested program. See “Nested programs” on page 85 for a description of nested programs.
• Dynamic call or procedure-pointer call under AMODE 64. The programs must be compiled with LP(32)

(the default) and run under AMODE(31) if there are ENTRY statements entered using dynamic call or via
procedure pointer.

338 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

When a CALL statement that specifies the alternate entry point is executed in a calling program, control is
transferred to the next executable statement following the ENTRY statement.

Format
ENTRY literal-1

USING

BY

REFERENCE

BY

VALUE

identifier-1

.

literal-1
Must be an alphanumeric literal that conform to the rules for the formation of a program-name in an
outermost program (see Chapter 15, “PROGRAM-ID paragraph,” on page 101).

Must not match the program-ID or any other ENTRY literal in this program.

Must not be a figurative constant.

Execution of the called program begins at the first executable statement following the ENTRY statement
whose literal corresponds to the literal or identifier specified in the CALL statement.

The entry point name on the ENTRY statement can be affected by the PGMNAME compiler option. For
details, see PGMNAME in the Enterprise COBOL Programming Guide.

USING phrase
For a discussion of the USING phrase, see “The PROCEDURE DIVISION header” on page 258.

EVALUATE statement
The EVALUATE statement provides a shorthand notation for a series of nested IF statements. The
EVALUATE statement can evaluate multiple conditions. The subsequent action depends on the results
of these evaluations.

Chapter 28. PROCEDURE DIVISION statements 339

Format
EVALUATE identifier-1

literal-1

expression-1

TRUE

FALSE

 ALSO identifier-2

literal-2

expression-2

TRUE

FALSE

WHEN phrase 1

ALSO phrase 2

imperative-statement-1

WHEN OTHER imperative-statement-2 END-EVALUATE

phrase 1
ANY

condition-1

TRUE

FALSE

NOT

identifier-3

literal-3

arithmetic-expression-1

THROUGH

THRU

identifier-4

literal-4

arithmetic-expression-2

phrase 2
ANY

condition-2

TRUE

FALSE

NOT

identifier-5

literal-5

arithmetic-expression-3

THROUGH

THRU

identifier-6

literal-6

arithmetic-expression-4

Operands before the WHEN phrase
Are interpreted in one of two ways, depending on how they are specified:

• Individually, they are called selection subjects.
• Collectively, they are called a set of selection subjects.

Operands in the WHEN phrase
Are interpreted in one of two ways, depending on how they are specified:

• Individually, they are called selection objects
• Collectively, they are called a set of selection objects.

ALSO
Separates selection subjects within a set of selection subjects; separates selection objects within a
set of selection objects.

340 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

THROUGH and THRU
Are equivalent.

All identifiers in the EVALUATE statement must not be dynamic-length group items.

Two operands connected by a THRU phrase must be of the same class. The two operands thus connected
constitute a single selection object.

The number of selection objects within each set of selection objects must be equal to the number of
selection subjects.

Each selection object within a set of selection objects must correspond to the selection subject having the
same ordinal position within the set of selection subjects, according to the following rules:

• Identifiers, literals, or arithmetic expressions appearing within a selection object must be valid
operands for comparison to the corresponding operand in the set of selection subjects.

• condition-1, condition-2, or the word TRUE or FALSE appearing as a selection object must correspond to
a conditional expression or the word TRUE or FALSE in the set of selection subjects.

• The word ANY can correspond to a selection subject of any type.

END-EVALUATE phrase
This explicit scope terminator serves to delimit the scope of the EVALUATE statement. END-EVALUATE
permits a conditional EVALUATE statement to be nested in another conditional statement.

For more information, see “Delimited scope statements” on page 293.

Determining values
The execution of the EVALUATE statement operates as if each selection subject and selection object were
evaluated and assigned a numeric, alphanumeric, DBCS, or national character value; a range of numeric,
alphanumeric, DBCS, or national character values; or a truth value.

These values are determined as follows:

• Any selection subject specified by identifier-1, identifier-2, ... and any selection object specified by
identifier-3 or identifier-5 without the NOT or THRU phrase are assigned the value and class of the data
item that they reference.

• Any selection subject specified by literal-1, literal-2, ... and any selection object specified by literal-3
or literal-5 without the NOT or THRU phrase are assigned the value and class of the specified literal. If
literal-3 or literal-5 is the figurative constant ZERO, QUOTE, or SPACE, the figurative constant is assigned
the class of the corresponding selection subject.

• Any selection subject in which expression-1, expression-2, ... is specified as an arithmetic expression,
and any selection object without the NOT or THRU phrase in which arithmetic-expression-1 or
arithmetic-expression-3 is specified, are assigned numeric values according to the rules for evaluating
an arithmetic expression. (See “Arithmetic expressions” on page 266.)

• Any selection subject in which expression-1, expression-2, ... is specified as a conditional expression,
and any selection object in which condition-1 or condition-2 is specified, are assigned a truth value
according to the rules for evaluating conditional expressions. (See “Conditional expressions” on page
268.)

• Any selection subject or any selection object specified by the words TRUE or FALSE is assigned a truth
value. The truth value "true" is assigned to those items specified with the word TRUE, and the truth
value "false" is assigned to those items specified with the word FALSE.

• Any selection object specified by the word ANY is not further evaluated.
• If the THRU phrase is specified for a selection object without the NOT phrase, the range of values

includes all values that, when compared to the selection subject, are greater than or equal to the first
operand and less than or equal to the second operand according to the rules for comparison. If the first
operand is greater than the second operand, there are no values in the range.

Chapter 28. PROCEDURE DIVISION statements 341

• If the NOT phrase is specified for a selection object, the values assigned to that item are all values not
equal to the value, or range of values, that would have been assigned to the item had the NOT phrase
been omitted.

Comparing selection subjects and objects
The execution of the EVALUATE statement then proceeds as if the values assigned to the selection
subjects and selection objects were compared to determine whether any WHEN phrase satisfies the set of
selection subjects.

This comparison proceeds as follows:

1. Each selection object within the set of selection objects for the first WHEN phrase is compared to
the selection subject having the same ordinal position within the set of selection subjects. One of the
following conditions must be satisfied if the comparison is to be satisfied:

a. If the items being compared are assigned numeric, alphanumeric, DBCS, or national character
values, or a range of numeric, alphanumeric, DBCS, or national character values, the comparison is
satisfied if the value, or one value in the range of values, assigned to the selection object is equal to
the value assigned to the selection subject according to the rules for comparison.

b. If the items being compared are assigned truth values, the comparison is satisfied if the items are
assigned identical truth values.

c. If the selection object being compared is specified by the word ANY, the comparison is always
satisfied, regardless of the value of the selection subject.

2. If the above comparison is satisfied for every selection object within the set of selection objects being
compared, the WHEN phrase containing that set of selection objects is selected as the one satisfying
the set of selection subjects.

3. If the above comparison is not satisfied for every selection object within the set of selection objects
being compared, that set of selection objects does not satisfy the set of selection subjects.

4. This procedure is repeated for subsequent sets of selection objects in the order of their appearance in
the source text, until either a WHEN phrase satisfying the set of selection subjects is selected or until
all sets of selection objects are exhausted.

Executing the EVALUATE statement
After the comparison operation is completed, execution of the EVALUATE statement proceeds.

• If a WHEN phrase is selected, execution continues with the first imperative-statement-1 following
the selected WHEN phrase. Note that multiple WHEN statements are allowed for a single imperative-
statement-1.

• If no WHEN phrase is selected and a WHEN OTHER phrase is specified, execution continues with
imperative-statement-2.

• If no WHEN phrase is selected and no WHEN OTHER phrase is specified, execution continues with the
next executable statement following the scope delimiter.

• The scope of execution of the EVALUATE statement is terminated when execution reaches the end of
the scope of the selected WHEN phrase or WHEN OTHER phrase, or when no WHEN phrase is selected
and no WHEN OTHER phrase is specified.

EXIT statement
The EXIT statement provides a common end point for a series of procedures. It also provides a way to exit
from a section, a paragraph, or an inline PERFORM statement.

Note: Enterprise COBOL does not yet support the format 4 EXIT statement, EXIT FUNCTION.

342 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 1 (simple)
The format 1 EXIT statement provides a common end point for a series of procedures.

Format 1
paragraph-name . EXIT

The format 1 EXIT statement enables you to assign a procedure-name to a given point in a program.

The format 1 EXIT statement is treated as a CONTINUE statement. Any statements following the EXIT
statement are executed.

Format 2 (program)
The EXIT PROGRAM statement specifies the end of a called program and returns control to the calling
program.

You can specify EXIT PROGRAM only in the PROCEDURE DIVISION of a program. EXIT PROGRAM must
not be used in a declarative procedure in which the GLOBAL phrase is specified.

Format 2
EXIT PROGRAM

If control reaches an EXIT PROGRAM statement in a program that does not possess the INITIAL attribute
while operating under the control of a CALL statement (that is, the CALL statement is active), control
returns to the point in the calling routine (program or method) immediately following the CALL statement.
The state of the calling routine is identical to that which existed at the time it executed the CALL
statement. The contents of data items and the contents of data files shared between the calling and
called routine could have been changed. The state of the called program or method is not altered except
that the ends of the ranges of all executed PERFORM statements are considered to have been reached.

The execution of an EXIT PROGRAM statement in a called program that possesses the INITIAL attribute is
equivalent also to executing a CANCEL statement referencing that program.

If control reaches an EXIT PROGRAM statement, and no CALL statement is active, control passes through
the exit point to the next executable statement.

If a subprogram specifies the PROCEDURE DIVISION RETURNING phrase, the value in the data item
referred to by the RETURNING phrase becomes the result of the subprogram invocation.

The EXIT PROGRAM statement should be the last statement in a sequence of imperative statements.
When it is not, statements following the EXIT PROGRAM will not be executed if a CALL statement is active.

When there is no next executable statement in a called program, an implicit EXIT PROGRAM statement is
executed.

Format 3 (method)
The EXIT METHOD statement specifies the end of an invoked method.

Format 3
EXIT METHOD

You can specify EXIT METHOD only in the PROCEDURE DIVISION of a method. EXIT METHOD causes the
executing method to terminate, and control returns to the invoking statement. If the containing method

Chapter 28. PROCEDURE DIVISION statements 343

specifies the PROCEDURE DIVISION RETURNING phrase, the value in the data item referred to by the
RETURNING phrase becomes the result of the method invocation.

If you need method-specific data to be in the last-used state on each invocation, define it in method
WORKING-STORAGE. If you need method-specific data to be in the initial state on each invocation, define
it in method LOCAL-STORAGE.

If control reaches an EXIT METHOD statement in a method definition, control returns to the point that
immediately follows the INVOKE statement in the invoking program or method. The state of the invoking
program or method is identical to that which existed at the time it executed the INVOKE statement.

The contents of data items and the contents of data files shared between the invoking program or method
and the invoked method could have changed. The state of the invoked method is not altered except that
the end of the ranges of all PERFORM statements executed by the method are considered to have been
reached.

The EXIT METHOD statement does not have to be the last statement in a sequence of imperative
statements, but the statements following the EXIT METHOD will not be executed.

When there is no next executable statement in an invoked method, an implicit EXIT METHOD statement is
executed.

Format 5 (inline-perform)
The EXIT PERFORM statement controls the exit from an inline PERFORM without using a GO TO statement
or a PERFORM ... THROUGH statement.

Format 5
EXIT PERFORM

CYCLE

If you specify an EXIT PERFORM statement outside of an inline PERFORM statement, the EXIT PERFORM
is ignored.

When an EXIT PERFORM statement without the CYCLE phrase is executed, control is passed to an implicit
CONTINUE statement. This implicit CONTINUE statement immediately follows the END-PERFORM phrase
that matches the most closely preceding and unterminated inline PERFORM statement.

When an EXIT PERFORM statement with the CYCLE phrase is executed, control is passed to an implicit
CONTINUE statement. This implicit CONTINUE statement immediately precedes the END-PERFORM
phrase that matches the most closely preceding and unterminated inline PERFORM statement.

Format 6 (procedure)
The EXIT PARAGRAPH statement controls the exit from the middle of a paragraph without executing any
following statements within the paragraph. The EXIT SECTION statement controls the exit from a section
without executing any following statements within the section.

Format 6
EXIT PARAGRAPH

SECTION

EXIT PARAGRAPH

When an EXIT PARAGRAPH statement is executed, control is passed to an implicit CONTINUE statement
that immediately follows the last explicit statement of the current paragraph. This return mechanism

344 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

supersedes any other return mechanisms that are associated with language elements, such as PERFORM,
SORT, and USE for that paragraph.

EXIT SECTION

The EXIT SECTION statement can be specified only in a section.

When an EXIT SECTION statement is executed, control is passed to an unnamed empty paragraph that
immediately follows the last paragraph of the current section. This return mechanism supersedes any
other return mechanisms that are associated with language elements, such as PERFORM, SORT, and USE
for that section.

FREE statement
The FREE statement releases dynamic storage that was previously obtained with an ALLOCATE
statement.

Format

FREE  data-name-1

data-name-1
Must be defined as USAGE POINTER or USAGE POINTER-32.

Can be qualified or subscripted.

The FREE statement is processed as follows:

• If the pointer referenced by data-name-1 identifies the start of storage that is currently allocated by
an ALLOCATE statement, that storage is released and the pointer referenced by data-name-1 is set
to NULL, the length of the released storage is the length of the storage obtained by the ALLOCATE
statement, and the contents of any data items located within the released storage area become
undefined.

• If the pointer referenced by data-name-1 contains the predefined address NULL or the address of
storage that is not acquired by the ALLOCATE statement, no storage will be freed. The pointer data-
name-1 will be kept unchanged and the behavior is undefined.

If more than one data-name-1 is specified in a FREE statement, the result of executing this FREE
statement is the same as if a separate FREE statement had been written for each data-name-1 in the
same order as specified in the FREE statement.

Related references
“ALLOCATE statement” on page 313
“Example: ALLOCATE and FREE storage for UNBOUNDED tables” on page 315
POINTER phrase
POINTER-32 phrase

GOBACK statement
The GOBACK statement functions like the EXIT PROGRAM statement when it is coded as part of a called
program (or the EXIT METHOD statement when GOBACK is coded as part of an invoked method) and like
the STOP RUN statement when coded in a main program.

The GOBACK statement specifies the logical end of a called program or invoked method.

Chapter 28. PROCEDURE DIVISION statements 345

Format
GOBACK

A GOBACK statement should appear as the only statement or as the last of a series of imperative
statements in a sentence because any statements following the GOBACK are not executed. GOBACK must
not be used in a declarative procedure in which the GLOBAL phrase is specified.

If control reaches a GOBACK statement while a CALL statement is active, control returns to the point
in the calling program or method immediately following the CALL statement, as in the EXIT PROGRAM
statement.

If control reaches a GOBACK statement while an INVOKE statement is active, control returns to the point
in the invoking program or method immediately following the INVOKE statement, as in the EXIT METHOD
statement.

In addition, the execution of a GOBACK statement in a called program that possesses the INITIAL
attribute is equivalent to executing a CANCEL statement referencing that program.

The table below shows the action taken for the GOBACK statement in a main program, a subprogram, and
an invoked method.

Termination
statement

Main program Subprogram Invoked method

GOBACK Returns to the calling
program. (Can be the
system, which causes the
application to end.)

Returns to the calling
program.

Returns to the calling
method.

GO TO statement
The GO TO statement transfers control from one part of the PROCEDURE DIVISION to another.

The types of GO TO statements are:

• Unconditional
• Conditional
• Altered

Unconditional GO TO
The unconditional GO TO statement transfers control to the first statement in the paragraph or section
identified by procedure-name, unless the GO TO statement has been modified by an ALTER statement.

For more information, see “ALTER statement” on page 317.

Format 1: unconditional GO TO statement
GO

TO

procedure-name-1

procedure-name-1
Must name a procedure or a section in the same PROCEDURE DIVISION as the GO TO statement.

When the unconditional GO TO statement is not the last statement in a sequence of imperative
statements, the statements following the GO TO are not executed.

346 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

When a paragraph is referred to by an ALTER statement, the paragraph must consist of a paragraph-name
followed by an unconditional or altered GO TO statement.

Conditional GO TO
The conditional GO TO statement transfers control to one of a series of procedures, depending on the
value of the data item referenced by identifier-1.

Format 2: conditional GO TO statement

GO

TO

procedure-name-1 DEPENDING

ON

identifier-1

procedure-name-1
Must be a procedure or a section in the same PROCEDURE DIVISION as the GO TO statement. The
number of procedure-names must not exceed 255.

identifier-1
Must be a numeric elementary data item that is an integer.

If 1, control is transferred to the first statement in the procedure named by the first occurrence of
procedure-name-1.

If 2, control is transferred to the first statement in the procedure named by the second occurrence of
procedure-name-1, and so forth.

If the value of identifier is anything other than a value within the range of 1 through n (where n is the
number of procedure-names specified in this GO TO statement), no control transfer occurs. Instead,
control passes to the next statement in the normal sequence of execution.

Altered GO TO
The altered GO TO statement transfers control to the first statement of the paragraph named in the ALTER
statement.

You cannot specify the altered GO TO statement in the following cases:

• A program or method that has the RECURSIVE attribute
• A program compiled with the THREAD compiler option

An ALTER statement referring to the paragraph that contains the altered GO TO statement should be
executed before the GO TO statement is executed. Otherwise, the GO TO statement acts like a CONTINUE
statement.

Format 3: altered GO TO statement
paragraph-name . GO

TO

.

When an ALTER statement refers to a paragraph, the paragraph can consist only of the paragraph-name
followed by an unconditional or altered GO TO statement.

Chapter 28. PROCEDURE DIVISION statements 347

IF statement
The IF statement evaluates a condition and provides for alternative actions in the object program,
depending on the evaluation.

Format

IF condition-1

THEN

statement-1

NEXT SENTENCE

ELSE statement-2

NEXT SENTENCE

END-IF
1

Notes:
1 END-IF can be specified with statement-2 or NEXT SENTENCE.

condition-1
Can be any simple or complex condition, as described in “Conditional expressions” on page 268.

statement-1, statement-2
Can be any one of the following options:

• An imperative statement
• A conditional statement
• An imperative statement followed by a conditional statement

NEXT SENTENCE
The NEXT SENTENCE phrase transfers control to an implicit CONTINUE statement immediately
following the next separator period.

When NEXT SENTENCE is specified with END-IF, control does not pass to the statement following the
END-IF. Instead, control passes to the statement after the closest following period.

END-IF phrase
This explicit scope terminator serves to delimit the scope of the IF statement. END-IF permits a
conditional IF statement to be nested in another conditional statement. For more information about
explicit scope terminators, see “Delimited scope statements” on page 293.

The scope of an IF statement can be terminated by any of the following options:

• An END-IF phrase at the same level of nesting
• A separator period
• If nested, by an ELSE phrase associated with an IF statement at a higher level of nesting

Transferring control
The topic describes the actions to take when conditions tested is true or false.

If the condition tested is true, one of the following actions takes place:

• If statement-1 is specified, statement-1 is executed. If statement-1 contains a procedure branching or
conditional statement, control is transferred according to the rules for that statement. If statement-1

348 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

does not contain a procedure-branching statement, the ELSE phrase, if specified, is ignored, and control
passes to the next executable statement after the corresponding END-IF or separator period.

• If NEXT SENTENCE is specified, control passes to an implicit CONTINUE statement immediately
following the next separator period.

If the condition tested is false, one of the following actions takes place:

• If ELSE statement-2 is specified, statement-2 is executed. If statement-2 contains a procedure-
branching or conditional statement, control is transferred, according to the rules for that statement.
If statement-2 does not contain a procedure-branching or conditional statement, control is passed to
the next executable statement after the corresponding END-IF or separator period.

• If ELSE NEXT SENTENCE is specified, control passes to an implicit CONTINUE STATEMENT immediately
preceding the next separator period.

• If neither ELSE statement-2 nor ELSE NEXT SENTENCE is specified, control passes to the next
executable statement after the corresponding END-IF or separator period.

When the ELSE phrase is omitted, all statements following the condition and preceding the corresponding
END-IF or the separator period for the sentence are considered to be part of statement-1.

Nested IF statements
When an IF statement appears as statement-1 or statement-2, or as part of statement-1 or statement-2,
that IF statement is nested.

When an IF statement appears as statement-1 or statement-2, or as part of statement-1 or statement-2,
that IF statement is nested.

Nested IF statements are considered to be matched IF, ELSE, and END-IF combinations proceeding
from left to right. Thus, any ELSE encountered is matched with the nearest preceding IF that either
has not been already matched with an ELSE or has not been implicitly or explicitly terminated. Any
END-IF encountered is matched with the nearest preceding IF that has not been implicitly or explicitly
terminated.

Chapter 28. PROCEDURE DIVISION statements 349

INITIALIZE statement
The INITIALIZE statement sets selected categories of data fields to predetermined values. The
INITIALIZE statement is functionally equivalent to one or more MOVE statements.

Format

INITIALIZE identifier-1

WITH

FILLER

ALL

category-name TO

VALUE

THEN

REPLACING category-name

DATA

BY identifier-2

literal-1

THEN TO

DEFAULT

Where category-name is:

• ALPHABETIC
• ALPHANUMERIC
• ALPHANUMERIC-EDITED
• DBCS
• EGCS
• NATIONAL
• NATIONAL-EDITED
• NUMERIC
• NUMERIC-EDITED
• UTF-8

identifier-1
Receiving areas.

identifier-1 must reference one of the following items:

• An alphanumeric group item
• A national group item
• A UTF-8 group item
• An elementary data item of one of the following categories:

– Alphabetic
– Alphanumeric
– Alphanumeric-edited
– DBCS

350 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

– External floating-point
– Internal floating-point
– National
– National-edited
– Numeric
– Numeric-edited
– UTF-8

• A special register that is valid as a receiving operand in a MOVE statement with identifer-2 or
literal-1 as the sending operand.

identifier-1 references an elementary item or a group item. The effect of the execution of an
INITIALIZE statement is as if a series of implicit MOVE statements, each of which has an elementary
data item as its receiving operand, were executed.

When identifier-1 references a national or UTF-8 group item, identifier-1 is processed as a group item.

identifier-1 cannot be a dynamic-length elementary item.

identifier-2, literal-1
Sending areas.

When identifier-2 references a national or UTF-8 group item, identifier-2 is processed as an
elementary data item of category national or UTF-8, respectively.

identifier-2 must reference an elementary data item (or a national or UTF-8 group item treated as
elementary) that is valid as a sending operand in a MOVE statement with identifier-1 as the receiving
operand.

literal-1 must be a literal that is valid as a sending operand in a MOVE statement with identifier-1 as
the receiving operand.

A subscripted item can be specified for identifier-1. A complete table can be initialized only by specifying
identifier-1 as a group that contains the complete table.

Usage note: The data description entry for identifier-1 can contain the DEPENDING phrase of the OCCURS
clause. However, you cannot use the INITIALIZE statement to initialize a variably-located item or a
variable-length item.

The data description entry for identifier-1 must not contain a RENAMES clause.

Special registers can be specified for identifier-1 and identifier-2 only if they are valid receiving fields or
sending fields, respectively, for the implied MOVE statements.

FILLER phrase
When the FILLER phrase is specified, the receiving elementary data items that have an explicit or implicit
FILLER clause will be initialized.

VALUE phrase
When the VALUE phrase is specified:

• If ALL is specified in the VALUE phrase, it is as if all of the categories listed in category-name were
specified.

• The same category cannot be repeated in a VALUE phrase.

REPLACING phrase
When the REPLACING phrase is specified:

Chapter 28. PROCEDURE DIVISION statements 351

• identifier-2 must reference an item of a category that is valid as a sending operand in a MOVE statement
to an item of the corresponding category specified in the REPLACING phrase.

• literal-1 must be of a category that is valid as a sending operand in a MOVE statement to an item of the
corresponding category specified in the REPLACING phrase.

• A floating-point literal, a data item of category internal floating-point, or a data item of category external
floating point is treated as if it were in the NUMERIC category.

• The same category cannot be repeated in a REPLACING phrase.

With the exception of EGCS, the keyword after the word REPLACING corresponds to a category of data
shown in “Classes and categories of data” on page 170.

EGCS in the REPLACING phrase is synonymous with DBCS.

Related references
“ALLOCATE statement” on page 313

INITIALIZE statement rules
The effect of the execution of an INITIALIZE statement is as if a series of implicit MOVE statements, each
of which has an elementary data item as its receiving operand, were executed. The receiving operands of
these implicit statements are defined in rule 1 and the sending operands are defined in rule 2.

1. The receiving operand in each implicit MOVE statement is determined by applying the rules a, b, and
c in the order they appear below. Note that if a data item is not excluded as a receiver by a particular
rule, it may be excluded as a receiver when a subsequent rule is applied. For example, if a data item is
not excluded by rule a, that data item may still be excluded by rule b or rule c.

a. First, the following data items are excluded as receiving operands:

• Any identifiers that are not valid receiving operands of a MOVE statement.
• Elementary data items that have an explicit or implicit FILLER clause if the FILLER phrase is not
specified.

• Any elementary data item subordinate to identifier-1 whose data description entry contains a
REDEFINES or RENAMES clause or is subordinate to a data item whose data description entry
contains a REDEFINES clause. However, identifier-1 might itself have a REDEFINES clause or be
subordinate to a data item with a REDEFINES clause.

b. Second, an elementary data item is a possible receiving item in either of the following cases:

• It is explicitly referenced by identifier-1.
• It is contained within the group data item referenced by identifier-1. If the elementary data item

is a table element, each occurrence of the elementary data item is a possible receiving operand.
c. Finally, each possible receiving operand is a receiving operand if at least one of the following

conditions is true:

• The VALUE phrase is specified, the category of the elementary data item is one of the categories
specified or implied in the VALUE phrase, and either of the following conditions is true:

– A data-item format VALUE clause is specified in the data description entry of the elementary
data item.

– A table format VALUE clause is specified in the data description entry of the elementary item
and that VALUE clause specifies a value for the particular occurrence of the elementary data
item.

• The REPLACING phrase is specified and the category of the elementary data item is one of the
categories specified in the REPLACING phrase.

• The DEFAULT phrase is specified.
• Neither the REPLACING phrase nor the VALUE phrase is specified.

2. The sending operand in each implicit MOVE statement is determined as follows:

352 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If the data item qualifies as a receiving operand because of the VALUE phrase, the sending operand
is determined by the literal in the VALUE clause specified in the data description entry of the data
item. If the data item is a table element, the literal in the VALUE clause that corresponds to the
occurrence being initialized determines the sending operand. The actual sending operand is a literal
that, when moved to the receiving operand with a MOVE statement, produces the same result as the
initial value of the data item as produced by the application of the VALUE clause.

• If the data item does not qualify as a receiving operand because of the VALUE phrase, but does
qualify because of the REPLACING phrase, the sending operand is the literal-1 or identifier-2
associated with the category specified in the REPLACING phrase.

• If the data item does not qualify in accordance with the preceding two rules, the sending operand
used depends on the category of the receiving operand as follows:

– SPACE is the implied sending item for receiving items of category alphabetic, alphanumeric,
alphanumeric-edited, DBCS, EGCS, national, national-edited, or UTF-8.

– ZERO is the implied sending item for receiving items of category numeric or numeric-edited.

INSPECT statement
The INSPECT statement examines characters or groups of characters in a data item.

The INSPECT statement does the following tasks:

• Counts the occurrences of a specific character (alphanumeric, DBCS, or national) in a data item (formats
1 and 3).

• Counts the occurrences of specific characters and fills all or portions of a data item with specified
characters, such as spaces or zeros (formats 2 and 3).

• Converts all occurrences of specific characters in a data item to user-supplied replacement characters
(format 4).

Format 1: INSPECT statement with TALLYING phrase
INSPECT identifier-1 TALLYING

identifier-2 FOR CHARACTERS

phrase 1

ALL

LEADING

identifier-3

literal-1 phrase 1

phrase 1
BEFORE

AFTER INITIAL

identifier-4

literal-2

Chapter 28. PROCEDURE DIVISION statements 353

Format 2: INSPECT statement with REPLACING phrase
INSPECT identifier-1 REPLACING

CHARACTERS BY identifier-5

literal-3 phrase 1

ALL

LEADING

FIRST

identifier-3

literal-1

BY identifier-5

literal-3 phrase 1

phrase 1
BEFORE

AFTER INITIAL

identifier-4

literal-2

Format 3: INSPECT statement with TALLYING and REPLACING phrases
INSPECT identifier-1 TALLYING

identifier-2 FOR CHARACTERS

phrase 1

ALL

LEADING

identifier-3

literal-1 phrase 1

REPLACING

CHARACTERS BY identifier-5

literal-3 phrase 1

ALL

LEADING

FIRST

identifier-3

literal-1

BY identifier-5

literal-3 phrase 1

phrase 1

354 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

BEFORE

AFTER INITIAL

identifier-4

literal-2

Format 4: INSPECT statement with CONVERTING phrase
INSPECT identifier-1 CONVERTING identifier-6

literal-4

TO identifier-7

literal-5

BEFORE

AFTER INITIAL

identifier-4

literal-2

identifier-1
Is the inspected item and can be any of the following items:

• An alphanumeric group item or a national group item
• An elementary data item described explicitly or implicitly with usage DISPLAY, DISPLAY-1, or

NATIONAL. The item can have any category that is valid for the selected usage.

identifier-3 , identifier-4 , identifier-5 , identifier-6 , identifier-7
Must reference an elementary data item described explicitly or implicitly with usage DISPLAY,
DISPLAY-1, or NATIONAL.

literal-1 , literal-2 , literal-3 , literal-4
Must be of category alphanumeric, DBCS, or national.

When identifier-1 is of usage NATIONAL, literals must be of category national.

When identifier-1 is of usage DISPLAY-1, literals must be of category DBCS.

When identifier-1 is of usage DISPLAY, literals must be of category alphanumeric.

When identifier-1 is of usage DISPLAY-1 (DBCS) literals may be the figurative constant SPACE.

When identifier-1 is of usage DISPLAY or NATIONAL, literals can be any figurative constant that does
not begin with the word ALL, as specified in “Figurative constants” on page 15. The figurative constant
is treated as a one-character alphanumeric literal when identifier-1 is of usage DISPLAY, and as a
one-character national literal when identifier-1 is of usage NATIONAL.

All identifiers (except identifier-2) must have the same usage as identifier-1. All literals must have
category alphanumeric, DBCS, or national when identifier-1 has usage DISPLAY, DISPLAY-1, or
NATIONAL, respectively.

All identifiers may not be dynamic-length group or dynamic-length elementary items.

TALLYING phrase (formats 1 and 3)
This phrase counts the occurrences of a specific character or special character in a data item.

When identifier-1 is a DBCS data item, DBCS characters are counted; when identifier-1 is a data item
of usage national, national characters (encoding units) are counted; otherwise, alphanumeric characters
(bytes) are counted.

identifier-2
Is the count field, and must be an elementary integer item defined without the symbol P in its
PICTURE character-string.

identifier-2 cannot be of category external floating-point.

Chapter 28. PROCEDURE DIVISION statements 355

You must initialize identifier-2 before execution of the INSPECT statement begins.

Usage note: The count field can be an integer data item defined with usage NATIONAL.

identifier-3 or literal-1
Is the tallying field (the item whose occurrences will be tallied).

CHARACTERS
When CHARACTERS is specified and neither the BEFORE nor AFTER phrase is specified, the count
field (identifier-2) is increased by 1 for each character (including the space character) in the inspected
item (identifier-1). Thus, execution of an INSPECT statement with the TALLYING phrase increases the
value in the count field by the number of character positions in the inspected item.

ALL
When ALL is specified and neither the BEFORE nor AFTER phrase is specified, the count field
(identifier-2) is increased by 1 for each nonoverlapping occurrence of the tallying comparand
(identifier-3 or literal-1) in the inspected item (identifier-1), beginning at the leftmost character
position and continuing to the rightmost.

LEADING
When LEADING is specified and neither the BEFORE nor AFTER phrase is specified, the count
field (identifier-2) is increased by 1 for each contiguous nonoverlapping occurrence of the tallying
comparand in the inspected item (identifier-1), provided that the leftmost such occurrence is at the
point where comparison began in the first comparison cycle for which the tallying comparand is
eligible to participate.

FIRST (format 3 only)
When FIRST is specified and neither the BEFORE nor AFTER phrase is specified, the substitution field
replaces the leftmost occurrence of the subject field in the inspected item (identifier-1).

TALLYING phrase example

WORKING-STORAGE SECTION.
77 CNTR PIC 9(3) COMP.
77 CHARS PIC X(18).
PROCEDURE DIVISION.
...........
 MOVE 'In order to form a' To CHARS
 MOVE 0 To CNTR
 INSPECT CHARS TALLYING CNTR FOR ALL SPACES
 DISPLAY 'Number of spaces = ' CNTR

The example output:

Number of spaces = 004

REPLACING phrase (formats 2 and 3)
This phrase fills all or portions of a data item with specified characters, such as spaces or zeros.

identifier-3 or literal-1
Is the subject field, which identifies the characters to be replaced.

identifier-5 or literal-3
Is the substitution field (the item that replaces the subject field).

The subject field and the substitution field must be the same length.

CHARACTERS BY
When the CHARACTERS BY phrase is used, the substitution field must be one character position in
length.

When CHARACTERS BY is specified and neither the BEFORE nor AFTER phrase is specified, the
substitution field replaces each character in the inspected item (identifier-1), beginning at the
leftmost character position and continuing to the rightmost.

356 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

ALL
When ALL is specified and neither the BEFORE nor AFTER phrase is specified, the substitution field
replaces each nonoverlapping occurrence of the subject field in the inspected item (identifier-1),
beginning at the leftmost character position and continuing to the rightmost.

LEADING
When LEADING is specified and neither the BEFORE nor AFTER phrase is specified, the substitution
field replaces each contiguous nonoverlapping occurrence of the subject field in the inspected item
(identifier-1), provided that the leftmost such occurrence is at the point where comparison began in
the first comparison cycle for which this substitution field is eligible to participate.

FIRST
When FIRST is specified and neither the BEFORE nor AFTER phrase is specified, the substitution field
replaces the leftmost occurrence of the subject field in the inspected item (identifier-1).

When both the TALLYING and REPLACING phrases are specified (format 3), the INSPECT statement is
executed as if an INSPECT TALLYING statement (format 1) were specified, immediately followed by an
INSPECT REPLACING statement (format 2).

The following replacement rules apply:

• When the subject field is a figurative constant, the one-character substitution field replaces each
character in the inspected item that is equivalent to the figurative constant.

• When the substitution field is a figurative constant, the substitution field replaces each nonoverlapping
occurrence of the subject field in the inspected item.

• When the subject and substitution fields are character-strings, the character-string specified in the
substitution field replaces each nonoverlapping occurrence of the subject field in the inspected item.

• After replacement has occurred in a given character position in the inspected item, no further
replacement for that character position is made in this execution of the INSPECT statement.

REPLACING phrase example

WORKING-STORAGE SECTION.
77 CNTR PIC 9(3) COMP.
77 CHARS PIC X(18).
PROCEDURE DIVISION.
 . . .
 MOVE 'more,perfect,union' To CHARS
 MOVE 0 To CNTR

 INSPECT CHARS TALLYING CNTR FOR ALL ','
 REPLACING ALL ',' BY SPACES

 DISPLAY 'Number of commas replaced = ' CNTR
 DISPLAY 'CHARS is now = ' CHARS

The example result:

Number of commas replaced = 002
CHARS is now = more perfect union

BEFORE and AFTER phrases (all formats)

This phrase narrows the set of items being tallied or replaced.

No more than one BEFORE phrase and one AFTER phrase can be specified for any one ALL, LEADING,
CHARACTERS, FIRST or CONVERTING phrase.

identifier-4 or literal-2
Is the delimiter.

Delimiters are not counted or replaced.

Chapter 28. PROCEDURE DIVISION statements 357

INITIAL
The first occurrence of a specified item.

The BEFORE and AFTER phrases change how counting and replacing are done:

• When BEFORE is specified, counting or replacing of the inspected item (identifier-1) begins at the
leftmost character position and continues until the first occurrence of the delimiter is encountered.
If no delimiter is present in the inspected item, counting or replacing continues toward the rightmost
character position.

• When AFTER is specified, counting or replacing of the inspected item (identifier-1) begins with the first
character position to the right of the delimiter and continues toward the rightmost character position in
the inspected item. If no delimiter is present in the inspected item, no counting or replacement takes
place.

BEFORE and AFTER phrases example

WORKING-STORAGE SECTION.
77 CNTR1 PIC 9(3) COMP.
77 CNTR2 PIC 9(3) COMP.
77 CNTR3 PIC 9(3) COMP.
77 CHARS PIC X(50).

PROCEDURE DIVISION.

 MOVE '$some.confusing_text with.hyphens-periods.spaces'
 To CHARS
 MOVE 0 To CNTR1 CNTR2 CNTR3
 INSPECT CHARS
 TALLYING CNTR1 FOR CHARACTERS AFTER '$' BEFORE '_'
 CNTR2 FOR ALL '.' AFTER 'h'
 CNTR3 FOR ALL '.' BEFORE INITIAL 'a'
 REPLACING ALL '.' BY SPACES BEFORE 'h'
 ALL '"' BY SPACES AFTER 's'
 ALL '_' BY SPACES
 DISPLAY 'Number of characters after $ and before _ =' CNTR1
 DISPLAY 'Number of periods after h =' CNTR2
 DISPLAY 'Number of periods before initial a =' CNTR3
 DISPLAY 'CHARS is now = ' CHARS

The example result:

Note: For each BEFORE and AFTER phrase, the scanning continues after the previous phrase is done
rather than starting at the beginning of CHARS.

Number of characters after $ and before _ =014
Number of periods after h =002
Number of periods before initial a =000
CHARS is now = $some confusing text with.hyphens-periods.spaces

CONVERTING phrase (format 4)
This phrase converts all occurrences of a specific character or string of characters in a data item
(identifier-1) to user-supplied replacement characters.

identifier-6 or literal-4
Specifies the character string to be replaced.

The same character must not appear more than once in either literal-4 or identifier-6.

identifier-7 or literal-5
Specifies the replacing character string.

The replacing character string (identifier-7 or literal-5) must be the same size as the replaced
character string (identifier-6 or literal-4).

A format-4 INSPECT statement is interpreted and executed as if a format-2 INSPECT statement had been
written with a series of ALL phrases (one for each character of literal-4), specifying the same identifier-1.
The effect is as if each single character of literal-4 were referenced as literal-1, and the corresponding

358 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

single character of literal-5 referenced as literal-3. Correspondence between the characters of literal-4
and the characters of literal-5 is by ordinal position within the data item.

If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1, the result of the
execution of this statement is undefined, even if they are defined by the same data description entry.

The following table describes the treatment of data items that can be used as an operand in the INSPECT
statement:

Table 39. Treatment of the content of data items

When referenced by any identifier except
identifier-2, the content of each item of
category ...

Is treated ...

Alphanumeric or alphabetic As an alphanumeric character string

DBCS As a DBCS character string

National As a national character string

Alphanumeric-edited, numeric-edited with usage
DISPLAY, or numeric with usage DISPLAY
(unsigned, external decimal)

As if redefined as category alphanumeric, with the
INSPECT statement referring to an alphanumeric
character string

National-edited, numeric-edited with usage
NATIONAL or numeric with usage NATIONAL
(unsigned, external decimal)

As if redefined as category national, with
the INSPECT statement referring to a national
character string

Numeric with usage DISPLAY (signed, external
decimal)

As if moved to an unsigned external decimal
item of usage DISPLAY with the same length
as the identifier and then redefined as category
alphanumeric, with the INSPECT statement
referring to an alphanumeric character string

If the sign is a separate character, the byte
containing the sign is not examined and, therefore,
not replaced.

If the referenced item is identifier-1, the string that
results from any replacing or converting action is
copied back to identifier-1.

Numeric with usage NATIONAL (signed, external
decimal)

As if moved to an unsigned external decimal item
of usage NATIONAL with the same length as the
identifier and then redefined as category national,
with the INSPECT statement referring to a national
character string

If the sign is a separate character, the byte
containing the sign is not examined and, therefore,
not replaced.

If the referenced item is identifier-1, the string that
results from any replacing or converting action is
copied back to identifier-1.

External floating-point with usage DISPLAY As if redefined as category alphanumeric, with the
INSPECT statement referring to an alphanumeric
character-string

External floating-point with usage NATIONAL As if redefined as category national, with
the INSPECT statement referring to a national
character-string

Chapter 28. PROCEDURE DIVISION statements 359

CONVERTING phrase example

The following example shows the use of INSPECT CONVERTING with AFTER and BEFORE phrases to
examine and replace characters in data item DATA-4. All characters that follow the first instance of the
character / but that precede the first instance of the character ? (if any) are translated from lowercase to
uppercase.

01 DATA-4 PIC X(11).
. . .
 INSPECT DATA-4
 CONVERTING
 "abcdefghijklmnopqrstuvwxyz" TO
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 AFTER INITIAL "/"
 BEFORE INITIAL "?"

Table 40. CONVERTING example result

DATA-4 before converting DATA-4 after converting

a/five/?six a/FIVE/?six

r/Rexx/RRRr r/REXX/RRRR

zfour?inspe zfour?inspe

Data flow
Except when the BEFORE or AFTER phrase is specified, inspection begins at the leftmost character
position of the inspected item (identifier-1) and proceeds character-by-character to the rightmost
position.

The comparands of the following phrases are compared in the left-to-right order in which they are
specified in the INSPECT statement:

• TALLYING (literal-1 or identifier-3, ...)
• REPLACING (literal-3 or identifier-5, ...)

If any identifier is subscripted or reference modified, or is a function-identifier, the subscript, reference-
modifier, or function is evaluated only once as the first operation in the execution of the INSPECT
statement.

For examples of TALLYING and REPLACING, see Tallying and replacing data items (INSPECT) in the
Enterprise COBOL Programming Guide.

Comparison cycle
The comparison cycle consists of the actions as described in this topic.

1. The first comparand is compared with an equal number of leftmost contiguous character positions
in the inspected item. The comparand matches the inspected characters only if both are equal,
character-for-character.

If the CHARACTERS phrase is specified, an implied one-character comparand is used. The implied
character is always considered to match the inspected character in the inspected item.

2. If no match occurs for the first comparand and there are more comparands, the comparison is
repeated for each successive comparand until either a match is found or all comparands have been
acted upon.

3. Depending on whether a match is found, these actions are taken:

• If a match is found, tallying or replacing takes place as described in the TALLYING and REPLACING
phrase descriptions.

360 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If there are more character positions in the inspected item, the first character position following the
rightmost matching character is now considered to be in the leftmost character position. The process
described in actions 1 and 2 is then repeated.

• If no match is found and there are more character positions in the inspected item, the first character
position following the leftmost inspected character is now considered to be in the leftmost character
position. The process described in actions 1 and 2 is then repeated.

4. Actions 1 through 3 are repeated until the rightmost character position in the inspected item either has
been matched or has been considered as being in the leftmost character position.

When the BEFORE or AFTER phrase is specified, the comparison cycle is modified, as described in
“BEFORE and AFTER phrases (all formats)” on page 357.

Example of the INSPECT statement
The topic shows an example of INSPECT statement results.

Chapter 28. PROCEDURE DIVISION statements 361

INVOKE statement
The INVOKE statement can create object instances of a COBOL or Java class and can invoke a method
defined in a COBOL or Java class.

Format
INVOKE identifier-1

class-name-1

SELF

SUPER

literal-1

identifier-2

NEW

USING

BY

VALUE

LENGTH OF

identifier-3

literal-2

RETURNING identifier-4

ON

EXCEPTION imperative-statement-1

NOT

ON

EXCEPTION imperative-statement-2 END-INVOKE

identifier-1
Must be defined as USAGE OBJECT REFERENCE. The contents of identifier-1 specify the object on
which a method is invoked.

When identifier-1 is specified, either literal-1 or identifier-2 must be specified, identifying the name of
the method to be invoked.

It must not be a dynamic-length elementary item or a dynamic-length group item.

The results of the INVOKE statement are undefined if either:

• identifier-1 does not contain a valid reference to an object.
• identifier-1 contains NULL.

class-name-1
When class-name-1 is specified together with literal-1 or identifier-2, the INVOKE statement invokes a
static or factory method of the class referenced by class-name-1. literal-1 or identifier-2 specifies the
name of the method that is to be invoked. The method must be a static method if class-name-1 is a
Java class; the method must be a factory method if class-name-1 is a COBOL class.

When class-name-1 is specified together with NEW, the INVOKE statement creates a new object that
is an instance of class class-name-1.

You must specify class-name-1 in the REPOSITORY paragraph of the configuration section of the class
or program that contains the INVOKE statement.

362 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

SELF
An implicit reference to the object used to invoke the currently executing method. When SELF is
specified, the INVOKE statement must appear within the PROCEDURE DIVISION of a method.

SUPER
An implicit reference to the object that was used to invoke the currently executing method. The
resolution of the method to be invoked will ignore any methods declared in the class definition of
the currently executing method and methods defined in any class derived from that class; thus the
method invoked will be one that is inherited from an ancestor class.

literal-1
The value of literal-1 is the name of the method to be invoked. The referenced object must support
the method identified by literal-1.

literal-1 must be an alphanumeric literal or a national literal.

literal-1 is interpreted in a case-sensitive manner. The method name, the number of arguments, and
the data types of the arguments in the USING phrase of the INVOKE statement are used to select the
method with matching signature that is supported by the object. The method can be overloaded.

identifier-2
A data item of category alphabetic, alphanumeric, or national that at run time contains the name of
the method to be invoked. The referenced object must support the method identified by identifier-2.

If identifier-2 is specified, identifier-1 must be defined as USAGE OBJECT REFERENCE without any
optional phrases; that is, identifier-1 must be a universal object reference.

It must not be a dynamic-length elementary item or a dynamic-length group item.

The content of identifier-2 is interpreted in a case-sensitive manner. The method name, the number
of arguments, and the data types of the arguments in the USING phrase of the INVOKE statement are
used to select the method with matching signature that is supported by the object. The method can
be overloaded.

NEW
The NEW operand specifies that the INVOKE statement is to create a new object instance of the class
class-name-1. class-name-1 must be specified.

When class-name-1 is implemented in Java, the USING phrase of the INVOKE statement can be
specified. The number of arguments and the data types of the arguments in the USING phrase of the
INVOKE statement are used to select the Java constructor with matching signature that is supported
by the class. An object instance of class class-name-1 is allocated, the selected constructor (or the
default constructor) is executed, and a reference to the created object is returned.

When class-name-1 is implemented in COBOL, the USING phrase of the INVOKE statement must not
be specified. An object instance of class class-name-1 is allocated, instance data items are initialized
to the values specified in associated VALUE clauses, and a reference to the created object is returned.

When NEW is specified, you must also specify a RETURNING phrase as described in “RETURNING
phrase” on page 364.

USING phrase
The USING phrase specifies arguments that are passed to the target method. The argument data types
and argument linkage conventions are restricted to those supported by Java. See “BY VALUE phrase” on
page 363 for details.

BY VALUE phrase

Arguments specified in an INVOKE statement must be passed BY VALUE.

The BY VALUE phrase specifies that the value of the argument is passed, not a reference to the sending
data item. The invoked method can modify the formal parameter that corresponds to an argument passed

Chapter 28. PROCEDURE DIVISION statements 363

by value, but changes do not affect the argument because the invoked method has access only to a
temporary copy of the sending data item.

identifier-3
Must be an elementary data item in the DATA DIVISION. The data type of identifier-3 must be one
of the types supported for Java interoperation, as listed in “Interoperable data types for OO COBOL
and Java” on page 366. Miscellaneous cases that are also supported as identifier-3 are listed in
“Miscellaneous argument types for COBOL and Java” on page 368, with their corresponding Java
type.

See Conformance requirements for arguments for additional requirements that apply to identifier-3.

It must not be a dynamic-length elementary item or a dynamic-length group item.

literal-2
Must be of a type suitable for Java interoperation and must exactly match the type of the
corresponding parameter in the target method. Supported literal forms are listed in “Miscellaneous
argument types for COBOL and Java” on page 368, with their corresponding Java type.

literal-2 must not be a DBCS literal.

LENGTH OF identifier-3
Specifies that the length of identifier-3 is passed as an argument in the LENGTH OF special register.
A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9) binary value. For information
about the LENGTH OF special register, see “LENGTH OF” on page 22.

Conformance requirements for arguments

When identifier-3 is an object reference, certain rules apply.

The rules are:

• A class-name must be specified in the data description entry for that object reference. That is,
identifier-3 must not be a universal object reference.

• The specified class-name must reference a class that is exactly the class of the corresponding
parameter in the invoked method. That is, the class of identifier-3 must not be a subclass or a
superclass of the corresponding parameter's class.

When identifier-3 is not an object reference, the following rules apply:

• If the target method is implemented in COBOL, the description of identifier-3 must exactly match the
description of the corresponding formal parameter in the target method.

• If the target method is implemented in Java, the description of identifier-3 must correspond to the Java
type of the formal parameter in the target method, as specified in “Interoperable data types for OO
COBOL and Java” on page 366.

Usage note: Adherence to conformance requirements for arguments is the responsibility of the
programmer. Conformance requirements are not verified by the compiler.

RETURNING phrase

The RETURNING phrase specifies a data item that will contain the value returned from the invoked
method. You can specify the RETURNING phrase on the INVOKE statement when invoking methods that
are written in COBOL or Java.

identifier-4
The RETURNING data item. identifier-4:

• Must be defined in the DATA DIVISION
• Must not be reference-modified
• Is not changed if an EXCEPTION occurs

364 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The data type of identifier-4 must be one of the types supported for Java interoperation, as listed in
“Interoperable data types for OO COBOL and Java” on page 366.

See Conformance requirements for the RETURNING item for additional requirements that apply to
identifier-4.

It must not be a dynamic-length elementary item or a dynamic-length group item.

If identifier-4 is specified and the target method is written in COBOL, the target method must have a
RETURNING phrase in its PROCEDURE DIVISION header. When the target method returns, its return
value is assigned to identifier-4 using the rules for the SET statement if identifier-4 is described with
USAGE OBJECT REFERENCE; otherwise, the rules for the MOVE statement are used.

The RETURNING data item is an output-only parameter. On entry to the called method, the initial state of
the PROCEDURE DIVISION RETURNING data item has an undefined and unpredictable value. You must
initialize the PROCEDURE DIVISION RETURNING data item in the invoked method before you reference
its value. The value that is passed back to the invoker is the final value of the PROCEDURE DIVISION
RETURNING data item when the invoked method returns.

See Managing local and global references in the Enterprise COBOL Programming Guide for discussion
of local and global object references as defined in Java. These attributes affect the life-time of object
references.

Usage note: The RETURN-CODE special register is not set by execution of INVOKE statements.

Conformance requirements for the RETURNING item

For INVOKE statements that specify class-name-1 NEW, the RETURNING phrase is required.

The returning item must be one of the following ones:

• A universal object reference
• An object reference specifying class-name-1
• An object reference specifying a superclass of class-name-1

For INVOKE statements without the NEW phrase, the RETURNING item specified in the method
invocation and in the corresponding target method must satisfy the following requirements:

• The presence or absence of a return value must be the same on the INVOKE statement and in the target
method.

• If the RETURNING item is not an object reference, the following rules apply:

– If the target method is implemented in COBOL, the returning item in the INVOKE statement and the
RETURNING item in the target method must have an identical data description entry.

– If the target method is implemented in Java, the returning item in the INVOKE statement must
correspond to the Java type of the method result, as described in “Interoperable data types for OO
COBOL and Java” on page 366.

• If the RETURNING item is an object reference, the RETURNING item specified in the INVOKE statement
must be an object reference typed exactly to the class of the returning item specified in the target
method. That is, the class of identifier-4 must not be a subclass or a superclass of the class of the
returning item in the target method.

Usage note: Adherence to conformance requirements for returning items is the responsibility of the
programmer. Conformance requirements are not verified by the compiler.

ON EXCEPTION phrase
An exception condition occurs when the identified object or class does not support a method with
a signature that matches the signature of the method specified in the INVOKE statement. When an
exception condition occurs, one of the following actions occurs:

• If the ON EXCEPTION phrase is specified, control is transferred to imperative-statement-1.

Chapter 28. PROCEDURE DIVISION statements 365

• If the ON EXCEPTION phrase is not specified, a severity-3 Language Environment condition is raised at
run time.

NOT ON EXCEPTION phrase
If an exception condition does not occur (that is, the identified method is supported by the specified
object), control is transferred to the invoked method. After control is returned from the invoked method,
control is then transferred:

1. To imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.
2. To the end of the INVOKE statement if the NOT ON EXCEPTION phrase is not specified.

END-INVOKE phrase
This explicit scope terminator serves to delimit the scope of the INVOKE statement. An INVOKE
statement that is terminated by END-INVOKE, along with its contained statements, becomes a unit that
is treated as though it were an imperative statement. It can be specified as an imperative statement in a
conditional statement; for example, in the exception phrase of another statement.

Interoperable data types for OO COBOL and Java
A subset of COBOL data types can be used for interoperation between OO COBOL and Java.

Note: This section provides information about COBOL/Java data type compatibility for OO COBOL
programs. For information about COBOL/Java data type compatibility for non-OO COBOL/Java
interoperability, see “Mapping between COBOL and Java data types for non-OO COBOL/Java
interoperability” on page 725.

You can specify the interoperable data types as arguments in COBOL INVOKE statements and as the
RETURNING item in COBOL INVOKE statements. Similarly, you can pass these types as arguments from
a Java method invocation expression and receive them as parameters in the USING phrase or as the
RETURNING item in the PROCEDURE DIVISION header of a COBOL method.

The following table lists the primitive Java types and the COBOL data types that are supported for
interoperation and the correspondence between them.

Table 41. Interoperable Java and COBOL data types

Java data type COBOL data type

boolean1 Conditional variable and two condition-names of the form:

level-number data-name PIC X.
88 data-name-false VALUE X'00'.
88 data-name-true VALUE X'01' THROUGH X'FF'.

byte Single-byte alphanumeric, PIC X or PIC A

short USAGE BINARY, COMP, COMP-4, or COMP-5, with a PICTURE clause of the
form S9(n), where 1 <= n <= 4

int USAGE BINARY, COMP, COMP-4, or COMP-5, with a PICTURE clause of the
form S9(n), where 5 <= n <= 9

long USAGE BINARY, COMP, COMP-4, or COMP-5, with a PICTURE clause of the
form S9(n), where 10 <= n <= 18

float2 USAGE COMP-1

double2 USAGE COMP-2

366 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 41. Interoperable Java and COBOL data types (continued)

Java data type COBOL data type

char Single-character national: PIC N USAGE NATIONAL
(an elementary data item of category national)

class types
(object references)

USAGE OBJECT REFERENCE class-name

1. Enterprise COBOL interprets a PIC X argument or parameter as the Java boolean type only when the
PIC X data item is followed by exactly two condition-names of the form shown. In all other cases, a
PIC X argument or parameter is interpreted as the Java byte type.

2. Java floating-point data is represented in IEEE binary floating-point, while Enterprise COBOL uses
the IBM hexadecimal floating-point representation. The representations are automatically converted
as necessary when Java methods are invoked from COBOL and when COBOL methods are invoked
from Java.

In addition to the primitive types, Java Strings and arrays of Java primitive types can interoperate with
COBOL. This requires specialized mechanisms provided by the COBOL runtime system and the Java
Native Interface (JNI).

In a Java program, to pass array data to COBOL or to receive array data from COBOL, you declare the
array types using the usual Java syntax. In the COBOL program, you declare the array as an object
reference that contains an instance of one of the special classes provided for array support. Conversion
between the Java and COBOL types is automatic at the time of method invocation.

In a Java program, to pass String data to COBOL or to receive String data from COBOL, you declare
the array types using the usual Java syntax. In the COBOL program, you declare the String as an object
reference that contains an instance of the special jstring class. Conversion between the Java and COBOL
types is automatic at the time of method invocation. The following table lists the Java array and String
data types and the corresponding special COBOL data types.

Table 42. Interoperable COBOL and Java array and String data types

Java data type COBOL data type

boolean[] object reference jboooleanArray

byte[] object reference jbyteArray

short[] object reference jshortArray

int[] object reference jintArray

long[] object reference jlongArray

char[] object reference jcharArray

Object[] object reference jobjectArray

String object reference jstring

The following java array types are not currently supported:

Java data type COBOL data type

float[] object reference jfloatArray

double[] object reference jdoubleArray

Chapter 28. PROCEDURE DIVISION statements 367

You must code an entry in the repository paragraph for each special class that you want to use, just as you
do for other classes. For example, to use jstring, code the following entry:

Configuration Section.
Repository.
 Class jstring is "jstring".

Alternatively, for the String type, the COBOL repository entry can specify an external class name of
java.lang.String:

Repository.
 Class jstring is "java.lang.String".

Callable services are provided by the Java Native Interface (JNI) for manipulating the COBOL objects of
these types in COBOL. For example, callable services can be used to set COBOL alphanumeric or national
data into a jstring object or to extract data from a jstring object. For details on use of JNI callable services
for these and other purposes, see Accessing JNI services in the Enterprise COBOL Programming Guide.

For details on repository entries for class definitions, see “REPOSITORY paragraph” on page 132. For
examples, see Example: external class-names and Java packages in the Enterprise COBOL Programming
Guide.

Miscellaneous argument types for COBOL and Java
There are miscellaneous cases of COBOL items that can be used as arguments in an INVOKE statement.

The COBOL miscellaneous argument types and the corresponding Java types are listed in the following
table.

Table 43. COBOL miscellaneous argument types and corresponding Java types

COBOL argument Corresponding Java
data type

Reference-modified item of usage display with length one byte

Reference-modified item of usage national with length one (either an
elementary data item of usage national or a national group item)

char

SHIFT-IN and SHIFT-OUT special registers byte

LINAGE-COUNTER special register when its usage is binary int

LENGTH OF special register int

The following table lists COBOL literal types that can be used as arguments in an INVOKE statement, with
the corresponding Java type.

Table 44. COBOL literal argument types and corresponding Java types

COBOL literal argument Corresponding Java
data type

Fixed-point numeric literal with no decimal positions and with nine digits or
less

int

Floating-point numeric literal double

Figurative constant ZERO int

One-character alphanumeric literal byte

One-character national literal char

368 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 44. COBOL literal argument types and corresponding Java types (continued)

COBOL literal argument Corresponding Java
data type

Symbolic character byte

Figurative constants SPACE, QUOTE, HIGH-VALUE, or LOW-VALUE byte

JSON GENERATE statement
The JSON GENERATE statement converts data to JSON format.

You can watch this video to get an overview of the JSON support in Enterprise COBOL 6.

Chapter 28. PROCEDURE DIVISION statements 369

https://mediacenter.ibm.com/media/1_coiuourp

Format
JSON GENERATE identifier-1 FROM identifier-2

COUNT

IN

identifier-3

INDICATING indicating-phrase-1

ALSO indicating-phrase-1

ENCODING identifier-6

literal-3

FROM CODEPAGE

NAME

OF

identifier-4

IS

literal-1

OMITTED

SUPPRESS identifier-5

when-phrase

generic-suppression-phrase

CONVERTING converting-phrase

ALSO converting-phrase

ON

EXCEPTION imperative-statement-1

NOT

ON

EXCEPTION imperative-statement-2 END-JSON

370 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

when-phrase Format

WHEN ZERO

ZEROES

ZEROS

SPACE

SPACES

LOW-VALUE

LOW-VALUES

HIGH-VALUE

HIGH-VALUES

OR

ZERO

ZEROES

ZEROS

SPACE

SPACES

LOW-VALUE

LOW-VALUES

HIGH-VALUE

HIGH-VALUES

generic-suppression-phrase Format

EVERY NUMERIC

NONNUMERIC

when-phrase

converting-phrase Format 1
identifier-7

TO JSON

BOOLEAN

BOOL USING

condition-name-1

literal-2

converting-phrase Format 2
identifier-8

TO JSON

NULL

USING

fig-con-1

indicating-phrase-1 format
identifier-9

IS JSON

NULL

USING

condition-name-2

literal-3 IN identifier-10

identifier-1
The receiving area for the generated JSON text. identifier-1 must reference one of the following items:

• An elementary data item of category alphanumeric
• An alphanumeric group item

Chapter 28. PROCEDURE DIVISION statements 371

• An elementary data item of category national
• A national group item
• An elementary data item of category UTF-8
• A UTF-8 group item

When identifier-1 references an alphanumeric group item, identifier-1 is treated as though it were an
elementary data item of category alphanumeric. When identifier-1 references a national group item,
identifier-1 is processed as an elementary data item of category national. When identifier-1 references
a UTF-8 group item, identifier-1 is processed as an elementary data item of category UTF-8.

identifier-1 must not be defined with the JUSTIFIED clause, and cannot be a function identifier.
identifier-1 can be subscripted or reference modified.

identifier-1 must not overlap identifier-2 or identifier-3.

identifier-1 can be a dynamic-length elementary item of category alphanumeric or UTF-8. identifier-1
cannot be a dynamic-length group item of any category, nor an elementary item of category national.

The generated JSON text is encoded in UTF-8 (CCSID 1208), except in the following scenarios:

• identifier-1 is of category national, in which case it is encoded in UTF-16 Big-Endian (CCSID1200)
• identifier-1 is of category alphanumeric and the ENCODING phrase is specified with an EBCDIC

CCSID

Conversion of the data values and NAME phrase literals is done according to the CODEPAGE compiler
option in effect for the compilation. Conversion of original data names is always done using CCSID
1140. For details, see CODEPAGE in the Enterprise COBOL Programming Guide.

identifier-1 must be large enough to contain the generated JSON text. Typically, it should be from
2 to 3 times the size of identifier-2, depending on the lengths of the data-names within identifier-2.
If identifier-1 is not large enough, an exception condition exists at the end of the JSON GENERATE
statement. If the COUNT phrase is specified, identifier-3 contains the number of character encoding
units that were actually generated.

identifier-2
The group or elementary data item to be converted to JSON format. identifier-2 must reference one of
the following items:

• An elementary data item of category alphanumeric
• An alphanumeric group item
• An elementary data item of category national
• A national group item
• An elementary data item of category UTF-8
• A UTF-8 group item

identifier-2 cannot be a function identifier or be reference modified, but it can be subscripted.

identifier-2 must not overlap identifier-1 or identifier-3.

identifier-2 can be a dynamic-length group item or a dynamic-length elementary item of category
alphanumeric or UTF-8. identifier-2 cannot be a dynamic-length group or elementary item of category
national.

The data description entry for identifier-2 must not contain a RENAMES clause.

The following data items that are specified by identifier-2 are ignored by the JSON GENERATE
statement:

• Any subordinate unnamed elementary data items or elementary FILLER data items
• Any slack bytes inserted for SYNCHRONIZED items
• Any data item subordinate to identifier-2 that is defined with the REDEFINES clause or that is

subordinate to such a redefining item

372 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• Any data item subordinate to identifier-2 that is defined with the RENAMES clause
• Any group data item whose subordinate data items are all ignored

All data items specified by identifier-2 that are not ignored according to the previous rules must satisfy
the following conditions:

• Each elementary data item must have a USAGE other than POINTER, FUNCTION-POINTER,
PROCEDURE-POINTER, or OBJECT REFERENCE.

• There must be at least one such elementary data item.
• Each non-FILLER data-name must have a unique identifier within identifier-2.

Example 1

For example, consider the following data declaration:

 01 STRUCT.
 02 STAT PIC X(4).
 02 IN-AREA PIC X(100).
 02 OK-AREA REDEFINES IN-AREA.
 03 FLAGS PIC X.
 03 PIC X(3).
 03 COUNTER USAGE COMP-5 PIC S9(9).
 03 ASFNPTR REDEFINES COUNTER USAGE FUNCTION-POINTER.
 03 UNREFERENCED PIC X(92).
 02 NG-AREA1 REDEFINES IN-AREA.
 03 FLAGS PIC X. 03 PIC X(3).
 03 PTR USAGE POINTER.
 03 ASNUM REDEFINES PTR USAGE COMP-5 PIC S9(9).
 03 PIC X(92).
 02 NG-AREA2 REDEFINES IN-AREA.
 03 FN-CODE PIC X.
 03 UNREFERENCED PIC X(3).
 03 QTYONHAND USAGE BINARY PIC 9(5).
 03 DESC USAGE NATIONAL PIC N(40).
 03 UNREFERENCED PIC X(12).

The following data items from the example can be specified as identifier-2:

• STRUCT, of which subordinate data items STAT and IN-AREA would be converted to JSON format.
(OK-AREA, NG-AREA1, and NG-AREA2 are ignored because they specify the REDEFINES clause.)

• OK-AREA, of which subordinate data items FLAGS, COUNTER, and UNREFERENCED would be
converted. (The item whose data description entry specifies 03 PIC X(3) is ignored because it is
an elementary FILLER data item. ASFNPTR is ignored because it specifies the REDEFINES clause.)

• Any of the elementary data items that are subordinate to STRUCT except:

– ASFNPTR or PTR (disallowed usage)
– UNREFERENCED OF NG-AREA2 (nonunique names for data items that are otherwise eligible)
– Any FILLER data items

The following data items cannot be specified as identifier-2:

• NG-AREA1, because subordinate data item PTR specifies USAGE POINTER but does not specify the
REDEFINES clause. (PTR would be ignored if it is defined with the REDEFINES clause.)

• NG-AREA2, because subordinate elementary data items have the nonunique name UNREFERENCED.

Example 2

The following example shows the UTF-8 and dynamic-length support for JSON GENERATE:

01 GRP.
 05 Ac-No PIC AA9999 value 'SX1234'.
 05 MORE.
 10 Stuff PIC S99V9 OCCURS 2.
 05 SSN PIC 999/99/9999 value SPACE.
01 d pic u dynamic limit 250.
 MOVE 7.8 TO stuff(1), MOVE -9 TO stuff(2)
 JSON GENERATE d FROM grp COUNT i

Chapter 28. PROCEDURE DIVISION statements 373

The output of the JSON GENERATE statement would be the UTF-8 encoded text in d containing the
following JSON text:

{"GRP":{"Ac-No":"SX1234","MORE":{"Stuff":[7.8,-9.0]},"SSN":" "}}

COUNT phrase
If the COUNT phrase is specified, identifier-3 contains (after successful execution of the JSON
GENERATE statement) the count of generated JSON character code points. If identifier-1 (the
receiver) is of category national, the count is in double-bytes. If identifier-1 is of category UTF-8,
the count is in Unicode code points. Otherwise, the count is in bytes.
identifier-3

The data count field. Must be an integer data item defined without the symbol P in its picture
string.

identifier-3 must not overlap identifier-1, identifier-2, identifier-4, or identifier-5.

INDICATING phrase
The INDICATING phrase is specified with an indicated item, identifier-9, and an indicator item. The
indicator item is specified either directly via identifier-10, or indirectly as the parent elementary item
of condition-name-2.
The INDICATING phrase allows you to generate JSON null values for the indicated item when the
indicator item contains the values specified in condition-name-2 or literal-3. In other words, the
indicator item is a satellite data item that informs the JSON GENERATE statement if a JSON null value
shall be generated.
Both the indicator item and the indicated item must be subordinate to identifier-2.
The indicator item must be a single byte alphanumeric elementary data item whose data definition
entry contains PICTURE X.
condition-name-2 and literal-3 represent values of the indicator item. When the indicator item
contains one of those values, the indicated item (in identifier-9) will be generated as a JSON null
value. All other values of the indicator item will result in the indicated item being generated into JSON
according to “Operation of JSON GENERATE” on page 380. The indicator item is otherwise ignored by
the JSON GENERATE statement because the indicator item is not subject to conversion to JSON text.
condition-name-2 must be a level-88 item and can be specified with multiple values or value ranges.
literal-2 must be a single byte alphanumeric literal.
The INDICATING phrase can be specified multiple times by using the ALSO keyword.
Below are three examples of the INDICATING phrase:

• Example 1:

 01 DOCX PIC X(1000).
 01 MY-RECORD.
 02 DATA-1-IS-NULL PIC X.
 02 DATA-1 PIC X(100).

 MOVE 'Y' TO DATA-1-IS-NULL
 JSON GENERATE DOCX FROM MY-RECORD
 INDICATING DATA-1 IS JSON NULL USING 'Y' IN DATA-1-IS-NULL
 END-JSON

The output in docx encoded in UTF-8 is as follows:

{ "MY-RECORD" : { "DATA-1" : null } }

• Example 2:

 01 DOCX PIC X(1000).
 01 MY-RECORD.
 02 GRP OCCURS 2.
 03 DATA-1-IS-NULL PIC X.
 03 DATA-1 PIC X(100).
 MOVE 'VAL1' to DATA-1(1)
 MOVE 'VAL2' to DATA-1(2)

374 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

 MOVE 'Y' TO DATA-1-IS-NULL(1)
 MOVE 'N' TO DATA-1-IS-NULL(2)
 JSON GENERATE DOCX FROM MY-RECORD
 INDICATING DATA-1 IS JSON NULL USING 'Y' IN DATA-1-IS-NULL
 END-JSON

The output in docx encoded in UTF-8 is as follows:

{"MY-RECORD":{"GRP":[{"DATA-1":null},{"DATA-1":"VAL2"}]}}

• Example 3:

 01 DOCX PIC X(1000).
 01 MY-RECORD.
 02 GRP.
 03 DATA-1-IS-NULL PIC X OCCURS 2.
 03 DATA-1 PIC X(100) OCCURS 2.
 MOVE 'VAL1' to DATA-1(1)
 MOVE 'VAL2' to DATA-1(2)
 MOVE 'Y' TO DATA-1-IS-NULL(1)
 MOVE 'N' TO DATA-1-IS-NULL(2)
 JSON GENERATE DOCX FROM MY-RECORD
 INDICATING DATA-1 IS JSON NULL USING 'Y' IN DATA-1-IS-NULL
 END-JSON

The output in docx encoded in UTF-8 is as follows:

{"MY-RECORD":{"GRP":{"DATA-1":[null,"VAL2"]}}}

For a summary of the ways to generate JSON null values, see "Generating JSON null values".
ENCODING phrase

The ENCODING phrase, if specified, determines the encoding of the generated JSON document. The
ENCODING phrase must follow these rules:

• identifier-6 must be an unsigned integer data item.
• literal-3 must be an unsigned integer literal.
• If identifier-1 is alphanumeric:

– The value of identifier-6 or literal-3 can be either an EBCDIC coded character set identifier
(CCSID) from the below Table 45 on page 375. "Single byte EBCDIC coded character sets for
JSON documents" or 1208.

– If FROM CODEPAGE was specified, the CCSID of the CODEPAGE compiler option is assumed and
must be an EBCDIC CCSID from the below Table 45 on page 375. "Single byte EBCDIC coded
character sets for JSON documents".

• If identifier-1 is national or UTF-8:

– The value of identifier-6 or literal-3 must be 1200 or 1208 respectively.
– FROM CODEPAGE cannot be specified.

If the ENCODING phrase is omitted and:

• If identifier-1 is alphanumeric or UTF-8, the JSON document is encoded in Unicode UTF-8 (CCSID
1208).

• If identifier-1 is national, the JSON document is encoded in Unicode UTF-16 (CCSID 1200).

Table 45. Single byte EBCDIC coded character sets for JSON documents

CCSID Description

1047 Latin 1/Open Systems

1140, 37 USA, Canada,…Euro Country Extended Code
Page (ECECP), Country Extended Code Page
(CECP)

Chapter 28. PROCEDURE DIVISION statements 375

Table 45. Single byte EBCDIC coded character sets for JSON documents (continued)

CCSID Description

1141, 273 Austria, Germany ECECP, CECP

1142, 277 Denmark, Norway ECECP, CECP

1143, 278 Finland, Sweden ECECP, CECP

1144, 280 Italy ECECP, CECP

1145, 284 Spain, Latin America (Spanish) ECECP, CECP

1146, 285 UK ECECP, CECP

1147, 297 France ECECP, CECP

1148, 500 International ECECP, CECP

1149, 871 Iceland ECECP, CECP

If the ENCODING phrase specifies a single byte EBCDIC CCSID, literal-1 of the JSON GENERATE
NAME phrase must be an alphanumeric literal.

NAME phrase
Allows you to override the default JSON names derived from identifier-2 or its subordinate data items.
identifier-4 must reference identifier-2 or one of its subordinate data items. It cannot be a function
identifier and cannot be reference modified or subscripted. It must not specify any data item which
is ignored by the JSON GENERATE statement. For more information about identifier-2, see the
description of identifier-2. If identifier-4 is specified more than once in the NAME phrase, the last
specification is used.
literal-1 must be an alphanumeric or national literal containing the name to be generated in the
JSON text corresponding to identifier-4. With PTF for APAR PH18641 installed, alternatively, you can
specify OMITTED to generate an anonymous JSON object or array, whose top-level parent name is not
generated. For examples of generating JSON anonymous arrays, see "Generating JSON anonymous
arrays" in the Programming Guide. With PTF for APAR PH58384 installed, OMITTED can be also used
to generate only a JSON value (string, number, true, false, or null), whose JSON name is not generated
in JSON name/value pairs.
When you specify OMITTED, identifier-4 must reference identifier-2.
If literal-1 is a NATIONAL or UTF-8 literal, identifier-1 must reference a data item of category
NATIONAL or UTF-8, or the ENCODING phrase must specify a CCSID of 1208 for Unicode UTF-8.

SUPPRESS phrase
Allows you to identify and exclude items that are subordinate to identifier-2, and thus selectively
generate output for the JSON GENERATE statement. If the SUPPRESS phrase is specified, identifier-1
must be large enough to contain the generated JSON document before any suppression.
With the generic-suppression-phrase, elementary items subordinate to identifier-2 that are not
otherwise ignored by JSON GENERATE operations are identified generically for potential suppression.
Either items of class numeric, if the NUMERIC keyword is specified, or items that are not of
class numeric, if the NONNUMERIC keyword is specified, or both if neither is specified, might be
suppressed.
If multiple generic-suppression-phrase are specified, the effect is cumulative.
If the generic-suppression-phrase is specified, data items are selected for potential suppression
according to the following rules:

• If ZERO, ZEROES, or ZEROS is specified in the WHEN phrase, all data items except those that are
defined with USAGE DISPLAY-1 are selected.

• If SPACE or SPACES is specified in the WHEN phrase, data items of USAGE DISPLAY, DISPLAY-1, or
NATIONAL are selected. For zoned or national decimal items, only integers are selected.

376 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If LOW-VALUE, LOW-VALUES, HIGH-VALUE, or HIGH-VALUES is specified in the WHEN phrase, data
items of USAGE DISPLAY or NATIONAL are selected. For zoned or national decimal items, only
integers are selected.

identifier-5 explicitly identifies items for potential suppression. identifier-5 must reference a data item
that is subordinate to identifier-2 and that is not otherwise ignored by the operation of the JSON
GENERATE statement. identifier-5 cannot be a function identifier and cannot be reference modified or
subscripted. If the WHEN phrase is specified, identifier-5 must reference an elementary data item. If
the WHEN phrase is omitted, identifier-5 may be a group item. If identifier-5 specifies a group data
item, that group data item and all data items that are subordinate to the group item are excluded.
Duplicate specifications of identifier-5 are permitted.
If identifier-5 is specified, the following rules apply to it:

• If ZERO, ZEROES, or ZEROS is specified in the WHEN phrase, identifier-5 must not be of USAGE
DISPLAY-1.

• If SPACE or SPACES is specified in the WHEN phrase, identifier-5 must be of USAGE DISPLAY,
DISPLAY-1, or NATIONAL. If identifier-5 is a zoned or national decimal item, it must be an integer.

• If LOW-VALUE, LOW-VALUES, HIGH-VALUE, or HIGH-VALUES is specified in the WHEN phrase,
identifier-5 must be of USAGE DISPLAY or NATIONAL. If identifier-5 is a zoned or national decimal
item, it must be an integer.

The comparison operation that determines whether an item will be suppressed is a relation condition
as shown in the table of Comparisons involving figurative constants. That is, the comparison is a
numeric comparison if the value specified is ZERO, ZEROS, or ZEROES, and the item is of class
numeric. For all other cases, the comparison operation is an alphanumeric, DBCS, national, or UTF-8
comparison, depending on whether the item is of usage DISPLAY, DISPLAY-1, NATIONAL, or UTF-8,
respectively.
When the SUPPRESS phrase is specified, a group item subordinate to identifier-2 is excluded from
the generated JSON text if all the eligible items subordinate to the group item are excluded. The
outermost object that corresponds to identifier-2 itself is always generated, even if all the items
subordinate to identifier-2 are excluded. In this case, the value generated for identifier-2 is an empty
object, as follows:

{"identifier-2":{}}

For example, consider the following data declaration:

1 a.
 2 b.
 3 c occurs 0 to 2 depending j.
 4 d pic x.
 2 e pic x.

If the ODO object j contains the value 2 and group a is populated with all ‘_’, the statement JSON
GENERATE x FROM a (without the SUPPRESS phrase) produces the following JSON text:

{"a":{"b":{"c":[{"d":"_"},{"d":"_"}]},"e":"_"}}

Group item b is eliminated from the output if a SUPPRESS phrase specifies any one of data items b, c
or d, resulting in the following JSON text:

{"a":{"e":"_"}}

As an example of complete recursive suppression, the statement JSON GENERATE x FROM a
SUPPRESS b e produces:

{"a":{}}

JSON has an explicit representation of a table with no elements:

{"table-name":[]}

Chapter 28. PROCEDURE DIVISION statements 377

which is thus retained in the generated JSON text unless explicitly suppressed.

For example if ODO object j contains the value 0 and thus table d has no occurrences, and group a is
populated with all '_', the statement JSON GENERATE x FROM a produces the following JSON text:

{"a":{"b":{"c":[]},"e":"_"}}

Components of a zero-occurrence group table do not contribute any JSON text to the output. As a
result, a SUPPRESS phrase that specified only d would have no effect on this generated output.

Suppressing data items b or c, and e, which do contribute JSON text, has the same result as for
non-zero occurrences of table c, illustrated above.

CONVERTING phrase

Allows you to specify items that will be generated as either JSON BOOLEAN or JSON null name/value
pairs.
converting-phrase Format 1

Use Format 1 to specify items that will be generated as JSON boolean name/value pairs.

identifier-7 must be a single-byte alphanumeric elementary data item whose data definition entry
contains PICTURE X.

condition-name-1 and literal-2 represent values of identifier-7 that will be generated as a JSON
BOOLEAN true value. All other values of identifier-7 will be generated as a JSON BOOLEAN false
value. condition-name-1 must be a level-88 item directly subordinate to identifier-7 and can be
specified with multiple values or value ranges. literal-2 must be a single-byte alphanumeric literal.

The CONVERTING phrase can be specified with multiple items to be generated as JSON BOOLEAN
name/value pairs by using the ALSO keyword.

For example, consider the following COBOL structure and statements:

01 myrecord.
 02 data-a PIC X.
 02 data-b PIC X.
 88 data-b-flag VALUE ‘a’ THRU ‘z’.

MOVE ‘F’ TO data-a
MOVE ‘b’ TO data-b

JSON GENERATE docx FROM myrecord
 CONVERTING data-a TO BOOLEAN USING ‘T’
 ALSO data-b TO BOOLEAN USING data-b-flag

The output of the JSON GENERATE statement would be the UTF-8 encoded text in docx containing
the following JSON text:

{ “myrecord” : { “data-a” : false, “data-b” : true } }

converting-phrase Format 2
Use Format 2 to specify items that might be generated as JSON null name/value pairs.

identifier-8 must be a group or elementary item that references identifier-2 or is subordinate to
identifier-2.

fig-con-1 represents one of the figurative constants from the list below:

• SPACE, SPACES
• ZERO, ZEROES, ZEROS
• LOW-VALUE, LOW-VALUES
• HIGH-VALUE, HIGH-VALUES

During execution of the JSON GENERATE statement, fig-con-1 will be compared to identifier-8 in
an IS EQUAL relation condition. If the result of the comparison is true, the value of identifier-8

378 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

will be JSON null. Otherwise the value of identifier-8 will be generated as per the general rules of
JSON GENERATE. fig-con-1 must be a permissible pair for comparison according to Table 24 on
page 276. "Comparisons involving figurative constants".

The following example shows a COBOL structure and statements generating JSON null values
using the CONVERTING phrase:

01 docx pic x(100).
01 my-record.
 02 data-a pic 9999.
 02 data-b pic x(10).

MOVE zero TO data-a
MOVE low-values TO data-b

JSON GENERATE docx FROM my-record
 CONVERTING data-a TO NULL USING zero
 ALSO data-b TO NULL USING low-values
END-JSON

The output of the JSON GENERATE statement would be the UTF-8 encoded text in docx containing
the following JSON text:

{ "myrecord" : { "data-a" : null, "data-b" : null } }

Note: identifier-7 of Format 1 and identifier-8 might reference the same data item, which might be
useful when you want to convert the item to JSON true, false, or null.

ON EXCEPTION phrase
An exception condition exists when an error occurs during generation of the JSON document, for
example if identifier-1 is not large enough to contain the generated JSON document. In this case,
JSON generation stops and the content of the receiver, identifier-1, is undefined. If the COUNT phrase
is specified, identifier-3 contains the number of character positions that were actually generated.

If the ON EXCEPTION phrase is specified, control is transferred to imperative-statement-1. If the ON
EXCEPTION phrase is not specified, the NOT ON EXCEPTION phrase, if any, is ignored, and control
is transferred to the end of the JSON GENERATE statement. Special register JSON-CODE contains
an exception code, as detailed in JSON GENERATE exceptions in the Enterprise COBOL Programming
Guide.

NOT ON EXCEPTION phrase
If an exception condition does not occur during generation of the JSON document, control is passed to
imperative-statement-2, if specified, otherwise to the end of the JSON GENERATE statement. The ON
EXCEPTION phrase, if specified, is ignored. Special register JSON-CODE contains zero after execution
of the JSON GENERATE statement.

END-JSON phrase
This explicit scope terminator delimits the scope of the JSON GENERATE or JSON PARSE statements.
END-JSON permits a conditional JSON GENERATE or JSON PARSE statement (that is, a JSON
GENERATE or JSON PARSE statement that specifies the ON EXCEPTION or NOT ON EXCEPTION
phrase) to be nested in another conditional statement.

The scope of a conditional JSON GENERATE or JSON PARSE statement can be terminated by:

• An END-JSON phrase at the same level of nesting
• A separator period

END-JSON can also be used with a JSON GENERATE or JSON PARSE statement that does not specify
either the ON EXCEPTION or the NOT ON EXCEPTION phrase.

For more information about explicit scope terminators, see “Delimited scope statements” on page
293.

Chapter 28. PROCEDURE DIVISION statements 379

Nested JSON GENERATE or JSON PARSE statements
When a given JSON GENERATE or JSON PARSE statement appears in imperative-statement-1 or
imperative-statement-2 of another JSON GENERATE or JSON PARSE statement, that given JSON
GENERATE or JSON PARSE statement is a nested JSON GENERATE or JSON PARSE statement.

Nested JSON GENERATE or JSON PARSE statements are considered to be matched JSON GENERATE and
END-JSON combinations, or JSON PARSE and END-JSON combinations, proceeding from left to right.
Thus, any END-JSON phrase that is encountered is matched with the nearest preceding JSON GENERATE
or JSON PARSE statement that has not been implicitly or explicitly terminated.

Operation of JSON GENERATE
The content of each eligible elementary data item within identifier-2 that has not been excluded from
JSON generation according to a SUPPRESS phrase, is converted to character format in the resulting JSON
text.

Only the first definition of each storage area is processed. Redefinitions of data items are not included.
Data items that are effectively defined by the RENAMES clause are also not included.

A table item that has zero element occurrences is included in the JSON text as an empty array, such as
{"name":[]}.

Note: if the zero-occurrence table is a group item, its subordinate items do not appear in the JSON text
and thus specifying them in the SUPPRESS phrase has no effect. See the description of the SUPPRESS
phrase for more information.

For information about the format conversion of elementary data, see “Format conversion of elementary
data” on page 381 and “Trimming of generated JSON data” on page 382.

The JSON names are obtained from the NAME phrase if specified; otherwise by default they are derived
from the data-names within identifier-2 as described in “JSON name formation” on page 382. The names
of group items that contain the selected elementary items are retained as the names of parent JSON
objects.

No extra white space (new lines, indentation, and so forth) is inserted to make the generated JSON text
more readable.

If the receiving area specified by identifier-1 is not large enough to contain the resulting JSON text, an
exception condition exists. See the description of the ON EXCEPTION phrase above for details.

If identifier-1 is longer than the generated JSON text, only that part of identifier-1 in which JSON is
generated is changed. The rest of identifier-1 contains the data that was present before this execution of
the JSON GENERATE statement.

To avoid referring to that data, either initialize identifier-1 to spaces before the JSON GENERATE
statement or specify the COUNT phrase.

If the COUNT phrase is specified, identifier-3 contains (after successful execution of the JSON GENERATE
statement) the total number of character positions (UTF-16 code points, UTF-8 code points or bytes) that
were generated. You can use identifier-3 as a reference modification length field to refer to the part of
identifier-2 that contains the generated JSON text.

After execution of the JSON GENERATE statement, special register JSON-CODE contains either zero,
which indicates successful completion, or a nonzero exception code. For details, see JSON GENERATE
exceptions in the Enterprise COBOL Programming Guide.

The JSON PARSE statement also uses special register JSON-CODE. Therefore if you code a JSON
GENERATE statement in the processing procedure of a JSON PARSE statement, save the value of JSON-
CODE before that JSON GENERATE statement executes and restore the saved value after the JSON
GENERATE statement terminates.

A byte order mark is not generated for JSON texts.

380 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format conversion of elementary data
Elementary data items within identifier-2 are converted in the sequence of the following steps. Some of
these steps are optional.

Conversion to character format:

Elementary data items are converted to character format depending on the type of the data item:

• Data items of category alphabetic, alphanumeric, alphanumeric-edited, DBCS, external floating-point,
national, national-edited, and numeric-edited are not converted, except as required to the correct
Unicode encoding form.

• Fixed-point numeric data items other than COMPUTATIONAL-5 (COMP-5) binary data items or binary
data items compiled with the TRUNC(BIN) compiler option are converted as if they were moved to a
numeric-edited item that has:

– As many integer positions as the numeric item has, but with at least one integer position, possibly
zero (0)

– An explicit decimal point, if the numeric item has at least one decimal position; the decimal point is
represented by a period regardless of whether the DECIMAL-POINT IS COMMA clause is specified in
the SPECIAL-NAMES paragraph

– The same number of decimal positions as the numeric item has
– A leading '-' picture symbol if the data item is signed (has an S in its PICTURE clause)

• COMPUTATIONAL-5 (COMP-5) binary data items or binary data items compiled with the TRUNC(BIN)
compiler option are converted in the same way as the other fixed-point numeric items, except for the
number of integer positions. The number of integer positions is computed depending on the number of
'9' symbols in the picture character string as follows:

– 5 minus the number of decimal places, if the data item has 1 to 4 '9' picture symbols
– 10 minus the number of decimal places, if the data item has 5 to 9 '9' picture symbols
– 20 minus the number of decimal places, if the data item has 10 to 18 '9' picture symbols

• Internal floating-point data items are converted as if they were moved to a data item as follows:

– For COMP-1: an external floating-point data item with PICTURE -9.9(8)E+99
– For COMP-2: an external floating-point data item with PICTURE -9.9(17)E+99 (illegal because of the

number of digit positions)
• External floating-point data items are converted as if they were moved to another external floating-

point data item with the same precision and scale, and with:

– A - sign for the mantissa.
– An actual decimal point, indicated by a . PICTURE symbol.
– A + sign for the exponent.

For example, an external floating-point item defined with PICTURE -9(3)V9(5)E-99 would be converted
as if it were moved to an external floating-point item defined with PICTURE -9(3).9(5)E+99.

• Index data items are converted as if they were declared USAGE COMP-5 PICTURE S9(9).

Trimming:

After any conversion to character format, leading and trailing spaces and leading zeroes are eliminated, as
described under “Trimming of generated JSON data” on page 382.

Conversion to the target encoding:

If identifier-1 is a data item of category national, any nonnational values are converted to national
format. Otherwise, all values are represented in UTF-8. The conversion is done according to the compiler
CODEPAGE option in effect for the compilation.

Escaping characters:

Chapter 28. PROCEDURE DIVISION statements 381

The characters NX'0022' (") and NX'005C' (\) are escaped as \" and \\, respectively.

For compactness and appearance, other common characters are represented by a two-character escape
sequence as follows:

 NX'0008' \b - backspace
 NX'0009' \t - tab
 NX'000A' \n - line feed
 NX'000C' \f - form feed
 NX'000D' \r - carriage return
 NX'0085' \x - next line

The remaining characters in the range NX'0000' through NX'001F' are escaped as \uhhhh, where "h"
represents a hexadecimal digit 0 through F.

Representation of out-of-range Unicode characters:

Any remaining Unicode character that has a Unicode scalar value greater than NX'FFFF' is represented by
a surrogate pair for national output, or a four-byte sequence for UTF-8 output. For example, the musical
symbol G clef (U+1D11E) is represented in UTF-16 by the surrogate pair NX'D834' NX'DD1E', and in
UTF-8 by the byte sequence x'F09D849E'.

Trimming of generated JSON data
Trimming is performed on data values after any conversion to character format.

For more information about the conversion, see “Format conversion of elementary data” on page 381.

For values converted from signed numeric values, the leading space is removed if the value is positive.

For values converted from numeric items, leading zeroes (after any initial minus sign) up to but not
including the digit immediately before the actual or implied decimal point are eliminated. Trailing zeroes
after a decimal point are retained. For example:

• -012.340 becomes -12.340
• 0000.45 becomes 0.45
• 0013 becomes 13
• 0000 becomes 0

Character values from data items of class alphabetic, alphanumeric, DBCS, and national have either
trailing or leading spaces removed, depending on whether the corresponding data items have left
(default) or right justification, respectively. That is, trailing spaces are removed from values whose
corresponding data items do not specify the JUSTIFIED clause. Leading spaces are removed from values
whose data items do specify the JUSTIFIED clause. If a character value consists solely of spaces, one
space remains as the value after trimming is finished.

JSON name formation
In the JSON text that is generated from identifier-2, the names are obtained from the NAME phrase if
specified; otherwise they are derived from the name of the data item specified by identifier-2 and from
any eligible data-names that are subordinate to identifier-2. The exact mixed-case spelling of data-names
from the data description entry is retained. The spellings from any references to data items (for example,
in an OCCURS DEPENDING ON clause) are not used.

JSON PARSE statement
The JSON PARSE statement converts JSON text to COBOL data formats.

You can watch this video to get an overview of the JSON support in Enterprise COBOL 6.

382 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

https://mediacenter.ibm.com/media/1_coiuourp

Format
JSON PARSE identifier-1 INTO identifier-2

WITH

DETAIL

IGNORING ignoring-phrase-1

ALSO ignoring-phrase-1

INDICATING indicating-phrase-1

ALSO indicating-phrase-1

ENCODING identifier-6

literal-4

FROM CODEPAGE

NAME

OF

identifier-3

IS

literal-1

OMITTED

SUPPRESS identifier-4

CONVERTING converting-phrase-1

ALSO converting-phrase-1

ON

EXCEPTION imperative-statement-1

NOT

ON

EXCEPTION imperative-statement-2 END-JSON

ignoring-phrase-1 Format

JSON

NULL FOR ALL

identifier-5

Chapter 28. PROCEDURE DIVISION statements 383

indicating-phrase-1 Format
identifier-9

IS JSON

NULL using-phrase-1

IN identifier-10

converting-phrase-1 Format 1
identifier-7

FROM JSON

BOOLEAN

BOOL

using-phrase-1

Note: indicating-phrase-1 reuses the existing using-phrase-1. See the using-phrase-1 syntax diagram
below.

converting-phrase-1 Format 2
identifier-8

FROM JSON

NULL

USING

fig-con-1

using-phrase-1 Format

USING

condition-name-1

condition-name-2

AND

condition-name-3

literal-2

AND

literal-3

Note: To use the JSON PARSE statement, the CODEPAGE compiler option must specify a single-byte
EBCDIC CCSID.

identifier-1
The data item that contains the JSON text. identifier-1 must reference one of the following items:

• An elementary data item of category alphanumeric
• An alphanumeric group item
• An elementary data item of category national
• A national group item
• An elementary data item of category UTF-8
• A UTF-8 group item

When identifier-1 references an alphanumeric group item, identifier-1 is treated as though it were an
elementary data item of category alphanumeric. When identifier-1 references a national group item,
identifier-1 is processed as an elementary data item of category national. When identifier-1 references
a UTF-8 group item, identifier-1 is processed as an elementary data item of category UTF-8.

identifier-1 must not be defined with the JUSTIFIED clause, and cannot be a function identifier.
identifier-1 can be subscripted or reference modified.

identifier-1 must not overlap identifier-2.

identifier-1 can be a dynamic-length elementary item of category alphanumeric or UTF-8. identifier-1
cannot be a dynamic-length group item of any category, nor an elementary item of category national.

The JSON text is assumed to be encoded in UTF-8 (CCSID 1208) unless the ENCODING phrase is
specified.

384 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

All the escaped character sequences defined in the JSON specification are accepted. Also accepted
is the sequence “\x”, which is generated by JSON GENERATE, and which represents the EBCDIC NL
(newline) control character X'15', equivalent to the Unicode NEXT LINE control character, NX'0085'.

Conversion from Unicode of the JSON names and values is done according to the compiler CODEPAGE
option in effect for the compilation.

identifier-2
The group or elementary data item to be populated from the JSON text. identifier-2 must reference
one of the following items:

• An elementary data item of category alphanumeric
• An alphanumeric group item
• An elementary data item of category national
• A national group item
• An elementary data item of category UTF-8
• A UTF-8 group item

identifier-2 cannot be a function identifier or be reference modified, but it can be subscripted.

identifier-2 must not overlap identifier-1.

identifier-2 and its subordinate data items must not contain the UNBOUNDED clause.

identifier-2 can be a dynamic-length group item or a dynamic-length elementary item of category
alphanumeric or UTF-8. identifier-2 cannot be a dynamic-length group or elementary item of category
national.

The data description entry for identifier-2 must not contain a RENAMES clause.

The following data items that are specified by identifier-2 are ignored by the JSON PARSE statement:

• Any subordinate unnamed elementary data items or elementary FILLER data items
• Any slack bytes inserted for SYNCHRONIZED items
• Any data item subordinate to identifier-2 that is defined with the REDEFINES clause or that is

subordinate to such a redefining item
• Any data item subordinate to identifier-2 that is defined with the RENAMES clause
• Any group data item all of whose subordinate data items are ignored

All data items specified by identifier-2 that are not ignored according to the previous rules must satisfy
the following conditions:

• Each elementary data item must have a USAGE other than DISPLAY-1, FUNCTION-POINTER,
INDEX, OBJECT REFERENCE, POINTER, or PROCEDURE-POINTER.

• There must be at least one such elementary data item.
• Each non-FILLER data-name must have a unique identifier within identifier-2.
• If (the data declaration of) identifier-2 or any subordinate data item contains the OCCURS

DEPENDING ON clause, then the object(s) of the OCCURS DEPENDING ON clause(s) must not
be subordinate to identifier-2. Thus, any objects of OCCURS DEPENDING ON clauses will not be
updated by the JSON PARSE statement.

The following example shows the UTF-8 and dynamic-length support for JSON PARSE:

01 GRP.
 05 Ac-No PIC AA9999.
 05 MORE.
 10 Stuff PIC S99V9 OCCURS 2.
 05 SSN PIC 999/99/9999.
01 UTF8DYN PIC U DYNAMIC.
 MOVE '{"GRP":{"Ac-No":"SX1234","MORE":{"Stuff":[7.8,-9.0]},"SSN":"- '987654321"}}' TO
UTF8DYN.
 JSON PARSE UTF8DYN INTO GRP.

Chapter 28. PROCEDURE DIVISION statements 385

The JSON PARSE statement is used to extract and decode the JSON data within UTF8DYN and
populate the following structure in GRP:

GRP:
Ac-No: SX1234
MORE:
Stuff(1): 07H (Signed Overpunch for +7.8)
Stuff(2): 09} (Signed Overpunch for -9.0)
SSN: 987/65/4321

IGNORING phrase
Allows you to indicate that JSON null values shall be ignored, either for all items or the specified list of
items.

Note: When JSON null values are not ignored, which is the default behavior of JSON PARSE, and null
values appear within the parsed JSON text, the JSON-STATUS special register is set to 32. And, if the
WITH DETAIL phrase is specified, a runtime informational message is issued.

If the ALL keyword is specified, JSON null values will be ignored for all items except for the following
items:

• Items that appear as identifier-8 in any specified CONVERTING phrase, in which case the JSON null
values are converted to the specified value for those items.

• Items that appear as identifier-9 in any specified INDICATING phrase, in which case the JSON null
values are indicated in the respective null indicator items.

If identifier-5 is specified, JSON null values are ignored for that item. identifier-5 must not be
simultaneously specified as neither identifier-8 nor identifier-9 and identifier-5 must be an item that
references identifier-2 or is subordinate to identifier-2.
If multiple IGNORING phrases are specified, their effects are cumulative.

INDICATING phrase
Allows you to parse JSON null values for the indicated item, identifier-9, while having a value moved
into an indicator item that informs you whether a JSON null value was encountered or not. The
indicator item is specified either directly via identifier-10, or indirectly as the parent elementary item
of condition-name-1 or condition-name-2.
identifier-10 must, and can only be specified when literal-2 and literal-3 are specified.
The indicator item must reference a single byte elementary alphanumeric data item whose data
definition entry contains PICTURE X.
The values moved into the indicator item can be as follows:

• The VALUE of condition-name-1 if a null was found or the FALSE value of condition-name-1 if a
null was not found. The first VALUE clause literal will be used if multiple VALUE clause literals are
specified.

• The VALUE of condition-name-2 if a null was found and condition-name-3 if a null was not found.
The first VALUE clause literal will be used if multiple VALUE clause literals are specified.

• literal-2 if a null was found or literal-3 if a null was not found.

The indicator item must appear within the same dimension as the indicated item.
The indicator item is otherwise ignored by the JSON PARSE statement and the JSON text in
identifier-2 shall not contain name/value pairs matching any indicator item.
The indicated item must be subordinate to identifier-2.
condition-name-1 must be a level-88 item specified with both the VALUE clause and the WHEN SET
TO FALSE phrase.
condition-name-2 and condition-name-3 must be level-88 items with the same direct parent.
literal-2 and literal-3 must be single byte alphanumeric literals.
The INDICATING phrase can be specified multiple times using the ALSO keyword.

386 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

For example, assume the item docx contains the following UTF-8 encoded text:

{ "myrecord" : { "data-1" : null } }

Consider the following COBOL structure and statements:

 01 DOCX PIC X(1000).
 01 MY-RECORD.
 02 DATA-1-IS-NULL PIC X.
 02 DATA-1 PIC X(100).

 JSON PARSE DOCX INTO MY-RECORD
 INDICATING DATA-1 IS JSON NULL USING 'Y' AND 'N' IN DATA-1-IS-NULL
 END-JSON

 DISPLAY 'DATA-1-IS-NULL: ' DATA-1-IS-NULL

The output of the program would be as follows:

DATA-1-IS-NULL: Y

For a summary of the ways to parse JSON null values, see "Handling JSON null values".
ENCODING phrase

The ENCODING phrase specifies the encoding assumed for the source JSON document in identifier-1.
The ENCODING phrase must follow these rules:

• identifier-6 must be an unsigned integer data item.
• literal-4 must be an unsigned integer literal.
• If identifier-1 is alphanumeric:

– The value of identifier-6 or literal-4 can be either an EBCDIC coded character set identifier
(CCSID) from Table 45 on page 375. "Single byte EBCDIC coded character sets for JSON
documents" or 1208.

– If FROM CODEPAGE was specified, the CCSID of the CODEPAGE compiler option is assumed and
must be an EBCDIC CCSID from Table 45 on page 375. "Single byte EBCDIC coded character sets
for JSON documents".

• If identifier-1 is national or UTF-8:

– The value of identifier-6 or literal-4 must be 1200 or 1208 respectively.
– FROM CODEPAGE cannot be specified.

If the ENCODING phrase is omitted and:

• If identifier-1 is alphanumeric or UTF-8, the JSON document is assumed to be encoded in Unicode
UTF-8 (CCSID 1208).

• If identifier-1 is national, the JSON document is assumed to be encoded in Unicode UTF-16 (CCSID
1200).

If the ENCODING phrase specifies a single byte EBCDIC CCSID, literal-1 of the JSON PARSE NAME
phrase must be an alphanumeric literal. For more information, see Table 45 on page 375. "Single byte
EBCDIC coded character sets for JSON documents".

WITH DETAIL phrase

The WITH DETAIL phrase causes the JSON PARSE statement to emit runtime messages for any
nonexception and exception conditions encountered during parsing.

NAME phrase

For the purpose of matching the name of a JSON name/value pair, the NAME phrase allows you to
effectively change the name of a data item to the specified literal during the execution of the JSON
PARSE statement.

Chapter 28. PROCEDURE DIVISION statements 387

You can specify OMITTED to parse an anonymous JSON object or array, whose top parent name is not
specified. For examples of parsing JSON anonymous arrays, see "Parsing JSON anonymous arrays" in
the Programming Guide.

Notes:

• Only anonymous JSON object or array can be parsed using OMITTED and the rest of anonymous
JSON types (string, number, true, false, and null) cannot.

• Any JSON value can be anonymous. For example, an anonymous JSON object is one whose name is
omitted in a JSON name/value pair. Given the following JSON text:

{“top” : {“A”:”value1”, “B”:”value2”}}

“top” is a name and {“A”:”value1”, “B”:”value2”} is its JSON object value pair. When the name “top”
is omitted, {“A”:”value1”, “B”:”value2”} becomes an anonymous JSON object because it does not
have its corresponding name.

identifier-3 must reference identifier-2 or one of its subordinate data items. It cannot be a function
identifier and cannot be reference modified or subscripted. It must not specify any data item which
is ignored by the JSON PARSE statement. For more information about identifier-2, see the description
of identifier-2. If identifier-3 is specified more than once in the NAME phrase, the last specification is
used. If OMITTED is specified, identifier-3 must refer to identifier-2.

literal-1 must be an alphanumeric or national literal containing the JSON name to be associated with
identifier-3. The literal is case-sensitive and must match the JSON name exactly.

The NAME phrase in aggregate must not result in an ambiguous name specification. For example,
given the following data declarations and JSON text:

01 G.
 05 H.
 10 A pic x(10).
 10 3_ pic 9.
 10 C-C pic x(10).

'{"g": {"H": {"A": "Eh?", "3_": 5, "C-C": "See"}}}'.

Then, if it were allowed, specifying the NAME phrase as:

NAME of A is 'C-C'

would result in no data item receiving the value "Eh?", and an ambiguity about which data item should
receive the value "See", effectively defining the declaration of group G as:

01 G.
 05 H.
 10 C-C pic x(10).
 10 3_ pic 9.
 10 C-C pic x(10).

which would be illegal if referenced as identifier-2 in a JSON PARSE statement. Specifying the NAME
phrase as:

NAME of A is 'C-C' C-C is 'A'

is not ambiguous, and would simply swap the assignments to data items A and C-C.

Given the following data declaration and JSON text:

01 top1.
 02 A pic x(20).
 02 B pic x(20).

'{"A":"value1","B":"value2"}'

This anonymous JSON object can be parsed using OMITTED:

388 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

NAME top1 IS OMITTED

If OMITTED is not specified, the JSON object would need to contain a parent name called "top":

'{"top1":{"A":"value1","B":"value2"}}'

If literal-1 is a NATIONAL or UTF-8 literal, identifier-1 must reference a data item of category
NATIONAL or UTF-8, or the ENCODING phrase must specify a CCSID of 1208 for Unicode UTF-8.

SUPPRESS phrase

Allows you to identify and unconditionally exclude items that are subordinate to identifier-2 from
assignment by the JSON PARSE statement.

identifier-4 must reference a data item that is subordinate to identifier-2 and that is not otherwise
ignored by the operation of the JSON PARSE statement. identifier-4 cannot be a function identifier and
cannot be reference modified or subscripted. identifier-4 can reference an entire table.

If identifier-4 specifies a group data item, that group data item and all data items that are subordinate
to the group item are excluded.

Duplicate specifications of identifier-4 are permitted.

A data item that is specified in the SUPPRESS phrase, is suppressed even if the same data item is also
specified in the NAME phrase.

CONVERTING phrase

Allows you to specify items that will be parsed as either JSON BOOLEAN or JSON null name/value
pairs.

phrase-1 Format 1
Use Format 1 to specify items that will be parsed as JSON boolean name/value pairs.

identifier-7 must be a single-byte alphanumeric elementary data item whose data definition entry
contains PICTURE X.

The USING phrase provides various methods of specifying the values that shall be effectively
moved into identifier-7 when a JSON BOOLEAN true or false value is encountered during parsing.

condition-name-1 must be a level-88 item directly subordinate to identifier-7 and must be
specified with both the VALUE clause and the WHEN SET TO FALSE phrase. The first VALUE clause
literal (of possibly many values and ranges) will be used to populate identifier-7 when parsing a
JSON BOOLEAN true value. The FALSE value will be used to populate identifier-7 when parsing a
JSON BOOLEAN false value.

condition-name-2 and condition-name-3 must be level-88 items directly subordinate to
identifier-7 whose VALUE clauses are used to populate identifier-7 when a JSON BOOLEAN true or
false value is parsed respectively. The first VALUE clause literal will be used in both cases.

literal-2 and literal-3 must be single-byte alphanumeric literals. literal-2 and literal-3 are used to
populate identifier-7 when a JSON BOOLEAN true or false value is parsed respectively.

The CONVERTING phrase can be specified with multiple items to be parsed as JSON BOOLEAN
name/value pairs by using the ALSO keyword.

Example: CONVERTING phrase with all three formats of the USING phrase

Consider the following COBOL structure and statements:

01 docx pic x(1000).
01 myrecord.
 02 data-a pic x.
 88 data-a-flag value ‘T’ false ‘F’.
 02 data-b pic x.
 88 data-b-true value ‘1’.

Chapter 28. PROCEDURE DIVISION statements 389

 88 data-b-false value ‘0’.
 02 data-c pic x.

JSON PARSE docx INTO myrecord
 CONVERTING data-a FROM BOOLEAN USING data-a-flag
 ALSO data-b FROM BOOLEAN USING data-b-true AND data-b-false
 ALSO data-c FROM BOOLEAN USING ‘a’ AND ‘z’
DISPLAY data-a
DISPLAY data-b
DISPLAY data-c

Assume docx contains the following UTF-8 encoded JSON text:

{ “myrecord” :
 { “data-a” : true,
 “data-b” : false,
 “data-c” : true
 }
}

The output of the program would be:

T
0
a

phrase-1 Format 2
Use Format 2 to specify items that might be parsed as JSON null name/value pairs.

identifier-8 must be a group or elementary item that references identifier-2 or is subordinate to
identifier-2.

fig-con-1 represents one of the figurative constants from the list below:

• SPACE, SPACES
• ZERO, ZEROES, ZEROS
• LOW-VALUE, LOW-VALUES
• HIGH-VALUE, HIGH-VALUES

The figurative constant is moved to identifier-8 when a JSON null value is encountered for that
name. fig-con-1 must be a legal sender in the implicit move with identifier-8 as the receiver
according to the rules in “MOVE statement” on page 400.

The following example shows JSON text containing null values being parsed into a COBOL data
item using the CONVERTING phrase. Assume the item docx contains the following UTF-8 encoded
text:

{ "my-record" : { "data-a" : null, "data-b" : null } }

01 my-record.
 02 data-a pic 9999.
 02 data-b pic x(10).

MOVE 1234 to data-a
MOVE "0123456789" to data-b

JSON PARSE docx INTO my-record
 CONVERTING data-a FROM NULL USING ZERO
 ALSO data-b FROM NULL USING SPACES
END-JSON
DISPLAY data-a
DISPLAY "'" data-b "'"

The output of the program would be as follows:

0000
' '

390 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

ON EXCEPTION phrase

An exception condition exists when an error occurs during parsing of the JSON text, for example an
ill-formed JSON value, or during assignment of a value to a COBOL data item. In such cases, JSON
parsing stops and the receiver, identifier-2, might be partially modified.

Special register JSON-CODE contains an exception code, as detailed in JSON PARSE conditions
and associated codes and runtime messages in the Enterprise COBOL Programming Guide. Special
register JSON-STATUS might also contain a nonzero status value, representing one or more non-
exception conditions that occurred prior to the exception condition. For more details, see Operation of
JSON PARSE.

If the ON EXCEPTION phrase is specified, control is transferred to imperative-statement-1. If the ON
EXCEPTION phrase is not specified, the NOT ON EXCEPTION phrase, if any, is ignored, and control is
transferred to the end of the JSON PARSE statement.

NOT ON EXCEPTION phrase

If an exception condition does not occur during parsing of the JSON text, control is passed to
imperative-statement-2, if specified, otherwise to the end of the JSON PARSE statement. The ON
EXCEPTION phrase, if specified, is ignored. Special register JSON-CODE contains zero after execution
of the JSON PARSE statement.

Nonexception conditions that can occur during execution of the JSON PARSE statement might result
in special register JSON-STATUS being set to a nonzero status value, and the receiver identifier-2
being partially modified.

For more details, see “Operation of JSON PARSE” and JSON PARSE conditions and associated codes
and runtime messages in the Enterprise COBOL Programming Guide.

END-JSON phrase

This explicit scope terminator delimits the scope of JSON GENERATE or JSON PARSE statements.
END-JSON permits a conditional JSON GENERATE or JSON PARSE statement (that is, a JSON
GENERATE or JSON PARSE statement that specifies the ON EXCEPTION or NOT ON EXCEPTION
phrase) to be nested in another conditional statement.

The scope of a conditional JSON GENERATE or JSON PARSE statement can be terminated by:

• An END-JSON phrase at the same level of nesting
• A separator period

END-JSON can also be used with a JSON GENERATE or JSON PARSE statement that does not specify
either the ON EXCEPTION or the NOT ON EXCEPTION phrase.

For more information about explicit scope terminators, see “Delimited scope statements” on page
293.

Examples of JSON text and JSON PARSE statements
Given the following COBOL data declaration:

 01 TOP1.
 02 A PIC X(20) OCCURS 2.
 02 B OCCURS 2.
 03 C PIC 9(2).
 03 D PIC 9(2).

Below are examples of JSON text and its corresponding JSON PARSE statement that can parse the JSON
text:

{ "TOP1" :
 { "A" : ["VALUE1", "VALUE2"],
 "B" : [{"C":11, "D":22},
 {"C":33, "D":44}] }}

Chapter 28. PROCEDURE DIVISION statements 391

JSON PARSE JSON-TEXT INTO TOP1

{ "A" : ["VALUE1", "VALUE2"],
 "B" : [{"C":11, "D":22},
 {"C":33, "D":44}] }}

JSON PARSE JSON-TEXT INTO TOP1
 NAME TOP1 IS OMITTED

{ "A" : ["VALUE1", "VALUE2"] }

JSON PARSE JSON-TEXT INTO A

["VALUE1", "VALUE2"]

 JSON PARSE JSON-TEXT INTO A
 NAME A IS OMITTED

{ "B" : [{"C":11, "D":22},
 {"C":33, "D":44}] }

JSON PARSE JSON-TEXT INTO B

[{"C":11, "D":22},
 {"C":33, "D":44}]

JSON PARSE JSON-TEXT INTO B
 NAME B IS OMITTED

Video resource
Watch the video to get an overview of the JSON support in Enterprise COBOL 6.

Nested JSON GENERATE or JSON PARSE statements
When a given JSON GENERATE or JSON PARSE statement appears in imperative-statement-1 or
imperative-statement-2 of another JSON GENERATE or JSON PARSE statement, that given JSON
GENERATE or JSON PARSE statement is a nested JSON GENERATE or JSON PARSE statement.

Nested JSON GENERATE or JSON PARSE statements are considered to be matched JSON GENERATE and
END-JSON combinations, or JSON PARSE and END-JSON combinations, proceeding from left to right.
Thus, any END-JSON phrase that is encountered is matched with the nearest preceding JSON GENERATE
or JSON PARSE statement that has not been implicitly or explicitly terminated.

Operation of JSON PARSE

The JSON text must be valid. Otherwise the statement terminates with an exception condition, and
identifier-2 might be partially modified.

Parsing is guided by a name-matching algorithm in which the containment structure of the names must
match exactly, except that omissions of complete elementary or "group" levels are tolerated in the JSON
text. For both the JSON name and the COBOL data name, each lowercase single-byte alphabetic letter,
a through z, is considered to be equivalent to its corresponding single-byte uppercase alphabetic letter,
A through Z. In other words, the name-matching between JSON names and COBOL data names is case
insensitive. In the case of an applicable NAME phrase specification, the NAME phrase literal, after being
converted by the compiler from the codepage in effect by the CODEPAGE compiler option to Unicode
UTF-8, must match the JSON name exactly in a case sensitive match.

For each matching JSON name and data item name, the matching JSON value is assigned to the
corresponding data item and occurrence in accordance with the table of “Valid and invalid elementary
moves” on page 395, and with the same semantics as the equivalent COBOL MOVE statement.

392 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

https://mediacenter.ibm.com/media/1_coiuourp

Whitespace characters (SP, HT, LF, and CR) are ignored, except within strings, and are illegal within
numbers.

If, for each elementary data item subordinate to identifier-2, there is exactly one matching appropriately
qualified JSON name/value pair, regardless of the order in the JSON text, then the JSON PARSE statement
terminates without an exception, and with special registers JSON-STATUS and JSON-CODE containing
zero.

A number of other conditions encountered during execution of the JSON PARSE statement might result in
a nonzero JSON-STATUS value, or an exception and a nonzero JSON-CODE value.

For example, if any combination of JSON value and COBOL data type is invalid, the statement terminates
with an exception condition. If any matching JSON value results in one or more substitution characters
when translated from Unicode to the CCSID specified by the CODEPAGE compiler option, the value is
accepted but results in a nonzero JSON-STATUS value and possibly one or more runtime messages, under
control of the WITH DETAIL phrase.

Superfluous JSON name/value pairs that do not match any data item names in identifier-2 are tolerated,
but result in setting special register JSON-STATUS to a condition code, and possibly in one or more
runtime messages, under control of the WITH DETAIL phrase.

If there are no matching items, the statement terminates with an exception condition, and identifier-2 is
unmodified.

The special value null is interpreted as an instruction to skip assignment of the corresponding data item
or occurrence.

This could be useful for tables. For example parsing the JSON text fragment:

{"myTable":[31, null, 37, null, 41]}

would result in setting only the first, third, and fifth occurrences of data item “myTable”.

Each JSON array should have the same cardinality as the associated table data item. If the JSON array
has fewer elements than the table item, the additional table elements are not modified. If the JSON array
has more values than the matching table item, the additional values are ignored. Both kinds of mismatch
result in a nonzero JSON-STATUS setting.

For a complete description of JSON PARSE conditions, see JSON PARSE conditions and associated codes
and runtime messages in the Enterprise COBOL Programming Guide.

Examples of matched and mismatched data definitions and JSON text

The following data definitions and JSON text are considered an exact match.

Data definitions:

01 G.
 05 h.
 10 a pic x(10).
 10 3_ pic 9.
 10 C-c pic x(10).

JSON text:

{"g": {"H": {"A": "Eh?", "3_": 5, "c-C": "See"}}}

The JSON text subsequently generated from this structure would also be an exact match for the JSON
text input to the JSON PARSE statement:

{"G": {"h": {"a": "Eh?", "3_": 5, "C-c": "See"}}}

Chapter 28. PROCEDURE DIVISION statements 393

Omission in the JSON text of names corresponding with elementary items or complete substructures is
tolerated, but the level (“qualification”) must match. For example, the following data definitions and JSON
text are compatible, but data-items “3_” and “etCetera” would not be modified by the corresponding
JSON PARSE statement, and would result in a JSON-STATUS value of 1 at statement termination and a
runtime message under control of the WITH DETAIL phrase:

01 G.
 05 h.
 10 a pic x(10).
 10 3_ pic 9.
 10 C-c pic x(10).
 05 etCetera.
 10 etCetera pic x(10).

{"g": {"H": {"A": "Eh?", "c-C": "See"}}}

Superfluous items in the JSON are tolerated, but result in nonzero JSON-STATUS codes, and runtime
messages under control of the WITH DETAIL phrase. For example, the following data definitions and
JSON text are compatible, and would result in completely populating group G, and terminating without
an exception. However, because JSON name/value pair "B": "Bee" would not be used, special register
JSON-STATUS would be set to a reason code of 2:

01 G.
 05 h.
 10 a pic x(10).
 10 3_ pic 9.
 10 C-c pic x(10).

{"G": {"h": {"A": "Eh?", "B": "Bee", "3_": 5, "c-C": "See"}}}

The following data definitions and JSON text are fully compatible, despite the name order mismatch.

01 G.
 05 h.
 10 a pic x(10).
 10 3_ pic 9.
 10 C-c pic x(10).

{"g": {"H": {"3_": 5, "A": "Eh?", "c-C": "See"}}}

The following data definitions and JSON text are not compatible, because of the omitted name level
(qualification by “H”), and, because no data items would be changed, would result in an exception
condition:

01 G.
 05 h.
 10 a pic x(10).
 10 3_ pic 9.
 10 C-c pic x(10).

{"g": {"A": "Eh?", "3_": 5, "c-C": "See"}}

The following data definitions and JSON text are not compatible, because the JSON values are all
incompatible with the corresponding data items, and would result in an exception condition:

01 G.
 02 h.
 10 a pic a(10).
 10 3_ pic 9.
 10 C-c pic 99.

{"g": {"H": {"A": 42, "3_": "x", "c-C": "abc"}}}

Count of table elements set by JSON PARSE
JSON texts do not necessarily include a count of values in an array. To determine how many table
elements are set by a given JSON PARSE statement, preset all occurrences of the table to a special value.

394 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The preset value should be known to be absent from the incoming JSON array values, then after
execution of the JSON PARSE statement, search the table for the first occurrence of the special value. The
preceding values are those that were set by the JSON PARSE statement.

Valid and invalid elementary moves
The table shows valid and invalid elementary moves for each category.

In the table:

• YES = Move is valid.
• NO = Move is invalid.
• Column headings indicate receiving item categories; row headings indicate JSON values.

Table 46. Valid and invalid elementary moves

Valid and
invalid
elementar
y moves

Alpha-
betic

Alpha-
numeric

Alpha-
numeric
edited Numeric

Numeric-
edited

External
floating-
point

Internal
floating-
point

National,
national-
edited

String Yes Yes Yes Yes1 Yes1 Yes1 Yes1 Yes

Number
(fixed-
point
integer)

No Yes Yes Yes Yes Yes Yes Yes

Number
(fixed-
point
noninteger
or float)

No No No Yes Yes Yes Yes No

1. The string must consist only of decimal digits, and is treated as an integer.

Parsing JSON values that result in a loss of significance or information
JSON values may exceed the size, length, or precision of the data items they are being assigned to by
the JSON PARSE statement. When such a situation occurs, the JSON PARSE statement will truncate the
value similarly to the equivalent MOVE statement and populate the receiving data item with a loss of
significance or information, and may set a reason code of 128 or 256 in the JSON-STATUS special register.
If the user also specifies the WITH DETAIL phrase then one or more runtime messages may also be
emitted. The type of truncation that occurs depends on the type of the receiving data item, and the type of
the JSON value. Some types of truncation such as loss of precision due to assignment to a floating-point
receiver, or from a floating-point sender, will not be recognized by the JSON PARSE statement.

The assignment of a JSON value to its corresponding data item follows the Alignment Rules.

JSON-STATUS special register values 128 and 256
The JSON-STATUS special register is set to 128 when a loss of significance of a fixed-point integer, fixed-
point noninteger, or floating-point JSON value occurs similar to a COMPUTE SIZE ERROR condition. That
is, when a JSON value, after decimal point alignment, exceeds the largest value that can be contained in
the receiver. This also applies to JSON string values that contain only digits.

The JSON-STATUS special register is set to 256 when a loss of information of a JSON string value occurs.

Chapter 28. PROCEDURE DIVISION statements 395

MERGE statement
The MERGE statement combines two or more identically sequenced files (that is, files that have already
been sorted according to an identical set of ascending or descending keys) on one or more keys and
makes records available in merged order to an output procedure or output file.

A MERGE statement can appear anywhere in the PROCEDURE DIVISION except in a declarative section.

The MERGE statement is not supported for programs compiled with the THREAD compiler option.

Format
MERGE file-name-1

ON

ASCENDING

DESCENDING KEY

data-name-1

COLLATING

SEQUENCE

IS

 alphabet-name-1

USING

file-name-2 file-name-3

OUTPUT PROCEDURE

IS

 procedure-name-1

THROUGH

THRU

procedure-name-2

GIVING file-name-4

file-name-1
The name given in the SD entry that describes the records to be merged.

No file-name can be repeated in the MERGE statement.

No pair of file-names in a MERGE statement can be specified in the same SAME AREA, SAME SORT
AREA, or SAME SORT-MERGE AREA clause. However, any file-names in the MERGE statement can be
specified in the same SAME RECORD AREA clause.

When the MERGE statement is executed, all records contained in file-name-2, file-name-3, ... , are
accepted by the merge program and then merged according to the keys specified.

ASCENDING/DESCENDING KEY phrase
This phrase specifies that records are to be processed in an ascending or descending sequence
(depending on the phrase specified), based on the specified merge keys.

data-name-1
Specifies a KEY data item on which the merge will be based. Each such data-name must identify a
data item in a record associated with file-name-1. The data-names following the word KEY are listed
from left to right in the MERGE statement in order of decreasing significance without regard to how
they are divided into KEY phrases. The leftmost data-name is the major key, the next data-name is the
next most significant key, and so forth.

396 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The following rules apply:

• A specific key data item must be physically located in the same position and have the same data
format in each input file. However, it need not have the same data-name.

• If file-name-1 has more than one record description, the KEY data items need be described in only
one of the record descriptions.

• If file-name-1 contains variable-length records, all of the KEY data-items must be contained within
the first n character positions of the record, where n equals the minimum records size specified for
file-name-1.

• KEY data items must not contain an OCCURS clause or be subordinate to an item that contains an
OCCURS clause.

• KEY data items cannot be:

– Variably located
– Group items that contain variable-occurrence data items
– Category numeric described with usage NATIONAL (national decimal type)
– Category external floating-point described with usage NATIONAL (national floating-point)
– Category DBCS
– Dynamic-length elementary items
– Dynamic-length group items

• KEY data items can be qualified.
• KEY data items can be any of the following data categories:

– Alphabetic, alphanumeric, alphanumeric-edited
– Numeric (except numeric with usage NATIONAL)
– Numeric-edited (with usage DISPLAY or NATIONAL)
– Internal floating-point or display floating-point
– National or national-edited

The direction of the merge operation depends on the specification of the ASCENDING or DESCENDING
keywords as follows:

• When ASCENDING is specified, the sequence is from the lowest key value to the highest key value.
• When DESCENDING is specified, the sequence is from the highest key value to the lowest key value.

If the KEY data item is described with usage NATIONAL, the sequence of the KEY values is based on the
binary values of the national characters.

When the COLLATING SEQUENCE phrase is not specified, the key comparisons are performed according
to the rules for comparison of operands in a relation condition. For details, see “General relation
conditions” on page 272.

When the COLLATING SEQUENCE phrase is specified, the indicated collating sequence is used for key
data items of alphabetic, alphanumeric, alphanumeric-edited, external floating-point, and numeric-edited
categories. For all other key data items, the comparisons are performed according to the rules for
comparison of operands in a relation condition.

COLLATING SEQUENCE phrase
This phrase specifies the collating sequence to be used in alphanumeric comparisons for the KEY data
items in this merge operation.

The COLLATING SEQUENCE phrase has no effect for keys that are not alphabetic or alphanumeric.

Chapter 28. PROCEDURE DIVISION statements 397

alphabet-name-1
Must be specified in the ALPHABET clause of the SPECIAL-NAMES paragraph. Any one of the
alphabet-name clause phrases can be specified, with the following results:
STANDARD-1

The ASCII collating sequence is used for all alphanumeric comparisons. (The ASCII collating
sequence is shown in “US English ASCII code page” on page 754.)

STANDARD-2
The 7-bit code defined in the International Reference Version of ISO/IEC 646, 7-bit coded
character set for information interchange is used for all alphanumeric comparisons.

NATIVE
The EBCDIC collating sequence is used for all alphanumeric comparisons. (The EBCDIC collating
sequence is shown in “EBCDIC collating sequence” on page 751.)

EBCDIC
The EBCDIC collating sequence is used for all alphanumeric comparisons. (The EBCDIC collating
sequence is shown in “EBCDIC collating sequence” on page 751.)

literal
The collating sequence established by the specification of literals in the ALPHABET-NAME clause
is used for all alphanumeric comparisons.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM COLLATING SEQUENCE clause (if
specified) in the OBJECT-COMPUTER paragraph identifies the collating sequence to be used. When both
the COLLATING SEQUENCE phrase of the MERGE statement and the PROGRAM COLLATING SEQUENCE
clause of the OBJECT-COMPUTER paragraph are omitted, the EBCDIC collating sequence is used.

USING phrase

file-name-2 , file-name-3 , ...
Specifies the input files.

During the MERGE operation, all the records on file-name-2, file-name-3, ... (that is, the input files) are
transferred to file-name-1. At the time the MERGE statement is executed, these files must not be open.
The input files are automatically opened, read, and closed. If DECLARATIVE procedures are specified for
these files for input operations, the declaratives will be driven for errors if errors occur.

All input files must specify sequential or dynamic access mode and be described in FD entries in the DATA
DIVISION.

If file-name-1 contains variable-length records, the size of the records contained in the input files (file-
name-2, file-name-3, ...) must be neither less than the smallest record nor greater than the largest
record described for file-name-1. If file-name-1 contains fixed-length records, the size of the records
contained in the input files must not be greater than the largest record described for file-name-1. For
more information, see Sorting and merging files in the Enterprise COBOL Programming Guide.

GIVING phrase

file-name-4 , ...
Specifies the output files.

When the GIVING phrase is specified, all the merged records in file-name-1 are automatically transferred
to the output files (file-name-4, ...).

All output files must specify sequential or dynamic access mode and be described in FD entries in the
DATA DIVISION.

If the output files (file-name-4, ...) contain variable-length records, the size of the records contained in
file-name-1 must be neither less than the smallest record nor greater than the largest record described

398 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

for the output files. If the output files contain fixed-length records, the size of the records contained
in file-name-1 must not be greater than the largest record described for the output files. For more
information, see Sorting and merging files in the Enterprise COBOL Programming Guide.

At the time the MERGE statement is executed, the output files (file-name-4, ...) must not be open. The
output files are automatically opened, written to, and closed. If DECLARATIVE procedures are specified
for these files for output operations, the declaratives will be driven for errors if errors occur.

OUTPUT PROCEDURE phrase
This phrase specifies the name of a procedure that is to select or modify output records from the merge
operation.

procedure-name-1
Specifies the first (or only) section or paragraph in the OUTPUT PROCEDURE.

procedure-name-2
Identifies the last section or paragraph of the OUTPUT PROCEDURE.

The OUTPUT PROCEDURE can consist of any procedure needed to select, modify, or copy the records
that are made available one at time by the RETURN statement in merged order from the file referenced
by file-name-1. The range includes all statements that are executed as the result of a transfer of control
by CALL, EXIT, GO TO, PERFORM, and XML PARSE statements in the range of the output procedure. The
range also includes all statements in declarative procedures that are executed as a result of the execution
of statements in the range of the output procedure. The range of the output procedure must not cause the
execution of any MERGE, RELEASE, or format 1 SORT statement.

If an output procedure is specified, control passes to it after the file referenced by file-name-1 has
been sequenced by the MERGE statement. The compiler inserts a return mechanism at the end of
the last statement in the output procedure and when control passes the last statement in the output
procedure, the return mechanism provides the termination of the merge and then passes control to the
next executable statement after the MERGE statement. Before entering the output procedure, the merge
procedure reaches a point at which it can select the next record in merged order when requested. The
RETURN statements in the output procedure are the requests for the next record.

The OUTPUT PROCEDURE phrase is similar to a basic PERFORM statement. For example, if you name a
procedure in an OUTPUT PROCEDURE, that procedure is executed during the merging operation just as if
it were named in a PERFORM statement. As with the PERFORM statement, execution of the procedure is
terminated after the last statement completes execution. The last statement in an OUTPUT PROCEDURE
can be the EXIT statement (see “EXIT statement” on page 342).

MERGE special registers
The topic describes special registers of the MERGE statement.

SORT-CONTROL special register
You identify the sort control file (through which you can specify additional options to the sort/merge
function) with the SORT-CONTROL special register.

If you use a sort control file to specify control statements, the values specified in the sort control file
take precedence over those in the other SORT special registers.

For information, see “SORT-CONTROL” on page 25.

SORT-MESSAGE special register
For information, see “SORT-MESSAGE” on page 26. The special register SORT-MESSAGE is equivalent
to an option control statement keyword in the sort control file.

SORT-RETURN special register
For information, see “SORT-RETURN” on page 27.

Chapter 28. PROCEDURE DIVISION statements 399

Segmentation considerations
If a MERGE statement is coded in a fixed segment, any output procedure referenced by that MERGE
statement must be either totally within a fixed segment or wholly contained in a single independent
segment.

If a MERGE statement is coded in an independent segment, any output procedure referenced by that
MERGE statement must be either totally within a fixed segment or wholly contained within the same
independent segment as that MERGE statement.

MOVE statement
The MOVE statement transfers data from one area of storage to one or more other areas.

Format 1: MOVE statement

MOVE identifier-1

literal-1

TO identifier-2

Format 2: MOVE statement with CORRESPONDING phrase
MOVE CORRESPONDING

CORR

identifier-1 TO identifier-2

CORR is an abbreviation for, and is equivalent to, CORRESPONDING.

identifier-1 , literal-1
The sending area.

identifier-2
The receiving areas. identifier-2 must not reference an intrinsic function.

When format 1 is specified:

• All identifiers can reference alphanumeric group items, national group items, UTF-8 group items, or
elementary items.

• When one of identifier-1 or identifier-2 references a national group item and the other operand
references an alphanumeric group item, the national group is processed as a group item; in all other
cases, the national group item is processed as an elementary data item of category national.

• When one of identifier-1 or identifier-2 references a UTF-8 group item and the other operand references
an alphanumeric group item, the UTF-8 group is processed as a group item; in all other cases, the UTF-8
group item is processed as an elementary data item of category UTF-8.

• The data in the sending area is moved into the data item referenced by each identifier-2 in the order in
which the identifier-2 data items are specified in the MOVE statement. See “Elementary moves” on page
401 and “Group moves” on page 405 below.

When format 2 is specified:

• Both identifiers must be group items.
• A national group item is processed as a group item (and not as an elementary data item of category

national).
• A UTF-8 group item is processed as a group item (and not as an elementary data item of category

UTF-8).

400 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• Selected items in identifier-1 are moved to identifier-2 according to the rules for the “CORRESPONDING
phrase” on page 295. The results are the same as if each pair of CORRESPONDING identifiers were
referenced in a separate MOVE statement.

Data items described with the following types of usage cannot be specified in a MOVE statement:

• INDEX
• POINTER
• FUNCTION-POINTER
• PROCEDURE-POINTER
• OBJECT REFERENCE

A data item defined with a usage of INDEX, POINTER, FUNCTION-POINTER, PROCEDURE-POINTER,
or OBJECT REFERENCE can be part of an alphanumeric group item that is referenced in a MOVE
CORRESPONDING statement; however, no movement of data from those data items takes place.

The evaluation of the length of the sending or receiving area can be affected by the DEPENDING ON
phrase of the OCCURS clause (see “OCCURS clause” on page 200).

If the sending field (identifier-1) is reference-modified or subscripted, or is an alphanumeric or national
function-identifier, the reference-modifier, subscript, or function is evaluated only once, immediately
before data is moved to the first of the receiving operands.

Any length evaluation, subscripting, or reference-modification associated with a receiving field
(identifier-2) is evaluated immediately before the data is moved into that receiving field.

For example, the result of the statement:

MOVE A(B) TO B, C(B).

is equivalent to:

MOVE A(B) TO TEMP.
MOVE TEMP TO B.
MOVE TEMP TO C(B).

where TEMP is defined as an intermediate result item. The subscript B has changed in value between the
time that the first move took place and the time that the final move to C(B) is executed.

For further information about intermediate results, see Appendix A. Intermediate results and arithmetic
precision in the Enterprise COBOL Programming Guide.

After execution of a MOVE statement, the sending fields contain the same data as before execution.

Usage note: Overlapping operands in a MOVE statement can cause unpredictable results.

Elementary moves
An elementary move is one in which the receiving item is an elementary data item and the sending item is
an elementary data item or a literal.

Valid operands belong to one of the following categories:

• Alphabetic: includes data items of category alphabetic and the figurative constant SPACE
• Alphanumeric: includes the following items:

– Data items of category alphanumeric
– Alphanumeric functions
– Alphanumeric literals
– The figurative constant ALL alphanumeric-literal and all other figurative constants (except NULL)

when used in a context that requires an alphanumeric sending item

Chapter 28. PROCEDURE DIVISION statements 401

• Alphanumeric-edited: includes data items of category alphanumeric-edited
• DBCS: includes data items of category DBCS, DBCS literals, and the figurative constant ALL DBCS-

literal.
• External floating-point: includes data items of category external floating point (described with USAGE

DISPLAY or USAGE NATIONAL) and floating-point literals.
• Internal floating-point: includes data items of category internal floating-point (defined as USAGE

COMP-1 or USAGE COMP-2)
• National: includes the following items:

– National group items (treated as elementary item of category national)
– Data items of category national
– National literals
– National functions
– Figurative constants ZERO, SPACE, QUOTE, and ALL national-literal when used in a context that

requires a national sending item
• National-edited: includes data items of category national-edited
• Numeric: includes the following items:

– Data items of category numeric
– Numeric literals
– The figurative constant ZERO (when ZERO is moved to a numeric or numeric-edited item).

• Numeric-edited: includes data items of category numeric-edited.
• UTF-8: includes data items of category UTF-8.

Elementary move rules
Any necessary conversion of data from one form of internal representation to another takes place during
the move, along with any specified editing in, or de-editing implied by, the receiving item. The code page
used for conversion to or from alphanumeric characters is the one in effect for the CODEPAGE compiler
option when the source code was compiled.

The following rules outline the execution of valid elementary moves. When the receiving field is:

Alphabetic:

• Alignment and any necessary space filling or truncation occur as described under “Alignment rules” on
page 174.

• If the size of the sending item is greater than the size of the receiving item, excess characters on the
right are truncated after the receiving item is filled.

Alphanumeric or alphanumeric-edited:

• If the sending item is a national decimal integer item, the sending data is converted to usage DISPLAY
and treated as though it were moved to a temporary data item of category alphanumeric with the same
number of character positions as the sending item. The resulting alphanumeric data item is treated as
the sending item.

• Alignment and any necessary space filling or truncation take place, as described under “Alignment
rules” on page 174.

• If the receiving item is a dynamic-length elementary item, the length of the receiver is set to the
minimum of the length of the sender or the specified or implied value of the LIMIT phrase. If the length
of the sending item is greater than the length of the receiving item, then excess characters on the right
are truncated after the receiving item is filled.

• For items that are not dynamic-length elementary items, if the size of the sending item is greater than
the size of the receiving item, excess characters on the right are truncated after the receiving item is
filled.

402 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If the initial sending item has an operational sign, the unsigned value is used. If the operational
sign occupies a separate character, that character is not moved, and the size of the sending item is
considered to be one less character than the actual size.

DBCS:

• If the sending and receiving items are not the same size, the sending data is either truncated on the
right or padded with DBCS spaces on the right.

External floating-point:

• For a floating-point sending item, the floating-point value is converted to the usage of the receiving
external floating-point item (if different from the sending item's representation).

• For other sending items, the numeric value is treated as though that value were converted to internal
floating-point and then converted to the usage of the receiving external floating-point item.

Internal floating-point:

• When the category of the sending operand is not internal floating-point, the numeric value of the
sending item is converted to internal floating-point format.

National or national-edited:

• If the representation of the sending item is not national characters, the sending data is converted to
national characters and treated as though it were moved to a temporary data item of category national
of a length not to cause truncation or padding. The resulting category national data item is treated as
the sending data item.

• If the representation of the sending item is national characters, the sending data is used without
conversion.

• Alignment and any necessary space filling or truncation take place as described under “Alignment
rules” on page 174. The programmer is responsible for ensuring that multiple encoding units that
together form a graphic character are not split by truncation.

• If the sending item has an operational sign, the unsigned value is used. If the operational sign occupies
a separate character, that character is not moved, and the size of the sending item is considered to be
one less character than the actual size.

UTF-8:

• If the representation of the sending item is not UTF-8 characters, the sending data is converted to
UTF-8 characters and treated as though it were moved to a temporary data item of category UTF-8 of
a length not to cause truncation or padding. The resulting category UTF-8 data item is treated as the
sending data item.

• If the representation of the sending item is UTF-8 characters, the sending data is used without
conversion.

• Alignment and any necessary space filling or truncation take place as described under “Alignment
rules” on page 174. The programmer is responsible for ensuring that multiple encoding units that
together form a graphic character are not split by truncation.

• If the sending item has an operational sign, the unsigned value is used. If the operational sign occupies
a separate character, that character is not moved, and the size of the sending item is considered to be
one less character than the actual size.

Numeric or numeric-edited:

• Except when zeros are replaced because of editing requirements, alignment by decimal point and any
necessary zero filling take place, as described under “Alignment rules” on page 174.

• If the receiving item is signed, the sign of the sending item is placed in the receiving item, with any
necessary sign conversion. If the sending item is unsigned, a positive operational sign is generated for
the receiving item.

• If the receiving item is unsigned, no operational sign is generated for the receiving item and the
absolute value of the sending item is used in the move.

Chapter 28. PROCEDURE DIVISION statements 403

• When the category of the sending item is alphanumeric, alphanumeric-edited, national, or national-
edited, the data is moved as if the sending item were described as an unsigned integer.

• When the sending item is floating-point, the data is first converted to either a binary or internal decimal
representation and is then moved.

• When the receiving item is numeric-edited, editing takes place as defined by the picture character string
or BLANK WHEN ZERO clause associated with the receiving item.

• When the sending item is numeric-edited, the compiler de-edits the sending data to establish the
unedited value of the numeric-edited item (this value can be signed). The unedited numeric value is
used in the move to the receiving numeric or numeric-edited data item.

Usage notes:

1. If the receiving item is of category alphanumeric, alphanumeric-edited, numeric-edited, national, or
national-edited and the sending field is numeric, any digit positions described with picture symbol P in
the sending item are considered to have the value zero. Each P is counted in the size of the sending
item.

2. If the receiving item is numeric and the sending field is an alphanumeric literal, a national literal, or an
ALL literal, all characters of the literal must be numeric characters.

Valid and invalid elementary moves
The table shows valid and invalid elementary moves for each category.

In the table:

• YES = Move is valid.
• NO = Move is invalid.
• Column headings indicate receiving item categories; row headings indicate sending item categories.

Table 47. Valid and invalid elementary moves

 Valid and invalid
elementary moves

Alpha- betic Alpha-
numeric

Alpha-
numeric
edited

Numeric Numeric-
edited

External
floating- point

Internal
floating- point

DBCS1 National National-
edited

UTF-8

Alphabetic and SPACE
sending item

Yes Yes Yes No No No No No Yes Yes Yes

Alphanumeric sending
item2

Yes Yes Yes Yes3 Yes3 Yes8 Yes8 No Yes Yes Yes

Alphanumeric-edited
sending item

Yes Yes Yes No No No No No Yes Yes Yes

Numeric integer and
ZERO sending item4

No Yes Yes Yes Yes Yes Yes No Yes Yes No

Numeric noninteger
sending item5

No No No Yes Yes Yes Yes No No No No

Numeric-edited
sending item

No Yes Yes Yes Yes Yes Yes No Yes Yes Yes

Floating-point sending
item6

No No No Yes Yes Yes Yes No No No No

DBCS sending item7 No No No No No No No Yes Yes Yes No

National sending
item9

No No No Yes Yes Yes Yes No Yes Yes Yes

National-edited
sending item

No No No No No No No No Yes Yes Yes

UTF-8 sending item10 No No No No No No No No Yes Yes Yes

1. Includes DBCS data items.

2. Includes alphanumeric literals.

3. Figurative constants and alphanumeric literals must consist only of numeric characters and will be treated as numeric integer fields.

4. Includes integer numeric literals.

5. Includes noninteger numeric literals.

6. Includes floating-point literals, external floating-point data items (USAGE DISPLAY or USAGE NATIONAL), and internal floating-point data items (USAGE COMP-1 or USAGE COMP-2).

7. Includes DBCS data-items, DBCS literals, and figurative constant SPACE.

8. Figurative constants and alphanumeric literals must consist only of numeric characters and will be treated as numeric integer fields. The ALL literal cannot be used as a sending item.

9. Includes national data items, national literals, national functions, and figurative constants ZERO, SPACE, QUOTE, and ALL national literal.

10. Includes UTF-8 data items, UTF-8 literals, UTF-8 functions, and figurative constants ZERO, SPACE, QUOTE, and ALL UTF-8 literal.

404 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Moves involving file record areas
The successful execution of an OPEN statement for a given file makes the record area for that file
available. You can move data to or from the record description entries associated with a file only when the
file is in the open status.

Execution of an implicit or explicit CLOSE statement removes a file from open status and makes the
record area unavailable.

Group moves
A group move can be any move in which an alphanumeric group item is a sending item or a receiving item,
or both.

The group moves are:

• A move to an alphanumeric group item from one of the following items:

– any elementary data item that is valid as a sending item in the MOVE statement
– a national group item
– a UTF-8 group item
– a literal
– a figurative constant

• A move from an alphanumeric group item to the following items:

– any elementary data item that is valid as a receiving item in the MOVE statement
– a national group item
– a UTF-8 group item
– an alphanumeric group item

• A move from a UTF-8 group item to the following items:

– a national group item
• A move from a national group item to the following items:

– a UTF-8 group item

A group move is treated as though it were an alphanumeric-to-alphanumeric elementary move, except
that there is no conversion of data from one form of internal representation to another. In a group move,
the receiving area is filled without consideration for the individual elementary items contained within
either the sending area or the receiving area, except as noted in the OCCURS clause. (See “OCCURS
clause” on page 200.)

Dynamic-length group items can not be moved to, or from, another group item.

Chapter 28. PROCEDURE DIVISION statements 405

MULTIPLY statement
The MULTIPLY statement multiplies numeric items and sets the values of data items equal to the results.

Format 1: MULTIPLY statement

MULTIPLY identifier-1

literal-1

BY identifier-2

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2

END-MULTIPLY

In format 1, the value of identifier-1 or literal-1 is multiplied by the value of identifier-2; the product is
then placed in identifier-2. For each successive occurrence of identifier-2, the multiplication takes place in
the left-to-right order in which identifier-2 is specified.

Format 2: MULTIPLY statement with GIVING phrase
MULTIPLY identifier-1

literal-1

BY identifier-2

literal-2

GIVING

identifier-3

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2

END-MULTIPLY

In format 2, the value of identifier-1 or literal-1 is multiplied by the value of identifier-2 or literal-2. The
product is then stored in the data items referenced by identifier-3.

For all formats:

identifier-1 , identifier-2
Must name an elementary numeric item.

406 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

literal-1 , literal-2
Must be a numeric literal.

For format-2:

identifier-3
Must name an elementary numeric or numeric-edited item.

Floating-point data items and literals can be used anywhere a numeric data item or literal can be
specified.

When the ARITH(COMPAT) compiler option is in effect, the composite of operands can contain a
maximum of 30 digits. When the ARITH(EXTEND) compiler option is in effect, the composite of operands
can contain a maximum of 31 digits. For more information, see “Arithmetic statement operands” on page
297 and the details on arithmetic intermediate results, Appendix A. Intermediate results and arithmetic
precision in the Enterprise COBOL Programming Guide.

ROUNDED phrase
For formats 1 and 2, see “ROUNDED phrase” on page 296.

SIZE ERROR phrases
For formats 1 and 2, see “SIZE ERROR phrases” on page 296.

END-MULTIPLY phrase
This explicit scope terminator serves to delimit the scope of the MULTIPLY statement. END-MULTIPLY
permits a conditional MULTIPLY statement to be nested in another conditional statement. END-MULTIPLY
can also be used with an imperative MULTIPLY statement.

For more information, see “Delimited scope statements” on page 293.

Chapter 28. PROCEDURE DIVISION statements 407

OPEN statement
The OPEN statement initiates the processing of files. It also checks or writes labels, or both.

Format 1: OPEN statement for sequential files

OPEN INPUT file-name-1

REVERSED
1

WITH

NO REWIND
1

OUTPUT file-name-2

WITH

NO REWIND

I-O file-name-3

EXTEND file-name-4

Notes:
1 The REVERSED and WITH NO REWIND phrases are not valid for VSAM files.

Format 2: OPEN statement for indexed and relative files

OPEN INPUT file-name-1

OUTPUT file-name-2

I-O file-name-3

EXTEND file-name-4

408 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 3: OPEN statement for line-sequential files

OPEN INPUT file-name-1

OUTPUT file-name-2

EXTEND file-name-4

The phrases INPUT, OUTPUT, I-O, and EXTEND specify the mode to be used for opening the file. At least
one of the phrases INPUT, OUTPUT, I-O, or EXTEND must be specified with the OPEN keyword. The
INPUT, OUTPUT, I-O, and EXTEND phrases can appear in any order.

INPUT
Permits input operations.

OUTPUT
Permits output operations. This phrase can be specified when the file is being created.

Do not specify OUTPUT for files that:

• Contain records. The file will be replaced by new data.

If the OUTPUT phrase is specified for a file that already contains records, the data set must be
defined as reusable and cannot have an alternate index. The records in the file will be replaced by
the new data and any ALTERNATE RECORD KEY clause in the SELECT statement will be ignored.

• Are defined with a DD dummy card. Unpredictable results can occur.

I-O
Permits both input and output operations. The I-O phrase can be specified only for files assigned to
direct access devices.

The I-O phrase is not valid for line-sequential files.

EXTEND
Permits output operations that append to or create a file.

The EXTEND phrase is allowed for sequential access files only if the new data is written in ascending
sequence. The EXTEND phrase is allowed for files that specify the LINAGE clause.

For QSAM files, do not specify the EXTEND phrase for a multiple file reel.

If you want to append to a file, but are unsure if the file exists, use the SELECT OPTIONAL clause
before opening the file in EXTEND mode. The file will be created or appended to, depending on
whether the file exists.

file-name-1, file-name-2, file-name-3, file-name-4
Designate a file upon which the OPEN statement is to operate. If more than one file is specified, the
files need not have the same organization or access mode. Each file-name must be defined in an FD
entry in the DATA DIVISION and must not name a sort or merge file. The FD entry must be equivalent
to the information supplied when the file was defined.

REVERSED
Valid only for sequential single-reel files. REVERSED is not valid for VSAM files.

Chapter 28. PROCEDURE DIVISION statements 409

If the concept of reels has no meaning for the storage medium (for example, a direct access device),
the REVERSED and NO REWIND phrases do not apply.

NO REWIND
Valid only for sequential single-reel files. It is not valid for VSAM files.

For information on file sizes, see Appendix B, “Compiler limits,” on page 745.

General rules
The topic shows general rules of the OPEN statement.

• If a file opened with the INPUT phrase is an optional file that is not available, the OPEN statement sets
the file position indicator to indicate that an optional input file is not available.

• Execution of an OPEN INPUT or OPEN I-O statement sets the file position indicator:

– For indexed files, to the characters with the lowest ordinal position in the collating sequence
associated with the file.

– For sequential and relative files, to 1.
• When the EXTEND phrase is specified, the OPEN statement positions the file immediately after the last

record written in the file. (The record with the highest prime record key value for indexed files or relative
key value for relative files is considered the last record.) Subsequent WRITE statements add records as
if the file were opened OUTPUT. The EXTEND phrase can be specified when a file is being created; it can
also be specified for a file that contains records, or that has contained records that have been deleted.
For more information, see note 1 in the “OPEN statement notes” on page 410 and SELECT OPTIONAL in
the “SELECT clause” on page 142.

• For VSAM files, if no records exist in the file, the file position indicator is set so that the first format 1
READ statement executed results in an AT END condition.

• When NO REWIND is specified, the OPEN statement execution does not reposition the file; prior to
OPEN statement execution, the file must be positioned at its beginning. When the NO REWIND phrase is
specified (or when both the NO REWIND and REVERSE phrases are omitted), file positioning is specified
with the LABEL parameter of the DD statement.

• When REVERSED is specified, OPEN statement execution positions the QSAM file at its end. Subsequent
READ statements make the data records available in reversed order, starting with the last record.

When OPEN REVERSED is specified, the record format must be fixed.
• When the REVERSED, NO REWIND, or EXTEND phrases are not specified, OPEN statement execution

positions the file at its beginning.

If the PASSWORD clause is specified in the file-control entry, the password data item must contain a valid
password before the OPEN statement is executed. If a valid password is not present, OPEN statement
execution is unsuccessful.

OPEN statement notes
The topic provides notes for the OPEN statement.

The notes are:

1. The successful execution of an OPEN statement determines the availability of the file and results
in that file being in open mode. A QSAM file is available if it has a DD allocation and is physically
present. A VSAM file is available if it has a DD allocation, has been defined using VSAM access method
services, and contains records or has previously contained records. For more information regarding file
availability, see Opening a file (ESDS, KSDS, or RRDS) in the Enterprise COBOL Programming Guide. The
following table shows the results of opening available and unavailable files.

410 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 48. Availability of a file

Opened as File is available File is unavailable

INPUT Normal open Open is unsuccessful. (file status 35)

INPUT (optional file) Normal open Normal open; the first read causes the at end
condition or the invalid key condition. (file status 05)

I-O Normal open Open is unsuccessful. (file status 35)

I-O (optional file) Normal open Open causes the file to be created. (file status 05)

OUTPUT Normal open; the file
contains no records

Open causes the file to be created.

EXTEND Normal open Open is unsuccessful. (file status 35)

EXTEND (optional
file)

Normal open Open causes the file to be created. (file status 05)

2. The successful execution of the OPEN statement places the file in open status and makes the
associated record area available to the program.

3. The OPEN statement does not obtain or release the first data record.
4. You can move data to or from the record area only when the file is in open status.
5. An OPEN statement must be successfully executed prior to the execution of any of the permissible

input-output statements, except a SORT or MERGE statement with the USING or GIVING phrase. In
the following table, an 'X' indicates that the specified statement can be used with the open mode given
at the top of the column.

6. The VSAMOPENFS option affects the user file status reported from successful OPEN statements on
VSAM files.

7. The CBLQDA Language Environment (LE) runtime option affects the user file status reported from
OPEN statements on QSAM files that are not found:

• With CBLQDA(ON), LE would create a temporary data set and the OPEN would be successful.
• With CBLQDA(OFF), LE would not create a temporary data set and the OPEN would fail.

For details about the CBLQDA runtime option, see CBLQDA in the z/OS Language Environment
Programming Reference.

Table 49. Permissible statements for sequential files

Statement Input open mode Output open mode I-O open mode Extend open mode

READ X X

WRITE X X

REWRITE X

In the following table, an 'X' indicates that the specified statement, used in the access mode given for that
row, can be used with the open mode given at the top of the column.

Chapter 28. PROCEDURE DIVISION statements 411

Table 50. Permissible statements for indexed and relative files

File access
mode

Statement Input open
mode

Output open
mode

I-O open
mode

Extend open
mode

Sequential READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

In the following table, an 'X' indicates that the specified statement can be used with the open mode given
at the top of the column.

Table 51. Permissible statements for line-sequential files

Statement Input open mode Output open mode I-O open mode Extend open mode

READ X

WRITE X X

REWRITE

1. A file can be opened for INPUT, OUTPUT, I-O, or EXTEND (sequential and line-sequential files only) in
the same program. After the first OPEN statement execution for a given file, each subsequent OPEN
statement execution must be preceded by a successful CLOSE file statement execution without the
REEL or UNIT phrase (for QSAM files only), or the LOCK phrase.

2. If the FILE STATUS clause is specified in the file-control entry, the associated file status key is updated
when the OPEN statement is executed.

3. If an OPEN statement is executed for a file that is already open, the EXCEPTION/ERROR procedure (if
specified) for this file is run.

PERFORM statement
The PERFORM statement transfers control explicitly to one or more procedures and implicitly returns
control to the next executable statement after execution of the specified procedures is completed. The

412 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

PERFORM statement is also used to control execution of one or more imperative statements that are
within the scope of that PERFORM statement.

Format 1: Basic PERFORM statement
PERFORM procedure-name-1

THROUGH

THRU

procedure-name-2

imperative-statement-1

END-PERFORM

procedure-name-1 , procedure-name-2
Must name a section or paragraph in the procedure division.

When both procedure-name-1 and procedure-name-2 are specified, if either is a procedure-name in a
declarative procedure, both must be procedure-names in the same declarative procedure.

If procedure-name-1 is specified, imperative-statement-1 and the END-PERFORM phrase must not be
specified.

If procedure-name-1 is omitted, imperative-statement-1 and the END-PERFORM phrase must be
specified.

imperative-statement-1
The statements to be executed for an in-line PERFORM

Inline and out-of-line PERFORM statements
The PERFORM statement is an inline PERFORM statement, when procedure-name-1 is omitted.

The PERFORM statement is an out-of-line PERFORM statement, when procedure-name-1 is specified.

An inline PERFORM must be delimited by the END-PERFORM phrase.

The inline and out-of-line formats cannot be combined. For example, if procedure-name-1 is specified,
imperative statements and the END-PERFORM phrase must not be specified.

You can use the EXIT PERFORM statement to exit from an inline PERFORM without using a GO TO
statement or a PERFORM ... THROUGH statement. For details, see “Format 5 (inline-perform)” on page
344.

You can use the INLINE directive to decide whether a procedure referenced by PERFORM statements is
eligible for inlining. For details, see “INLINE” on page 710.

END-PERFORM
Delimits the scope of the in-line PERFORM statement. Execution of an in-line PERFORM is completed
after the last statement contained within it has been executed.

Basic PERFORM statement
The procedures referenced in the basic PERFORM statement are executed once, and control then passes
to the next executable statement following the PERFORM statement.

Attention: A PERFORM statement must not cause itself to be executed. This constitutes a
recursive PERFORM, which can cause unpredictable results. Therefore, you must not specify
recursive PERFORM statements.

Chapter 28. PROCEDURE DIVISION statements 413

An in-line PERFORM statement functions according to the same general rules as an otherwise identical
out-of-line PERFORM statement, except that statements contained within the in-line PERFORM are
executed in place of the statements contained within the range of procedure-name-1 (through procedure-
name-2, if specified). Unless specifically qualified by the word in-line or the word out-of-line, all the rules
that apply to the out-of-line PERFORM statement also apply to the in-line PERFORM.

Whenever an out-of-line PERFORM statement is executed, control is transferred to the first statement
of the procedure named procedure-name-1. Control is always returned to the statement following the
PERFORM statement. The point from which this control is returned is determined as follows:

• If procedure-name-1 is a paragraph name and procedure-name-2 is not specified, the return is made
after the execution of the last statement of the procedure-name-1 paragraph.

• If procedure-name-1 is a section name and procedure-name-2 is not specified, the return is made after
the execution of the last statement of the last paragraph in the procedure-name-1 section.

• If procedure-name-2 is specified and it is a paragraph name, the return is made after the execution of
the last statement of the procedure-name-2 paragraph.

• If procedure-name-2 is specified and it is a section name, the return is made after the execution of the
last statement of the last paragraph in the procedure-name-2 section.

The only necessary relationship between procedure-name-1 and procedure-name-2 is that a consecutive
sequence of operations is executed, beginning at the procedure named by procedure-name-1 and ending
with the execution of the procedure named by procedure-name-2.

PERFORM statements can be specified within the performed procedure. If there are two or more logical
paths to the return point, then procedure-name-2 can name a paragraph that consists only of an EXIT
statement; all the paths to the return point must then lead to this paragraph.

When the performed procedures include another PERFORM statement, the sequence of procedures
associated with the embedded PERFORM statement must be totally included in or totally excluded from
the performed procedures of the first PERFORM statement. That is, an active PERFORM statement whose
execution point begins within the range of performed procedures of another active PERFORM statement
must not allow control to pass through the exit point of the other active PERFORM statement. However,
two or more active PERFORM statements can have a common exit.

When control passes to the sequence of procedures by means other than a PERFORM statement, control
passes through the exit point to the next executable statement, as if no PERFORM statement referred to
these procedures.

The following figures illustrate valid sequences of execution for PERFORM statements.

Example 1

414 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The output for example 1 looks like this:

OUTPUT:
Start PERFORM example1
a
d
f
j
f
j
m
End PERFORM example1

Example 2

The output for example 2 looks like this:

OUTPUT:
Start PERFORM example2
a
d
f

Chapter 28. PROCEDURE DIVISION statements 415

j
h
m
End PERFORM example2

Example 3

The output of example 3 looks like this:

OUTPUT:
Start PERFORM example3
a
f
m
End PERFORM example3

Example 4

The output for example 4 looks like this:

OUTPUT:

416 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Start PERFORM example4
a
d
j
m
f
j
m
End PERFORM example4

PERFORM with TIMES phrase
The procedures referred to in the TIMES phrase of the PERFORM statement are executed the number of
times specified by the value in identifier-1 or integer-1, up to a maximum of 999,999,999 times. Control
then passes to the next executable statement following the PERFORM statement.

Format 2: PERFORM statement with TIMES phrase
PERFORM

procedure-name-1

THROUGH

THRU

procedure-name-2

identifier-1

integer-1

TIMES

identifier-1

integer-1

TIMES

imperative-statement-1

END-PERFORM

If procedure-name-1 is specified, imperative-statement-1 and the END-PERFORM phrase must not be
specified.

identifier-1
Must name an integer item.

If identifier-1 is zero or a negative number at the time the PERFORM statement is initiated, control
passes to the statement following the PERFORM statement.

After the PERFORM statement has been initiated, any change to identifier-1 has no effect in varying
the number of times the procedures are initiated.

integer-1
Can be a positive signed integer.

PERFORM with UNTIL phrase
In the UNTIL phrase format, the procedures referred to are performed until the condition specified by
the UNTIL phrase is true or for UNTIL EXIT, whenever control is escaped to avoid an infinite loop. For
UNTIL with condition-1, control is then passed to the next executable statement following the PERFORM
statement.

Format 3: PERFORM statement with UNTIL phrase
PERFORM

procedure-name-1

THROUGH

THRU

procedure-name-2

phrase 1

phrase 1

imperative-statement-1

END-PERFORM

phrase 1

Chapter 28. PROCEDURE DIVISION statements 417

WITH

TEST BEFORE

AFTER

UNTIL condition-1

EXIT

If procedure-name-1 is specified, imperative-statement-1 and the END-PERFORM phrase must not be
specified.

condition-1
Can be any condition described under “Conditional expressions” on page 268. If the condition is true
at the time the PERFORM statement is initiated, the specified procedures are not executed.

Any subscripting associated with the operands specified in condition-1 is evaluated each time the
condition is tested.

EXIT
If the UNTIL phrase with the EXIT reserved word is specified, execution proceeds exactly as if the
same PERFORM statement were coded with condition-1 specified, except that condition-1 never
evaluates as true.

Note: When UNTIL EXIT is specified, ensure that an escape from the PERFORM loop will be reached.
For an inline PERFORM statement, this can be done by an EXIT PERFORM (but not EXIT PERFORM
CYCLE) statement. For an out-of-line PERFORM statement, this can be done by a GOBACK or
STOP statement. Make sure the escape statement used does escape the PERFORM loop. Several
statements might appear to do so, but don't actually escape the loop. For example, an EXIT
PARAGRAPH (from a performed paragraph) or an EXIT SECTION (from a performed section) do not
escape a PERFORM with the UNTIL EXIT phrase.

If the TEST BEFORE phrase is specified or assumed, the condition is tested before any statements are
executed (corresponds to DO WHILE).

If the TEST AFTER phrase is specified, the statements to be performed are executed at least once before
the condition is tested (corresponds to DO UNTIL).

In either case, if the condition is true, control is transferred to the next executable statement following the
end of the PERFORM statement. If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the
TEST BEFORE phrase is assumed.

The UNTIL EXIT phrase must not be specified with the TEST BEFORE or TEST AFTER phrase nor with the
PERFORM with VARYING phrase.

PERFORM with VARYING phrase
The VARYING phrase increases or decreases the value of one or more identifiers or index-names,
according to certain rules.

For more information, see “Varying phrase rules” on page 423.

The format-4 VARYING phrase PERFORM statement can serially search an entire seven-dimensional
table.

418 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 4: PERFORM statement with VARYING phrase
PERFORM

procedure-name-1

THROUGH

THRU

procedure-name-2

phrase 1 phrase 2

phrase 1

imperative-statement-1

END-PERFORM

phrase 1

WITH

TEST BEFORE

AFTER

VARYING identifier-2

index-name-1

FROM

identifier-3

index-name-2

literal-1

BY identifier-4

literal-2

UNTIL condition-1

phrase 2

AFTER identifier-5

index-name-3

FROM identifier-6

index-name-4

literal-3

phrase 3

phrase 3
BY identifier-7

literal-4

UNTIL condition-2

If procedure-name-1 is specified, imperative-statement-1 and the END-PERFORM phrase must not be
specified. If procedure-name-1 is omitted, the AFTER phrase must not be specified.

identifier-2 through identifier-7
Must name a numeric elementary item.

literal-1 through literal-4
Must represent a numeric literal.

condition-1, condition-2
Can be any condition described under “Conditional expressions” on page 268. If the condition is true
at the time the PERFORM statement is initiated, the specified procedures are not executed.

After the conditions specified in the UNTIL phrase are satisfied, control is passed to the next
executable statement following the PERFORM statement.

If any of the operands specified in condition-1 or condition-2 is subscripted, reference modified,
or is a function-identifier, the subscript, reference-modifier, or function is evaluated each time the
condition is tested.

Floating-point data items and literals can be used anywhere a numeric data item or literal can be
specified.

When TEST BEFORE is indicated, all specified conditions are tested before the first execution, and the
statements to be performed are executed, if at all, only when all specified tests fail. When TEST AFTER is
indicated, the statements to be performed are executed at least once, before any condition is tested.

Chapter 28. PROCEDURE DIVISION statements 419

If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST BEFORE phrase is
assumed.

Varying identifiers
The way in which operands are increased or decreased depends on the number of variables specified. In
the discussion, every reference to identifier-n refers equally to index-name-n (except when identifier-n is
the object of the BY phrase).

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated each time the content of the data
item referenced by the identifier is set or augmented. If identifier-3, identifier-4, identifier-6, or identifier-7
is subscripted, the subscripts are evaluated each time the content of the data item referenced by the
identifier is used in a setting or an augmenting operation.

The following figure illustrates the logic of the PERFORM statement when an identifier is varied with TEST
BEFORE.

The following figure illustrates the logic of the PERFORM statement when an identifier is varied with TEST
AFTER.

Varying two identifiers
The topic lists steps of varying two identifiers.

PERFORM PROCEDURE-NAME-1 THROUGH PROCEDURE-NAME-2
 VARYING IDENTIFIER-2 FROM IDENTIFIER-3
 BY IDENTIFIER-4 UNTIL CONDITION-1
 AFTER IDENTIFIER-5 FROM IDENTIFIER-6
 BY IDENTIFIER-7 UNTIL CONDITION-2

420 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

1. identifier-2 and identifier-5 are set to their initial values, identifier-3 and identifier-6, respectively.
2. condition-1 is evaluated as follows:

a. If it is false, steps 3 through 7 are executed.
b. If it is true, control passes directly to the statement following the PERFORM statement.

3. condition-2 is evaluated as follows:

a. If it is false, steps 4 through 6 are executed.
b. If it is true, identifier-2 is augmented by identifier-4, identifier-5 is set to the current value of

identifier-6, and step 2 is repeated.
4. procedure-name-1 and procedure-name-2 are executed once (if specified).
5. identifier-5 is augmented by identifier-7.
6. Steps 3 through 5 are repeated until condition-2 is true.
7. Steps 2 through 6 are repeated until condition-1 is true.

At the end of PERFORM statement execution:

• identifier-5 contains the current value of identifier-6.
• identifier-2 has a value that exceeds the last-used setting by the increment or decrement value (unless

condition-1 was true at the beginning of PERFORM statement execution, in which case, identifier-2
contains the current value of identifier-3).

The following figure illustrates the logic of the PERFORM statement when two identifiers are varied with
TEST BEFORE.

Chapter 28. PROCEDURE DIVISION statements 421

The following figure illustrates the logic of the PERFORM statement when two identifiers are varied with
TEST AFTER.

422 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Varying three identifiers
The topic lists steps of varying three identifiers.

PERFORM PROCEDURE-NAME-1 THROUGH PROCEDURE-NAME-2
 VARYING IDENTIFIER-2 FROM IDENTIFIER-3
 BY IDENTIFIER-4 UNTIL CONDITION-1
 AFTER IDENTIFIER-5 FROM IDENTIFIER-6
 BY IDENTIFIER-7 UNTIL CONDITION-2
 AFTER IDENTIFIER-8 FROM IDENTIFIER-9
 BY IDENTIFIER-10 UNTIL CONDITION-3

The actions are the same as those for two identifiers, except that identifier-8 goes through the complete
cycle each time that identifier-5 is augmented by identifier-7, which, in turn, goes through a complete
cycle each time that identifier-2 is varied.

At the end of PERFORM statement execution:

• identifier-5 and identifier-8 contain the current values of identifier-6 and identifier-9, respectively.
• identifier-2 has a value exceeding its last-used setting by one increment/decrement value (unless

condition-1 was true at the beginning of PERFORM statement execution, in which case identifier-2
contains the current value of identifier-3).

Varying more than three identifiers
You can produce analogous PERFORM statement actions to the previous example with the addition of up
to four AFTER phrases.

Varying phrase rules
There are certain rules that apply to this phrase, no matter how many variables are specified.

The rules are:

• In the VARYING or AFTER phrases, when an index-name is specified:

Chapter 28. PROCEDURE DIVISION statements 423

– The index-name is initialized and incremented or decremented according to the rules under “INDEX
phrase” on page 241. (See also “SET statement” on page 440.)

– In the associated FROM phrase, an identifier must be described as an integer and have a positive
value; a literal must be a positive integer.

– In the associated BY phrase, an identifier must be described as an integer; a literal must be a nonzero
integer.

• In the FROM phrase, when an index-name is specified:

– In the associated VARYING or AFTER phrase, an identifier must be described as an integer. It is
initialized as described in the SET statement.

– In the associated BY phrase, an identifier must be described as an integer and have a nonzero value;
a literal must be a nonzero integer.

• In the BY phrase, identifiers and literals must have nonzero values.
• Changing the values of identifiers or index-names in the VARYING, FROM, and BY phrases during

execution changes the number of times the procedures are executed.

READ statement
For sequential access, the READ statement makes the next logical record from a file available to the
object program. For random access, the READ statement makes a specified record from a direct-access
file available to the object program.

When the READ statement is executed, the associated file must be open in INPUT or I-O mode.

Format 1: READ statement for sequential retrieval
READ file-name-1

NEXT RECORD INTO identifier-1

AT

END imperative-statement-1

NOT

AT

END imperative-statement-2 END-READ

Format 2: READ statement for random retrieval
READ file-name-1

RECORD INTO identifier-1

KEY

IS

data-name-1

INVALID

KEY

imperative-statement-3

NOT INVALID

KEY

imperative-statement-4 END-READ

424 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

file-name-1
Must be defined in a DATA DIVISION FD entry.

NEXT RECORD
Reads the next record in the logical sequence of records. NEXT is optional when the access mode is
sequential, and has no effect on READ statement execution.

You must specify the NEXT RECORD phrase to retrieve records sequentially from files in dynamic
access mode.

INTO identifier-1
identifier-1 is the receiving field.

identifier-1 must be a valid receiving field for the selected sending record description entry in
accordance with the rules of the MOVE statement.

The record areas associated with file-name-1 and identifier-1 must not be the same storage area.

When there is only one record description associated with file-name-1 or all the records and the
data item referenced by identifier-1 describe an elementary alphanumeric item or an alphanumeric
group item, the result of the execution of a READ statement with the INTO phrase is equivalent to the
application of the following rules in the order specified:

• The execution of the same READ statement without the INTO phrase.
• The current record is moved from the record area to the area specified by identifier-1 according

to the rules for the MOVE statement without the CORRESPONDING phrase. The size of the current
record is determined by rules specified for the RECORD clause. If the file description entry contains
a RECORD IS VARYING clause, the implied move is a group move. The implied MOVE statement
does not occur if the execution of the READ statement was unsuccessful. Any subscripting or
reference modification associated with identifier-1 is evaluated after the record has been read and
immediately before it is moved to the data item. The record is available in both the record area and
the data item referenced by identifier-1.

identifier-1 must not be a dynamic-length group item or a dynamic-length elementary item.

When there are multiple record descriptions associated with file-name-1 and they do not all describe
an alphanumeric group item or elementary alphanumeric item, the following rules apply:

1. If the file referenced by file-name-1 is described as containing variable-length records, or as a
QSAM file with RECORDING MODE 'S' or 'U', a group move will take place.

2. If the file referenced by file-name-1 is described as containing fixed-length records, a move will
take place according to the rules for a MOVE statement using, as a sending field description, the
record that specifies the largest number of character positions. If more than one such record
exists, the sending field record selected will be the one among those records that appears first
under the description of file-name-1.

KEY IS phrase
The KEY IS phrase can be specified only for indexed files. data-name-1 must identify a record key
associated with file-name-1. data-name-1 can be qualified; it cannot be subscripted.

AT END phrases
For sequential access, both the AT END phrase and an applicable EXCEPTION/ERROR procedure can be
omitted.

For information about at-end condition processing, see AT END condition.

INVALID KEY phrases
Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure can be omitted.

Chapter 28. PROCEDURE DIVISION statements 425

For information about INVALID KEY phrase processing, see “Invalid key condition” on page 303.

END-READ phrase
This explicit scope terminator serves to delimit the scope of the READ statement. END-READ permits a
conditional READ statement to be nested in another conditional statement. END-READ can also be used
with an imperative READ statement. For more information, see “Delimited scope statements” on page
293.

Processing files with variable-length records or multiple record descriptions
If more than one record description entry is associated with file-name-1, those records automatically
share the same storage area; that is, they are implicitly redefined. After a READ statement is executed,
only those data items within the range of the current record are replaced; data items stored beyond that
range are undefined. The following example illustrates this concept.

If the length of the current record that is read is less than the minimum size specified by the record
description entries for file-name-1, the portion of the record area which is to the right of the last valid
character read is undefined. If the length of the current record exceeds the record description entries for
file-name-1, the record is truncated on the right to the maximum record definition size.

In either of the previous cases, the READ statement is successful, and the I-O status is set to either 00
(hiding the record length conflict condition) or 04 (indicating that a record length conflict has occurred),
depending on the VLR compiler option setting. If compiler option VLR(COMPAT) is in effect, the I-O status
would be set to 00.

For more information about the VLR compiler option, see VLR in the Enterprise COBOL Programming
Guide.

The following example shows two record areas of different sizes in an FD. When a shorter record is read,
the content of the remaining record area is undefined.

FD INPUT-FILE LABEL RECORD OMITTED.
01 RECORD-1 PICTURE X(30).
01 RECORD-2 PICTURE X(20).

Content of input area when READ statement is executed:

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234

Content of record being read in (RECORD-2):

01234567890123456789

Content of input area after READ statement is executed:

01234567890123456789??????????

The "?" characters are undefined characters in input area.

Sequential access mode
Format 1 must be used for all files in sequential access mode.

Execution of a format-1 READ statement retrieves the next logical record from the file. The next record
accessed is determined by the file organization.

426 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Sequential files
The NEXT RECORD is the next record in a logical sequence of records. The NEXT phrase need not be
specified; it has no effect on READ statement execution.

If SELECT OPTIONAL is specified in the file-control entry for this file, and the file is unavailable during
this execution of the object program, execution of the first READ statement causes an at-end condition;
however, since no file is available, the system-defined end-of-file processing is not performed.

AT END condition

If the file position indicator indicates that no next logical record exists, or that an optional input file is
not available, at-end condition processing occurs in a specific order.

The order is:

1. A value derived from the setting of the file position indicator is placed into the I-O status
associated with file-name-1 to indicate the at-end condition.

2. If the AT END phrase is specified in the statement causing the condition, control is transferred to
imperative-statement-1 in the AT END phrase. Any USE AFTER STANDARD EXCEPTION procedure
associated with file-name-1 is not executed.

3. If the AT END phrase is not specified and an applicable USE AFTER STANDARD EXCEPTION
procedure exists, the procedure is executed. Return from that procedure is to the next executable
statement following the end of the READ statement.

Both the AT END phrase and an applicable EXCEPTION/ERROR procedure can be omitted.

When the at-end condition occurs, execution of the READ statement is unsuccessful. The contents
of the associated record area are undefined and the file position indicator is set to indicate that no
valid next record has been established.

For QSAM files, attempts to access or move data into the record area after an unsuccessful read
can result in a protection exception.

If an at-end condition does not occur during the execution of a READ statement, the AT END phrase is
ignored, if specified, and the following actions occur:

1. The file position indicator is set and the I-O status associated with file-name-1 is updated.
2. If an exception condition that is not an at-end condition exists, control is transferred to the end

of the READ statement after the execution of any USE AFTER STANDARD EXCEPTION procedure
applicable to file-name-1.

If no USE AFTER STANDARD EXCEPTION procedure is specified, control is transferred to the end of
the READ statement or to imperative-statement-2, if specified.

3. If no exception condition exists, the record is made available in the record area and any implicit
move resulting from the presence of an INTO phrase is executed. Control is transferred to
the end of the READ statement or to imperative-statement-2, if specified. In the latter case,
execution continues according to the rules for each statement specified in imperative-statement-2.
If a procedure branching or conditional statement which causes explicit transfer of control is
executed, control is transferred in accordance with the rules for that statement; otherwise, upon
completion of the execution of imperative-statement-2, control is transferred to the end of the
READ statement.

After the unsuccessful execution of a READ statement, the contents of the associated record area
are undefined and the file position indicator is set to indicate that no valid next record has been
established. Attempts to access or move data into the record area after an unsuccessful read can
result in a protection exception.

Indexed or relative files
The NEXT RECORD is the next logical record in the key sequence.

Chapter 28. PROCEDURE DIVISION statements 427

For indexed files, the key sequence is the sequence of ascending values of the current key of reference.
For relative files, the key sequence is the sequence of ascending values of relative record numbers for
records that exist in the file.

Before the READ statement is executed, the file position indicator must have been set by a successful
OPEN, START, or READ statement. When the READ statement is executed, the record indicated by the file
position indicator is made available if it is still accessible through the path indicated by the file position
indicator.

If the record is no longer accessible (because it has been deleted, for example), the file position indicator
is updated to point to the next existing record in the file, and that record is made available.

For files in sequential access mode, the NEXT phrase need not be specified.

For files in dynamic access mode, the NEXT phrase must be specified for sequential record retrieval.

AT END condition

This condition exists when the file position indicator indicates that no next logical record exists or that
an optional input file is not available. The same procedure occurs as for sequential files (see AT END
condition).

If neither an at-end nor an invalid key condition occurs during the execution of a READ statement, the
AT END or the INVALID KEY phrase is ignored, if specified. The same actions occur as when the at-end
condition does not occur with sequential files (see AT END condition).

Sequentially accessed indexed files

When an ALTERNATE RECORD KEY with DUPLICATES is the key of reference, file records with
duplicate key values are made available in the order in which they were placed in the file.

Sequentially accessed relative files

If the RELATIVE KEY clause is specified for this file, READ statement execution updates the RELATIVE
KEY data item to indicate the relative record number of the record being made available.

Random access mode
Format 2 must be specified for indexed and relative files in random access mode, and also for files in the
dynamic access mode when record retrieval is random.

Execution of the READ statement depends on the file organization, as explained in the following sections.

Indexed files
Execution of a format-2 READ statement causes the value of the key of reference to be compared with the
value of the corresponding key data item in the file records, until the first record having an equal value is
found. The file position indicator is positioned to this record, which is then made available. If no record
can be so identified, an INVALID KEY condition exists, and READ statement execution is unsuccessful.
(See “Invalid key condition” on page 303 for details of the invalid key condition.)

If the KEY phrase is not specified, the prime RECORD KEY becomes the key of reference for this request.
When dynamic access is specified, the prime RECORD KEY is also used as the key of reference for
subsequent executions of sequential READ statements, until a different key of reference is established.

When the KEY phrase is specified, data-name-1 becomes the key of reference for this request. When
dynamic access is specified, this key of reference is used for subsequent executions of sequential READ
statements, until a different key of reference is established.

Relative files
Execution of a format-2 READ statement sets the file position indicator pointer to the record whose
relative record number is contained in the RELATIVE KEY data item, and makes that record available.

428 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If the file does not contain such a record, the INVALID KEY condition exists, and READ statement
execution is unsuccessful. (See “Invalid key condition” on page 303 for details of the invalid key
condition).

The KEY phrase must not be specified for relative files.

Dynamic access mode
For files with indexed or relative organization, dynamic access mode can be specified in the file-control
entry. In dynamic access mode, either sequential or random record retrieval can be used, depending on
the format used.

Format 1 with the NEXT phrase must be specified for sequential retrieval. All other rules for sequential
access apply.

READ statement notes
This topic provides notes on the READ statement.

• If the FILE-STATUS clause is specified in the file-control entry, the associated file status key is updated
when the READ statement is executed.

• After unsuccessful READ statement execution, the contents of the associated record area and the value
of the file position indicator are undefined. Attempts to access or move data into the record area after
an unsuccessful read can result in a protection exception.

• If the number of character positions in a record is less than the minimum size specified by the record
description entries for file-name-1, after a READ statement is executed, the portion of the record area
that is to the right of the last valid character read is undefined. If the number of character positions in
a record exceed the maximum size specified by the record description entries for file-name-1, after a
READ statement is executed, the record is truncated on the right to the maximum size.

In either of these cases, the READ statement is successful and the I-O status is set to either 00
(hiding the record length conflict condition) or 04 (indicating that a record length conflict has occurred),
depending on the VLR compiler option setting.

– When the VLR(COMPAT) compiler option is in effect, the status value of 00 is set.
– When the VLR(STANDARD) compiler option is in effect, the status value of 04 is set.

For more information about the VLR compiler option, see VLR in the Enterprise COBOL Programming
Guide.

RELEASE statement
The RELEASE statement transfers records from an input/output area to the initial phase of a sorting
operation.

The RELEASE statement can be used only within the range of an INPUT PROCEDURE associated with a
SORT statement.

Format: RELEASE
RELEASE record-name-1

FROM identifier-1

Within an INPUT PROCEDURE, at least one RELEASE statement must be specified.

When the RELEASE statement is executed, the current contents of record-name-1 are placed in the sort
file. This makes the record available to the initial phase of the sorting operation.

Chapter 28. PROCEDURE DIVISION statements 429

record-name-1
Must specify the name of a logical record in a sort-merge file description entry (SD). record-name-1
can be qualified.

FROM phrase
The result of the execution of the RELEASE statement with the FROM identifier-1 phrase is equivalent
to the execution of the following statements in the order specified.

MOVE identifier-1 to record-name-1.
RELEASE record-name-1.

The MOVE is performed according to the rules for the MOVE statement without the CORRESPONDING
phrase.

identifier-1
identifier-1 must reference one of the following items:

• An entry in the WORKING-STORAGE SECTION, the LOCAL-STORAGE SECTION, or the LINKAGE
SECTION

• A record description for another previously opened file
• An alphanumeric or national function.

identifier-1 must be a valid sending item with record-name-1 as the receiving item in accordance with
the rules of the MOVE statement.

identifier-1 and record-name-1 must not refer to the same storage area.

identifier-1 must not be a dynamic-length group item or a dynamic-length elementary item.

After the RELEASE statement is executed, the information is still available in identifier-1. (See “INTO
and FROM phrases” on page 304 under "Common processing facilities".)

If the RELEASE statement is executed without specifying the SD entry for file-name-1 in a SAME RECORD
AREA clause, the information in record-name-1 is no longer available.

If the SD entry is specified in a SAME RECORD AREA clause, record-name-1 is still available as a record of
the other files named in that clause.

When FROM identifier-1 is specified, the information is still available in identifier-1.

When control passes from the INPUT PROCEDURE, the sort file consists of all those records placed in it by
execution of RELEASE statements.

Restriction: If a RELEASE statement appears in a nested program, it cannot be for a SORT statement in a
program that contains the nested program.

RETURN statement
The RETURN statement transfers records from the final phase of a sorting or merging operation to an
OUTPUT PROCEDURE.

The RETURN statement can be used only within the range of an OUTPUT PROCEDURE associated with a
SORT or MERGE statement.

430 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format: RETURN statement
RETURN file-name-1

RECORD INTO identifier-1

AT

END imperative-statement-1

NOT

AT

END imperative-statement-2 END-RETURN

Within an OUTPUT PROCEDURE, at least one RETURN statement must be specified.

When the RETURN statement is executed, the next record from file-name-1 is made available for
processing by the OUTPUT PROCEDURE.

Restriction: If a RETURN statement appears in a nested program, it cannot be for a SORT or MERGE
statement in a program that contains the nested program.

file-name-1
Must be described in a DATA DIVISION SD entry.

If more than one record description is associated with file-name-1, those records automatically share
the same storage; that is, the area is implicitly redefined. After RETURN statement execution, only
the contents of the current record are available. If any data items lie beyond the length of the current
record, their contents are undefined.

INTO phrase
When there is only one record description associated with file-name-1 or all the records and the data
item referenced by identifier-1 describe an elementary alphanumeric item or an alphanumeric group
item, the result of the execution of a RETURN statement with the INTO phrase is equivalent to the
application of the following rules in the order specified:

• The execution of the same RETURN statement without the INTO phrase.
• The current record is moved from the record area to the area specified by identifier-1 according

to the rules for the MOVE statement without the CORRESPONDING phrase. The size of the current
record is determined by rules specified for the RECORD clause. If the file description entry contains
a RECORD IS VARYING clause, the implied move is a group move. The implied MOVE statement
does not occur if the execution of the RETURN statement was unsuccessful. Any subscripting or
reference modification associated with identifier-1 is evaluated after the record has been read and
immediately before it is moved to the data item. The record is available in both the record area and
the data item referenced by identifier-1.

When there are multiple record descriptions associated with file-name-1 and they do not all describe
an alphanumeric group item or elementary alphanumeric item, the following rules apply:

1. If the file referenced by file-name-1 contains variable-length records, a group move takes place.
2. If the file referenced by file-name-1 contains fixed-length records, a move takes place according

to the rules for a MOVE statement using, as a sending field description, the record that specifies
the largest number of character positions. If more than one such record exists, the sending field
record selected will be the one among those records that appears first under the description of
file-name-1.

identifier-1 must be a valid receiving field for the selected sending record description entry in accordance
with the rules of the MOVE statement.

The record areas associated with file-name-1 and identifier-1 must not be the same storage area.

Chapter 28. PROCEDURE DIVISION statements 431

AT END phrases
The imperative-statement specified on the AT END phrase executes after all records have been returned
from file-name-1. No more RETURN statements can be executed as part of the current output procedure.

If an at-end condition does not occur during the execution of a RETURN statement, then after the record
is made available and after executing any implicit move resulting from the presence of an INTO phrase,
control is transferred to the imperative statement specified by the NOT AT END phrase. If an at-end
condition does occur, control is transferred to the end of the RETURN statement.

END-RETURN phrase
This explicit scope terminator serves to delimit the scope of the RETURN statement. END-RETURN
permits a conditional RETURN statement to be nested in another conditional statement. END-RETURN
can also be used with an imperative RETURN statement.

For more information, see “Delimited scope statements” on page 293.

REWRITE statement
The REWRITE statement logically replaces an existing record in a direct-access file. When the REWRITE
statement is executed, the associated direct-access file must be open in I-O mode.

The REWRITE statement is not supported for line-sequential files.

Format: REWRITE statement
REWRITE record-name-1

FROM identifier-1

INVALID

KEY

imperative-statement-1

NOT INVALID

KEY

imperative-statement-2 END-REWRITE

record-name-1
Must be the name of a logical record in a DATA DIVISION FD entry. The record-name can be qualified.

FROM phrase
The result of the execution of the REWRITE statement with the FROM identifier-1 phrase is equivalent
to the execution of the following statements in the order specified.

MOVE identifier-1 TO record-name-1.
REWRITE record-name-1

The MOVE is performed according to the rules for the MOVE statement without the CORRESPONDING
phrase.

identifier-1
identifier-1 can reference one of the following items:

• A record description for another previously opened file
• An alphanumeric or national function
• A data item defined in the WORKING-STORAGE SECTION, the LOCAL-STORAGE SECTION, or the

LINKAGE SECTION

432 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

identifier-1 must be a valid sending item with record-name-1 as the receiving item in accordance with
the rules of the MOVE statement.

identifier-1 and record-name-1 must not refer to the same storage area.

identifier-1 must not be a dynamic-length group item or a dynamic-length elementary item.

After the REWRITE statement is executed, the information is still available in identifier-1 (“INTO and
FROM phrases” on page 304 under "Common processing facilities").

INVALID KEY phrases
An INVALID KEY condition exists when:

• The access mode is sequential, and the value contained in the prime RECORD KEY of the record to be
replaced does not equal the value of the prime RECORD KEY data item of the last-retrieved record from
the file

• The value contained in the prime RECORD KEY does not equal that of any record in the file
• The value of an ALTERNATE RECORD KEY data item for which DUPLICATES is not specified is equal to

that of a record already in the file

For details of invalid key processing, see Invalid key condition.

END-REWRITE phrase
This explicit scope terminator serves to delimit the scope of the REWRITE statement. END-REWRITE
permits a conditional REWRITE statement to be nested in another conditional statement. END-REWRITE
can also be used with an imperative REWRITE statement.

For more information, see “Delimited scope statements” on page 293.

Reusing a logical record
After successful execution of a REWRITE statement, the logical record is no longer available in record-
name-1 unless the associated file is named in a SAME RECORD AREA clause (in which case, the record is
also available as a record of the other files named in the SAME RECORD AREA clause).

The file position indicator is not affected by execution of the REWRITE statement.

If the FILE STATUS clause is specified in the file-control entry, the associated file status key is updated
when the REWRITE statement is executed.

Sequential files
For files in the sequential access mode, the last prior input/output statement executed for this file must
be a successfully executed READ statement. When the REWRITE statement is executed, the record
retrieved by that READ statement is logically replaced.

The number of character positions in record-name-1 must equal the number of character positions in the
record being replaced.

The INVALID KEY phrase must not be specified for a file with sequential organization. An EXCEPTION/
ERROR procedure can be specified.

Indexed files
The number of character positions in record-name-1 can be different from the number of character
positions in the record being replaced.

When the access mode is sequential, the record to be replaced is specified by the value contained in the
prime RECORD KEY. When the REWRITE statement is executed, this value must equal the value of the
prime record key data item in the last record read from this file.

Chapter 28. PROCEDURE DIVISION statements 433

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure can be omitted.

When the access mode is random or dynamic, the record to be replaced is specified by the value
contained in the prime RECORD KEY.

Values of ALTERNATE RECORD KEY data items in the rewritten record can differ from those in the record
being replaced. The system ensures that later access to the record can be based upon any of the record
keys.

If an invalid key condition exists, the execution of the REWRITE statement is unsuccessful, the updating
operation does not take place, and the data in record-name-1 is unaffected. (See Invalid key condition
under "Common processing facilities".)

Relative files
The number of character positions in record-name-1 can be different from the number of character
positions in the record being replaced.

For relative files in sequential access mode, the INVALID KEY phrase must not be specified. An
EXCEPTION/ERROR procedure can be specified.

For relative files in random or dynamic access mode, the INVALID KEY phrase or an applicable
EXCEPTION/ERROR procedure can be specified. Both can be omitted.

When the access mode is random or dynamic, the record to be replaced is specified in the RELATIVE
KEY data item. If the file does not contain the record specified, an invalid key condition exists, and, if
specified, the INVALID KEY imperative-statement is executed. (See Invalid key condition under "Common
processing facilities".) The updating operation does not take place, and the data in record-name is
unaffected.

SEARCH statement
The SEARCH statement searches a table for an element that satisfies the specified condition and adjusts
the associated index to indicate that element.

Format 1: SEARCH statement for serial search
SEARCH identifier-1

VARYING identifier-2

index-name-1

AT

END imperative-statement-1

WHEN condition-1 imperative-statement-2

NEXT SENTENCE END-SEARCH

434 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 2: SEARCH statement for binary search
SEARCH ALL identifier-1

AT

END imperative-statement-1

WHEN

data-name-1

IS

EQUAL

TO

 =

identifier-3

literal-1

arithmetic-expression-1

condition-name-1

AND data-name-2

IS

EQUAL

TO

 =

identifier-4

literal-2

arithmetic-expression-2

condition-name-2

imperative-statement-2

NEXT SENTENCE END-SEARCH

Use format 1 (serial search) when the table that you want to search has not been sorted. Use format 1 to
search a sorted table when you want to search serially through the table or you want to control subscripts
or indexes.

Use format 2 (binary search) when you want to efficiently search across all occurrences in a table. The
table must previously have been sorted, and you can sort the table with the format 2 SORT statement.

AT END and WHEN phrases
After imperative-statement-1 or imperative-statement-2 is executed, control passes to the end of
the SEARCH statement, unless imperative-statement-1 or imperative-statement-2 ends with a GO TO
statement.

The function of the AT END phrase is the same for a serial search and a binary search.

NEXT SENTENCE
NEXT SENTENCE transfers control to the first statement following the closest separator period.

When NEXT SENTENCE is specified with END-SEARCH, control does not pass to the statement following
the END-SEARCH. Instead, control passes to the statement after the closest following period.

For the format-2 SEARCH ALL statement, neither imperative-statement-2 nor NEXT SENTENCE is
required. Without them, the SEARCH statement sets the index to the value in the table that matched
the condition.

The function of the NEXT SENTENCE phrase is the same for a serial search and a binary search.

END-SEARCH phrase
This explicit scope terminator delimits the scope of the SEARCH statement. END-SEARCH permits a
conditional SEARCH statement to be nested in another conditional statement.

For more information, see “Delimited scope statements” on page 293.

The function of END-SEARCH is the same for a serial search and a binary search.

Chapter 28. PROCEDURE DIVISION statements 435

Serial search
The topic provides information of using the SEARCH statement for serial search.

identifier-1 (serial search)
identifier-1 identifies the table that is to be searched. identifier-1 references all occurrences within
that table.

The data description entry for identifier-1 must contain an OCCURS clause.

The data description entry for identifier-1 should contain an OCCURS clause with the INDEXED BY
phrase, but a table can be searched using an alternate index defined for an appropriately defined
alternate table. The element length of the table being searched and the element length of the
alternate table to which the alternate index is associated should match. You must initialize the index
(defined in the INDEXED BY phrase) for identifier-1 to a valid value for the table being searched, even
when the index of the table is not referenced or used in the serial search.

identifier-1 can reference a data item that is subordinate to a data item that is described with an
OCCURS clause (that is, identifier-1 can be a subordinate table within a multidimensional table). In
this case, the data description entries must specify an INDEXED BY phrase for each dimension of the
table.

identifier-1 must not be subscripted or reference-modified.

identifier-1 must not be a dynamic-length group item or a dynamic-length elementary item.

AT END
The condition that exists when the search operation terminates without satisfying the condition
specified in any of the associated WHEN phrases.

Before executing a serial search, you must set the value of the first (or only) index associated with
identifier-1 (the search index) to indicate the starting occurrence for the search.

Before using a serial search on a multidimensional table, you must also set the value of the index for each
superordinate dimension.

The SEARCH statement modifies only the value in the search index, and, if the VARYING phrase is
specified, the value in index-name-1 or identifier-2. Therefore, to search an entire two-dimensional to
seven-dimensional table, you must execute a SEARCH statement for each dimension. In the WHEN
phrases, you must specify the indexes for all dimensions. Before the execution of each SEARCH
statement, you must initialize the associated indexes with SET statements.

The SEARCH statement executes a serial search beginning at the current setting of the search index.

When the search begins, if the value of the index associated with identifier-1 is not greater than the
highest possible occurrence number, the following actions take place:

• The conditions in the WHEN phrase are evaluated in the order in which they are written.
• If none of the conditions is satisfied, the index for identifier-1 is increased to correspond to the next

table element, and step 1 is repeated.
• If upon evaluation one of the WHEN conditions is satisfied, the search is terminated immediately, and

the imperative-statement-2 associated with that condition is executed. The index points to the table
element that satisfied the condition. If NEXT SENTENCE is specified, control passes to the statement
following the closest period.

• If the end of the table is reached (that is, the value of the incremented index is greater than the highest
possible occurrence number) without the WHEN condition being satisfied, the search is terminated.

If, when the search begins, the value of the index-name associated with identifier-1 is greater than the
highest possible occurrence number, the search terminates immediately.

436 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

When the search terminates, if the AT END phrase is specified, imperative-statement-1 is executed. If the
AT END phrase is omitted, control passes to the next statement after the SEARCH statement.

Example: multidimensional serial search

The following code fragment shows a search of the inner dimension (table C) in the third occurrence
within the superordinate table (table R):

 . . .
 Working-storage section.
 1 G.
 2 R occurs 10 indexed by Rindex.
 3 C occurs 10 ascending key X indexed by Cindex.
 4 X pic 99.
 1 Arg pic 99 value 34.
 Procedure division.
 . . .
* To search within occurrence 3 of table R, set its index to 3
* To search table C beginning at occurrence 1, set its index to 1
 Set Rindex to 3
 Set Cindex to 1
* In the SEARCH statement, specify C without indexes
 Search C
* Specify indexes for both dimensions in the WHEN phrase
 when X(Rindex Cindex) = Arg
 display "Found " X(Rindex Cindex)
 End-search
 . . .

VARYING phrase

index-name-1
One of the following actions applies:

• If index-name-1 is an index for identifier-1, this index is used for the search. Otherwise, the first (or
only) index-name is used.

• If index-name-1 is an index for another table element, then the first (or only) index-name for
identifier-1 is used for the search; the occurrence number represented by index-name-1 is increased
by the same amount as the search index-name and at the same time.

When the VARYING index-name-1 phrase is omitted, the first (or only) index-name for identifier-1 is
used for the search.

If indexing is used to search a table without an INDEXED BY phrase, correct results are ensured only
if both the table defined with the index and the table defined without the index have table elements of
the same length and with the same number of occurrences.

When the object of the VARYING phrase is an index-name for another table element, one serial
SEARCH statement steps through two table elements at once.

identifier-2
Must be either an index data item or an elementary integer item. identifier-2 cannot be subscripted by
the first (or only) index-name specified for identifier-1. During the search, one of the following actions
applies:

• If identifier-2 is an index data item, then, whenever the search index is increased, the specified
index data item is simultaneously increased by the same amount.

• If identifier-2 is an integer data item, then, whenever the search index is increased, the specified
data item is simultaneously increased by 1.

WHEN phrase (serial search)

Chapter 28. PROCEDURE DIVISION statements 437

condition-1
Can be any condition described under “Conditional expressions” on page 268.

The following figure illustrates a format-1 SEARCH operation containing two WHEN phrases.

Binary search
The topic provides information of using the SEARCH statement for binary search.

identifier-1 (binary search)
identifier-1 identifies the table that is to be searched. identifier-1 references all occurrences within
that table.

The data description entry for identifier-1 must contain an OCCURS clause with the INDEXED BY and
KEY IS phrases.

identifier-1 can reference a data item that is subordinate to a data item that contains an OCCURS
clause (that is, identifier-1 can be a subordinate table within a multidimensional table). In this case,
the data description entry must specify an INDEXED BY phrase for each dimension of the table.

identifier-1 must not be subscripted or reference-modified.

AT END
The condition that exists when the search operation terminates without satisfying the conditions
specified in the WHEN phrase.

438 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The SEARCH ALL statement executes a binary search. The index associated with identifier-1 (the search
index) need not be initialized by SET statements. The search index is varied during the search operation
so that its value is at no time less than the value of the first table element, nor ever greater than the value
of the last table element. The index used is always that associated with the first index-name specified in
the OCCURS clause.

Before using a binary search on a multidimensional table, you must execute SET statements to set the
value of the index for each superordinate dimension.

The SEARCH statement modifies only the value in the search index. Therefore, to search an entire
two-dimensional to seven-dimensional table, you must execute a SEARCH statement for each dimension.
In the WHEN phrases, you must specify the indexes for all dimensions.

If the search ends without the WHEN condition being satisfied and the AT END phrase is specified,
imperative-statement-1 is executed. If the AT END phrase is omitted, control passes to the next statement
after the SEARCH statement.

The results of a SEARCH ALL operation are predictable only when:

• The data in the table is ordered in ASCENDING KEY or DESCENDING KEY order
• The contents of the ASCENDING or DESCENDING keys specified in the WHEN clause provide a unique

table reference.

WHEN phrase (binary search)
If a relation condition is specified in the WHEN phrase, the evaluation of the relation is based on the
USAGE of the data item referenced by data-name-1. The search argument is moved to a temporary
data item with the same USAGE as data-name-1, and this temporary data item is used for the compare
operations associated with the SEARCH.

If the WHEN phrase cannot be satisfied for any setting of the index within this range, the search is
unsuccessful. Control is passed to imperative-statement-1 of the AT END phrase, when specified, or to
the next statement after the SEARCH statement. In either case, the final setting of the index is not
predictable.

If the WHEN phrase can be satisfied, control passes to imperative-statement-2, if specified, or to the next
executable sentence if the NEXT SENTENCE phrase is specified. The index contains the value indicating
the occurrence that allowed the WHEN conditions to be satisfied.

After imperative-statement-2 is executed, control passes to the end of the SEARCH statement, unless
imperative-statement-2 ends with a GO TO statement.

condition-name-1 , condition-name-2
Each condition-name specified must have only a single value, and each must be associated with an
ASCENDING KEY or DESCENDING KEY data item for this table element.

data-name-1 , data-name-2
Must specify an ASCENDING KEY or DESCENDING KEY data item in the table element referenced
by identifier-1 and must be subscripted by the first index-name associated with identifier-1. Each
data-name can be qualified.

data-name-1 must be a valid operand for comparison with identifier-3, literal-1, or arithmetic-
expression-1 according to the rules of comparison.

data-name-2 must be a valid operand for comparison with identifier-4, literal-2, or arithmetic-
expression-2 according to the rules of comparison.

data-name-1 and data-name-2 cannot reference:

• Floating-point data items
• Group items containing variable-occurrence data items

Chapter 28. PROCEDURE DIVISION statements 439

identifier-3 , identifier-4
Must not be an ASCENDING KEY or DESCENDING KEY data item for identifier-1 or an item that is
subscripted by the first index-name for identifier-1.

identifier-3 and identifier-4 cannot be data items defined with any of the usages POINTER,
FUNCTION-POINTER, PROCEDURE-POINTER, or OBJECT REFERENCE.

If identifier-3 or literal-1 is of class national, data-name-1 must be of class national.

If identifier-4 or literal-2 is of class national, data-name-2 must be of class national.

literal-1 , literal-2
literal-1 or literal-2 must be a valid operand for comparison with data-name-1 or data-name-2,
respectively.

arithmetic-expression
Can be any of the expressions defined under “Arithmetic expressions” on page 266, with the following
restriction: Any identifier in arithmetic-expression must not be an ASCENDING KEY or DESCENDING
KEY data item for identifier-1 or an item that is subscripted by the first index-name for identifier-1.

When an ASCENDING KEY or DESCENDING KEY data item is specified, explicitly or implicitly, in the WHEN
phrase, all preceding ASCENDING KEY or DESCENDING KEY data-names for identifier-1 must also be
specified.

Search statement considerations
The topic lists considerations of using the SEARCH statement.

Index data items cannot be used as subscripts, because of the restrictions on direct reference to them.

To ensure correct execution of a SEARCH statement for a variable-length table, make sure the object of
the OCCURS DEPENDING ON clause (data-name-1) contains a value that specifies the current length of
the table.

The scope of a SEARCH statement can be terminated by any of the following items:

• An END-SEARCH phrase at the same level of nesting
• A separator period
• An ELSE or END-IF phrase associated with a previous IF statement

SET statement
The SET statement is used to perform an operation as described in this topic.

The operations are:

• Placing values associated with table elements into indexes associated with index-names
• Incrementing or decrementing an occurrence number
• Setting the status of an external switch to ON or OFF
• Moving data to condition names to make conditions true
• Setting USAGE POINTER data items to a data address
• Setting USAGE PROCEDURE-POINTER data items to an entry address
• Setting USAGE FUNCTION-POINTER data items to an entry address
• Setting USAGE OBJECT REFERENCE data items to refer to an object instance
• Setting the length of dynamic-length elementary items

Index-names are related to a given table through the INDEXED BY phrase of the OCCURS clause; they are
not further defined in the program.

When the sending and receiving fields in a SET statement share part of their storage (that is, the operands
overlap), the result of the execution of that SET statement is undefined.

440 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 1: SET for basic table handling
When this form of the SET statement is executed, the current value of the receiving field is replaced by the
value of the sending field (with conversion).

Format 1: SET statement for basic table handling

SET index-name-1

identifier-1

TO index-name-2

identifier-2

integer-1

index-name-1
Receiving field.

Must name an index that is specified in the INDEXED BY phrase of an OCCURS clause.

identifier-1
Receiving field.

Must name either an index data item or an elementary numeric integer item.

index-name-2
Sending field.

Must name an index that is specified in the INDEXED BY phrase of an OCCURS clause. The value
of the index before the SET statement is executed must correspond to an occurrence number of its
associated table.

identifier-2
Sending field.

Must name an index data item, elementary numeric integer item, or a user-defined function with a
returning item defined as an index data item.

integer-1
Sending field.

Must be a positive integer.

The following table shows valid combinations of sending and receiving fields in a format-1 SET statement.

Table 52. Sending and receiving fields for format-1 SET statement

Sending field
Index-name
receiving field

Index data item
receiving field

Integer data item
receiving field

Index-name* Valid Valid** Valid

Index data item* Valid** Valid** Invalid

Integer data item Valid Invalid Invalid

Integer literal Valid Invalid Invalid

*An index-name refers to an index named in the INDEXED BY phrase of an OCCURS clause. An index
data item is defined with the USAGE IS INDEX clause.
**No conversion takes place.

Chapter 28. PROCEDURE DIVISION statements 441

Receiving fields are acted upon in the left-to-right order in which they are specified. Any subscripting or
indexing associated with identifier-1 is evaluated immediately before that receiving field is acted upon.

The value used for the sending field is the value at the beginning of SET statement execution.

The value of an index after execution of a SEARCH or PERFORM statement can be undefined; therefore,
use a format-1 SET statement to reinitialize such indexes before you attempt other table-handling
operations.

If index-name-2 is for a table that has a subordinate item that contains an OCCURS DEPENDING ON
clause, then undefined values can be received into identifier-1.

For more information about complex OCCURS DEPENDING ON, see Complex OCCURS DEPENDING ON in
the Enterprise COBOL Programming Guide.

Format 2: SET for adjusting indexes
When this form of the SET statement is executed, the value of the receiving index is increased (UP BY) or
decreased (DOWN BY) by a value that corresponds to the value in the sending field.

Format 2: SET statement for adjusting indexes

SET index-name-3 UP BY

DOWN BY

identifier-3

integer-2

The receiving field is an index specified by index-name-3. The index value both before and after the SET
statement execution must correspond to an occurrence number in an associated table.

The sending field can be specified as identifier-3, which must be an elementary integer data item, or as
integer-2, which must be a nonzero integer.

When the format-2 SET statement is executed, the contents of the receiving field are increased (UP BY)
or decreased (DOWN BY) by a value that corresponds to the number of occurrences represented by the
value of identifier-3 or integer-2. Receiving fields are acted upon in the left-to-right order in which they
are specified. The value of the incrementing or decrementing field at the beginning of SET statement
execution is used for all receiving fields.

If index-name-3 is for a table that has a subordinate item that contains an OCCURS DEPENDING ON
clause, and if the ODO object is changed before executing a format-2 SET Statement, then index-name-3
cannot contain a value that corresponds to an occurrence number of its associated table.

For more information about complex OCCURS DEPENDING ON, see Complex OCCURS DEPENDING ON in
the Enterprise COBOL Programming Guide.

Format 3: SET for external switches
When this form of the SET statement is executed, the status of each external switch associated with the
specified mnemonic-name is turned ON or OFF.

Format 3: SET statement for external switches

SET mnemonic-name-1 TO ON

OFF

442 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

mnemonic-name-1
Must be associated with an external switch, the status of which can be altered.

Format 4: SET for condition-names
When this form of the SET statement is executed, the value associated with a condition-name is placed in
its conditional variable according to the rules of the VALUE clause.

Format 4: SET statement for condition-names

SET condition-name-1 TO TRUE

FALSE

condition-name-1
Must be associated with a conditional variable.

If more than one literal is specified in the VALUE clause of condition-name-1, its associated conditional
variable is set equal to the first literal.

If multiple condition-names are specified, the results are the same as if a separate SET statement had
been written for each condition-name in the same order in which they are specified in the SET statement.

If SET condition-name-1 TO FALSE is specified, there must be a corresponding WHEN SET TO FALSE
phrase defined for condition-name-1.

Related references
Format 2 VALUE clause: condition-name value

Format 5: SET for USAGE IS POINTER data items
When this form of the SET statement is executed, the current value of the receiving field is replaced by the
address value contained in the sending field.

Format 5: SET statement for USAGE IS POINTER or USAGE IS POINTER-32 data items

SET identifier-4

ADDRESS OF identifier-5

TO identifier-6

ADDRESS OF identifier-7

NULL

NULLS

identifier-4
Receiving field(s).

Must be defined as USAGE IS POINTER or USAGE IS POITNER-32.

ADDRESS OF identifier-5
Receiving field(s).

identifier-5 must be level-01 or level-77 items defined in the LINKAGE SECTION. The addresses of
these items are set to the value of the operand specified in the TO phrase.

identifier-5 must not be reference-modified.

Chapter 28. PROCEDURE DIVISION statements 443

identifier-6
Sending field.

Must be defined as USAGE IS POINTER, USAGE IS POINTER-32, or as a user-defined function with a
returning item defined as USAGE IS POINTER or USAGE IS POINTER-32.

ADDRESS OF identifier-7
Sending field.

identifier-7 must name an item of any level except 66 or 88 in the LINKAGE SECTION, the WORKING-
STORAGE SECTION, or the LOCAL-STORAGE SECTION. It cannot name a dynamic-length elementary
item or a dynamic-length group item.ADDRESS OF identifier-7 contains the address of the identifier,
and not the content of the identifier.

NULL, NULLS
Sending field.

Sets the receiving field to contain the value of an invalid address.

The following table shows valid combinations of sending and receiving fields in a format-5 SET statement.

Table 53. Sending and receiving fields for format-5 SET statement

Sending field USAGE IS
POINTER
receiving field

USAGE IS
POINTER-32
receiving field ADDRESS OF

receiving field
NULL/NULLS
receiving field

USAGE IS
POINTER

Valid Valid Valid Invalid

USAGE IS
POINTER-32

Valid Valid Valid Invalid

ADDRESS OF Valid Valid Valid Invalid

NULL/NULLS Valid Valid Valid Invalid

Format 6: SET for procedure-pointer and function-pointer data items
When this format of the SET statement is executed, the current value of the receiving field is replaced by
the address value specified by the sending field.

At run time, function-pointers and procedure-pointers can reference the address of the primary entry
point of a COBOL program, an alternate entry point in a COBOL program, or an entry point in a non-COBOL
program; or they can be NULL.

COBOL function-pointers are more easily used than procedure-pointers for interoperation with C
functions.

444 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 6: SET statement for procedure-pointers and function-pointers

SET procedure-pointer-data-item-1

function-pointer-data-item-1

TO

procedure-pointer-data-item-2

function-pointer-data-item-2

ENTRY identifier-8

identifier-9

literal-1

NULL

NULLS

pointer-data-item-3

procedure-pointer-data-item-1 , procedure-pointer-data-item-2
Must be described as USAGE IS PROCEDURE-POINTER. procedure-pointer-data-item-1 is a receiving
field; procedure-pointer-data-item-2 is a sending field.

function-pointer-data-item-1 , function-pointer-data-item-2
Must be described as USAGE IS FUNCTION-POINTER. function-pointer-data-item-1 is a receiving
field; function-pointer-data-item-2 is a sending field.

identifier-8
Must be defined as an alphabetic or alphanumeric item such that the value can be a program name.
For more information, see Chapter 15, “PROGRAM-ID paragraph,” on page 101. For entry points in
non-COBOL programs, identifier-8 can contain the characters @, #, and, $.

identifier-9

Must be defined as a user-defined function with a returning item described as USAGE IS PROCEDURE-
POINTER or USAGE IS FUNCTION-POINTER.

literal-1
Must be alphanumeric and must conform to the rules for formation of program-names. For details on
formation rules, see the discussion of program-name under Chapter 15, “PROGRAM-ID paragraph,”
on page 101.

identifier-8 or literal-1 must refer to one of the following types of entry points:

• The primary entry point of a COBOL program as defined by the PROGRAM-ID paragraph. The
PROGRAM-ID must reference the outermost program of a compilation unit; it must not reference a
nested program.

• An alternate entry point of a COBOL program as defined by a COBOL ENTRY statement.
• An entry point in a non-COBOL program.

The program-name referenced by the SET ... TO ENTRY statement can be affected by the PGMNAME
compiler option. For details, see PGMNAME in the Enterprise COBOL Programming Guide.

NULL, NULLS
Sets the receiving field to contain the value of an invalid address.

pointer-data-item-3
Must be defined with USAGE POINTER. You must set pointer-data-item-3 in a non-COBOL program to
point to a valid program entry point.

Example of SET for procedure-pointer and function-pointer data items

Chapter 28. PROCEDURE DIVISION statements 445

The following example shows how to use the SET statement to assign values to a function-pointer (FP)
and a procedure-pointer (PP), allowing for dynamic calls to different subprograms ("subp1" and "subp2")
based on the assigned pointer references.

IDENTIFICATION DIVISION.
PROGRAM-ID DEMO.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FP USAGE FUNCTION-POINTER.
01 PP USAGE PROCEDURE-POINTER.

PROCEDURE DIVISION.
 SET FP to Entry "subp1"
 CALL FP
 SET PP to Entry "subp2"
 CALL PP

Format 7: SET for USAGE OBJECT REFERENCE data items
When this format of the SET statement is executed, the value in the receiving item is replaced by the value
in the sending item.

Format 7: SET statement for object references
SET object-reference-id-1 TO object-reference-id-2

NULL

SELF

object-reference-id-1 and object-reference-id-2 must be defined as USAGE OBJECT REFERENCE. object-
reference-id-1 is the receiving item and object-reference-id-2 is the sending item. If object-reference-id-1
is defined as an object reference of a certain class (defined as "USAGE OBJECT REFERENCE class-name"),
object-reference-id-2 must be an object reference of the same class or a class derived from that class.

If the figurative constant NULL is specified, the receiving object-reference-id-1 is set to the NULL value.

If SELF is specified, the SET statement must appear in the PROCEDURE DIVISION of a method. object-
reference-id-1 is set to reference the object upon which the currently executing method was invoked.

Format 8: SET for length of dynamic-length elementary items
When this format of the SET statement is executed, the length of the dynamic-length elementary item in
the receiver is set to the value of the sending item.

Format 8: SET for length of dynamic-length elementary items
SET LENGTH OF identifier-1 TO identifier-2

integer-1

identifier-1 must be a dynamic-length elementary item.
identifier-2 must be an elementary numeric integer item.
integer-1 must be an integer greater than or equal to zero.

If identifier-2 is less than zero then the length of identifier-1 is set to zero.

If identifier-2 or integer-1 is less than the current length of identifier-1, then the length of identifier-1 is set
to the specified value and identifier-1 is truncated on the right.

If identifier-2 or integer-1 is longer than the current length of identifier-1, then the length of identifier-1 is
set to the specified value, no padding occurs, and the newly available character positions on the right are
not initialized.

446 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

SORT statement
The SORT statement causes a set of records or table elements to be arranged in a user-specified
sequence.

For sorting files, the SORT statement accepts records from one or more files, sorts them according to the
specified keys, and makes the sorted records available either through an output procedure or in an output
file.

For sorting tables, the SORT statement sorts table elements according to specified table keys.

Format 1: SORT statement
SORT file-name-1

ON

ASCENDING

DESCENDING KEY

data-name-1

WITH

DUPLICATES

IN ORDER

COLLATING

SEQUENCE

IS

 alphabet-name-1

USING file-name-2

INPUT PROCEDURE

IS

procedure-name-1

THROUGH

THRU

procedure-name-2

GIVING file-name-3

OUTPUT PROCEDURE

IS

procedure-name-3

THROUGH

THRU

procedure-name-4

Format 1 SORT statements can appear anywhere in the PROCEDURE DIVISION except in the declarative
portion. This format of the SORT statement is not supported for programs that are compiled with the
THREAD option. See also “MERGE statement” on page 396.

Chapter 28. PROCEDURE DIVISION statements 447

Format 2: Table SORT statement
SORT data-name-2

ON

ASCENDING

DESCENDING KEY data-name-1

WITH

DUPLICATES

IN ORDER

COLLATING

SEQUENCE

IS

 alphabet-name-1

Format 2 SORT statements can appear anywhere in the PROCEDURE DIVISION. This format of the SORT
statement can be used with programs that are compiled with the THREAD option.

file-name-1
The name given in the SD entry that describes the records to be sorted.

No pair of file-names in a SORT statement can be specified in the same SAME SORT AREA clause or the
SAME SORT-MERGE AREA clause. File-names associated with the GIVING clause (file-name-3, ...) cannot
be specified in the SAME AREA clause; however, they can be associated with the SAME RECORD AREA
clause.

data-name-2
Specifies a table data-name that is subject to the following rules:

• data-name-2 must have an OCCURS clause in the data description entry.
• data-name-2 can be qualified.
• data-name-2 can be subscripted. The rightmost or only subscript of the table must be omitted or

replaced with the word ALL.

The number of occurrences of table elements that are referenced by data-name-2 is determined
by the rules in the OCCURS clause. The sorted table elements are placed in the same table that is
referenced by data-name-2.

ASCENDING KEY and DESCENDING KEY phrases (format 1)
This phrase specifies that records are to be processed in ascending or descending sequence (depending
on the phrase specified), based on the specified sort keys.

data-name-1
Specifies a KEY data item on which the SORT statement will be based. Each such data-name must
identify a data item in a record associated with file-name-1. The data-names following the word KEY
are listed from left to right in the SORT statement in order of decreasing significance without regard to
how they are divided into KEY phrases. The leftmost data-name is the major key, the next data-name
is the next most significant key, and so forth. The following rules apply:

• A specific KEY data item must be physically located in the same position and have the same data
format in each input file. However, it need not have the same data-name.

• If file-name-1 has more than one record description, the KEY data items need be described in only
one of the record descriptions.

448 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If file-name-1 contains variable-length records, all of the KEY data-items must be contained within
the first n character positions of the record, where n equals the minimum records size specified for
file-name-1.

• KEY data items must not contain an OCCURS clause or be subordinate to an item that contains an
OCCURS clause.

• KEY data items cannot be:

– Variably located
– Group items that contain variable-occurrence data items
– Category numeric described with usage NATIONAL (national decimal item)
– Category external floating-point described with usage NATIONAL (national floating-point item)
– Category DBCS
– Dynamic-length elementary items
– Dynamic-length group items

• KEY data items can be qualified.
• KEY data items can belong to any of the following data categories:

– Alphabetic, alphanumeric, alphanumeric-edited
– Numeric (except numeric with usage NATIONAL)
– Numeric-edited (with usage DISPLAY or NATIONAL)
– Internal floating-point or display floating-point
– National or national-edited

If file-name-3 references an indexed file, the first specification of data-name-1 must be associated
with an ASCENDING phrase and the data item referenced by that data-name-1 must occupy the same
character positions in this record as the data item associated with the prime record key for that file.

The direction of the sorting operation depends on the specification of the ASCENDING or DESCENDING
keywords as follows:

• When ASCENDING is specified, the sequence is from the lowest key value to the highest key value.
• When DESCENDING is specified, the sequence is from the highest key value to the lowest.
• If the KEY data item is described with usage NATIONAL, the sequence of the KEY values is based on the

binary values of the national characters.
• If the KEY data item is internal floating point, the sequence of key values will be in numeric order.
• When the COLLATING SEQUENCE phrase is not specified, the key comparisons are performed according

to the rules for comparison of operands in a relation condition. See “General relation conditions” on
page 272.

• When the COLLATING SEQUENCE phrase is specified, the indicated collating sequence is used for
key data items of alphabetic, alphanumeric, alphanumeric-edited, external floating-point, and numeric-
edited categories. For all other key data items, the comparisons are performed according to the rules for
comparison of operands in a relation condition.

ASCENDING KEY and DESCENDING KEY phrases (format 2)
This phrase specifies that table elements are to be processed in ascending or descending sequence,
based on the specified phrase and sort keys.

data-name-1
Specifies a KEY data name that is subject to the following rules:

• The data item that is identified by a key data-name must be the same as, or subordinate to, the data
item that is referenced by data-name-2.

• KEY data items can be qualified.

Chapter 28. PROCEDURE DIVISION statements 449

• KEY data items can belong to any of the following data categories:

– Alphabetic, alphanumeric, alphanumeric-edited
– Numeric (except numeric with usage NATIONAL)
– Numeric-edited (with usage DISPLAY or NATIONAL)
– Internal floating-point or display floating-point
– National or national-edited

• KEY data items cannot be:

– Variably located
– Group items that contain variable-occurrence data items
– Category numeric that is described with usage NATIONAL (national decimal item)
– Category external floating-point that is described with usage NATIONAL (national floating-point

item)
– Category DBCS
– Class object or pointer
– USAGE OBJECT, USAGE POINTER, USAGE PROCEDURE-POINTER, or USAGE FUNCTION-

POINTER
– Subscripted
– Dynamic-length elementary items
– Dynamic-length group items

• If the data item that is identified by a KEY data-name is subordinate to data-name-2, the following
rules apply:

– The data item cannot be described with an OCCURS clause.
– The data item cannot be subordinate to an entry that is also subordinate to data-name-2 and that

contains an OCCURS clause.

The KEY phrase can be omitted only if the description of the table that is referenced by data-name-2
contains a KEY phrase.

The words ASCENDING and DESCENDING are transitive across all occurrences of data-name-1 until
another word ASCENDING or DESCENDING is encountered.

The data items that are referenced by data-name-1 are key data items, and these data items determine
the order in which the sorted table elements are stored. The order of significance of the keys is the
order in which data items are specified in the SORT statement, without regard to the association with
ASCENDING or DESCENDING phrases.

The SORT statement sorts the table that is referenced by data-name-2 and presents the sorted table in
data-name-2. The sorting order is determined by either the ASCENDING and DESCENDING phrases (if
specified), or by the KEY phrase that is associated with data-name-2.

The direction of the sorting operation depends on the specification of the ASCENDING or DESCENDING
keywords:

• When ASCENDING is specified, the sequence is from the lowest key value to the highest one.
• When DESCENDING is specified, the sequence is from the highest key value to the lowest one.
• If the KEY data item is described with usage NATIONAL, the sequence of the KEY values is based on the

binary values of the national characters.
• If the KEY data item is internal floating-point, the sequence of key values is in the numeric order.
• When the COLLATING SEQUENCE phrase is not specified, the EBCDIC sequence is used for key data

items of alphabetic, alphanumeric, alphanumeric-edited, external floating-point, and numeric-edited
categories. For all the other key data items, the comparisons are performed according to the rules for
comparison of operands in a relation condition.

450 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• When the COLLATING SEQUENCE phrase is specified, the indicated collating sequence is used for
key data items of alphabetic, alphanumeric, alphanumeric-edited, external floating-point, and numeric-
edited categories. For all the other key data items, the comparisons are performed according to the
rules for comparison of operands in a relation condition.

To determine the relative order in which table elements are stored, the contents of corresponding key
data items are compared according to the rules for comparison of operands in a relation condition. The
sorting starts with the most significant key data item with the following rules:

• If the contents of the corresponding key data items are not equal and the key is associated with the
ASCENDING phrase, the table element that contains the key data item with the lower value has the
lower occurrence number.

• If the contents of the corresponding key data items are not equal and the key is associated with the
DESCENDING phrase, the table element that contains the key data item with the higher value has the
lower occurrence number.

• If the contents of the corresponding key data items are equal, the determination is based on the
contents of the next most significant key data item.

If the KEY phrase is not specified, the sequence is determined by the KEY phrase in the data description
entry of the table that is referenced by data-name-2.

If the KEY phrase is specified, it overrides any KEY phrase specified in the data description entry of the
table that is referenced by data-name-2.

If data-name-1 is omitted, the data item that is referenced by data-name-2 is the key data item.

DUPLICATES phrase (format 1)
If the DUPLICATES phrase is specified, and the contents of all the key elements associated with one
record are equal to the corresponding key elements in one or more other records, the order of return of
these records is as follows:

• The order of the associated input files as specified in the SORT statement. Within a given file the order is
that in which the records are accessed from that file.

• The order in which these records are released by an input procedure, when an input procedure is
specified.

If the DUPLICATES phrase is not specified, the order of these records is undefined.

DUPLICATES phrase (format 2)
When both of the following conditions are met, the contents of table elements are in the relative order
that is the same as the order before sorting operation:

• The DUPLICATES phrase is specified.
• The contents of all the key data items that are associated with one table element are equal to the

contents of corresponding key data items that are associated with one or more other table elements.

If the DUPLICATES phrase is not specified and the second condition exists, the relative order of the
contents of these table elements is undefined.

COLLATING SEQUENCE phrase (both formats)
This phrase specifies the collating sequence to be used in alphanumeric comparisons for the KEY data
items in this sorting operation.

The COLLATING SEQUENCE phrase has no effect for keys that are not alphabetic or alphanumeric.

Chapter 28. PROCEDURE DIVISION statements 451

alphabet-name-1
Must be specified in the ALPHABET clause of the SPECIAL-NAMES paragraph. alphabet-name-1 can
be associated with any one of the ALPHABET clause phrases, with the following results:
STANDARD-1

The ASCII collating sequence is used for all alphanumeric comparisons. (The ASCII collating
sequence is shown in Appendix C, “EBCDIC and ASCII collating sequences,” on page 751.)

STANDARD-2
The International Reference Version of ISO/IEC 646, 7-bit coded character set for information
processing interchange is used for all alphanumeric comparisons.

NATIVE
The EBCDIC collating sequence is used for all alphanumeric comparisons. (The EBCDIC collating
sequence is shown in Appendix C, “EBCDIC and ASCII collating sequences,” on page 751.)

EBCDIC
The EBCDIC collating sequence is used for all alphanumeric comparisons. (The EBCDIC collating
sequence is shown in Appendix C, “EBCDIC and ASCII collating sequences,” on page 751.)

literal
The collating sequence established by the specification of literals in the alphabet-name clause is
used for all alphanumeric comparisons.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM COLLATING SEQUENCE clause (if
specified) in the OBJECT-COMPUTER paragraph specifies the collating sequence to be used. When both
the COLLATING SEQUENCE phrase and the PROGRAM COLLATING SEQUENCE clause are omitted, the
EBCDIC collating sequence is used.

USING phrase

file-name-2 , ...
The input files.

When the USING phrase is specified, all the records in file-name-2, ..., (that is, the input files) are
transferred automatically to file-name-1. At the time the SORT statement is executed, these files must
not be open. The compiler opens, reads, makes records available, and closes these files automatically.
If EXCEPTION/ERROR procedures are specified for these files, the compiler makes the necessary
linkage to these procedures.

All input files must be described in FD entries in the DATA DIVISION.

If the USING phrase is specified and if file-name-1 contains variable-length records, the size of the
records contained in the input files (file-name-2, ...) must be neither less than the smallest record
nor greater than the largest record described for file-name-1. If file-name-1 contains fixed-length
records, the size of the records contained in the input files must not be greater than the largest record
described for file-name-1. For more information, see Describing the input to sorting or merging in the
Enterprise COBOL Programming Guide.

INPUT PROCEDURE phrase
This phrase specifies the name of a procedure that is to select or modify input records before the sorting
operation begins.

procedure-name-1
Specifies the first (or only) section or paragraph in the input procedure.

procedure-name-2
Identifies the last section or paragraph of the input procedure.

The input procedure can consist of any procedure needed to select, modify, or copy the records that
are made available one at a time by the RELEASE statement to the file referenced by file-name-1.

452 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The range includes all statements that are executed as the result of a transfer of control by CALL,
EXIT, GO TO, PERFORM, and XML PARSE statements in the range of the input procedure, as well as all
statements in declarative procedures that are executed as a result of the execution of statements in
the range of the input procedure. The range of the input procedure must not cause the execution of
any MERGE, RETURN, or format 1 SORT statement.

If an input procedure is specified, control is passed to the input procedure before the file referenced
by file-name-1 is sequenced by the SORT statement. The compiler inserts a return mechanism at the
end of the last statement in the input procedure. When control passes the last statement in the input
procedure, the records that have been released to the file referenced by file-name-1 are sorted.

GIVING phrase

file-name-3 , ...
The output files.

When the GIVING phrase is specified, all the sorted records in file-name-1 are automatically
transferred to the output files (file-name-3, ...).

All output files must be described in FD entries in the DATA DIVISION.

If the output files (file-name-3, ...) contain variable-length records, the size of the records contained
in file-name-1 must be neither less than the smallest record nor greater than the largest record
described for the output files. If the output files contain fixed-length records, the size of the records
contained in file-name-1 must not be greater than the largest record described for the output files.
For more information, see Describing the output from sorting or merging in the Enterprise COBOL
Programming Guide.

At the time the SORT statement is executed, the output files (file-name-3, ...) must not be open. For
each of the output files, the execution of the SORT statement causes the following actions to be taken:

• The processing of the file is initiated. The initiation is performed as if an OPEN statement with the
OUTPUT phrase had been executed.

• The sorted logical records are returned and written onto the file. Each record is written as if a WRITE
statement without any optional phrases had been executed.

For a relative file, the relative key data item for the first record returned contains the value '1'; for
the second record returned, the value '2'. After execution of the SORT statement, the content of the
relative key data item indicates the last record returned to the file.

• The processing of the file is terminated. The termination is performed as if a CLOSE statement
without optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER EXCEPTION/ERROR
procedures are executed; however, the execution of such a USE procedure must not cause the
execution of any statement manipulating the file referenced by, or accessing the record area
associated with, file-name-3. On the first attempt to write beyond the externally defined boundaries of
the file, any USE AFTER STANDARD EXCEPTION/ERROR procedure specified for the file is executed. If
control is returned from that USE procedure or if no such USE procedure is specified, the processing of
the file is terminated.

OUTPUT PROCEDURE phrase
This phrase specifies the name of a procedure that is to select or modify output records from the sorting
operation.

procedure-name-3
Specifies the first (or only) section or paragraph in the output procedure.

procedure-name-4
Identifies the last section or paragraph of the output procedure.

Chapter 28. PROCEDURE DIVISION statements 453

The output procedure can consist of any procedure needed to select, modify, or copy the records that
are made available one at a time by the RETURN statement in sorted order from the file referenced by
file-name-1. The range includes all statements that are executed as the result of a transfer of control
by CALL, EXIT, GO TO, PERFORM, and XML PARSE statements in the range of the output procedure.
The range also includes all statements in declarative procedures that are executed as a result of the
execution of statements in the range of the output procedure. The range of the output procedure must
not cause the execution of any MERGE, RELEASE, or format 1 SORT statement.

If an output procedure is specified, control passes to it after the file referenced by file-name-1 has
been sequenced by the SORT statement. The compiler inserts a return mechanism at the end of the
last statement in the output procedure and when control passes the last statement in the output
procedure, the return mechanism provides the termination of the sort and then passes control to the
next executable statement after the SORT statement. Before entering the output procedure, the sort
procedure reaches a point at which it can select the next record in sorted order when requested. The
RETURN statements in the output procedure are the requests for the next record.

The INPUT PROCEDURE and OUTPUT PROCEDURE phrases are similar to those for a basic PERFORM
statement. For example, if you name a procedure in an output procedure, that procedure is executed
during the sorting operation just as if it were named in a PERFORM statement. As with the PERFORM
statement, execution of the procedure is terminated after the last statement completes execution.
The last statement in an input or output procedure can be the EXIT statement (see “EXIT statement”
on page 342).

SORT special registers
The special registers, SORT-CORE-SIZE, SORT-MESSAGE, and SORT-MODE-SIZE, are equivalent to option
control statement keywords in the sort control file. You define the sort control data set with the SORT-
CONTROL special register.

Usage notes:

• The SORT special registers are not applicable to sorting a table by using the format 2 SORT statement.
• If you use a sort control file to specify control statements, the values specified in the sort control file

take precedence over those in the special register.

SORT-MESSAGE special register
See “SORT-MESSAGE” on page 26.

SORT-CORE-SIZE special register
See “SORT-CORE-SIZE” on page 25.

SORT-FILE-SIZE special register
See “SORT-FILE-SIZE” on page 26.

SORT-MODE-SIZE special register
See “SORT-MODE-SIZE” on page 27.

SORT-CONTROL special register
See “SORT-CONTROL” on page 25.

SORT-RETURN special register
See “SORT-RETURN” on page 27.

Segmentation considerations
The topic lists considerations of using the SORT statement.

If a SORT statement is coded in a fixed segment, any input or output procedure referenced by that SORT
statement must be either totally within a fixed segment or wholly contained in a single independent
segment.

If a SORT statement is coded in an independent segment, any input or output procedure referenced by
that SORT statement must be either totally within a fixed segment or wholly contained within the same
independent segment as that SORT statement.

454 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

START statement
The START statement provides a means of positioning within an indexed or relative file for subsequent
sequential record retrieval.

When the START statement is executed, the associated indexed or relative file must be open in either
INPUT or I-O mode.

Format
START file-name-1

KEY

IS

EQUAL

TO

 =

GREATER

THAN

 >

NOT LESS

THAN

NOT <

GREATER

THAN

OR EQUAL

TO

 >=

data-name-1

INVALID

KEY

imperative-statement-1

NOT INVALID

KEY

imperative-statement-2 END-START

file-name-1
Must name a file with sequential or dynamic access. file-name-1 must be defined in an FD entry in the
DATA DIVISION and must not name a sort file.

KEY phrase

When the KEY phrase is specified, the file position indicator is positioned at the logical record in the file
whose key field satisfies the comparison.

When the KEY phrase is not specified, KEY IS EQUAL (to the prime record key) is implied.

data-name-1
Can be qualified; it cannot be subscripted.

When the START statement is executed, a comparison is made between the current value in the key
data-name and the corresponding key field in the file's index.

If the FILE STATUS clause is specified in the file-control entry, the associated file status key is updated
when the START statement is executed (See “File status key” on page 299).

Chapter 28. PROCEDURE DIVISION statements 455

INVALID KEY phrases
If the comparison is not satisfied by any record in the file, an invalid key condition exists; the position
of the file position indicator is undefined, and (if specified) the INVALID KEY imperative-statement is
executed. (See “INTO and FROM phrases” on page 304 under "Common processing facilities".)

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure can be omitted.

END-START phrase
This explicit scope terminator serves to delimit the scope of the START statement. END-START permits a
conditional START statement to be nested in another conditional statement. END-START can also be used
with an imperative START statement.

For more information, see “Delimited scope statements” on page 293.

Indexed files
When the KEY phrase is specified, the key data item used for the comparison is data-name-1.

When the KEY phrase is not specified, the key data item used for the EQUAL TO comparison is the prime
record key.

When START statement execution is successful, the RECORD KEY or ALTERNATE RECORD KEY with which
data-name-1 is associated becomes the key of reference for subsequent READ statements.

data-name-1
Can be any of the following items:

• The prime RECORD KEY.
• Any ALTERNATE RECORD KEY.
• A data item within a record description for a file whose leftmost character position corresponds to

the leftmost character position of that record key; it can be qualified. The size of the data item must
be less than or equal to the length of the record key for the file.

Regardless of its category, data-name-1 is treated as an alphanumeric item for purposes of the
comparison operation.

Note: If your key is numeric, you must specify the EQUAL TO condition, otherwise, unexpected results can
happen.

The file position indicator points to the first record in the file whose key field satisfies the comparison.
If the operands in the comparison are of unequal lengths, the comparison proceeds as if the longer
field were truncated on the right to the length of the shorter field. All other numeric and alphanumeric
comparison rules apply, except that the PROGRAM COLLATING SEQUENCE clause, if specified, has no
effect.

When START statement execution is successful, the RECORD KEY with which data-name-1 is associated
becomes the key of reference for subsequent READ statements.

When START statement execution is unsuccessful, the key of reference is undefined.

Relative files
When the KEY phrase is specified, data-name-1 must specify the RELATIVE KEY.

Whether or not the KEY phrase is specified, the key data item used in the comparison is the RELATIVE KEY
data item. Numeric comparison rules apply.

The file position indicator points to the logical record in the file whose key satisfies the specified
comparison.

456 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

STOP statement
The STOP statement halts execution of the object program either permanently or temporarily.

Format
STOP RUN

literal

literal
Can be a fixed-point numeric literal (signed or unsigned) or an alphanumeric literal. It can be any
figurative constant except ALL literal.

When STOP literal is specified, the literal is communicated to the operator, and object program execution
is suspended. Program execution is resumed only after operator intervention, and continues at the next
executable statement in sequence.

The STOP literal statement is useful for special situations when operator intervention is needed during
program execution; for example, when a special tape or disk must be mounted or a specific daily
code must be entered. However, the ACCEPT and DISPLAY statements are preferred when operator
intervention is needed.

Do not use the STOP literal statement in programs compiled with the THREAD compiler option.

When STOP RUN is specified, execution is terminated and control is returned to the system, using the
current value of the RETURN-CODE special register (modulo 4096) as the return code. When STOP RUN is
not the last or only statement in a sequence of imperative statements within a sentence, the statements
following STOP RUN are not executed.

The STOP RUN statement closes all files defined in any of the programs in the run unit.

The STOP RUN statement frees all allocated buffers for dynamic-length elementary items in all of the
programs in the run unit.

For use of the STOP RUN statement in calling and called programs, see the following table.

Termination
statement

Main program Subprogram

STOP RUN Returns to the calling program. (Can be the
system, which causes the application to end.)

Returns directly to the program that
called the main program. (Can be the
system, which causes the application to
end.)

STRING statement
The STRING statement strings together the partial or complete contents of two or more data items or
literals into one single data item.

One STRING statement can be written instead of a series of MOVE statements.

Chapter 28. PROCEDURE DIVISION statements 457

Format

STRING identifier-1

literal-1

DELIMITED

BY

identifier-2

literal-2

SIZE

INTO identifier-3

WITH

POINTER identifier-4

ON

OVERFLOW imperative-statement-1

NOT

ON

OVERFLOW imperative-statement-2 END-STRING

identifier-1, literal-1
Represents the sending fields.

DELIMITED BY phrase
Sets the limits of the string.
identifier-2, literal-2

Are delimiters; that is, characters that delimit the data to be transferred.
SIZE

Transfers the complete sending area.
INTO phrase

Identifies the receiving field.
identifier-3

Represents the receiving field.
POINTER phrase

Points to a character position in the receiving field. The pointer field indicates a relative alphanumeric
character position, DBCS character position, or national character position when the receiving field is
of usage DISPLAY, DISPLAY-1, or NATIONAL, respectively.
identifier-4

Represents the pointer field. identifier-4 must be large enough to contain a value equal to the
length of the receiving field plus 1. You must initialize identifier-4 to a nonzero value before
execution of the STRING statement begins.

When the POINTER phrase is specified, an explicit pointer field is available to control placement of
data in the receiving field. It is required to set the explicit pointer's initial value, which must greater
than or equal to 1. For fixed-length data items, the pointer's initial value must less than or equal to
the character position count of the receiving field. For dynamic-length elementary items, the pointer's
initial value must less than or equal to the specified value of the LIMIT phrase on the item's data
description entry, or the default limit if no LIMIT is specified.

When the POINTER phrase is specified and the receiving field is a dynamic-length elementary item,
the value of the POINTER field may be greater than the length of the receiver. When the value of the

458 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

POINTER field is equal to the length of the receiver plus one, the STRING statement will effectively
concatenate the sending fields to the receiver. When the value of the POINTER field is equal to the
length of the receiver plus two or more, the intermediate character positions between the end of the
receiver and the beginning of the POINTER field will be padded with spaces, and the sending fields
will be concatenated starting at the POINTER field position.

The following rules apply:

• All identifiers except identifier-4 must reference data items described explicitly or implicitly as usage
DISPLAY, DISPLAY-1, NATIONAL, or UTF-8.

• All identifiers cannot be dynamic-length group items.
• literal-1 or literal-2 must be of category alphanumeric, DBCS, national, or UTF-8 and can be any
figurative constant that does not begin with the word ALL (except NULL).

• If identifier-1 or identifer-2 references a data item of category numeric, each numeric item must be
described as an integer without the symbol 'P' in its PICTURE character-string.

• identifier-3 must not reference a data item of category numeric-edited, alphanumeric-edited, or
national-edited; an external floating-point data item of usage DISPLAY, or an external floating-point
data item of usage NATIONAL.

• identifier-3 must not be described with the JUSTIFIED clause.
• If identifier-3 is of usage DISPLAY, identifier-1 and identifier-2 must be of usage DISPLAY and all literals

must be alphanumeric literals. Any figurative constant can be specified except one that begins with the
word ALL. Each figurative constant represents a 1-character alphanumeric literal.

• If identifier-3 is of usage DISPLAY-1, identifier-1 and identifier-2 must be of usage DISPLAY-1 and
all literals must be DBCS literals. The only figurative constant that can be specified is SPACE, which
represents a 1-character DBCS literal. ALL DBCS-literal must not be specified.

• If identifier-3 is of usage NATIONAL, identifier-1 and identifier-2 must be of usage NATIONAL and all
literals must be national literals. Any figurative constant can be specified except symbolic-character and
one that begins with the word ALL. Each figurative constant represents a 1-character national literal.

• If identifier-3 is of usage UTF-8, identifier-1 and identifier-2 must be of usage UTF-8 and all literals
must be UTF-8 literals. Any figurative constant can be specified except symbolic-character and one that
begins with the word ALL. Each figurative constant represents a 1-character UTF-8 literal.

• If identifier-1 or identifier-2 references an elementary data item of usage DISPLAY that is described as
category numeric, numeric-edited, or alphanumeric-edited, the item is treated as if it were redefined as
category alphanumeric.

• If identifier-1 or identifier-2 references an elementary data item of usage NATIONAL that is described as
category numeric, numeric-edited, or national-edited item, the item is treated as if it were redefined as
category national.

• identifier-4 must not be described with the symbol P in its PICTURE character-string.

Evaluation of subscripts, reference modification, variable-lengths, variable locations, and function-
identifiers is performed only once, at the beginning of the execution of the STRING statement. Therefore,
if identifier-3 or identifier-4 is used as a subscript, reference-modifier, or function argument in the STRING
statement, or affects the length or location of any of the identifiers in the STRING statement, the values
calculated for those subscripts, reference-modifiers, variable lengths, variable locations, and functions
are not affected by any results of the STRING statement.

If identifier-3 and identifier-4 occupy the same storage area, undefined results will occur, even if the
identifiers are defined by the same data description entry.

If identifier-1 or identifier-2 occupies the same storage area as identifier-3 or identifier-4, undefined
results will occur, even if the identifiers are defined by the same data description entry.

See “Data flow” on page 460 for details of STRING statement processing.

ON OVERFLOW phrases

Chapter 28. PROCEDURE DIVISION statements 459

imperative-statement-1
Executed when the pointer value (explicit or implicit):

• Is less than 1
• Exceeds a value equal to the length of the receiving field

When either of the above conditions occurs, an overflow condition exists, and no more data is
transferred. Then the STRING operation is terminated, the NOT ON OVERFLOW phrase, if specified,
is ignored, and control is transferred to the end of the STRING statement or, if the ON OVERFLOW
phrase is specified, to imperative-statement-1.

If control is transferred to imperative-statement-1, execution continues according to the rules for each
statement specified in imperative-statement-1. If a procedure branching or conditional statement
that causes explicit transfer of control is executed, control is transferred according to the rules for
that statement; otherwise, upon completion of the execution of imperative-statement-1, control is
transferred to the end of the STRING statement.

If at the time of execution of a STRING statement, conditions that would cause an overflow condition
are not encountered, then after completion of the transfer of data, the ON OVERFLOW phrase, if
specified, is ignored. Control is then transferred to the end of the STRING statement, or if the NOT ON
OVERFLOW phrase is specified, to imperative-statement-2.

If control is transferred to imperative-statement-2, execution continues according to the rules for each
statement specified in imperative-statement-2. If a procedure branching or conditional statement
that causes explicit transfer of control is executed, control is transferred according to the rules for
that statement. Otherwise, upon completion of the execution of imperative-statement-2, control is
transferred to the end of the STRING statement.

END-STRING phrase
This explicit scope terminator serves to delimit the scope of the STRING statement. END-STRING permits
a conditional STRING statement to be nested in another conditional statement. END-STRING can also be
used with an imperative STRING statement.

For more information, see “Delimited scope statements” on page 293.

Data flow
When the STRING statement is executed, characters are transferred from the sending fields to the
receiving field. The order in which sending fields are processed is the order in which they are specified.

The following rules apply:

• Characters from the sending fields are transferred to the receiving fields in the following manner:

– For national sending fields, data is transferred using the rules of the MOVE statement for elementary
national-to-national moves, except that no space filling takes place.

– For UTF-8 sending fields, data is transferred using the rules of the MOVE statement for elementary
UTF-8-to-UTF-8 moves, except that no space filling takes place.

– For DBCS sending fields, data is transferred using the rules of the MOVE statement for elementary
DBCS-to-DBCS moves, except that no space filling takes place.

– Otherwise, data is transferred to the receiving fields using the rules of the MOVE statement for
elementary alphanumeric-to-alphanumeric moves, except that no space filling takes place (see
“MOVE statement” on page 400).

• When DELIMITED BY identifier-2 or literal-2 is specified, the contents of each sending item are
transferred, character-by-character, beginning with the leftmost character position and continuing until
either:

– A delimiter for this sending field is reached (the delimiter itself is not transferred).
– The rightmost character of this sending field has been transferred.

460 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• When DELIMITED BY SIZE is specified, each entire sending field is transferred to the receiving field.
• When the receiving field is filled, or when all the sending fields have been processed, the operation is

ended.
• When the POINTER phrase is specified, an explicit pointer field is available to the COBOL user to control

placement of data in the receiving field. The user must set the explicit pointer's initial value, which must
not be less than 1 and not more than the character position count of the receiving field.

Usage note: The pointer field must be defined as a field large enough to contain a value equal to the
length of the receiving field plus 1; this precludes arithmetic overflow when the system updates the
pointer at the end of the transfer.

• When the POINTER phrase is not specified, no pointer is available to the user. However, a conceptual
implicit pointer with an initial value of 1 is used by the system.

• Conceptually, when the STRING statement is executed, the initial pointer value (explicit or implicit) is
the first character position within the receiving field into which data is to be transferred. Beginning at
that position, data is then positioned, character-by-character, from left to right. After each character is
positioned, the explicit or implicit pointer is increased by 1. The value in the pointer field is changed
only in this manner. At the end of processing, the pointer value always indicates a value equal to one
character position beyond the last character transferred into the receiving field.

After STRING statement execution is completed, only that part of the receiving field into which data was
transferred is changed. The rest of the receiving field contains the data that was present before this
execution of the STRING statement.

Example of the STRING statement
This topic lists an example for the STRING statement.

When the following STRING statement is executed, the results obtained will be like those illustrated in the
figure after the statement.

STRING ID-1 ID-2 DELIMITED BY ID-3
 ID-4 ID-5 DELIMITED BY SIZE
 INTO ID-7 WITH POINTER ID-8
END-STRING

Chapter 28. PROCEDURE DIVISION statements 461

SUBTRACT statement
The SUBTRACT statement subtracts one numeric item, or the sum of two or more numeric items, from
one or more numeric items, and stores the result.

Format 1: SUBTRACT statement

SUBTRACT identifier-1

literal-1

FROM identifier-2

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2

END-SUBTRACT

All identifiers or literals preceding the keyword FROM are added together and their sum is subtracted
from and stored immediately in identifier-2. This process is repeated for each successive occurrence of
identifier-2, in the left-to-right order in which identifier-2 is specified.

Format 2: SUBTRACT statement with GIVING phrase

SUBTRACT identifier-1

literal-1

FROM identifier-2

literal-2

GIVING

identifier-3

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2

END-SUBTRACT

All identifiers or literals preceding the keyword FROM are added together and their sum is subtracted
from identifier-2 or literal-2. The result of the subtraction is stored as the new value of each data item
referenced by identifier-3.

462 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format 3: SUBTRACT statement with CORRESPONDING phrase
SUBTRACT CORRESPONDING

CORR

identifier-1 FROM identifier-2

ROUNDED

ON

SIZE ERROR imperative-statement-1

NOT

ON

SIZE ERROR imperative-statement-2

END-SUBTRACT

Elementary data items within identifier-1 are subtracted from, and the results are stored in, the
corresponding elementary data items within identifier-2.

When the ARITH(COMPAT) compiler option is in effect, the composite of operands can contain a
maximum of 30 digits. When the ARITH(EXTEND) compiler option is in effect, the composite of operands
can contain a maximum of 31 digits. For more information about arithmetic intermediate results, see
Appendix A. Intermediate results and arithmetic precision in the Enterprise COBOL Programming Guide.

For all formats:

identifier
In format 1, must name an elementary numeric data item.

In format 2, must name an elementary numeric data item, unless the identifier follows the word
GIVING. Each identifier following the word GIVING must name a numeric or numeric-edited
elementary data item.

In format 3, must name an alphanumeric group item or a national group item.

literal
Must be a numeric literal.

Floating-point data items and literals can be used anywhere numeric data items and literals can be
specified.

ROUNDED phrase
For information about the ROUNDED phrase, and for operand considerations, see “ROUNDED phrase” on
page 296.

SIZE ERROR phrases
For information about the SIZE ERROR phrases, and for operand considerations, see “SIZE ERROR
phrases” on page 296.

CORRESPONDING phrase (format 3)
See “CORRESPONDING phrase” on page 295.

Chapter 28. PROCEDURE DIVISION statements 463

END-SUBTRACT phrase
This explicit scope terminator serves to delimit the scope of the SUBTRACT statement. END-SUBTRACT
permits a conditional SUBTRACT statement to be nested in another conditional statement. END-
SUBTRACT can also be used with an imperative SUBTRACT statement.

For more information, see “Delimited scope statements” on page 293.

UNSTRING statement
The UNSTRING statement causes contiguous data in a sending field to be separated and placed into
multiple receiving fields.

Format
UNSTRING identifier-1

DELIMITED

BY ALL

identifier-2

literal-1

OR

ALL

identifier-3

literal-2

INTO

identifier-4

DELIMITER

IN

identifier-5 COUNT

IN

identifier-6

WITH

POINTER identifier-7

TALLYING

IN

identifier-8

ON

OVERFLOW imperative-statement-1

NOT

ON

OVERFLOW imperative-statement-2

END-UNSTRING

identifier-1
Represents the sending field. Data is transferred from this field to the data receiving fields
(identifier-4).

identifier-1 must reference a data item of category alphabetic, alphanumeric, alphanumeric-edited,
DBCS, national, national-edited, or UTF-8.

identifier-2, literal-1, identifier-3, literal-2
Specifies one or more delimiters.

464 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

identifier-2 and identifier-3 must reference data items of category alphabetic, alphanumeric,
alphanumeric-edited, DBCS, national, national-edited, or UTF-8.

literal-1 or literal-2 must be of category alphanumeric, DBCS, national, or UTF-8 and must not be a
figurative constant that begins with the word ALL.

identifier-4
Specifies one or more receiving fields.

identifier-4 must reference a data item of category alphabetic, alphanumeric, numeric, DBCS,
national, or UTF-8. If the referenced data item is of category numeric, its picture character-string
must not contain the picture symbol P, and its usage must be DISPLAY or NATIONAL.

identifier-5
Specifies a field to receive the delimiter associated with identifier-4.

identifier-5 must reference a data item of category alphabetic, alphanumeric, DBCS, national, or
UTF-8.

identifier-6
Specifies a field to hold the count of characters that are transferred to identifier-4.

identifier-6 must be an integer data item defined without the symbol P in its PICTURE character-
string.

identifier-7
Specifies a field to hold a relative character position during UNSTRING processing.

identifier-7 must be an integer data item defined without the symbol P in the PICTURE string.

identifier-7 must be described as a data item of sufficient size to contain a value equal to 1 plus the
number of character positions in the data item referenced by identifier-1.

identifier-8
Specifies a field that is incremented by the number of delimited fields processed.

identifier-8 must be an integer data item defined without the symbol P in its PICTURE character-
string.

The following rules apply:

• If identifier-4 references a data item of usage DISPLAY, identifier-1, identifier-2, identifier-3, and
identifier-5 must also reference data items of usage DISPLAY and all literals must be alphanumeric
literals. Any figurative constant can be specified except NULL or one that begins with the word ALL. Each
figurative constant represents a 1-character alphanumeric literal.

• If identifier-4 references a data item of usage DISPLAY-1, identifier-1, identifier-2, identifier-3, and
identifier-5 must also reference data items of usage DISPLAY-1 and all literals must be DBCS literals.
Figurative constant SPACE is the only figurative constant that can be specified. Each figurative constant
represents a 1-character DBCS literal.

• If identifier-4 references a data item of usage NATIONAL, identifier-1, identifier-2, identifier-3, and
identifier-5 must also reference data items of usage NATIONAL and all literals must be national literals.
Any figurative constant can be specified except NULL or one that begins with the word ALL. Each
figurative constant represents a 1-character national literal.

• If identifier-4 references a data item of usage UTF-8, identifier-1, identifier-2, identifier-3, and
identifier-5 must also reference data items of usage UTF-8 and all literals must be UTF-8 literals. Any
figurative constant can be specified except NULL or one that begins with the word ALL. Each figurative
constant represents a 1-character UTF-8 literal.

Count fields (identifier-6) and pointer fields (identifier-7) are incremented by number of character
positions (alphanumeric, DBCS, national, or UTF-8), not by number of bytes.

One UNSTRING statement can take the place of a series of MOVE statements, except that evaluation
or calculation of certain elements is performed only once, at the beginning of the execution of the
UNSTRING statement. For more information, see “Values at the end of execution of the UNSTRING
statement” on page 470.

Chapter 28. PROCEDURE DIVISION statements 465

The rules for moving are the same as those for a MOVE statement for an elementary sending item of the
category of identifier-1, with the appropriate identifier-4 as the receiving item (see “MOVE statement” on
page 400). For example, rules for moving a DBCS item are used when identifier-1 is a DBCS item.

DELIMITED BY phrase
This phrase specifies delimiters within the data that control the data transfer.

Each identifier-2, identifier-3, literal-1, or literal-2 represents one delimiter.

If the DELIMITED BY phrase is not specified, the DELIMITER IN and COUNT IN phrases must not be
specified.

ALL
Multiple contiguous occurrences of any delimiters are treated as if there were only one occurrence;
this one occurrence is moved to the delimiter receiving field (identifier-5), if specified. The delimiting
characters in the sending field are treated as an elementary item of the same usage and category as
identifier-1 and are moved into the current delimiter receiving field according to the rules of the MOVE
statement.

When DELIMITED BY ALL is not specified, and two or more contiguous occurrences of any delimiter
are encountered, the current data receiving field (identifier-4) is filled with spaces or zeros, according
to the description of the data receiving field.

Delimiter with two or more characters

A delimiter that contains two or more characters is recognized as a delimiter only if the delimiting
characters are in both of the following cases:

• Contiguous
• In the sequence specified in the sending field

Two or more delimiters

When two or more delimiters are specified, an OR condition exists, and each nonoverlapping occurrence
of any one of the delimiters is recognized in the sending field in the sequence specified.

For example:

DELIMITED BY "AB" or "BC"

An occurrence of either AB or BC in the sending field is considered a delimiter. An occurrence of ABC is
considered an occurrence of AB.

INTO phrase
This phrase specifies the fields where the data is to be moved.

identifier-4 represents the data receiving fields.

DELIMITER IN
This phrase specifies the fields where the delimiters are to be moved.

identifier-5 represents the delimiter receiving fields.

The DELIMITER IN phrase must not be specified if the DELIMITED BY phrase is not specified.

COUNT IN
This phrase specifies the field where the count of examined character positions is held.

466 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

identifier-6 is the data count field for each data transfer. Each field holds the count of examined
character positions in the sending field, terminated by the delimiters or the end of the sending field,
for the move to this receiving field. The delimiters are not included in this count.

The COUNT IN phrase must not be specified if the DELIMITED BY phrase is not specified.

POINTER phrase
When the POINTER phrase is specified, the value of the pointer field, identifier-7, behaves as if it
were increased by 1 for each examined character position in the sending field. When execution of the
UNSTRING statement is completed, the pointer field contains a value equal to its initial value plus the
number of character positions examined in the sending field.

When this phrase is specified, the user must initialize the pointer field before execution of the UNSTRING
statement begins.

TALLYING IN phrase
When the TALLYING phrase is specified, the area count field, identifier-8, contains (at the end of execution
of the UNSTRING statement) a value equal to the initial value plus the number of data receiving areas
acted upon.

When this phrase is specified, the user must initialize the area count field before execution of the
UNSTRING statement begins.

ON OVERFLOW phrases
An overflow condition exists when:

• The pointer value (explicit or implicit) is less than 1.
• The pointer value (explicit or implicit) exceeds a value equal to the length of the sending field.
• All data receiving fields have been acted upon and the sending field still contains unexamined character

positions.

When an overflow condition occurs

An overflow condition results in the following actions:

1. No more data is transferred.
2. The UNSTRING operation is terminated.
3. The NOT ON OVERFLOW phrase, if specified, is ignored.
4. Control is transferred to the end of the UNSTRING statement or, if the ON OVERFLOW phrase is

specified, to imperative-statement-1.

imperative-statement-1
Statement or statements for dealing with an overflow condition.

If control is transferred to imperative-statement-1, execution continues according to the rules for each
statement specified in imperative- statement-1. If a procedure branching or conditional statement
that causes explicit transfer of control is executed, control is transferred according to the rules for
that statement. Otherwise, upon completion of the execution of imperative-statement-1, control is
transferred to the end of the UNSTRING statement.

When an overflow condition does not occur

When, during execution of an UNSTRING statement, conditions that would cause an overflow condition
are not encountered, then:

1. The transfer of data is completed.
2. The ON OVERFLOW phrase, if specified, is ignored.

Chapter 28. PROCEDURE DIVISION statements 467

3. Control is transferred to the end of the UNSTRING statement or, if the NOT ON OVERFLOW phrase is
specified, to imperative-statement-2.

imperative-statement-2
Statement or statements for dealing with an overflow condition that does not occur.

If control is transferred to imperative-statement-2, execution continues according to the rules for each
statement specified in imperative- statement-2. If a procedure branching or conditional statement
that causes explicit transfer of control is executed, control is transferred according to the rules for
that statement. Otherwise, upon completion of the execution of imperative-statement-2, control is
transferred to the end of the UNSTRING statement.

The ON OVERFLOW phrase can be used for examining the sending field whereas the NOT ON OVERFLOW
phrase is for normal execution when an overflow condition does not occur. You must include NOT ON
OVERFLOW if you want to specify procedures to be executed only when an overflow condition does not
occur. For example:

UNSTRING COLOR-LIST
 ...
 ON OVERFLOW
 DISPLAY 'Error: The string is too large'
 NOT ON OVERFLOW *> Execute when the UNSTRING is successful
 PERFORM SORT-COLORS
END-UNSTRING

END-UNSTRING phrase
This explicit scope terminator serves to delimit the scope of the UNSTRING statement. END-UNSTRING
permits a conditional UNSTRING statement to be nested in another conditional statement. END-
UNSTRING can also be used with an imperative UNSTRING statement.

For more information, see “Delimited scope statements” on page 293.

Data flow
The data flow for the UNSTRING statement is based on certain rules.

When the UNSTRING statement is initiated, data is transferred from the sending field to the current data
receiving field, according to the following rules:

Stage 1: Examine

1. If the POINTER phrase is specified, the field is examined, beginning at the relative character position
specified by the value in the pointer field.

If the POINTER phrase is not specified, the sending field character-string is examined, beginning with
the leftmost character position.

2. If the DELIMITED BY phrase is specified, the examination proceeds from left to right, examining
character positions one-by-one until a delimiter is encountered. If the end of the sending field is
reached before a delimiter is found, the examination ends with the last character position in the
sending field. If there are more receiving fields, the next one is selected; otherwise, an overflow
condition occurs.

If the DELIMITED BY phrase is not specified, the number of character positions examined is equal to
the size of the current data receiving field, as described in the table below. The size depends on the
category treatment of the receiving field, as shown in Table 39 on page 359.

If the DELIMITED BY phrase is not specified and the receiver is a dynamic-length elementary item, the
number of character positions examined is equal to the length of the sender. All identifiers cannot be
dynamic-length group items.

468 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 54. Character positions examined when DELIMITED BY is not specified

If the receiving field is ... The number of character positions examined
is ...

Alphanumeric or alphabetic Equal to the number of alphanumeric character
positions in the current receiving field

DBCS Equal to the number of DBCS character positions
in the current receiving field

National Equal to the number of national character
positions in the current receiving field

Numeric Equal to the number of character positions in the
integer portion of the current receiving field

UTF-8 Equal to the number of UTF-8 character positions
in the current receiving field

Described with the SIGN IS SEPARATE clause 1 less than the size of the current receiving field

Described as a variable-length data item Determined by the size of the current receiving
field at the beginning of the UNSTRING operation

Stage 2: Move
3. The examined character positions (excluding any delimiter characters) are treated as an elementary

data item of the same data category as the sending field except for the cases shown in the table below.

Category of identifier-1 (sending-field) Category of elementary data item

Alphanumeric-edited Alphanumeric

National-edited National

That elementary data item is moved to the current data receiving field according to the rules for
the MOVE statement for the categories of the sending and receiving fields as described in “MOVE
statement” on page 400.

4. If the DELIMITER IN phrase is specified, the delimiting characters in the sending field are treated as
an elementary alphanumeric item and are moved to the current delimiter receiving field, according to
the rules for the MOVE statement. If the delimiting condition is the end of the sending field, the current
delimiter receiving field is filled with spaces.

5. If the COUNT IN phrase is specified, a value equal to the number of examined character positions
(excluding any delimiters) is moved into the data count field, according to the rules for an elementary
move.

Stage 3: Successive iterations
6. If the DELIMITED BY phrase is specified, the sending field is further examined, beginning with the first

character position to the right of the delimiter.

If the DELIMITED BY phrase is not specified, the sending field is further examined, beginning with the
first character position to the right of the last character position examined.

7. For each succeeding data receiving field, this process of examining and moving is repeated until either
of the following conditions occurs:

• All the characters in the sending field have been transferred.
• There are no more unfilled data receiving fields.

Chapter 28. PROCEDURE DIVISION statements 469

Values at the end of execution of the UNSTRING statement
At the beginning of the execution of the UNSTRING statement, certain operations are performed only
once.

The operations are:

• Calculations of subscripts, reference modifications, variable-lengths, variable locations
• Evaluations of functions

Therefore, if identifier-4, identifier-5, identifier-6, identifier-7, or identifier-8 is used as a subscript,
reference-modifier, or function argument in the UNSTRING statement, or affects the length or location
of any of the identifiers in the UNSTRING statement, these values are determined at the beginning of the
UNSTRING statement, and are not affected by any results of the UNSTRING statement.

Example of the UNSTRING statement
This topic lists an example for the UNSTRING statement.

The following figure shows the execution results for an example of the UNSTRING statement.

470 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

WRITE statement
The WRITE statement releases a logical record to an output or input/output file.

When the WRITE statement is executed:

• The associated sequential file must be open in OUTPUT or EXTEND mode.
• The associated indexed or relative file must be open in OUTPUT, I-O, or EXTEND mode.

Format 1: WRITE statement for sequential files
WRITE record-name-1

FROM identifier-1

BEFORE

AFTER ADVANCING

identifier-2

integer-1 LINE

LINES

mnemonic-name-1

PAGE

phrase 1

invalid_key not_invalid_key

END-WRITE

phrase 1

AT

END-OF-PAGE

EOP

imperative-statement-3

NOT

AT

END-OF-PAGE

EOP

imperative-statement-4

invalid_key

INVALID

KEY

imperative-statement-1

not_invalid_key

NOT INVALID

KEY

imperative-statement-2

Chapter 28. PROCEDURE DIVISION statements 471

Format 2: WRITE statement for indexed and relative files
WRITE record-name-1

FROM identifier-1

INVALID

KEY

imperative-statement-1

NOT INVALID

KEY

imperative-statement-2 END-WRITE

Format 3: WRITE statement for line-sequential files
WRITE record-name-1

FROM identifier-1

AFTER

ADVANCING

identifier-2

integer-1 LINE

LINES

PAGE

END-WRITE

record-name-1
Must be defined in a DATA DIVISION FD entry. record-name-1 can be qualified. It must not be
associated with a sort or merge file.

For relative files, the number of character positions in the record being written can be different from
the number of character positions in the record being replaced.

FROM phrase
The result of the execution of the WRITE statement with the FROM identifier-1 phrase is equivalent to
the execution of the following statements in the order specified:

MOVE identifier-1 TO record-name-1.
WRITE record-name-1.

The MOVE is performed according to the rules for a MOVE statement without the CORRESPONDING
phrase.

identifier-1
identifier-1 can reference any of the following items:

• A data item defined in the WORKING-STORAGE SECTION, the LOCAL-STORAGE SECTION, or the
LINKAGE SECTION

• A record description for another previously opened file
• An alphanumeric function
• A national function

472 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

identifier-1 must be a valid sending item for a MOVE statement with record-name-1 as the receiving
item.

identifier-1 and record-name-1 must not refer to the same storage area.

After the WRITE statement is executed, the information is still available in identifier-1. (See “INTO and
FROM phrases” on page 304 under "Common processing facilities".)

identifier-2
Must be an integer data item.

ADVANCING phrase
The ADVANCING phrase controls positioning of the output record on the page.

The BEFORE and AFTER phrases are not supported for VSAM files. QSAM files are sequentially organized.
The ADVANCING and END-OF-PAGE phrases control the vertical positioning of each line on a printed
page.

You can specify the ADVANCING PAGE and END-OF-PAGE phrases in a single WRITE statement.

If the printed page is held on an intermediate device (a disk, for example), the format can appear different
from the expected format when the output is edited or browsed.

ADVANCING phrase rules

When the ADVANCING phrase is specified, the following rules apply:

1. When BEFORE ADVANCING is specified, the line is printed before the page is advanced.
2. When AFTER ADVANCING is specified, the page is advanced before the line is printed.
3. When identifier-2 is specified, the page is advanced the number of lines equal to the current value in

identifier-2. identifier-2 must name an elementary integer data item.
4. When integer is specified, the page is advanced the number of lines equal to the value of integer.
5. Integer or the value in identifier-2 can be zero.
6. When PAGE is specified, the record is printed on the logical page BEFORE or AFTER (depending on the

phrase used) the device is positioned to the next logical page. If PAGE has no meaning for the device
used, then BEFORE or AFTER (depending on the phrase specified) ADVANCING 1 LINE is provided.

If the FD entry contains a LINAGE clause, the repositioning is to the first printable line of the next page,
as specified in that clause. If the LINAGE clause is omitted, the repositioning is to line 1 of the next
succeeding page.

7. When mnemonic-name is specified, a skip to channels 1 through 12, or space suppression, takes
place. mnemonic-name must be equated with environment-name-1 in the SPECIAL-NAMES paragraph.

The mnemonic-name phrase can also be specified for stacker selection with a card punch file. When
using stacker selection, WRITE AFTER ADVANCING must be used.

The ADVANCING phrase of the WRITE statement, or the presence of a LINAGE clause on the file, causes
a carriage control character to be generated in the record that is written. If the corresponding file is
described with the EXTERNAL clause, all file connectors within the run unit must be defined such that
carriage control characters will be generated for records that are written. That is, if all the files have a
LINAGE clause, some of the programs can use the WRITE statement with the ADVANCING phrase and
other programs can use the WRITE statement without the ADVANCING phrase. However, if none of the
files has a LINAGE clause, then if any of the programs use the WRITE statement with the ADVANCING
phrase, all of the programs in the run unit that have a WRITE statement must use the WRITE statement
with the ADVANCING phrase.

When the ADVANCING phrase is omitted, automatic line advancing is provided, as if AFTER ADVANCING 1
LINE had been specified.

LINAGE-COUNTER rules

Chapter 28. PROCEDURE DIVISION statements 473

If the LINAGE clause is specified for this file, the associated LINAGE-COUNTER special register is
modified during the execution of the WRITE statement, according to the following rules:

1. If ADVANCING PAGE is specified, LINAGE-COUNTER is reset to 1.
2. If ADVANCING identifier-2 or integer is specified, LINAGE-COUNTER is increased by the value in

identifier-2 or integer.
3. If the ADVANCING phrase is omitted, LINAGE-COUNTER is increased by 1.
4. When the device is repositioned to the first available line of a new page, LINAGE-COUNTER is reset to

1.

Usage note: If you use the ADV compiler option, the compiler adds 1 byte to the record length in order to
allow for the control character. If in your record definition you already reserve the first byte for the control
character, you should use the NOADV option. For files defined with the LINAGE clause, the NOADV option
has no effect. The compiler processes these files as if the ADV option were specified.

END-OF-PAGE phrases

The AT END-OF-PAGE phrase is not supported for VSAM files.

When END-OF-PAGE is specified, and the logical end of the printed page is reached during execution
of the WRITE statement, the END-OF-PAGE imperative-statement is executed. When the END-OF-PAGE
phrase is specified, the FD entry for this file must contain a LINAGE clause.

The logical end of the printed page is specified in the associated LINAGE clause.

An END-OF-PAGE condition is reached when execution of a WRITE END-OF-PAGE statement causes
printing or spacing within the footing area of a page body. This occurs when execution of such a WRITE
statement causes the value in the LINAGE-COUNTER special register to equal or exceed the value
specified in the WITH FOOTING phrase of the LINAGE clause. The WRITE statement is executed, and
then the END-OF-PAGE imperative-statement is executed.

An automatic page overflow condition is reached whenever the execution of any given WRITE statement
(with or without the END-OF-PAGE phrase) cannot be completely executed within the current page body.
This occurs when a WRITE statement, if executed, would cause the value in the LINAGE-COUNTER to
exceed the number of lines for the page body specified in the LINAGE clause. In this case, the line
is printed BEFORE or AFTER (depending on the option specified) the device is repositioned to the first
printable line on the next logical page, as specified in the LINAGE clause. If the END-OF-PAGE phrase is
specified, the END-OF-PAGE imperative-statement is then executed.

If the WITH FOOTING phrase of the LINAGE clause is not specified, the automatic page overflow
condition exists because no end-of-page condition (as distinct from the page overflow condition) can
be detected.

If the WITH FOOTING phrase is specified, but the execution of a given WRITE statement would cause
the LINAGE-COUNTER to exceed both the footing value and the page body value specified in the
LINAGE clause, then both the end-of-page condition and the automatic page overflow condition occur
simultaneously.

The keywords END-OF-PAGE and EOP are equivalent.

You can specify both the ADVANCING PAGE phrase and the END-OF-PAGE phrase in a single WRITE
statement.

INVALID KEY phrases

The INVALID KEY phrase is not supported for VSAM sequential files.

An invalid key condition is caused by the following cases:

• For sequential files, an attempt is made to write beyond the externally defined boundary of the file.

474 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• For indexed files:

– An attempt is made to write beyond the externally defined boundary of the file.
– ACCESS SEQUENTIAL is specified and the file is opened OUTPUT, and the value of the prime record

key is not greater than that of the previous record.
– The file is opened OUTPUT or I-O and the value of the prime record key equals that of an already

existing record.
• For relative files:

– An attempt is made to write beyond the externally defined boundary of the file.
– When the access mode is random or dynamic and the RELATIVE KEY data item specifies a record that

already exists in the file.
– The number of significant digits in the relative record number is larger than the size of the relative key

data item for the file.

When an invalid key condition occurs:

• If the INVALID KEY phrase is specified, imperative-statement-1 is executed. For details of invalid key
processing, see Invalid key condition.

• Otherwise, the WRITE statement is unsuccessful and the contents of record-name are unaffected
(except for QSAM files) and the following case occurs:

– For sequential files, the file status key, if specified, is updated and an EXCEPTION/ERROR condition
exists.

If an explicit or implicit EXCEPTION/ERROR procedure is specified for the file, the procedure is
executed. If no such procedure is specified, the results are unpredictable.

– For relative and indexed files, program execution proceeds according to the rules described by
Invalid key condition under "Common processing facilities".

The INVALID KEY conditions that apply to a relative file in OPEN OUTPUT mode also apply to one in
OPEN EXTEND mode.

• If the NOT INVALID KEY phrase is specified and a valid key condition exists at the end of the execution
of the WRITE statement, control is passed to imperative-statement-4.

Both the INVALID KEY phrase and an applicable EXCEPTION/ERROR procedure can be omitted.

END-WRITE phrase
This explicit scope terminator serves to delimit the scope of the WRITE statement. END-WRITE permits
a conditional WRITE statement to be nested in another conditional statement. END-WRITE can also be
used with an imperative WRITE statement.

For more information, see “Delimited scope statements” on page 293.

WRITE for sequential files
The maximum record size for sequential files is established at the time the file is created and cannot
subsequently be changed.

After the WRITE statement is executed, the logical record is no longer available in record-name-1 unless
either:

• The associated file is named in a SAME RECORD AREA clause (in which case, the record is also available
as a record of the other files named in the SAME RECORD AREA clause)

• The WRITE statement is unsuccessful because of a boundary violation.

In either of these two cases, the logical record is still available in record-name-1.

The file position indicator is not affected by execution of the WRITE statement.

Chapter 28. PROCEDURE DIVISION statements 475

The number of character positions required to store the record in a file might or might not be the same as
the number of character positions defined by the logical description of that record in the COBOL program.
(See “PICTURE clause editing” on page 219 and “USAGE clause” on page 237.)

If the FILE STATUS clause is specified in the file-control entry, the associated file status key is updated
when the WRITE statement is executed, whether or not execution is successful.

The WRITE statement can only be executed for a sequential file opened in OUTPUT or EXTEND mode for
QSAM files.

Punch function files with the IBM 3525
When the punch function is used, the next I-O operation after the READ statement must be a WRITE
statement for the punch function file.

If you want to punch additional data into some of the cards and not into others, a dummy WRITE
statement must be executed for the null cards, first filling the output area with SPACES.

If stacker selection for the punch function file is required, you can specify the appropriate stacker
function-names in the SPECIAL-NAMES paragraph, and then code WRITE ADVANCING statements using
the associated mnemonic-names.

Print function files
After the punch function operations (if specified) are completed, you can issue WRITE statements for the
print function file.

If you wish to print additional data on some of the data cards and not on others, the WRITE statement
for the null cards can be omitted. Any attempt to write beyond the limits of the card results in abnormal
termination of the application, thus, the END-OF-PAGE phrase cannot be specified.

Depending on the capabilities of the specific IBM 3525 model in use, the print file can be either a two-line
print file or a multiline print file. Up to 64 characters can be printed on each line.

• For a two-line print file, the lines are printed on line 1 (top edge of card) and line 3 (between rows 11
and 12). Line control cannot be specified. Automatic spacing is provided.

• For a multiline print file, up to 25 lines of characters can be printed. Line control can be specified. If line
control is not specified, automatic spacing is provided.

Line control is specified by issuing WRITE AFTER ADVANCING statements for the print function file. If line
control is used for one such statement, it must be used for all other WRITE statements for the file. The
maximum number of printable characters, including any space characters, is 64. Such WRITE statements
must not specify space suppression.

Identifier and integer have the same meanings they have for other WRITE AFTER ADVANCING
statements. However, such WRITE statements must not increase the line position on the card beyond
the card limit, or abnormal termination results.

The mnemonic-name option of the WRITE AFTER ADVANCING statement can also be specified. In the
SPECIAL-NAMES paragraph, the environment-names can be associated with the mnemonic-names, as
shown in the following table:

Table 55. Meanings of environment-names in SPECIAL NAMES paragraph

environment-name Meaning

C02 Line 3

C03 Line 5

C04 Line 7

C05 Line 9

476 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 55. Meanings of environment-names in SPECIAL NAMES paragraph (continued)

environment-name Meaning

... ...

C22 Line 21

C12 Line 23

Advanced Function Printing
When you use the WRITE ADVANCING phrase with a mnemonic-name associated with environment-name
AFP-5A, a Print Services Facility (PSF) control character is placed in the control character position of the
output record. This control character (X'5A') allows Advanced Function Printing (AFP) services to be used.
For more information, refer to the documentation for the Print Services Facility product: PSF for OS/390®

& z/OS (5655-B17).

WRITE for indexed files
Before the WRITE statement is executed for indexed files, you must set the prime record key (the
RECORD KEY data item, as defined in the file-control entry) to the required value. Note that RECORD KEY
values must be unique within a file.

If the ALTERNATE RECORD KEY clause is also specified in the file-control entry, each alternate record
key must be unique, unless the DUPLICATES phrase is specified. If the DUPLICATES phrase is specified,
alternate record key values might not be unique. In this case, the system stores the records so that later
sequential access to the records allows retrieval in the same order in which they were stored.

When ACCESS IS SEQUENTIAL is specified in the file-control entry, records must be released in ascending
order of RECORD KEY values.

When ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified in the file-control entry, records can be
released in any programmer-specified order.

WRITE for relative files
For relative record OUTPUT files, the WRITE statement causes actions as described in the topic.

• If ACCESS IS SEQUENTIAL is specified:

The first record released has relative record number 1, the second record released has relative record
number 2, the third number 3, and so on.

If the RELATIVE KEY is specified in the file-control entry, the relative record number of the record just
released is placed in the RELATIVE KEY during execution of the WRITE statement.

• If ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified, the RELATIVE KEY must contain the
required relative record number for this record before the WRITE statement is executed. When the
WRITE statement is executed, this record is placed at the specified relative record number position in
the file.

For I-O files, either ACCESS IS RANDOM or ACCESS IS DYNAMIC must be specified; the WRITE statement
inserts new records into the file. The RELATIVE KEY must contain the required relative record number for
this record before the WRITE statement is executed. When the WRITE statement is executed, this record
is placed at the specified relative record number position in the file.

Chapter 28. PROCEDURE DIVISION statements 477

XML GENERATE statement
The XML GENERATE statement converts data to XML format.

Format
XML GENERATE identifier-1 FROM identifier-2

COUNT

IN

identifier-3

WITH

ENCODING codepage

WITH

XML-DECLARATION

WITH

ATTRIBUTES

NAMESPACE

IS

identifier-4

literal-4 NAMESPACE-PREFIX

IS

identifier-5

literal-5

NAME

OF

identifier-6

IS

literal-6

TYPE

OF

identifier-7

IS

ATTRIBUTE

ELEMENT

CONTENT

SUPPRESS identifier-8

when-phrase

generic-suppression-phrase

ON

EXCEPTION imperative-statement-1

NOT

ON

EXCEPTION imperative-statement-2 END-XML

478 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

when-phrase Format

WHEN ZERO

ZEROES

ZEROS

SPACE

SPACES

LOW-VALUE

LOW-VALUES

HIGH-VALUE

HIGH-VALUES

OR

ZERO

ZEROES

ZEROS

SPACE

SPACES

LOW-VALUE

LOW-VALUES

HIGH-VALUE

HIGH-VALUES

generic-suppression-phrase Format

EVERY NUMERIC

ATTRIBUTE

CONTENT

ELEMENT

NONNUMERIC

ATTRIBUTE

CONTENT

ELEMENT

ATTRIBUTE

CONTENT

ELEMENT

when-phrase

identifier-1
The receiving area for a generated XML document. identifier-1 must reference one of the following
items:

• An elementary data item of category alphanumeric
• An alphanumeric group item
• An elementary data item of category national
• A national group item

When identifier-1 references a national group item, identifier-1 is processed as an elementary data
item of category national. When identifier-1 references an alphanumeric group item, identifier-1 is
treated as though it were an elementary data item of category alphanumeric.

identifier-1 must not be described with the JUSTIFIED clause, and cannot be a function identifier.
identifier-1 can be subscripted or reference modified.

identifier-1 must not overlap identifier-2, identifier-3, codepage (if an identifier), identifier-4, or
identifier-5.

Chapter 28. PROCEDURE DIVISION statements 479

identifier-1 must not be a dynamic-length group item or a dynamic-length elementary item.

The generated XML output is encoded as described in the documentation of the ENCODING phrase.

identifier-1 must reference a data item of category national, or the ENCODING phrase must specify
1208, if any of the following statements are true:

• The CODEPAGE compiler option specifies an EBCDIC DBCS code page.
• identifier-4 or identifier-5 references a data item of category national.
• literal-4, literal-5, or literal-6 is of category national.
• The generated XML includes data from identifier-2 for:

– Any data item of class national or class DBCS
– Any data item with a DBCS name (that is, a data item whose name consists of DBCS characters)
– Any data item of class alphanumeric that contains DBCS characters

identifier-1 must be large enough to contain the generated XML document. Typically, it must be from
5 to 10 times the size of identifier-2, depending on the length of the data-name or data-names
within identifier-2. If identifier-1 is not large enough, an error condition exists at the end of the XML
GENERATE statement.

identifier-2
The group or elementary data item to be converted to XML format.

If identifier-2 references a national group item, identifier-2 is processed as a group item. When
identifier-2 includes a subordinate national group item, that subordinate item is processed as a group
item.

identifier-2 cannot be a function identifier or be reference modified, but it can be subscripted.

identifier-2 must not overlap identifier-1 or identifier-3.

identifier-2 must not be a dynamic-length group item or a dynamic-length elementary item.

The data description entry for identifier-2 must not contain a RENAMES clause.

The following data items that are specified by identifier-2 are ignored by the XML GENERATE
statement:

• Any subordinate unnamed elementary data items or elementary FILLER data items
• Any slack bytes inserted for SYNCHRONIZED items
• Any data item subordinate to identifier-2 that is described with the REDEFINES clause or that is

subordinate to such a redefining item
• Any data item subordinate to identifier-2 that is described with the RENAMES clause
• Any group data item all of whose subordinate data items are ignored

All data items specified by identifier-2 that are not ignored according to the previous rules must satisfy
the following conditions:

• Each elementary data item must either have class alphabetic, alphanumeric, numeric, or national,
or be an index data item. (That is, no elementary data item can be described with the
USAGE POINTER, USAGE FUNCTION-POINTER, USAGE PROCEDURE-POINTER, or USAGE OBJECT
REFERENCE phrase.)

• There must be at least one such elementary data item.
• Each non-FILLER data-name must be unique within any immediately superordinate group data item.
• Any DBCS data-names, when converted to Unicode, must be legal as names in the XML
specification, version 1.0. For details about the XML specification, see XML specification.

For example, consider the following data declaration:

01 STRUCT.

480 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

http://www.w3.org/TR/xml/

 02 STAT PIC X(4).
 02 IN-AREA PIC X(100).
 02 OK-AREA REDEFINES IN-AREA.
 03 FLAGS PIC X.
 03 PIC X(3).
 03 COUNTER USAGE COMP-5 PIC S9(9).
 03 ASFNPTR REDEFINES COUNTER USAGE FUNCTION-POINTER.
 03 UNREFERENCED PIC X(92).
 02 NG-AREA1 REDEFINES IN-AREA.
 03 FLAGS PIC X.
 03 PIC X(3).
 03 PTR USAGE POINTER.
 03 ASNUM REDEFINES PTR USAGE COMP-5 PIC S9(9).
 03 PIC X(92).
 02 NG-AREA2 REDEFINES IN-AREA.
 03 FN-CODE PIC X.
 03 UNREFERENCED PIC X(3).
 03 QTYONHAND USAGE BINARY PIC 9(5).
 03 DESC USAGE NATIONAL PIC N(40).
 03 UNREFERENCED PIC X(12).

The following data items from the previous example can be specified as identifier-2:

• STRUCT, of which subordinate data items STAT and IN-AREA would be converted to XML format.
(OK-AREA, NG-AREA1, and NG-AREA2 are ignored because they specify the REDEFINES clause.)

• OK-AREA, of which subordinate data items FLAGS, COUNTER, and UNREFERENCED would be
converted. (The item whose data description entry specifies 03 PIC X(3) is ignored because it is
an elementary FILLER data item. ASFNPTR is ignored because it specifies the REDEFINES clause.)

• Any of the elementary data items that are subordinate to STRUCT except:

– ASFNPTR or PTR (disallowed usage)
– UNREFERENCED OF NG-AREA2 (nonunique names for data items that are otherwise eligible)
– Any FILLER data items

The following data items cannot be specified as identifier-2:

• NG-AREA1, because subordinate data item PTR specifies USAGE POINTER but does not specify the
REDEFINES clause. (PTR would be ignored if it specified the REDEFINES clause.)

• NG-AREA2, because subordinate elementary data items have the nonunique name UNREFERENCED.

COUNT IN phrase
If the COUNT IN phrase is specified, identifier-3 contains (after execution of the XML GENERATE
statement) the count of generated XML character encoding units. If identifier-1 (the receiver) has
category national, the count is in UTF-16 character encoding units. For all other encodings (including
UTF-8), the count is in bytes.
identifier-3

The data count field. Must be an integer data item defined without the symbol P in its picture
string.

identifier-3 must not overlap identifier-1, identifier-2, codepage (if an identifier), identifier-4, or
identifier-5.

ENCODING phrase
The ENCODING phrase, if specified, determines the encoding of the generated XML document.
codepage

Must be an unsigned integer data item or unsigned integer literal and must represent a valid coded
character set identifier (CCSID). Must identify one of the code pages supported for COBOL XML
processing as described in The encoding of XML documents in the Enterprise COBOL Programming
Guide.

If identifier-1 references a data item of category national, codepage must specify 1200, the CCSID
for Unicode UTF-16.

Chapter 28. PROCEDURE DIVISION statements 481

If identifier-1 references a data item of category alphanumeric, codepage must specify 1208 or
the CCSID of a supported EBCDIC code page as listed in The encoding of XML documents in the
Enterprise COBOL Programming Guide.

If codepage is an identifier, it must not overlap identifier-1 or identifier-3.

If the ENCODING phrase is omitted and identifier-1 is of category national, the document encoding is
Unicode UTF-16, CCSID 1200.

If the ENCODING phrase is omitted and identifier-1 is of category alphanumeric, the XML document is
encoded using the code page specified by the CODEPAGE compiler option in effect when the source
code was compiled.

If the ENCODING phrase is omitted and identifier-1 is of category alphanumeric, the XML document
is encoded using the code page specified by the EBCDIC_CODEPAGE environment variable in effect
when the source code was compiled.

XML-DECLARATION phrase
If the XML-DECLARATION phrase is specified, the generated XML document starts with an XML
declaration that includes the XML version information and an encoding declaration.

If identifier-1 is of category national, the encoding declaration has the value UTF-16
(encoding="UTF-16").

If identifier-1 is of category alphanumeric, the encoding declaration is derived from the ENCODING
phrase, if specified, or from the CODEPAGE compiler option in effect for the program if the ENCODING
phrase is not specified. See the description of the ENCODING phrase for further details.

For an example of the effect of coding the XML-DECLARATION phrase, see Generating XML output in
the Enterprise COBOL Programming Guide.

If the XML-DECLARATION phrase is omitted, the generated XML document does not include an XML
declaration.

ATTRIBUTES phrase
If the ATTRIBUTES phrase is specified, each eligible item included in the generated XML document
is expressed as an attribute of the XML element that corresponds to the data item immediately
superordinate to that eligible item, rather than as a child element of the XML element. To be eligible, a
data item must be elementary, must have a name other than FILLER, and must not specify an OCCURS
clause in its data description entry.

If the TYPE phrase is specified for particular identifiers, the TYPE phrase takes precedence for those
identifiers over the WITH ATTRIBUTES phrase.

For an example of the effect of the ATTRIBUTES phrase, see Generating XML output in the Enterprise
COBOL Programming Guide.

NAMESPACE and NAMESPACE-PREFIX phrases
Use the NAMESPACE phrase to identify a namespace for the generated XML document. If the
NAMESPACE phrase is not specified, or if identifier-4 has length zero or contains all spaces, the
element names of XML documents produced by the XML GENERATE statement are not in any
namespace.

Use the NAMESPACE-PREFIX phrase to qualify the start and end tag of each element in the generated
XML document with a prefix.

If the NAMESPACE-PREFIX phrase is not specified, or if identifier-5 is of length zero or contains all
spaces, the namespace specified by the NAMESPACE phrase specifies the default namespace for
the document. In this case, the namespace declared on the root element applies by default to each
element name in the document, including that of the root element. (Default namespace declarations
do not apply directly to attribute names.)

If the NAMESPACE-PREFIX phrase is specified, and identifier-5 is not of length zero and does not
contain all spaces, then the start and end tag of each element in the generated document is qualified
with the specified prefix. The prefix should therefore preferably be short. When the XML GENERATE

482 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

statement is executed, the prefix must be a valid XML name, but without the colon (:), as defined in
Namespaces in XML 1.0. The prefix can have trailing spaces, which are removed before use.

identifier-4, literal-4; identifier-5, literal-5
identifier-4, literal-4: The namespace identifier, which must be a valid Uniform Resource Identifier
(URI) as defined in Uniform Resource Identifier (URI): Generic Syntax.

identifier-5, literal-5: The namespace prefix, which serves as an alias for the namespace identifier.

identifier-4 and identifier-5 must reference data items of category alphanumeric or national.

identifier-4 and identifier-5 must not overlap identifier-1 or identifier-3.

literal-4 and literal-5 must be of category alphanumeric or national, and must not be figurative
constants.

For full details about namespaces, see Namespaces in XML 1.0.

For examples that show the use of the NAMESPACE and NAMESPACE-PREFIX phrases, see Generating
XML output in the Enterprise COBOL Programming Guide.

NAME phrase
Allows you to supply element and attribute names.
identifier-6 must reference identifier-2 or one of its subordinate data items. It cannot be a function
identifier and cannot be reference modified or subscripted. It must not specify any data item which is
ignored by the XML GENERATE statement. For more information about identifier-2, see the description
of identifier-2. If identifier-6 is specified more than once in the NAME phrase, the last specification is
used.
literal-6 must be an alphanumeric or national literal containing the attribute or element name to be
generated in the XML document corresponding to identifier-6. It must be a valid XML local name.
If literal-6 is a national literal, identifier-1 must reference a data item of category national or the
encoding phrase must specify 1208.

TYPE phrase
Allows you to control attribute and element generation.
identifier-7 must reference an elementary data item that is subordinate to identifier-2. It cannot be
a function identifier and cannot be reference modified or subscripted. It must not specify any data
item which is ignored by the XML GENERATE statement. For more information about identifier-2, see
the description of identifier-2. If identifier-7 is specified more than once in the TYPE phrase, the last
specification is used.

• If the XML GENERATE statement also includes a WITH ATTRIBUTES phrase, the TYPE phrase has
precedence for identifier-7.

• When ATTRIBUTE is specified, identifier-7 must be eligible to be an XML attribute. identifier-7 is
expressed in the generated XML as an attribute of the XML element immediately superordinate to
identifier-7 rather than as a child element.

• When ELEMENT is specified, identifier-7 is expressed in the generated XML as an element. The XML
element name is derived from identifier-7 and the element character content is derived from the
converted content of identifier-7 as described in “Operation of XML GENERATE” on page 485.

• When CONTENT is specified, identifier-7 is expressed in the generated XML as element character
content of the XML element that corresponds to the data item immediately superordinate to
identifier-7. The value of the element character content is derived from the converted content
of identifier-7 as described in “Operation of XML GENERATE” on page 485. When CONTENT is
specified for multiple identifiers all corresponding to the same superordinate identifier, the multiple
contributions to the element character content are concatenated.

SUPPRESS phrase
Allows you to identify and unconditionally suppress items that are subordinate to identifier-2 and
selectively generate output for the XML GENERATE statement. If the SUPPRESS phrase is specified,
identifier-1 must be large enough to contain the generated XML document before any suppression.

Chapter 28. PROCEDURE DIVISION statements 483

http://www.w3.org/TR/xml-names/#ns-decl
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.w3.org/TR/xml-names/

With the generic-suppression-phrase, elementary items subordinate to identifier-2 that are not
otherwise ignored by XML GENERATE operations are identified generically for potential suppression.
Either items of class numeric, if the NUMERIC keyword is specified, or items that are not of class
numeric, if the NONNUMERIC keyword is specified, or both, might be suppressed. If the ATTRIBUTE
keyword is specified, only items that would be expressed in the generated XML document as an
XML attribute are identified for potential suppression. If the ELEMENT keyword is specified, only
items that would be expressed in the generated XML document as an XML element are identified for
potential suppression. If the CONTENT keyword is specified, only items that would be expressed in
the generated XML document as element character content of the XML element corresponding to the
data item superordinate to the CONTENT data item are identified for potential suppression.
If multiple generic-suppression-phrase are specified, the effect is cumulative.
identifier-8 explicitly identifies items for potential suppression. If the WHEN phrase is specified,
identifier-8 must reference an elementary data item that is subordinate to identifier-2 and that is not
otherwise ignored by the XML GENERATE operations. identifier-8 cannot be a function identifier and
cannot be reference modified or subscripted.If the WHEN phrase is omitted, identifier-8 can reference
not only an elementary data item but also a group data item. That group data item and all data
items that are subordinate to the group item are suppressed. If identifier-8 is specified more than
once in the SUPPRESS phrase, the last specification is used. The explicit suppression specification for
identifier-8 overrides the suppression specification that is implied by any generic-suppression-phrase,
if identifier-8 is also one of the identifiers generically identified.

If identifier-8 is specified, the following rules apply to it:

• If ZERO, ZEROES, or ZEROS is specified in the WHEN phrase, identifier-8 must not be of USAGE
DISPLAY-1.

• If SPACE or SPACES is specified in the WHEN phrase, identifier-8 must be of USAGE DISPLAY,
DISPLAY-1, or NATIONAL. If identifier-8 is a zoned or national decimal item, it must be an integer.

• If LOW-VALUE, LOW-VALUES, HIGH-VALUE, or HIGH-VALUES is specified in the WHEN phrase,
identifier-8 must be of USAGE DISPLAY or NATIONAL. If identifier-8 is a zoned or national decimal
item, it must be an integer.

If the generic-suppression-phrase is specified, data items are selected for potential suppression
according to the following rules:

• If ZERO, ZEROES, or ZEROS is specified in the WHEN phrase, all data items except those that are
defined with USAGE DISPLAY-1 are selected.

• If SPACE or SPACES is specified in the WHEN phrase, data items of USAGE DISPLAY, DISPLAY-1, or
NATIONAL are selected. For zoned or national decimal items, only integers are selected.

• If LOW-VALUE, LOW-VALUES, HIGH-VALUE, or HIGH-VALUES is specified in the WHEN phrase, data
items of USAGE DISPLAY or NATIONAL are selected. For zoned or national decimal items, only
integers are selected.

The comparison operation that determines whether an item will be suppressed is a relation condition
as shown in the table of Comparisons involving figurative constants. That is, the comparison
is a numeric comparison if the value specified is ZERO, ZEROS, or ZEROES, and the item is
of class numeric. For all other cases, the comparison operation is an alphanumeric, DBCS, or
national comparison, depending on whether the item is of usage DISPLAY, DISPLAY-1 or NATIONAL,
respectively.
When the SUPPRESS phrase is specified, a group item subordinate to identifier-2 is suppressed in the
generated XML document if all the eligible items subordinate to the group item are suppressed or if,
after suppressing any subordinate items, the XML corresponding to the group item would be an empty
element with no attributes. The root element is always generated, even if all the items subordinate to
identifier-2 are suppressed.

ON EXCEPTION phrase
An exception condition exists when an error occurs during generation of the XML document, for
example if identifier-1 is not large enough to contain the generated XML document. In this case, XML
generation stops and the content of the receiver, identifier-1, is undefined. If the COUNT IN phrase

484 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

is specified, identifier-3 contains the number of character positions that were generated, which can
range from 0 to the length of identifier-1.

If the ON EXCEPTION phrase is specified, control is transferred to imperative-statement-1. If the ON
EXCEPTION phrase is not specified, the NOT ON EXCEPTION phrase, if any, is ignored, and control
is transferred to the end of the XML GENERATE statement. Special register XML-CODE contains
an exception code, as detailed in Handling XML GENERATE exceptions in the Enterprise COBOL
Programming Guide.

NOT ON EXCEPTION phrase
If an exception condition does not occur during generation of the XML document, control is passed to
imperative-statement-2, if specified, otherwise to the end of the XML GENERATE statement. The ON
EXCEPTION phrase, if specified, is ignored. Special register XML-CODE contains zero after execution
of the XML GENERATE statement.

END-XML phrase
This explicit scope terminator delimits the scope of XML GENERATE or XML PARSE statements.
END-XML permits a conditional XML GENERATE or XML PARSE statement (that is, an XML GENERATE
or XML PARSE statement that specifies the ON EXCEPTION or NOT ON EXCEPTION phrase) to be
nested in another conditional statement.

The scope of a conditional XML GENERATE or XML PARSE statement can be terminated by:

• An END-XML phrase at the same level of nesting
• A separator period

END-XML can also be used with an XML GENERATE or XML PARSE statement that does not specify
either the ON EXCEPTION or the NOT ON EXCEPTION phrase.

For more information about explicit scope terminators, see “Delimited scope statements” on page
293.

Nested XML GENERATE or XML PARSE statements
When a given XML GENERATE or XML PARSE statement appears as imperative-statement-1 or imperative-
statement-2, or as part of imperative-statement-1 or imperative-statement-2 of another XML GENERATE or
XML PARSE statement, that given XML GENERATE or XML PARSE statement is a nested XML GENERATE or
XML PARSE statement.

Nested XML GENERATE or XML PARSE statements are considered to be matched XML GENERATE and
END-XML combinations, or XML PARSE and END-XML combinations, proceeding from left to right. Thus,
any END-XML phrase that is encountered is matched with the nearest preceding XML GENERATE or XML
PARSE statement that has not been implicitly or explicitly terminated.

Operation of XML GENERATE
The content of each eligible elementary data item within identifier-2 that has not been suppressed from
XML generation according to a SUPPRESS phrase, is converted to character format.

Only the first definition of each storage area is processed. Redefinitions of data items are not included.
Data items that are effectively defined by the RENAMES clause are also not included.

For information about the format conversion of elementary data, see “Format conversion of elementary
data” on page 486 and “Trimming of generated XML data” on page 487.

If the TYPE OF phrase is specified, the converted content is then processed as element character content
or attribute value, according to the specifications on that phrase. If the TYPE OF phrase is not specified,
by default the converted content is inserted as element character content, or, if the WITH ATTRIBUTES
phrase is specified and the data item is eligible to be expressed as an attribute, as the value of the
attribute, in the generated XML document.

The XML element names and attribute names are obtained from the NAME phrase if specified; otherwise
by default they are derived from the data-names within identifier-2 as described in “XML element name
and attribute name formation” on page 487. The names of group items that contain the selected

Chapter 28. PROCEDURE DIVISION statements 485

elementary items are retained as parent elements. If the NAMESPACE-PREFIX phrase is specified, the
prefix value, minus any trailing spaces, is used to qualify the start and end tag of each element.

No extra white space (new lines, indentation, and so forth) is inserted to make the generated XML more
readable. An XML declaration is generated if the XML-DECLARATION phrase is specified.

If the receiving area specified by identifier-1 is not large enough to contain the resulting XML document,
an error condition exists. See the description of the ON EXCEPTION phrase above for details.

If identifier-1 is longer than the generated XML document, only that part of identifier-1 in which XML is
generated is changed. The rest of identifier-1 contains the data that was present before this execution of
the XML GENERATE statement. To avoid referring to that data, either initialize identifier-1 to spaces before
the XML GENERATE statement or specify the COUNT IN phrase.

If the COUNT IN phrase is specified, identifier-3 contains (after execution of the XML GENERATE
statement) the total number of character positions (UTF-16 encoding units or bytes) that were generated.
You can use identifier-3 as a reference modification length field to refer to the part of identifier-1 that
contains the generated XML document.

After execution of the XML GENERATE statement, special register XML-CODE contains either zero, which
indicates successful completion, or a nonzero exception code. For details, see Handling XML GENERATE
exceptions in the Enterprise COBOL Programming Guide.

The XML PARSE statement also uses special register XML-CODE. Therefore if you code an XML GENERATE
statement in the processing procedure of an XML PARSE statement, save the value of XML-CODE before
that XML GENERATE statement executes and restore the saved value after the XML GENERATE statement
terminates.

A byte order mark is not generated for XML documents that have Unicode encoding.

Format conversion of elementary data
Elementary data items within identifier-2 are converted in a sequence of several steps, some of them are
optional as described below.

Conversion to character format:

Elementary data items are converted to character format depending on the type of the data item:

• Data items of category alphabetic, alphanumeric, alphanumeric-edited, DBCS, external floating-point,
national, national-edited, and numeric-edited are not converted.

• Fixed-point numeric data items other than COMPUTATIONAL-5 (COMP-5) binary data items or binary
data items compiled with the TRUNC(BIN) compiler option are converted as if they were moved to a
numeric-edited item that has:

– As many integer positions as the numeric item has, but with at least one integer position
– An explicit decimal point, if the numeric item has at least one decimal position
– The same number of decimal positions as the numeric item has
– A leading '-' picture symbol if the data item is signed (has an S in its PICTURE clause)

• COMPUTATIONAL-5 (COMP-5) binary data items or binary data items compiled with the TRUNC(BIN)
compiler option are converted in the same way as the other fixed-point numeric items, except for the
number of integer positions. The number of integer positions is computed depending on the number of
'9' symbols in the picture character string as follows:

– 5 minus the number of decimal places, if the data item has 1 to 4 '9' picture symbols
– 10 minus the number of decimal places, if the data item has 5 to 9 '9' picture symbols
– 20 minus the number of decimal places, if the data item has 10 to 18 '9' picture symbols

• Internal floating-point data items are converted as if they were moved to a data item as follows:

– For COMP-1: an external floating-point data item with PICTURE -9.9(8)E+99

486 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

– For COMP-2: an external floating-point data item with PICTURE -9.9(17)E+99 (illegal because of the
number of digit positions)

• Index data items are converted as if they were declared USAGE COMP-5 PICTURE S9(9).

Trimming:

After any conversion to character format, leading and trailing spaces and leading zeroes are eliminated, as
described under “Trimming of generated XML data” on page 487.

Conversion to the document encoding:

If identifier-1 is a data item of category national, any nonnational values are converted to national format.

Conversion of special characters to XML references:

Any remaining instances of the five characters & (ampersand), ' (apostrophe), > (greater-than sign),
< (less-than sign), and " (quotation mark) are converted into the equivalent XML references '&',
''', '>', '<', and '"', respectively.

Replacement of out-of-range Unicode characters:

Any remaining Unicode character that has a Unicode scalar value greater than x'FFFF' is replaced by
an XML character reference. For example, if the document contains a character with Unicode scalar
value x'10813', in UTF-16, that value is represented by the surrogate pair (NX'D802', NX'DC13'), which
is replaced by the reference '𐠓'. For a document encoding of UTF-8, the byte sequence that is
equivalent to character reference '𐠓' is X'F090A093'.

Trimming of generated XML data
Trimming is performed on data values after their conversion to character format.

For more information about the conversion, see “Format conversion of elementary data” on page 486.

For values converted from signed numeric values, the leading space is removed if the value is positive.

For values converted from numeric items, leading zeroes (after any initial minus sign) up to but not
including the digit immediately before the actual or implied decimal point are eliminated. Trailing zeroes
after a decimal point are retained. For example:

• -012.340 becomes -12.340.
• 0000.45 becomes 0.45.
• 0013 becomes 13.
• 0000 becomes 0.

Character values from data items of class alphabetic, alphanumeric, DBCS, and national have either
trailing or leading spaces removed, depending on whether the corresponding data items have left
(default) or right justification, respectively. That is, trailing spaces are removed from values whose
corresponding data items do not specify the JUSTIFIED clause. Leading spaces are removed from values
whose data items do specify the JUSTIFIED clause. If a character value consists solely of spaces, one
space remains as the value after trimming is finished.

XML element name and attribute name formation
In the XML documents that are generated from identifier-2, the XML element names and attribute names
are obtained from the NAME phrase if specified; otherwise they are derived from the names of the data
item specified by identifier-2 and from any eligible data-names that are subordinate to identifier-2.

The formation of XML element name and attribute name is as follows:

• The exact mixed-case spelling of data-names from the data description entry is retained. The spellings
from any references to data items (for example, in an OCCURS DEPENDING ON clause) are not used.

• Data-names that start with a digit are prefixed by an underscore. For example, the data-name '3D'
becomes XML tag or attribute name '_3D'.

Chapter 28. PROCEDURE DIVISION statements 487

• Data-names that start with the characters 'xml', in any combination of uppercase and lowercase, are
prefixed by an underscore. For example, the data-name 'Xml' becomes XML tag or attribute name
'_Xml'.

DBCS data-names, when translated to Unicode, must be legal as names in the XML specification, version
1.0. For details about the XML specification, see XML specification.

XML PARSE statement
The XML PARSE statement is the COBOL language interface to either of two high-speed XML parsers,
depending on the setting of the XMLPARSE compiler option.

The two high-speed XML parsers are:

• The z/OS XML System Services parser, for enhanced parsing capabilities. This parser is selected by the
XMLPARSE(XMLSS) compiler option.

• The XML parser that is provided in the COBOL run time, for compatibility with Enterprise COBOL for z/OS
3. The compatible parser is selected by the XMLPARSE(COMPAT) compiler option.

The XML PARSE statement parses an XML document into its individual pieces and passes each piece, one
at a time, to a user-written processing procedure.

Format
XML PARSE identifier-1

WITH

ENCODING codepage

RETURNING NATIONAL

VALIDATING

WITH

identifier-2

FILE xml-schema-name-1

PROCESSING PROCEDURE

IS

procedure-name-1

THROUGH

THRU

procedure-name-2

ON

EXCEPTION imperative-statement-1

NOT

ON

EXCEPTION imperative-statement-2 END-XML

identifier-1
identifier-1 must be an elementary data item of category national, a national group, an elementary
data item of category alphanumeric, or an alphanumeric group item. identifier-1 cannot be a function-
identifier. identifier-1 contains the XML document character stream.

488 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

http://www.w3.org/TR/xml/

If identifier-1 is a national group item, identifier-1 is processed as an elementary data item of category
national.

If identifier-1 is of category national, its content must be encoded using Unicode UTF-16BE (CCSID
1200). If the XMLPARSE(COMPAT) compiler option is in effect, identifier-1 must not contain any
character entities that are represented using multiple encoding units. Use a character reference to
represent any such characters, for example:

• "񧘃" or
• "𐠓"

The letter x must be lowercase.

identifier-1 must not be a dynamic-length group item or a dynamic-length elementary item.

If identifier-1 is of category alphanumeric, its content must be encoded using one of the character
sets listed in Coded character sets for XML documents in the Enterprise COBOL Programming Guide. If
the XMLPARSE(COMPAT) compiler option is in effect, and identifier-1 is alphanumeric and contains an
XML document that does not specify an encoding declaration, the XML document is parsed with the
code page specified by the CODEPAGE compiler option.

If the XMLPARSE(XMLSS) compiler option is in effect, the XML document is parsed with the code page
specified in the ENCODING phrase; if the ENCODING phrase is not used, the document is parsed
with the code page specified by the CODEPAGE compiler option. Any encoding declaration in the XML
document is ignored.

RETURNING NATIONAL phrase
The RETURNING NATIONAL phrase can be specified only when the XMLPARSE(XMLSS) compiler
option is in effect.

When identifier-1 references a data item of category alphanumeric and the RETURNING NATIONAL
phrase is specified, XML document fragments are automatically converted to Unicode UTF-16
representation and returned to the processing procedure in the national special registers XML-NTEXT,
XML-NNAMESPACE, and XML-NNAMESPACE-PREFIX.

When the RETURNING NATIONAL phrase is not specified and identifier-1 references a data item
of category alphanumeric, the XML document fragments are returned to the processing procedure
in the alphanumeric special registers XML-TEXT, XML-NAMESPACE, and XML-NAMESPACE-PREFIX
except that when XMLPARSE(COMPAT) is in effect, text for the ATTRIBUTE-NATIONAL-CHARACTER
and CONTENT-NATIONAL-CHARACTER XML events is always returned in special register XML-NTEXT.

When identifier-1 references a national data item, XML document fragments are always returned in
Unicode UTF-16 representation in the national special registers XML-NTEXT, XML-NNAMESPACE, and
XML-NNAMESPACE-PREFIX.

VALIDATING phrase
The VALIDATING phrase specifies that the parser should validate the XML document against an
XML schema while parsing it. In Enterprise COBOL, the schema used for XML validation is in a
preprocessed format known as Optimized Schema Representation or OSR. The VALIDATING phrase
can be specified only when the XMLPARSE(XMLSS) compiler option is in effect.

See Parsing XML documents with validation in the Enterprise COBOL Programming Guide for details.

identifier-2 must not be a dynamic-length group item or a dynamic-length elementary item.

If the FILE keyword is not specified, identifier-2 must reference a data item that contains the
optimized XML schema. identifier-2 must be of category alphanumeric and cannot be a function-
identifier.

If the FILE keyword is specified, xml-schema-name-1 identifies an existing z/OS UNIX file or MVS
data set that contains the optimized XML schema. xml-schema-name-1 must be associated with the
external file name of the schema by using the XML-SCHEMA clause. For more information about the
XML-SCHEMA clause, see “SPECIAL-NAMES paragraph” on page 124.

Restriction: XML validation using the FILE keyword is not supported under CICS.

Chapter 28. PROCEDURE DIVISION statements 489

During parsing with validation, normal XML events are returned as for nonvalidating parsing until an
exception occurs due to a validation error or other error in the document.

When an XML document is not valid, the parser signals an XML exception and passes control to the
processing procedure with special register XML-EVENT containing 'EXCEPTION' and special-register
XML-CODE containing return code 24 in the high-order halfword and a reason code in the low-order
halfword.

For information about the return code and reason code for exceptions that might occur when parsing
XML documents with validation, see XML PARSE exceptions with XMLPARSE(XMLSS) in effect in the
Enterprise COBOL Programming Guide.

ENCODING phrase
The ENCODING phrase can be specified only when the XMLPARSE(XMLSS) compiler option is in effect.

The ENCODING phrase specifies an encoding that is assumed for the source XML document in
identifier-1. codepage must be an unsigned integer data item or an unsigned integer literal that
represents a valid coded character set identifier (CCSID). The ENCODING phrase specification
overrides the encoding specified by the CODEPAGE compiler option. The encoding specified in any
XML declaration is always ignored.

If identifier-1 references a data item of category national, codepage must specify CCSID 1200, for
Unicode UTF-16.

If identifier-1 references a data item of category alphanumeric, codepage must specify CCSID 1208
for UTF-8 or a CCSID for a supported EBCDIC or ASCII codepage. See Coded character sets for XML
documents in the Enterprise COBOL Programming Guide for details.

PROCESSING PROCEDURE phrase
Specifies the name of a procedure to handle the various events that the XML parser generates.
procedure-name-1, procedure-name-2

Must name a section or paragraph in the PROCEDURE DIVISION. When both procedure-name-1
and procedure-name-2 are specified, if either is a procedure name in a declarative procedure,
both must be procedure names in the same declarative procedure.

procedure-name-1
Specifies the first (or only) section or paragraph in the processing procedure.

procedure-name-2
Specifies the last section or paragraph in the processing procedure.

For each XML event, the parser transfers control to the first statement of the procedure named
procedure-name-1. Control is always returned from the processing procedure to the XML parser. The
point from which control is returned is determined as follows:

• If procedure-name-1 is a paragraph name and procedure-name-2 is not specified, the return is
made after the execution of the last statement of the procedure-name-1 paragraph.

• If procedure-name-1 is a section name and procedure-name-2 is not specified, the return is made
after the execution of the last statement of the last paragraph in the procedure-name-1 section.

• If procedure-name-2 is specified and it is a paragraph name, the return is made after the execution
of the last statement of the procedure-name-2 paragraph.

• If procedure-name-2 is specified and it is a section name, the return is made after the execution of
the last statement of the last paragraph in the procedure-name-2 section.

The only necessary relationship between procedure-name-1 and procedure-name-2 is that they
define a consecutive sequence of operations to execute, beginning at the procedure named by
procedure-name-1 and ending with the execution of the procedure named by procedure-name-2.

If there are two or more logical paths to the return point, then procedure-name-2 can name a
paragraph that consists of only an EXIT statement; all the paths to the return point must then lead to
this paragraph.

The processing procedure consists of all the statements at which XML events are handled. The
range of the processing procedure includes all statements executed by CALL, EXIT, GO TO, GOBACK,

490 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

INVOKE, MERGE, PERFORM, and SORT statements that are in the range of the processing procedure,
as well as all statements in declarative procedures that are executed as a result of the execution of
statements in the range of the processing procedure.

The range of the processing procedure must not cause the execution of any GOBACK or EXIT
PROGRAM statement, except to return control from a method or program to which control was
passed by an INVOKE or CALL statement, respectively, that is executed in the range of the processing
procedure.

The range of the processing procedure must not cause the execution of an XML PARSE statement,
unless the XML PARSE statement is executed in a method or outermost program to which control was
passed by an INVOKE or CALL statement that is executed in the range of the processing procedure.

A program executing on multiple threads can execute the same XML statement or different XML
statements simultaneously.

The processing procedure can terminate the run unit with a STOP RUN statement.

For more details about the processing procedure, see “Control flow” on page 492.

ON EXCEPTION
The ON EXCEPTION phrase specifies imperative statements that are executed when the XML PARSE
statement raises an exception condition.

An exception condition exists when the XML parser detects an error in processing the XML document.
The parser first signals an XML exception by passing control to the processing procedure with
special register XML-EVENT containing 'EXCEPTION'. The parser also provides a numeric error code
in special register XML-CODE, as detailed in Handling XML PARSE exceptions in the Enterprise COBOL
Programming Guide.

An exception condition also exists if the processing procedure sets XML-CODE to -1 before returning
to the parser for any normal XML event. In this case, the parser does not signal an EXCEPTION XML
event and parsing is terminated.

If the ON EXCEPTION phrase is specified, the parser transfers control to imperative-statement-1. If
the ON EXCEPTION phrase is not specified, the NOT ON EXCEPTION phrase, if any, is ignored and
control is transferred to the end of the XML PARSE statement.

Special register XML-CODE contains the numeric error code for the XML exception or -1 after
execution of the XML PARSE statement.

If the processing procedure handles the XML exception event and sets XML-CODE to zero before
returning control to the parser, the exception condition no longer exists. If no other unhandled
exceptions occur before termination of the parser, control is transferred to imperative-statement-2
of the NOT ON EXCEPTION phrase, if specified.

NOT ON EXCEPTION
The NOT ON EXCEPTION phrase specifies imperative statements that are executed when no
exception condition exists at the termination of XML PARSE processing.

If an exception condition does not exist at termination of XML PARSE processing, control is transferred
to imperative-statement-2 of the NOT ON EXCEPTION phrase, if specified. If the NOT ON EXCEPTION
phrase is not specified, control is transferred to the end of the XML PARSE statement. The ON
EXCEPTION phrase, if specified, is ignored.

Special register XML-CODE contains zero after execution of the XML PARSE statement.

END-XML phrase
This explicit scope terminator delimits the scope of XML GENERATE or XML PARSE statements.
END-XML permits a conditional XML GENERATE or XML PARSE statement (that is, an XML GENERATE
or XML PARSE statement that specifies the ON EXCEPTION or NOT ON EXCEPTION phrase) to be
nested in another conditional statement.

The scope of a conditional XML GENERATE or XML PARSE statement can be terminated by:

• An END-XML phrase at the same level of nesting

Chapter 28. PROCEDURE DIVISION statements 491

• A separator period

END-XML can also be used with an XML GENERATE or XML PARSE statement that does not specify
either the ON EXCEPTION or NOT ON EXCEPTION phrase.

For more information about explicit scope terminators, see “Delimited scope statements” on page
293.

Nested XML GENERATE or XML PARSE statements
When a given XML GENERATE or XML PARSE statement appears as imperative-statement-1 or imperative-
statement-2, or as part of imperative-statement-1 or imperative-statement-2 of another XML GENERATE or
XML PARSE statement, that given XML GENERATE or XML PARSE statement is a nested XML GENERATE or
XML PARSE statement.

Nested XML GENERATE or XML PARSE statements are considered to be matched XML GENERATE and
END-XML, or XML PARSE and END-XML combinations proceeding from left to right. Thus, any END-XML
phrase that is encountered is matched with the nearest preceding XML GENERATE or XML PARSE
statement that has not been implicitly or explicitly terminated.

Control flow
When the XML parser receives control from an XML PARSE statement, the parser analyzes the XML
document and transfers control at specific points in the process.

The points are:

• The start of the parsing process
• When a document fragment is found
• When the parser detects an error in parsing the XML document
• The end of processing the XML document

Control returns to the XML parser when the end of the processing procedure is reached.

The exchange of control between the parser and the processing procedure continues until either:

• The entire XML document has been parsed, ending with the END-OF-DOCUMENT event.
• The processing procedure terminates parsing deliberately by setting XML-CODE to -1 before returning

to the parser.
• When the XMLPARSE(XMLSS) compiler option is in effect: The parser detects an exception of any kind.
• When the XMLPARSE(COMPAT) compiler option is in effect: The parser detects an exception (other than

an encoding conflict) and the processing procedure does not reset special register XML-CODE to zero
before to returning to the parser.

• When the XMLPARSE(COMPAT) compiler option is in effect: The parser detects an encoding conflict
exception and the processing procedure does not reset special register XML-CODE to zero or to the
CCSID of the document encoding.

In each case, the processing procedure returns control to the parser. Then, the parser terminates and
returns control to the XML PARSE statement with the XML-CODE special register containing the most
recent value set by the parser or -1 (which might have been set by the parser or by the processing
procedure).

For each XML event passed to the processing procedure, the XML-CODE and XML-EVENT special
registers contain information about the particular event. Special register XML-EVENT is set to the
event name, such as 'START-OF-DOCUMENT'. For most events, the XML-TEXT or XML-NTEXT special
register contains document text. Additionally, when the XMLPARSE(XMLSS) compiler option is in effect,
the XML-NAMESPACE and XML-NAMESPACE-PREFIX or the XML-NNAMESPACE and XML-NNAMESPACE-
PREFIX special registers contain a namespace identifier and namespace prefix when applicable. See
“XML-EVENT” on page 29 for details.

492 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The content of the XML-CODE special register is defined during and after execution of an XML PARSE
statement. The contents of all other XML special registers are undefined outside the range of the
processing procedure.

For normal XML events, special register XML-CODE contains zero when the processing procedure receives
control. For XML exception events, XML-CODE contains an XML exception code as described in XML PARSE
exceptions in the Enterprise COBOL Programming Guide.

For more information about the XML special registers, see:

• “XML-CODE” on page 28
• “XML-EVENT” on page 29
• “XML-INFORMATION” on page 34
• “XML-NAMESPACE” on page 34
• “XML-NAMESPACE-PREFIX” on page 36
• “XML-NNAMESPACE” on page 35
• “XML-NNAMESPACE-PREFIX” on page 36
• “XML-NTEXT” on page 37
• “XML-TEXT” on page 37

For an introduction to special registers, see “Special registers” on page 17

For more information about the EXCEPTION event and exception processing, see Handling XML PARSE
exceptions in the Enterprise COBOL Programming Guide.

Chapter 28. PROCEDURE DIVISION statements 493

494 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Part 7. Intrinsic functions
An intrinsic function is a function that performs a mathematical, character, or logical operation. You can
use intrinsic functions to make reference to a data item whose value is derived automatically during
execution.

Data processing problems often require the use of values that are not directly accessible in the data
storage associated with the object program, but instead must be derived through performing operations
on other data. An intrinsic function is a function that performs a mathematical, character, or logical
operation, and thereby allows you to make reference to a data item whose value is derived automatically
during execution.

The intrinsic functions can be grouped into six categories, based on the type of service performed:

• Mathematical
• Statistical
• Date/time
• Financial
• Character-handling
• General

You can reference a function by specifying its name, along with any required arguments, in a PROCEDURE
DIVISION statement.

Functions are elementary data items, and return alphanumeric character, national character, numeric, or
integer values. Functions cannot serve as receiving operands.

© Copyright IBM Corp. 1991, 2024 495

496 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 29. Specifying a function
This topic describes the general format of a function-identifier.

Format: Function-identifier
FUNCTION function-name-1

(argument-1)

reference-modifier

Note: The keyword FUNCTION may be omitted if you specify the function name in the REPOSITORY
paragraph of your program.

function-name-1
function-name-1 must be one of the intrinsic function names.

argument-1
argument-1 must be an identifier, a literal (other than a figurative constant), or an arithmetic
expression that satisfies the argument requirements for the specified function.

reference-modifier
Can be specified only for functions of type alphanumeric or national.

A function-identifier can be specified wherever a data item of the type of the function is allowed. The
argument to a function can be any function or an expression containing a function, including another
evaluation of the same function, whose result meets the requirements for the argument.

Within a PROCEDURE DIVISION statement, each function-identifier is evaluated at the same time as
any reference modification or subscripting associated with an identifier in that same position would be
evaluated.

Function definition and evaluation
The class and characteristics of a function, and the number and types of arguments it requires, are
determined by its function definition.

These characteristics include:

• For functions of type alphanumeric, national, and UTF-8, the size of the returned value
• For functions of type numeric and integer, the sign of the returned value, and whether the function is

integer
• The actual value returned by the function

For some functions, the class and characteristics are determined by the arguments to the function.

The evaluation of any intrinsic function is not affected by the context in which it appears; in other words,
function evaluation is not affected by operations or operands outside the function. However, evaluation of
a function can be affected by the attributes of its arguments.

Within a PROCEDURE DIVISION statement, each function-identifier is evaluated at the same time as
any reference modification or subscripting associated with an identifier in that same position would be
evaluated.

© Copyright IBM Corp. 1991, 2024 497

Types of functions
The topic introduces types of functions in COBOL.

COBOL has the following types of functions:

• Alphanumeric
• National
• UTF-8
• Numeric
• Integer

Alphanumeric functions are of class and category alphanumeric. The value returned has an implicit usage
of DISPLAY. The number of character positions in the value returned is determined by the function
definition.

National functions are of class and category national. The value returned has an implicit usage of
NATIONAL and is represented in national characters (UTF-16). The number of character positions in
the value returned is determined by the function definition.

UTF-8 functions are of class and category UTF-8. The value returned has an implicit usage of UTF-8 and
is represented in UTF-8 characters (UTF-8). The number of character positions in the value returned is
determined by the function definition.

Numeric functions are of class and category numeric. The returned value is always considered to have an
operational sign and is a numeric intermediate result. For more information, see Using numeric intrinsic
functions in the Enterprise COBOL Programming Guide.

Integer functions are of class and category numeric. The returned value is always considered to have an
operational sign and is an integer intermediate result. The number of digit positions in the value returned
is determined by the function definition. For more information, see Using numeric intrinsic functions in the
Enterprise COBOL Programming Guide.

Rules for usage
The topic describes rules of using different types of functions.

Alphanumeric functions
An alphanumeric function can be specified anywhere in the general formats that a data item of class
and category alphanumeric is permitted and where the rules associated with the general formats do
not specifically prohibit reference to functions, except as noted below.

An alphanumeric function can be used as an argument for any function that allows an alphanumeric
argument.

Reference modification of an alphanumeric function is allowed. If reference modification is specified
for a function, the evaluation of the reference modification takes place immediately after the
evaluation of the function; that is, the function's returned value is reference-modified.

An alphanumeric function cannot be used:

• As a receiving operand of any statement
• Where the rules associated with the general formats require the data item being referenced to have

particular characteristics (such as class and category, usage, size, and permissible values) and the
evaluation of the function according to its definition and the particular arguments specified would
not have those characteristics

National functions
A national function can be specified anywhere in the general formats that a data item of class
and category national is permitted and where the rules associated with the general formats do not
specifically prohibit reference to functions, except as noted below.

498 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

A national function can be used as an argument for any function that allows a national argument.

Reference modification of a national function is allowed. If reference modification is specified for a
function, the evaluation of the reference modification takes place immediately after the evaluation of
the function; that is, the function's returned value is reference-modified.

A national function cannot be used:

• As a receiving operand of any statement
• Where the rules associated with the general formats require the data item being referenced to have

particular characteristics (such as class and category, usage, size, and permissible values) and the
evaluation of the function according to its definition and the particular arguments specified would
not have those characteristics

UTF-8 functions
A UTF-8 function can be specified anywhere in the general formats that a data item of class
and category UTF-8 is permitted and where the rules associated with the general formats do not
specifically prohibit reference to functions, except as noted below.

A UTF-8 function can be used as an argument for any function that allows a UTF-8 argument.

Reference modification of a UTF-8 function is allowed. If reference modification is specified for a
function, the evaluation of the reference modification takes place immediately after the evaluation of
the function; that is, the function's returned value is reference-modified.

A UTF-8 function cannot be used:

• As a receiving operand of any statement
• Where the rules associated with the general formats require the data item being referenced to have

particular characteristics (such as class and category, usage, size, and permissible values) and the
evaluation of the function according to its definition and the particular arguments specified would
not have those characteristics

Numeric functions
A numeric function can be used only where an arithmetic expression can be specified.

A numeric function can be referenced as an argument for a function that allows a numeric argument.

A numeric function cannot be used where an integer operand is required, even if the particular
reference would yield an integer value. The INTEGER or INTEGER-PART functions can be used to force
the type of a numeric argument to be an integer.

Integer functions
An integer function can be used only where an arithmetic expression can be specified.

An integer function can be referenced as an argument for a function that allows a numeric argument.

Usage notes:

• A function-identifier cannot be used in the BY REFERENCE phrase of a CALL statement (that is,
identifier-2 of the CALL statement must not be a function-identifier).

• The COPY statement accepts function-identifiers of all types in the REPLACING phrase.

Arguments
The value returned by some functions is determined by the arguments specified in the function-identifier
when the functions are evaluated. Some functions require no arguments; others require a fixed number of
arguments, and still others accept a variable number of arguments.

An argument must be one of the following items:

• A data item identifier
• An arithmetic expression
• A function-identifier

Chapter 29. Specifying a function 499

• A literal other than a figurative constant
• A special-register

See Chapter 30, “Function definitions,” on page 509 for function-specific argument specifications.

The types of arguments are:

Alphabetic
An elementary data item of the class alphabetic or an alphanumeric literal containing only alphabetic
characters. The content of the argument is used to determine the value of the function. The length of
the argument can be used to determine the value of the function.

Alphanumeric
A data item of the class alphabetic or alphanumeric or an alphanumeric literal. The content of the
argument is used to determine the value of the function. The length of the argument can be used to
determine the value of the function.

DBCS
An elementary data item of class DBCS or a DBCS literal. The content of the argument is used to
determine the value of the function. The length of the argument can be used to determine the value
of the function. (A DBCS data item or literal can be used as an argument only for the NATIONAL-OF
function.)

National
A data item of class national (category national, national-edited, or numeric-edited). The content of
the argument is used to determine the value of the function. The length of the argument can be used
to determine the value of the function.

UTF-8
A data item of class UTF-8 (category UTF-8). The content of the argument is used to determine the
value of the function. The length of the argument can be used to determine the value of the function.

Integer
An arithmetic expression that always results in an integer value. The value of the expression, including
its sign, is used to determine the value of the function.

Numeric
An arithmetic expression. The expression can include numeric literals and data items of categories
numeric, internal floating-point, and external floating-point. The numeric data items can have any
usage permitted for the category of the data item (including NATIONAL). The value of the expression,
including its sign, is used to determine the value of the function.

Keyword
A keyword shall be specified in accordance with the intrinsic function definition. The TRIM intrinsic
function is an example of an intrinsic function with a keyword argument. The keywords LEADING and
TRAILING may be specified as the second and optional argument of TRIM.

Some functions place constraints on their arguments, such as the acceptable range of values. If the
values assigned as arguments for a function do not comply with specified constraints, the returned value
is undefined.

If a nested function is used as an argument, the evaluation of its arguments is not affected by the
arguments in the outer function.

Only those arguments at the same function level interact with each other. This interaction occurs in two
areas:

• The computation of an arithmetic expression that appears as a function argument is affected by other
arguments for that function.

• The evaluation of the function takes into consideration the attributes of all of its arguments.

When a function is evaluated, its arguments are evaluated individually in the order specified in the list of
arguments, from left to right. The argument being evaluated can be a function-identifier or an expression
that includes function-identifiers.

500 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If an arithmetic expression is specified as an argument and if the first operator in the expression is a unary
plus or a unary minus, the expression must be immediately preceded by a left parenthesis.

Floating-point literals are allowed wherever a numeric argument is allowed and in arithmetic expressions
used in functions that allow a numeric argument.

Internal floating-point items and external floating-point items (both display floating-point and national
floating-point) can be used wherever a numeric argument is allowed and in arithmetic expressions as
arguments to a function that allows a numeric argument.

Floating-point items and floating-point literals cannot be used where an integer argument is required or
where an argument of class alphanumeric or national is required (such as in the LOWER-CASE, REVERSE,
UPPER-CASE, NUMVAL, and NUMVAL-C functions).

Where a function allows an alphanumeric, a national, or a UTF-8 argument to be specified, an
alphanumeric group, a national or a UTF-8 group, respectively, can also be specified. However, an
unbounded group cannot be specified as a function argument, except when it is used in the LENGTH
intrinsic function.

Examples
See examples of using different types of intrinsic functions.

The following statement illustrates the use of intrinsic function UPPER-CASE to replace each lowercase
letter in an alphanumeric argument with the corresponding uppercase letter.

MOVE FUNCTION UPPER-CASE('hello') TO DATA-NAME.

This statement moves HELLO into DATA-NAME.

The following statement illustrates the use of intrinsic function LOWER-CASE to replace each uppercase
letter in a national argument with the corresponding lowercase letter.

MOVE FUNCTION LOWER-CASE(N'HELLO') TO N-DATA-NAME.

This statement moves national characters hello into N-DATA-NAME.

The following statement illustrates the use of a numeric intrinsic function:

COMPUTE NUM-ITEM = FUNCTION SUM(A B C)

This statement uses the numeric function SUM to add the values of A, B, and C and places the result in
NUM-ITEM.

ALL subscripting
When a function allows an argument to be repeated a variable number of times, you can refer to a table by
specifying the data-name and any qualifiers that identify the table. This can be followed immediately by
subscripting where one or more of the subscripts is the word ALL.

Tip: The evaluation of an ALL subscript must result in at least one argument or the value returned by
the function will be undefined; however, the situation can be diagnosed at run time by specifying the
SSRANGE compiler option.

Specifying ALL as a subscript is equivalent to specifying all table elements possible using every valid
subscript in that subscript position.

For a table argument specified as Table-name(ALL), the order of the implicit specification of each table
element as an argument is from left to right, where the first (or leftmost) argument is Table-name(1)
and ALL has been replaced by 1. The next argument is Table-name(2), where the subscript has been

Chapter 29. Specifying a function 501

incremented by 1. This process continues, with the subscript being incremented by 1 to produce an
implicit argument, until the ALL subscript has been incremented through its range of values.

For example,

FUNCTION MAX(Table(ALL))

is equivalent to

FUNCTION MAX(Table(1) Table(2) Table(3) ... Table(n))

where n is the number of elements in Table.

If there are multiple ALL subscripts, Table-name(ALL, ALL, ALL), the first implicit argument is
Table-name(1, 1, 1), where each ALL has been replaced by 1. The next argument is Table-
name(1, 1, 2), where the rightmost subscript has been incremented by 1. The subscript represented
by the rightmost ALL is incremented through its range of values to produce an implicit argument for each
value.

Once a subscript specified as ALL has been incremented through its range of values, the next subscript
to the left that is specified as ALL is incremented by 1. Each subscript specified as ALL to the right of
the newly incremented subscript is set to 1 to produce an implicit argument. Once again, the subscript
represented by the rightmost ALL is incremented through its range of values to produce an implicit
argument for each value. This process is repeated until each subscript specified as ALL has been
incremented through its range of values.

For example,

FUNCTION MAX(Table(ALL, ALL))

is equivalent to

FUNCTION MAX(Table(1, 1) Table(1, 2) Table(1, 3) ... Table(1, n)
 Table(2, 1) Table(2, 2) Table(2, 3) ... Table(2, n)
 Table(3, 1) Table(3, 2) Table(3, 3) ... Table(3, n)
 ...
 Table(m, 1) Table(m, 2) Table(m, 3) ... Table(m, n))

where n is the number of elements in the column dimension of Table, and m is the number of elements
in the row dimension of Table.

ALL subscripts can be combined with literal, data-name, or index-name subscripts to reference
multidimensional tables.

For example,

FUNCTION MAX(Table(ALL, 2))

is equivalent to

FUNCTION MAX(Table(1, 2)
 Table(2, 2)
 Table(3, 2)
 ...
 Table(m, 2))

where m is the number of elements in the row dimension of Table.

If an ALL subscript is specified for an argument and the argument is reference-modified, then the
reference-modifier is applied to each of the implicitly specified elements of the table.

502 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

If an ALL subscript is specified for an operand that is reference-modified, the reference-modifier is
applied to each of the implicitly specified elements of the table.

If the ALL subscript is associated with an OCCURS DEPENDING ON clause, the range of values is
determined by the object of the OCCURS DEPENDING ON clause.

For example, given a payroll record definition such as:

01 PAYROLL.
 02 PAYROLL-WEEK PIC 99.
 02 PAYROLL-HOURS PIC 999 OCCURS 1 TO 52
 DEPENDING ON PAYROLL-WEEK.

The following COMPUTE statements could be used to identify total year-to-date hours, the maximum
hours worked in any week, and the specific week corresponding to the maximum hours:

COMPUTE YTD-HOURS = FUNCTION SUM (PAYROLL-HOURS(ALL))
COMPUTE MAX-HOURS = FUNCTION MAX (PAYROLL-HOURS(ALL))
COMPUTE MAX-WEEK = FUNCTION ORD-MAX (PAYROLL-HOURS(ALL))

In these function invocations, the subscript ALL is used to reference all elements of the PAYROLL-HOURS
array (depending on the execution time value of the PAYROLL-WEEK field).

Format of arguments and return values for date and time intrinsic
functions

The descriptions of intrinsic functions that process dates and times refer to the following different types
of date and time related values:

• Integer date form
• Standard date form
• Julian date form
• UTC offset value
• Standard numeric time form
• “Date and time formats” on page 504

A description of each of these values, including a range of permissible values, is given as follows.

Note: The definitions are intended to be consistent with ISO 8601 Data elements and interchange formats
– Information interchange – Representation of dates and times.

Integer date form
A value in integer date form is a positive integer that represents a number of days succeeding 31
December, 1600 in the Gregorian calendar. It must be greater than zero and less than or equal to the
value of FUNCTION INTEGER-OF-DATE (99991231), which is 3,067,671.

Note: The INTDATE compiler option affects the starting date of the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

Standard date form
A value in standard date form is an integer of the form YYYYMMDD, whose value is obtained from the
calculation (YYYY * 10,000) + (MM * 100) + DD, where:

• YYYY represents the year in the Gregorian calendar. It must be an integer greater than 1600 but not
greater than 9999.

• MM represents a month and must be a positive integer less than 13.

Chapter 29. Specifying a function 503

• DD represents a day and must be a positive integer less than 32 if it is valid for the specified month and
year combination.

Julian date form
A value in Julian date form is an integer of the form YYYYDDD whose value is obtained from the
calculation (YYYY * 1000) + DDD, where:

• YYYY represents the year in the Gregorian calendar. It must be an integer greater than 1600 but not
greater than 9999.

• DDD represents the day of the year. It must be a positive integer less than 367 if it is valid for the year
specified.

UTC offset value
A UTC offset value is an integer representation of offset from UTC (Coordinated Universal Time) expressed
in minutes. The value must be greater than or equal to -1439 and less than or equal to 1439.

Note: The offset value 1439 represents 23 hours 59 minutes, which is one minute less than a day.

Standard numeric time form
A value in standard numeric time form is a numeric value representing seconds past midnight. The value
must be greater than or equal to zero and less than 86,400.

Date and time formats
For functions FORMATTED-CURRENT-DATE, FORMATTED-DATE, FORMATTED-TIME, and FORMATTED-
DATETIME, the format literal argument indicates the format of the date or time value that is the result
of the function. If the specified format literal is alphanumeric, the result of the function will be an
alphanumeric value; if the specified format literal is national, the result of the function will be a national
value; and if the format literal is UTF-8, the result of the function will be a UTF-8 value.

For functions INTEGER-OF-FORMATTED-DATE, SECONDS-FROM-FORMATTED-TIME, and TEST-
FORMATTED-DATETIME, the format literal indicates the format of the date or time value specified as
the second argument of the function.

The permissible format strings are listed as follows. For a full description of each subfield in the format
literals, including a range of permissible values in data associated with the formats, see the Meaning of
date and time format subfields and permissible values of associated data section.

Table 56. The permissible format strings for date

Date formats Format literals

Basic calendar date YYYYMMDD

Extended calendar date YYYY-MM-DD

Basic ordinal date YYYYDDD

Extended ordinal date YYYY-DDD

Basic week date YYYYWwwD

Extended week date YYYY-Www-D

Table 57. The permissible format strings for integer-seconds time

Integer-seconds time formats Format literals

Basic local time hhmmss

504 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 57. The permissible format strings for integer-seconds time (continued)

Integer-seconds time formats Format literals

Extended local time hh:mm:ss

Basic Coordinated Universal Time (UTC) hhmmssZ

Extended UTC time hh:mm:ssZ

Basic offset time hhmmss+hhmm

Extended offset time hh:mm:ss+hh:mm

Table 58. The permissible format strings for fractional-seconds time

Fractional-seconds time formats Format literals

Basic local time hhmmss.ssss

Extended local time hh:mm:ss.ssss

Basic UTC time hhmmss.ssssZ

Extended UTC time hh:mm:ss.ssssZ

Basic offset time hhmmss.ssss+hhmm

Extended offset time hh:mm:ss.ssss+hh:mm

Note: In Table 58 on page 505, the period is used as the decimal separator, and four "s" characters after
the period are used for illustrative purposes. The number of "s" characters that might be specified after
the decimal separator in these formats might range from 1 to 9.

Combined date and time formats

A basic combined date and time format consists of a basic date format followed by an uppercase "T"
character and a basic time format. For example, "YYYYMMDDThhmmss.sss+hmm".

An extended combined date and time format consists of an extended date format, followed
by an uppercase "T" character and an extended time format. For example, "YYYY-MM-
DDThh:mm:ss.sssss+hh:mm".

Combinations of basic date formats with extended time formats, or of extended date formats with basic
time formats, are not allowed.

The uppercase "T" character that occurs in both basic and extended combined and time formats, which
separates the date format portion from the time format portion, appears in the data associated with the
format.

Meaning of date and time format subfields and permissible values of associated data

For date formats:

• Characters "YYYY" represent the year subfield. Data associated with this subfield must have a value
greater than 1600 and less than or equal to 9999.

• Characters "MM" represent the month-of-year subfield. Data associated with this subfield must have a
value between 01 and 12.

• Characters "DD" in calendar date formats represent the day-of-month subfield. Data associated with
this subfield must have a value between 01 and 28, 29, 30, or 31, depending on the month subfield and
year subfield of the data.

• Characters “DDD” in ordinal date formats represent the day-of-year subfield. For a leap year, the data
associated with this subfield must have a value between 001 and 366, and between 001 and 365
otherwise.

Chapter 29. Specifying a function 505

• Characters “ww” in week date formats represent the week-of-year subfield. Data associated with this
subfield must have a value between 01 and 52.

• Character “D” in week date formats represents the day-of-week subfield. Data associated with this
subfield must have a value between 1 and 7.

• Character “W” in week date formats appears in associated data values as is at the same location
indicated in the corresponding format literal.

• Character “-” in all extended date formats appears in associated data values as is at the same location
indicated in the corresponding format literal.

For time formats:

• Characters “hh” represent the hours subfield. Data associated with this subfield must have a value
between 00 and 23.

• Characters “mm” represent the minutes subfield. Data associated with this subfield must have a value
between 00 and 59.

• Characters “ss” represent the seconds subfield. Data associated with this subfield must have a value
between 00 and 59.

• In fractional seconds time formats, the fractional seconds subfield is introduced with a "." character
and the rest of the subfield consists of a minimum of 1 and a maximum of 9 “s" characters. In data
associated with this subfield, the "." character appears as is, and corresponding to each "s" character is
a number between 0 and 9.

• In offset time formats, the "+" character introduces the "offset from UTC" subformat, which consists
of characters "hh", representing the offset-hours subfield, followed by character ":" (extended time
formats only), followed by characters "mm", representing the offset-minutes subfield.

• In data associated with the "offset from UTC" subformat:

– A "+" character appears at the same location as the "+" character in the format literal when the time
portion of the data is adjusted downward by the offset values to represent UTC.

– A "-" character appears at the same location as the "+" character in the format literal when the time
portion of the data is adjusted upward by the offset values to represent UTC.

– A "0" character appears at the same location as the "+" character in the format literal when offset
from UTC is not available on the system.

– Data for the offset-hours subfield must have a value between 00 and 23 when offset from UTC is
available on the system, and must have a value of 00 otherwise.

– Data for the offset-minutes subfield must have a value between 00 and 59 when offset from UTC is
available on the system, and must have a value of 00 otherwise.

• In UTC time formats, the last character is "Z", which indicates a UTC time. In data associated with the
UTC time formats, the "Z" character appears as is at the end of the data value.

• Character ":" in all extended time formats appears in associated data values as is at the same location
indicated in the corresponding format literal.

Examples

Example 1

The following example demonstrates the correspondence between the value returned by the
FORMATTED-CURRENT-DATE intrinsic function and the format literal specified for its argument.

DISPLAY FUNCTION FORMATTED-CURRENT-DATE(‘YYYY-MM-DDThh:mm:ss.ss+hh:mm’)

The output is:

2020-10-28T01:11:36.13-04:00

Example 2

506 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The following example involving a call to the SECONDS-FROM-FORMATTED-TIME intrinsic function
demonstrates a combined date and time format literal and corresponding value that is in the format
indicated by the literal.

01 SEC COMP-2.
:
COMPUTE SEC = FUNCTION SECONDS-FROM-FORMATTED-TIME(
 ‘YYYY-MM-DDThh:mm:ss.ss’,
 ‘1987-12-26T00:45:23.06’)
DISPLAY SEC

The output is:

.27230599999999999E 04

Chapter 29. Specifying a function 507

508 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 30. Function definitions
This section provides an overview of the argument type, function type, and value returned for each of the
intrinsic functions.

For more information about the intrinsic functions, see Table 59 on page 509.

Argument types and function types are abbreviated as follows:

Abbreviation Meaning

A Alphabetic

D DBCS

I Integer

K Keyword

N Numeric

O Other, as specified in the function definition (pointer, function-pointer,
procedure-pointer, or object reference)

U National

X Alphanumeric

UT UTF-8

Each intrinsic function is described in detail in the topics that follow the table below.

Table 59. Table of functions

Function name Arguments Function
type

Value returned

ABS N1 I or N Absolute value of N1

ACOS N1 N Arccosine of N1

ANNUITY N1, I2 N Ratio of annuity paid for I2 periods at interest
of N1 to initial investment of one

ASIN N1 N Arcsine of N1

ATAN N1 N Arctangent of N1

BIT-OF A1, D1, I1,
N1, X1, U1,
UT1, or O1

X Alphanumeric character string consisting of
characters "1" and "0" that correspond to the
binary value of each byte in the argument

BIT-TO-CHAR X1 X Character string consisting of bytes that
correspond to the bit pattern indicated by the
sequence of "0" and "1" characters in the
argument

BYTE-LENGTH A1, D1, N1,
X1, U1, UT1,
or O1

I Integer that is equal to the length of the
argument in bytes

CHAR I1 X Character in position I1 of program collating
sequence

© Copyright IBM Corp. 1991, 2024 509

Table 59. Table of functions (continued)

Function name Arguments Function
type

Value returned

COMBINED-DATETIME I1, N2 N Numeric representation of combined integer
date and standard numeric time

CONTENT-OF A1, I1, N1,
U1, X1, or
UT1

I, N, U, X, or
UT

Content of A1, I1, N1, U1, X1, or UT1

COS N1 N Cosine of N1

CURRENT-DATE None X Current® date and time and difference from
Greenwich mean time

DATE-OF-INTEGER I1 I Standard date equivalent (YYYYMMDD) of
integer date

DATE-TO-YYYYMMDD I1, I2 I Standard date equivalent (YYYYMMDD) of
I1 (standard date with a windowed year,
YYMMDD), according to the 100-year interval
whose ending year is specified by the sum of
I2 and the year at execution time

DAY-OF-INTEGER I1 I Julian date equivalent (YYYYDDD) of integer
date

DAY-TO-YYYYDDD I1, I2 I Julian date equivalent (YYYYDDD) of I1 (Julian
date with a windowed year, YYDDD), according
to the 100-year interval whose ending year is
specified by the sum of I2 and the year at
execution time

DISPLAY-OF U1, UT1, I2 X Each character in U1 or UT1 converted to a
corresponding character representation using
a code page identified by I2, if specified, or a
default code page selected at compile time if
I2 is unspecified

E None N Approximation of e, the base of natural
logarithms

EXP N1 N Approximation of the value of e raised to the
power of N1

EXP10 N1 N Approximation of the value of 10 raised to the
power of N1

FACTORIAL I1 I Factorial of I1

FORMATTED-CURRENT-DATE U1, X1, or
UT1

U, X, or UT Formatted date equivalent of current date and
time in the format specified in argument-1

FORMATTED-DATE U1, X1, or
UT1, I2

U, X, or UT Formatted date equivalent of integer date
contained in argument-2 in the format
specified in argument-1

FORMATTED-DATETIME U1, X1, or
UT1, I2, N3,
I4

U, X, or UT Formatted date (from integer date in
argument-2) and time (from standard numeric
time in argument-3) in the format specified
by argument-1. Offset from UTC, if the format
requires it, is supplied by argument-4

510 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 59. Table of functions (continued)

Function name Arguments Function
type

Value returned

FORMATTED-TIME U1, X1, or
UT1, N2, I3

U, X, or UT Formatted time equivalent of standard
numeric time contained in argument-2 in the
format specified in argument-1. Offset from
UTC, if the format requires it, is supplied by
argument-3

HEX-OF A1, D1, I1,
N1, X1, U1,
UT1, or O1

X Alphanumeric character string consisting of
the bytes of the argument converted to a
hexadecimal representation

HEX-TO-CHAR X1 X Character string consisting of bytes that
correspond to the hexadecimal digit
characters in the argument

INTEGER N1 I The greatest integer not greater than N1

INTEGER-OF-DATE I1 I Integer date equivalent of standard date
(YYYYMMDD)

INTEGER-OF-DAY I1 I Integer date equivalent of Julian date
(YYYYDDD)

INTEGER-OF-FORMATTED-DATE U1, UT1, or
X1, U2, UT2,
or X2

I Integer date equivalent of date contained in
argument-2 whose format is described by
argument-1

INTEGER-PART N1 I Integer part of N1

LENGTH A1, N1, O1,
X1, U1, or
UT1

I Length of argument in national character
positions or in alphanumeric character
positions or bytes, depending on the argument
type

LOG N1 N Natural logarithm of N1

LOG10 N1 N Logarithm to base 10 of N1

LOWER-CASE A1 or X1 X All letters in the argument set to lowercase

U1 U All letters in the argument set to lowercase

UT1 UT All letters in the argument set to lowercase

MAX A1... X Value of maximum argument; note that the
type of function depends on the arguments

I1... I Value of maximum argument; note that the
type of function depends on the arguments

N1... N Value of maximum argument; note that the
type of function depends on the arguments

X1... X Value of maximum argument; note that the
type of function depends on the arguments

U1... U Value of maximum argument; note that the
type of function depends on the arguments

MEAN N1... N Arithmetic mean of arguments

MEDIAN N1... N Median of arguments

Chapter 30. Function definitions 511

Table 59. Table of functions (continued)

Function name Arguments Function
type

Value returned

MIDRANGE N1... N Mean of minimum and maximum arguments

MIN A1... X Value of minimum argument; note that the
type of function depends on the arguments

I1... I Value of minimum argument; note that the
type of function depends on the arguments

N1... N Value of minimum argument; note that the
type of function depends on the arguments

X1... X Value of minimum argument; note that the
type of function depends on the arguments

U1... U Value of minimum argument; note that the
type of function depends on the arguments

MOD I1, I2 I I1 modulo I2

NATIONAL-OF A1, X1, D1,
or UT1

U The characters in the argument converted
to national characters, using the code page
identified by I2, if specified, or a default
code page selected at compile time if I2 is
unspecified

A1, X1, D1,
or UT1; I2

U The characters in the argument converted
to national characters, using the code page
identified by I2, if specified, or a default
code page selected at compile time if I2 is
unspecified

NUMVAL X1 or U1 N Numeric value of simple numeric string

NUMVAL-C X1 or U1;
X1, X2;
U1, U2

N Numeric value of numeric string with optional
commas and currency sign

NUMVAL-F X1 or U1 N Numeric value or approximation of
the numeric value represented by the
alphanumeric character string or national
character string specified as the argument

ORD A1 or X1 I Ordinal position of the argument in collating
sequence

ORD-MAX A1..., N1...,
X1..., or U1...

I Ordinal position of maximum argument

ORD-MIN A1..., N1...,
X1..., or U1...

I Ordinal position of minimum argument

PI None N Value that is an approximation of pi, the ratio
of the circumference of a circle to its diameter.

PRESENT-VALUE N1, N2... N Present value of a series of future period-end
amounts, N2, at a discount rate of N1

RANDOM I1, none N Random number

512 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 59. Table of functions (continued)

Function name Arguments Function
type

Value returned

RANGE I1... I Value of maximum argument minus value of
minimum argument; note that the type of
function depends on the arguments.

N1... N Value of maximum argument minus value of
minimum argument; note that the type of
function depends on the arguments.

REM N1, N2 N Remainder of N1/N2

REVERSE A1 or X1 X Reverse order of the characters of the
argument

U1 U Reverse order of the characters of the
argument

SECONDS-FROM-FORMATTED-
TIME

U1, UT1, or
X1, U2, UT2,
or X2

N Standard numeric time equivalent of the data
contained in argument-2 as described by the
format specified in argument-1

SECONDS-PAST-MIDNIGHT N Seconds past midnight as provided by the
system

SIGN N1 I +1, 0, or -1 depending on the sign of the
argument

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

STANDARD-DEVIATION N1... N Standard deviation of arguments

SUM I1... I Sum of arguments; note that the type of
function depends on the arguments.

N1... N Sum of arguments; note that the type of
function depends on the arguments.

TAN N1 N Tangent of N1

TEST-DATE-YYYYMMDD I1 I 0 if argument-1 is a valid standard date;
otherwise identifies the sub-field in error

TEST-DAY-YYYYDDD I1 I 0 if argument-1 is a valid Julian date;
otherwise identifies the sub-field in error

TEST-FORMATTED-DATETIME U1, UT1, or
X1, U2, UT2,
or X2

I 0 if argument-2 conforms in form to the
format specified in argument-1 and represents
a valid date, time or combined representation
according to that description; otherwise,
identifies the character in error

Chapter 30. Function definitions 513

Table 59. Table of functions (continued)

Function name Arguments Function
type

Value returned

TEST-NUMVAL X1 or U1 I • If the content of argument-1 conforms to the
argument rules for the NUMVAL function, the
returned value is 0.

• If one or more characters are in error, the
returned value is the position of the first
character in error.

• Otherwise, the returned value is (FUNCTION
LENGTH (argument-1) + 1).

TEST-NUMVAL-C X1 or U1;
X1, X2;
U1, U2

I • If the content of argument-1 conforms to the
argument rules for the NUMVAL-C function,
the returned value is 0.

• If one or more characters are in error, the
returned value is the position of the first
character in error.

• Otherwise, the returned value is (FUNCTION
LENGTH (argument-1) + 1).

TEST-NUMVAL-F X1 or U1 I • If the content of argument-1 conforms to the
argument rules for the NUMVAL-F function,
the returned value is 0.

• If one or more characters are in error, the
returned value is the position of the first
character in error.

• Otherwise, the returned value is (FUNCTION
LENGTH (argument-1) + 1).

TRIM A1, X1, U1,
or UT1; K1

X, U, or UT Character string that contains the characters
in A1, X1, or U1 with leading spaces or trailing
spaces deleted (if K1 is specified)

A1, X1, U1,
or UT1

X, U, or UT Character string that contains the characters
in A1, X1, or U1 with both leading spaces and
trailing spaces deleted (if K1 is unspecified)

ULENGTH A1, X1, U1,
or UT1

I Length of A1, X1, U1, or UT1 in UTF-8 or
UTF-16 characters

UPOS A1, X1, U1,
or UT1, I2

I Index of the I2th UTF-8 or UTF-16 character
of A1, X1, U1, or UT1

UPPER-CASE A1 or X1 X All letters in the argument set to uppercase

U1 U All letters in the argument set to uppercase

UT1 UT All letters in the argument set to uppercase

USUBSTR A1, X1, U1,
or UT1, I2,
I3

X, U, or UT Alphanumeric character string that contains
the I3 UTF-8 or UTF-16 characters of A1,
X1, U1, or UT1, starting at the I2th character
position

USUPPLEMENTARY A1, X1, U1,
or UT1

I Index of the first Unicode supplementary
character of A1, X1, U1, or UT1

514 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 59. Table of functions (continued)

Function name Arguments Function
type

Value returned

UUID4 None X 36-character alphanumeric string that is a
version 4 universally unique identifier (UUID)

UVALID A1, X1, U1,
or UT1

I 0 if A1, X1, U1, or UT1 contains valid Unicode
UTF-8 or UTF-16 data, or the index of the first
invalid element of A1, X1, U1, or UT1

UWIDTH A1, X1, U1,
or UT1, I2

I Width in bytes of the I2th UTF-8 or UTF-16
character of A1, X1, U1, or UT1

VARIANCE N1... N Variance of arguments

WHEN-COMPILED None X Date and time when program was compiled

YEAR-TO-YYYY I1, I2 I Expanded year equivalent (YYYY) of I1
(windowed year, YY), according to the 100-
year interval whose ending year is specified by
the sum of I2 and the year at execution time

Chapter 30. Function definitions 515

516 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 31. ABS
The ABS function returns the absolute value of the argument.

The function type depends on the argument type as follows:

Argument type Function type

Integer Integer

Numeric Numeric

Format
FUNCTION ABS (argument-1)

argument-1
Must be of class numeric.

The equivalent arithmetic expression is as follows:

• When the value of argument-1 is zero or positive, (argument-1) is returned.
• When the value of argument-1 is negative, (– (argument-1)) is returned.

© Copyright IBM Corp. 1991, 2024 517

518 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 32. ACOS
The ACOS function returns a numeric value in radians that approximates the arccosine of the argument
specified.

The function type is numeric.

Format
FUNCTION ACOS (argument-1)

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal to -1 and less than or
equal to +1.

The returned value is the approximation of the arccosine of the argument and is greater than or equal to
zero and less than or equal to Pi.

© Copyright IBM Corp. 1991, 2024 519

520 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 33. ANNUITY
The ANNUITY function returns a numeric value that approximates the ratio of an annuity paid at the end
of each period, for a given number of periods, at a given interest rate, to an initial value of one.

The number of periods is specified by argument-2; the rate of interest is specified by argument-1. For
example, if argument-1 is zero and argument-2 is four, the value returned is the approximation of the ratio
1 / 4.

The function type is numeric.

Format
FUNCTION ANNUITY (argument-1 argument-2)

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal to zero.

argument-2
Must be a positive integer.

When the value of argument-1 is zero, the value returned by the function is the approximation of:

1 / argument-2

When the value of argument-1 is not zero, the value of the function is the approximation of:

argument-1 / (1 - (1 + argument-1) ** (- argument-2))

© Copyright IBM Corp. 1991, 2024 521

522 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 34. ASIN
The ASIN function returns a numeric value in radians that approximates the arcsine of the argument
specified.

The function type is numeric.

Format
FUNCTION ASIN (argument-1)

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal to -1 and less than or
equal to +1.

The returned value is the approximation of the arcsine of argument-1 and is greater than or equal to -Pi/2
and less than or equal to +Pi/2.

© Copyright IBM Corp. 1991, 2024 523

524 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 35. ATAN
The ATAN function returns a numeric value in radians that approximates the arctangent of the argument
specified.

The function type is numeric.

Format
FUNCTION ATAN (argument-1)

argument-1
Must be class numeric.

The returned value is the approximation of the arctangent of argument-1 and is greater than -Pi/2 and less
than +Pi/2.

© Copyright IBM Corp. 1991, 2024 525

526 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 36. BIT-OF
The BIT-OF function returns an alphanumeric character string consisting of characters "1" and "0" that
correspond to the binary value of each byte in the input argument.

The type of the function is alphanumeric.

Format
FUNCTION BIT-OF (argument-1)

argument-1
Can be a data item, literal, or intrinsic function result of any data class. argument-1 identifies the
source character string for the conversion.

The returned value is an alphanumeric character string consisting of the bytes of argument-1 converted
to the bit pattern corresponding to the binary value of each byte in argument-1. The length of the output
character string in bytes is eight times the length of argument-1 in bytes.

Note: If argument-1 is invalid, the behavior is undefined.

Examples
• FUNCTION BIT-OF('Hello, world!') returns

'110010001000010110010011100100111001011001101011010000001010011010010110
10011001100100111000010001011010'

• 01 BIN PIC 9(9) BINARY VALUE 12.
.
.

FUNCTION BIT-OF(BIN) returns '00000000000000000000000000001100'

• 01 PAC PIC 9(5) COMP-3 VALUE 12345.
.
.

FUNCTION BIT-OF(PAC) returns '000100100011010001011111'

• 01 ZON PIC 9(5) VALUE 12345.
.
.

FUNCTION BIT-OF(ZON) returns '1111000111110010111100111111010011110101'
• FUNCTION BIT-OF(NATIONAL-OF(' ')) returns '0000000000100000'

© Copyright IBM Corp. 1991, 2024 527

528 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 37. BIT-TO-CHAR
The BIT-TO-CHAR function returns a character string consisting of bytes that correspond to the bit pattern
indicated by the sequence of "0" and "1" characters in the input argument.

The function type is alphanumeric.

Format
FUNCTION BIT-TO-CHAR (argument-1)

argument-1
Must be an alphanumeric literal, alphanumeric data item, or alphanumeric group item. argument-1
must consist only of the characters "0" and "1". The length of argument-1 must be a multiple of 8
bytes.

The returned value is a character string consisting of bytes that correspond to the bit pattern indicated by
the sequence of "0" and "1" characters in argument-1. The length of the result string is equal to the length
of the input string divided by 8.

Example

MOVE '1111110010001000' TO MY-BIT-DATA

FUNCTION BIT-TO-CHAR(MY-BIT-DATA) returns a character string with value x'FC88'.

© Copyright IBM Corp. 1991, 2024 529

530 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 38. BYTE-LENGTH
The BYTE-LENGTH function returns an integer that is equal to the length of the argument in bytes.

The function type is integer.

Format
FUNCTION BYTE-LENGTH (argument-1)

argument-1
Can be:

• An alphanumeric, national, UTF-8, or DBCS literal
• A group item (including unbounded groups) or an elementary data item of any class, including DBCS
• A data item described with USAGE POINTER, PROCEDURE-POINTER, FUNCTION-POINTER, or

OBJECT REFERENCE
• The ADDRESS OF special register
• The LENGTH OF special register
• The XML-NTEXT special register
• The XML-TEXT special register

The returned value is a nine-digit integer determined as follows:

• The returned value is an integer that is the length of argument-1 in number of bytes.
• If argument-1 is an alphanumeric, national or UTF-8 group item, the value returned is equal to the

length of argument-1 in bytes. If any data item subordinate to argument-1 is described with the
DEPENDING phrase of the OCCURS clause, the length of argument-1 is determined using the contents
of the data item specified in the DEPENDING phrase. This evaluation is accomplished according to the
rules of the OCCURS clause for a sending data item. For more information, see the discussions of the
“OCCURS clause” on page 200 and the “USAGE clause” on page 237.

The returned value includes implicit FILLER positions, if any.

The only difference between the BYTE-LENGTH and LENGTH functions is that BYTE-LENGTH always
returns the byte length of argument-1, even when argument-1 is of class national or UTF-8. The BYTE-
LENGTH function also accepts DBCS arguments.

Function BYTE-LENGTH is similar to the LENGTH OF special register, which also always returns the byte
length of its argument, but the LENGTH OF special register can be used in more contexts. For more
information, see Finding the length of data items in the Enterprise COBOL Programming Guide.

Related references
Chapter 64, “LENGTH,” on page 583
“LENGTH OF” on page 22

© Copyright IBM Corp. 1991, 2024 531

532 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 39. CHAR
The CHAR function returns a one-character alphanumeric value that is a character in the program
collating sequence having the ordinal position equal to the value of the argument specified.

The function type is alphanumeric.

Format
FUNCTION CHAR (argument-1)

argument-1
Must be an integer. The value must be greater than zero and less than or equal to the number of
positions in the collating sequence associated with alphanumeric data items (a maximum of 256).

If more than one character has the same position in the program collating sequence, the character
returned as the function value is that of the first literal specified for that character position in the
ALPHABET clause.

If the current program collating sequence was not specified by an ALPHABET clause, the single-byte
EBCDIC collating sequence is used. (See “Conditional expressions” on page 268.)

© Copyright IBM Corp. 1991, 2024 533

534 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 40. COMBINED-DATETIME
The COMBINED-DATETIME function combines a date in integer date form and a time in standard numeric
time form into a single numeric item from which both date and time components can be derived.

The function type is numeric.

Format
FUNCTION COMBINED-DATETIME (argument-1 argument-2)

argument-1
Must be in integer date form. For details, see “Integer date form” on page 503.
A value in integer date form is a positive integer that represents a number of days succeeding 31
December 1600, in the Gregorian calendar. It is based on a starting date of Monday, 1 January 1601
and integer date 1 represents Monday, 1 January 1601.
The INTDATE compiler option affects the starting date for the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

argument-2
Must be in standard numeric time form. For details, see “Standard numeric time form” on page 504.
A value in standard numeric time form is a numeric value representing seconds past midnight.

The returned value is determined by arithmetic expression argument-1 + (argument-2/100000). The date
occupies the integer part of the returned value and the time is represented in the fractional part of the
returned value.

Example
Given the integer date form value "143951", which represents the date 15 February 1995,
and the standard numeric time form value "18867.812479168304", which represents the time
"05:14:27.812479168304", the returned value would be exactly "143951.1886781247" with the
ARITH(COMPAT) compiler option in effect and exactly "143951.18867812479168304" with the
ARITH(EXTEND) compiler option in effect.

© Copyright IBM Corp. 1991, 2024 535

536 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 41. CONTENT-OF
The CONTENT-OF intrinsic function returns the content of the argument.

The type of this function depends on the type of argument-1 as follows:

Table 60. CONTENT-OF function type depending on the argument-1 types

argument-1 type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Integer Integer

Numeric Numeric

Format
FUNCTION CONTENT-OF (argument-1)

argument-1
Must be class alphabetic, alphanumeric, national, UTF-8, integer, or numeric.

The returned value is the content of argument-1. The size of the returned value is the size of
argument-1.

The CONTENT-OF intrinsic function is useful when you want to pass an argument to a user-defined
function that is effectively BY CONTENT. To do this, the formal parameter of the user-defined function
must be passed BY REFERENCE on the USING phrase in the function definition, and then on the
function invocation, the argument would be specified using the CONTENT-OF intrinsic function as a
wrapper around the argument. For an example, see Passing arguments BY CONTENT to user-defined
functions in the Enterprise COBOL Programming Guide.

© Copyright IBM Corp. 1991, 2024 537

538 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 42. COS
The COS function returns a numeric value that approximates the cosine of the angle or arc specified by
the argument in radians.

The function type is numeric.

Format
FUNCTION COS (argument-1)

argument-1
Must be class numeric.

The returned value is the approximation of the cosine of the argument and is greater than or equal to -1
and less than or equal to +1.

© Copyright IBM Corp. 1991, 2024 539

540 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 43. CURRENT-DATE
The CURRENT-DATE function returns a 21-character alphanumeric value that represents the calendar
date, time of day, and time differential from Greenwich mean time provided by the system on which the
function is evaluated.

The function type is alphanumeric.

Format
FUNCTION CURRENT-DATE

Reading from left to right, the 21 character positions of the returned value are as follows:

Character
positions

Contents

1-4 Four numeric digits of the year in the Gregorian calendar

5-6 Two numeric digits of the month of the year, in the range 01 through 12

7-8 Two numeric digits of the day of the month, in the range 01 through 31

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23

11-12 Two numeric digits of the minutes past the hour, in the range 00 through 59

13-14 Two numeric digits of the seconds past the minute, in the range 00 through 59

15-16 Two numeric digits of the hundredths of a second past the second, in the range
00 through 99. The value 00 is returned if the system on which the function is
evaluated does not have the facility to provide the fractional part of a second.

17 Either the character '-' or the character '+'. The character '-' is returned if the local
time indicated in the previous character positions is behind Greenwich mean time.
The character '+' is returned if the local time indicated is the same as or ahead
of Greenwich mean time. The character '0' is returned if the system on which this
function is evaluated does not have the facility to provide the local time differential
factor.

18-19 If character position 17 is '-', two numeric digits are returned in the range 00
through 12 indicating the number of hours that the reported time is behind
Greenwich mean time. If character position 17 is '+', two numeric digits are
returned in the range 00 through 13 indicating the number of hours that the
reported time is ahead of Greenwich mean time. If character position 17 is '0', the
value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the number
of additional minutes that the reported time is ahead of or behind Greenwich
mean time, depending on whether character position 17 is '+' or '-', respectively. If
character position 17 is '0', the value 00 is returned.

© Copyright IBM Corp. 1991, 2024 541

Example
Given the current z/OS operating environment timestamp is "1995-02-15 05:14:27.812479168304"
Eastern Standard Time, FUNCTION CURRENT-DATE returns a 21-character alphanumeric field that can be
used as follows:

WORKING-STORAGE SECTION.
01 WS-CURRENT-DATE-FIELDS.
 05 WS-CURRENT-DATE.
 10 WS-CURRENT-YEAR PIC 9(4).
 10 WS-CURRENT-MONTH PIC 9(2).
 10 WS-CURRENT-DAY PIC 9(2).
 05 WS-CURRENT-TIME.
 10 WS-CURRENT-HOUR PIC 9(2).
 10 WS-CURRENT-MINUTE PIC 9(2).
 10 WS-CURRENT-SECOND PIC 9(2).
 10 WS-CURRENT-MS PIC 9(2).
 05 WS-DIFF-FROM-GMT PIC S9(4).
PROCEDURE DIVISION.
 MOVE FUNCTION CURRENT-DATE TO WS-CURRENT-DATE-FIELDS

WS-CURRENT-DATE-FIELDS contains "1995021505142781-0500".

For more information, see Examples: numeric intrinsic functions in the Enterprise COBOL Programming
Guide.

542 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 44. DATE-OF-INTEGER
The DATE-OF-INTEGER function converts a date in the Gregorian calendar from integer date form to
standard date form (YYYYMMDD).

The function type is integer.

The function result is an eight-digit integer.

Format
FUNCTION DATE-OF-INTEGER (argument-1)

argument-1
A positive integer that represents a number of days succeeding December 31, 1600, in the Gregorian
calendar. The valid range is 1 to 3,067,671, which corresponds to dates ranging from January 1, 1601
thru December 31, 9999.

The INTDATE compiler option affects the starting date for the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

The returned value represents the International Standards Organization (ISO) standard date equivalent to
the integer specified as argument-1.

The returned value is an integer of the form YYYYMMDD where YYYY represents a year in the Gregorian
calendar; MM represents the month of that year; and DD represents the day of that month.

© Copyright IBM Corp. 1991, 2024 543

544 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 45. DATE-TO-YYYYMMDD
The DATE-TO-YYYYMMDD function converts argument-1 from a date with a two-digit year (YYnnnn) to a
date with a four-digit year (YYYYnnnn). argument-2, when added to the year at the time of execution,
defines the ending year of a 100-year interval, or sliding century window, into which the year of
argument-1 falls.

The function type is integer.

Format
FUNCTION DATE-TO-YYYYMMDD (argument-1

argument-2

)

argument-1
Must be zero or a positive integer less than 991232.

Note: The COBOL run time does not verify that the value is a valid date.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated assuming the value 50 was
specified.

The sum of the year at the time of execution and the value of argument-2 must be less than 10,000 and
greater than 1,699.

See the following examples with returned values from the DATE-TO-YYYYMMDD function:

Current year argument-1 value argument-2 value Returned value

2002 851003 120 20851003

2002 851003 -20 18851003

2002 851003 10 19851003

1994 981002 -10 18981002

© Copyright IBM Corp. 1991, 2024 545

546 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 46. DAY-OF-INTEGER
The DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer date form to Julian
date form (YYYYDDD).

The function type is integer.

The function result is a seven-digit integer.

Format
FUNCTION DAY-OF-INTEGER (argument-1)

argument-1
A positive integer that represents a number of days succeeding December 31, 1600, in the Gregorian
calendar. The valid range is 1 to 3,067,671, which corresponds to dates ranging from January 1, 1601
thru December 31, 9999.

The INTDATE compiler option affects the starting date for the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

The returned value represents the Julian equivalent of the integer specified as argument-1. The returned
value is an integer of the form YYYYDDD where YYYY represents a year in the Gregorian calendar and DDD
represents the day of that year.

© Copyright IBM Corp. 1991, 2024 547

548 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 47. DAY-TO-YYYYDDD
The DAY-TO-YYYYDDD function converts argument-1 from a date with a two-digit year (YYnnn) to a date
with a four-digit year (YYYYnnn). argument-2, when added to the year at the time of execution, defines the
ending year of a 100-year interval, or sliding century window, into which the year of argument-1 falls.

The function type is integer.

Format
FUNCTION DAY-TO-YYYYDDD (argument-1

argument-2

)

argument-1
Must be zero or a positive integer less than 99367.

The COBOL run time does not verify that the value is a valid date.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated assuming the value 50 was
specified.

The sum of the year at the time of execution and the value of argument-2 must be less than 10,000 and
greater than 1,699.

Some examples of returned values from the DAY-TO-YYYYDDD function follow:

Current year argument-1 value argument-2 value Returned value

2002 10004 -20 1910004

2002 10004 -120 1810004

2002 10004 20 2010004

2013 95005 -10 1995005

© Copyright IBM Corp. 1991, 2024 549

550 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 48. DISPLAY-OF
The DISPLAY-OF function returns an alphanumeric character string consisting of the content of
argument-1 converted to a specific code page representation.

The type of the function is alphanumeric.

Format
FUNCTION DISPLAY-OF (argument-1

argument-2

)

argument-1
Must be of class national (categories national, national-edited, and numeric-edited described with
usage NATIONAL) or class UTF-8. argument-1 identifies the source string for the conversion.

argument-2
Must be an integer. argument-2 identifies the output code page for the conversion.

argument-2 must be a valid CCSID number and must identify an EBCDIC, ASCII, UTF-8, or EUC code
page. An EBCDIC or ASCII code page can contain both single-byte and double-byte characters.

If argument-2 is omitted, the output code page is the one that was in effect for the CODEPAGE
compiler option when the source code was compiled.

The returned value is an alphanumeric character string consisting of the characters of argument-1
converted to the output code page representation. When a source character cannot be converted to a
character in the output code page, the source character is replaced with a substitution character. The
following table shows substitution characters for some widely-used code pages:

Output code page Substitution character

SBCS ASCII
PC Windows SBCS

X'7F'

EBCDIC SBCS X'3F'

ASCII DBCS X'FCFC'

EBCDIC DBCS (except for Thai) X'FEFE'

EBCDIC DBCS (Thai) X'41B8'

PC DBCS (Japanese or Chinese) X'FCFC'

PC DBCS (Korean) X'BFFC'

EUC (Korean) X'AFFE'

EUC (Japanese) X'747E'

UTF-8
From SBCS: X'1A'
From MBCS: X'EFBFBD'

UTF-16
From SBCS: X'001A'
From MBCS: X'FFFD'

© Copyright IBM Corp. 1991, 2024 551

No exception condition is raised.

The length of the returned value depends on the content of argument-1 and the characteristics of the
output code page.

Usage notes

• The CCSID for UTF-8 is 1208.
• If the output code page includes DBCS characters, the returned value can be a mixed SBCS and DBCS

string.
• The DISPLAY-OF function, with argument-2 specified, can be used to generate character data

represented in a code page that differs from that specified in the CODEPAGE compiler option.
Subsequent COBOL operations on that data can involve implicit conversions that assume the data is
represented in the EBCDIC code page specified in the CODEPAGE compiler option. See Converting to
or from national (Unicode) representation in the Enterprise COBOL Programming Guide for examples
and programming techniques for processing data represented using more than one code page within a
single program.

Exception: If the conversion fails, a severe runtime error occurs. Verify that the z/OS Unicode conversion
services are installed and are configured to include the table for converting from CCSID 1200 to the
output code page. See the Customization Guide for installation requirements to support the conversion.

552 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 49. E
The E function returns an approximation of e, the base of natural logarithms.

The function type is numeric.

Format
FUNCTION E

When ARITH(COMPAT) is in effect, FUNCTION E returns the long precision (64-bit) floating-point
approximation of 2.718281828459045235360287471352662.

When ARITH(EXTEND) is in effect, FUNCTION E returns the extended precision (128-bit) floating-point
approximation of 2.718281828459045235360287471352662.

© Copyright IBM Corp. 1991, 2024 553

554 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 50. EXP
The EXP function returns an approximation of the value of e raised to the power of the argument.

The function type is numeric.

Format
FUNCTION EXP (argument-1)

argument-1
Must be of class numeric.

When LP(32) is in effect, the EXP function produces return values that are identical to the Language
Environment callable service CEESDEXP when ARITH(COMPAT) is in effect and CEESQEXP when
ARITH(EXTEND) is in effect. The COBOL expression, (FUNCTION E ** (argument-1)), is an approximation
of this value.

When LP(64) is in effect, the EXP function produces return values that are identical to the C
runtime library function exp(argument-1) when ARITH(COMPAT) is in effect and expl(argument-1) when
ARITH(EXTEND) is in effect. The COBOL expression, (FUNCTION E ** (argument-1)), is an approximation
of this value.

© Copyright IBM Corp. 1991, 2024 555

556 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 51. EXP10
The EXP10 function returns an approximation of the value of 10 raised to the power of the argument.

The function type is numeric.

Format
FUNCTION EXP10 (argument-1)

argument-1
Must be of class numeric.

When LP(32) is in effect, the EXP10 function produces return values that are identical to the Language
Environment callable service CEESDXPD with parm1 set to 10.0 when ARITH(COMPAT) is in effect and
CEESQXPQ with parm1 set to 10.0 when ARITH(EXTEND) is in effect. The COBOL expression, (10 **
(argument-1)), is an approximation of this value.

When LP(64) is in effect, the EXP10 function produces return values that are identical to the C runtime
library function pow(10,argument-1) when ARITH(COMPAT) is in effect and powl(10,argument-1) when
ARITH(EXTEND) is in effect. The COBOL expression, (10 ** (argument-1)), is an approximation of this
value.

© Copyright IBM Corp. 1991, 2024 557

558 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 52. FACTORIAL
The FACTORIAL function returns an integer that is the factorial of the argument specified.

The function type is integer.

Format
FUNCTION FACTORIAL (argument-1)

argument-1
If the ARITH(COMPAT) compiler option is in effect, argument-1 must be an integer greater than
or equal to zero and less than or equal to 28. If the ARITH(EXTEND) compiler option is in effect,
argument-1 must be an integer greater than or equal to zero and less than or equal to 29.

If the value of argument-1 is zero, the value 1 is returned; otherwise, the factorial of argument-1 is
returned.

© Copyright IBM Corp. 1991, 2024 559

560 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 53. FORMATTED-CURRENT-DATE
The FORMATTED-CURRENT-DATE function returns a character string that represents the current date and
time provided by the system on which the function is evaluated. The content of the returned value is
formatted according to the format in the argument.

The function type depends on the argument type, as follows:

Table 61. FORMATTED-CURRENT-DATE function type depending on the argument types

Argument type Function type

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Format
FUNCTION FORMATTED-CURRENT-DATE (argument-1)

argument-1
Must be a national, a UTF-8, or an alphanumeric literal.
The content of argument-1 must be a combined date and time format. For details, see “Date and time
formats” on page 504.

The returned value is a representation of the current date and time provided by the system on which
the function is evaluated. The returned value is formatted according to the format in argument-1. The
accuracy of the portion of the returned value that corresponds to the time format is determined by the
z/OS operating environment, up to and including millionth (1/1000000) of a second.

Example
Given the format "YYYYMMDDThhmmss.ss+hhmm" and a current z/OS operating environment timestamp
of "1995-02-15 05:14:27.812479168304" Eastern Standard Time, the returned value will be
"19950215T05142781-0500".

Note: Given this particular format, "YYYYMMDDThhmmss.ss+hhmm", the only difference between the
returned value for CURRENT-DATE and that for FORMATTED-CURRENT-DATE is the presence of the
character "T" that separates the date portion from the time portion in the returned value of the latter
function.

© Copyright IBM Corp. 1991, 2024 561

562 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 54. FORMATTED-DATE
The FORMATTED-DATE function converts a date from its integer date form to the requested format.

The function type depends on the type of argument-1 as follows:

Table 62. FORMATTED-DATE function type depending on the argument-1 types

argument-1 type Function type

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Format
FUNCTION FORMATTED-DATE (argument-1 argument-2)

argument-1
Must be a national, a UTF-8 or an alphanumeric literal.
The content of argument-1 must be a date format. For details, see “Date and time formats” on page
504.

argument-2
It must be in integer date form. For details, see “Integer date form” on page 503.
A value in integer date form is a positive integer that represents a number of days succeeding 31
December 1600, in the Gregorian calendar. It is based on a starting date of Monday, 1 January 1601
and integer date 1 represents Monday, 1 January 1601.
The INTDATE compiler option affects the starting date for the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

The returned value is a representation of the date contained in argument-2 according to the format in
argument-1.

Example
Given the date format "YYYYMMDD" and the value "143951", which represents the date 15 February
1995, the returned value would be "19950215".

© Copyright IBM Corp. 1991, 2024 563

564 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 55. FORMATTED-DATETIME
The FORMATTED-DATETIME function uses a combined date and time format to convert and combine a
date in the integer date form and a numeric time expressed as seconds past midnight to a formatted date
and time representation according to that combined date and time format.

The type of this function depends on the type of argument-1 as follows:

Table 63. FORMATTED-DATETIME function type depending on the argument-1 types

argument-1 type Function type

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Format
FUNCTION FORMATTED-DATETIME (argument-1 argument-2 argument-3

argument-4

)

argument-1
Must be a national, a UTF-8, or an alphanumeric literal.
The content of argument-1 must be a date format. For details, see “Date and time formats” on page
504.

argument-2
Must be in integer date form. For details, see “Integer date form” on page 503.
A value in integer date form is a positive integer that represents a number of days succeeding 31
December 1600, in the Gregorian calendar. It is based on a starting date of Monday, 1 January 1601
and integer date 1 represents Monday, 1 January 1601.
The INTDATE compiler option affects the starting date for the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

argument-3
Must be a numeric value in standard numeric time form. For details, see “Standard numeric time
form” on page 504.
A value in standard numeric time form is a numeric value that represents seconds past midnight.

argument-4
Must be an integer specifying the offset from Coordinated Universal Time (UTC) expressed in minutes.
If argument-4 is specified, the magnitude of the value must be less than or equal to 1439. For details,
see “UTC offset value” on page 504.

Note:

• An offset time format is a time format with the offset appended at the end, for example,
hhmmss+hhmm, hh:mm:ss+hh:mm, hhmmss.ssss+hhmm, and hh:mm:ss.ssss+hh:mm.

• A UTC time format is a time format in the UTC timezone, for example, hhmmssZ, hh:mm:ssZ,
hhmmss.ssssZ, or hh:mm:ss.ssssZ.

If argument-4 is omitted and the time portion of the format in argument-1 is a UTC format or an offset
format, the function will be evaluated as though 0 was specified for argument-4.

© Copyright IBM Corp. 1991, 2024 565

Note: The offset value "1439" represents 23 hours and 59 minutes, which is one minute less than a
day.

Returned values
• The returned value is a representation of the date contained in argument-2 combined with the time

contained in argument-3 according to the format in argument-1.
• If the format in argument-1 indicates that the returned value is expressed in UTC, the time portion of the

returned value reflects the adjustment of the value in argument-3 by the offset in argument-4.
• If the format in argument-1 indicates that the time is to be returned as an offset from UTC, the value in

argument-3 is reflected directly in the time portion of the returned value, and the offset in argument-4 is
reflected directly in the offset portion of the returned value.

Example
If the first argument has the format "YYMMDDThhmmss.ss+hhmm", the second argument the value
"143951", the third argument the value "18867.812479168304", and the fourth argument the value
"+300", the returned value would be "19950215T05142781+0500".

566 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 56. FORMATTED-TIME
The FORMATTED-TIME function uses a format to convert a value that represents seconds past midnight to
a formatted time of day in the requested format.

The type of this function depends on the type of argument-1 as follows:

Table 64. FORMATTED-TIME function type depending on the argument-1 types

argument-1 type Function type

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Format
FUNCTION FORMATTED-TIME (argument-1 argument-2

argument-3

)

argument-1
Must be a national, a UTF-8, or an alphanumeric literal.
The content of argument-1 must be a time format. For details, see “Date and time formats” on page
504.

argument-2
Must be a numeric value in standard numeric time form. For details, see “Standard numeric time
form” on page 504.
A value in standard numeric time form is a numeric value that represents seconds past midnight.

argument-3
Argument-3 is an integer representation of the offset from Coordinated Universal Time (UTC)
expressed in minutes. If argument-3 is specified, the magnitude of the value must be less than or
equal to 1439. For details, see “UTC offset value” on page 504.

Note: The offset value 1439 represents 23 hours and 59 minutes, which is one minute less than a day.

Argument-3 must not be specified if the time portion of the format in argument-1 is neither a UTC
format nor an offset format.
If argument-3 is omitted and the time portion of the format in argument-1 is a UTC format or an offset
format, the function will be evaluated as though 0 was specified for argument-3.

Returned values
• The returned value is a representation of the standard numeric time contained in argument-2 according

to the format in argument-1.
• If the format in argument-1 indicates that the returned value is expressed in UTC, the time portion of the

returned value reflects the adjustment of the value in argument-2 by the offset in argument-3.
• If the format in argument-1 indicates that the time is returned as an offset from UTC, the value in

argument-2 is reflected directly in the time portion of the returned value, and the offset in argument-3 is
reflected directly in the offset portion of the returned value.

© Copyright IBM Corp. 1991, 2024 567

Example
If the first argument has the format "hhmmss.ss+hhmm", the second argument the value
"18867.812479168304" which represents the local time, and the third argument the value "-300", which
represents the five hours that Eastern Standard Time (EST) differs from UTC, the returned value would be
"05142781-0500".

568 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 57. HEX-OF
The HEX-OF function returns an alphanumeric character string consisting of the bytes of the input
argument converted to a hexadecimal representation.

The type of the function is alphanumeric.

Format
FUNCTION HEX-OF (argument-1)

argument-1
Can be a data item, literal, or intrinsic function result of any data class. argument-1 identifies the
source character string for the conversion.

The returned value is an alphanumeric character string consisting of the bytes of argument-1 converted to
a hexadecimal representation. The length of the output character string in bytes is two times the length of
argument-1 in bytes.

Note: If argument-1 is invalid, the behavior is undefined.

Examples
• FUNCTION HEX-OF('Hello, world!') returns 'C8859393966B40A6969993845A'

• 01 BIN PIC 9(9) BINARY VALUE 12.
.
.

FUNCTION HEX-OF(BIN) returns '0000000C'

• 01 PAC PIC 9(5) COMP-3 VALUE 12345.
.
.

FUNCTION HEX-OF(PAC) returns '12345F'

• 01 ZON PIC 9(5) VALUE 12345.
.
.

FUNCTION HEX-OF(ZON) returns 'F1F2F3F4F5'
• FUNCTION HEX-OF(FUNCTION NATIONAL-OF(' ')) returns '0020'

© Copyright IBM Corp. 1991, 2024 569

570 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 58. HEX-TO-CHAR
The HEX-TO-CHAR function returns a character string consisting of bytes that correspond to the
hexadecimal digit characters in the input argument.

The function type is alphanumeric.

Format
FUNCTION HEX-TO-CHAR (argument-1)

argument-1
Must be an alphanumeric literal, alphanumeric data item, or alphanumeric group item. argument-1
must consist only of the characters "0" through "9", "A" through "F", and "a" through "f". The length of
argument-1 must be a multiple of 2 bytes.

The returned value is a character string consisting of bytes that correspond to the hexadecimal digit
characters in argument-1. The length of the result string is equal to the length of the input string divided
by 2.

Example

MOVE 'FFAABB' TO MY-HEX-DATA

FUNCTION HEX-TO-CHAR(MY-HEX-DATA) returns a character string with value x'FFAABB'.

© Copyright IBM Corp. 1991, 2024 571

572 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 59. INTEGER
The INTEGER function returns the greatest integer value that is less than or equal to the argument
specified.

The function type is integer.

Format
FUNCTION INTEGER (argument-1)

argument-1
Must be class numeric.

The returned value is the greatest integer less than or equal to the value of argument-1. For example,
FUNCTION INTEGER (2.5) returns a value of 2 and FUNCTION INTEGER (-2.5) returns a value of -3.

© Copyright IBM Corp. 1991, 2024 573

574 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 60. INTEGER-OF-DATE
The INTEGER-OF-DATE function converts a date in the Gregorian calendar from standard date form
(YYYYMMDD) to integer date form.

The function type is integer.

The function result is a seven-digit integer with a range from 1 to 3,067,671.

Format
FUNCTION INTEGER-OF-DATE (argument-1)

argument-1
Must be an integer of the form YYYYMMDD, whose value is obtained from the calculation (YYYY *
10,000) + (MM * 100) + DD, where:

• YYYY represents the year in the Gregorian calendar. It must be an integer greater than 1600, but not
greater than 9999.

• MM represents a month and must be a positive integer less than 13.
• DD represents a day and must be a positive integer less than 32, provided that it is valid for the
specified month and year combination.

The returned value is an integer that is the number of days that the date represented by argument-1
succeeds December 31, 1600 in the Gregorian calendar.

The INTDATE compiler option affects the starting date for the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

© Copyright IBM Corp. 1991, 2024 575

576 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 61. INTEGER-OF-DAY
The INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian date form
(YYYYDDD) to integer date form.

The function type is integer.

The function result is a seven-digit integer.

Format
FUNCTION INTEGER-OF-DAY (argument-1)

argument-1
Must be an integer of the form YYYYDDD whose value is obtained from the calculation (YYYY * 1000)
+ DDD, where:

• YYYY represents the year in the Gregorian calendar. It must be an integer greater than 1600, but not
greater than 9999.

• DDD represents the day of the year. It must be a positive integer less than 367, provided that it is
valid for the year specified.

The returned value is an integer that is the number of days that the date represented by argument-1
succeeds December 31, 1600 in the Gregorian calendar.

The INTDATE compiler option affects the starting date for the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

© Copyright IBM Corp. 1991, 2024 577

578 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 62. INTEGER-OF-FORMATTED-DATE
The INTEGER-OF-FORMATTED-DATE function converts a date that is in a specified format to an integer
date form.

The function type is integer.

Format
FUNCTION INTEGER-OF-FORMATTED-DATE (argument-1 argument-2)

argument-1
Must be a national, UTF-8, or an alphanumeric literal in either a date format or a combined date and
time format. For details, see “Date and time formats” on page 504.

argument-2
Must be a data item of the same class as argument-1.
If argument-1 is a date format, the content of argument-2 should be a valid date in that format.
If argument-1 is a combined date and time format, the content of argument-2 should be a valid
combined date and time in that format.

Returned values
The returned value is in the integer date form equivalent of the date represented by argument-2 when
analyzed according to argument-1. A value in integer date form is a positive integer that represents a
number of days succeeding 31 December, 1600 in the Gregorian calendar. It is based on a starting date of
Monday, 1 January, 1601 and integer date 1 represents Monday, 1 January, 1601.

The INTDATE compiler option affects the starting date for the integer date functions. For details, see
INTDATE in the Enterprise COBOL Programming Guide.

Note: If argument-1 contains a combined date and time format, the time portion of argument-2 is
validated against the format in argument-1, but the returned value will not be impacted by the validated
result.

Example
If the format of the first argument is "YYYYMMDD" and the value for the second argument is
"19950215", the returned value would be 143951. The same value would be returned if the format
of the first argument is "YYYYMMDDThhmmss.ss+hhmm" and the value for the second argument is
"19950215T05142781+0500".

© Copyright IBM Corp. 1991, 2024 579

580 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 63. INTEGER-PART
The INTEGER-PART function returns an integer that is the integer portion of the argument specified.

The function type is integer.

Format
FUNCTION INTEGER-PART (argument-1)

argument-1
Must be class numeric.

If the value of argument-1 is zero, the returned value is zero. If the value of argument-1 is positive,
the returned value is the greatest integer less than or equal to the value of argument-1. If the value
of argument-1 is negative, the returned value is the least integer greater than or equal to the value of
argument-1.

© Copyright IBM Corp. 1991, 2024 581

582 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 64. LENGTH
The LENGTH function returns an integer equal to the length of the argument in national character
positions for arguments of usage NATIONAL and in alphanumeric character positions or bytes for all
other arguments. An alphanumeric character position and a byte are equivalent.

The type of the function is integer.

Format
FUNCTION LENGTH (argument-1)

argument-1
Can be:

• An alphanumeric literal, a national literal, or a UTF-8 literal
• A group item (including unbounded groups) or an elementary data item of any class except DBCS
• A data item described with usage POINTER, PROCEDURE-POINTER, FUNCTION-POINTER, or

OBJECT REFERENCE
• The ADDRESS OF special register
• The LENGTH OF special register
• The XML-NTEXT special register
• The XML-TEXT special register

The returned value is a 9-digit integer if LP(32) is in effect or an 18-digit integer if LP(64) is in effect and is
determined as follows:

• If argument-1 is an alphanumeric literal or an elementary data item of class alphabetic or alphanumeric,
the value returned is equal to the number of alphanumeric character positions in the argument.

If argument-1 is a null-terminated alphanumeric literal, the returned value is equal to the number of
alphanumeric character positions in the literal excluding the null character at the end of the literal.

The length of an alphanumeric data item or literal containing a mix of single-byte and double-byte
characters is counted as though each byte were a single-byte character.

• If argument-1 is an alphanumeric group item, the value returned is equal to the length of argument-1 in
alphanumeric character positions regardless of the content of the group. If any data item subordinate to
argument-1 is described with the DEPENDING phrase of the OCCURS clause, the length of argument-1 is
determined using the contents of the data item specified in the DEPENDING phrase. This evaluation
is accomplished according to the rules of the OCCURS clause for a sending data item. For more
information, see the discussions of the “OCCURS clause” on page 200 and the “USAGE clause” on
page 237.

The returned value includes implicit FILLER positions, if any.
• If argument-1 is a national literal or an elementary data item described with usage NATIONAL, the value

returned is equal to the length of argument-1 in national character positions.

For example, if argument-1 is defined as PIC 9(3) with usage NATIONAL, the returned value is 3,
although the storage size of the argument is 6 bytes.

• If argument-1 is a national group item, the value returned is equal to the length of argument-1
in national character positions. If any data item subordinate to argument-1 is described with the
DEPENDING phrase of the OCCURS clause, the length of argument-1 is determined using the contents
of the data item specified in the DEPENDING phrase. This evaluation is accomplished according to the
rules of the OCCURS clause for a sending data item. For more information, see the discussions of the
“OCCURS clause” on page 200 and the “USAGE clause” on page 237.

© Copyright IBM Corp. 1991, 2024 583

The returned value includes implicit FILLER positions, if any.
• If argument-1 is a UTF-8 literal or an elementary data item described with usage UTF-8, the value

returned is equal to the length of argument-1 in UTF-8 character positions.

For example, if argument-1 is defined as PIC U(n), the returned value is always n, even though the
storage size of the argument is 4*n bytes and the actual number of bytes used by the item varies
depending on the actual data in the item. This character length is known at compile time as this is a
fixed character-length UTF-8 item.

• If argument-1 is defined with the BYTE-LENGTH phrase of the PICTURE clause or the DYNAMIC LENGTH
clause, then the character length is computed at runtime by examining all bytes occupied by the data in
argument-1 and counting the number of characters represented.

• If argument-1 is a UTF-8 group item, the value returned is equal to the length of argument-1 in UTF-8
character positions. In this case, like in the BYTE-LENGTH and DYNAMIC LENGTH case of UTF-8 data
items, the character length is computed at run time by examining the data in the group item. If any data
item subordinate to argument-1 is described with the DEPENDING phrase of the OCCURS clause, the
length of argument-1 is determined using the contents of the data item specified in the DEPENDING
phrase. This evaluation is accomplished according to the rules of the OCCURS clause for a sending data
item. For more information, see the discussions of the “OCCURS clause” on page 200 and the “USAGE
clause” on page 237.

The returned value includes implicit FILLER positions, if any.
• Otherwise, the returned value is the number of bytes of storage occupied by argument-1.

584 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 65. LOG
The LOG function returns a numeric value that approximates the logarithm to the base e (natural log) of
the argument specified.

The function type is numeric.

Format
FUNCTION LOG (argument-1)

argument-1
Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base e of argument-1.

© Copyright IBM Corp. 1991, 2024 585

586 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 66. LOG10
The LOG10 function returns a numeric value that approximates the logarithm to the base 10 of the
argument specified.

The function type is numeric.

Format
FUNCTION LOG10 (argument-1)

argument-1
Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base 10 of argument-1.

© Copyright IBM Corp. 1991, 2024 587

588 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 67. LOWER-CASE
The LOWER-CASE function returns a character string that contains the characters in the argument with
each uppercase letter replaced by the corresponding lowercase letter.

The function type depends on the type of the argument, as follows:

Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Format
FUNCTION LOWER-CASE (argument-1)

argument-1
Must be class alphabetic, alphanumeric, national, or UTF-8 and must be at least one character
position in length.

Note: If argument-1 is of the alphanumeric class, it must not contain UTF-8 encoded data.

The same character string as argument-1 is returned, except that each uppercase letter is replaced by the
corresponding lowercase letter.

If argument-1 is of class alphabetic or alphanumeric, the uppercase letters 'A' through 'Z' are replaced by
the corresponding lowercase letters 'a' through 'z', where the range of 'A' through 'Z' and the range of 'a'
through 'z' are as shown in “EBCDIC collating sequence” on page 751, regardless of the code page in
effect.

If argument-1 is of class national or UTF-8, each uppercase letter is replaced by its corresponding
lowercase letter based on the specification given in the Unicode database UnicodeData.txt, available from
the Unicode Consortium at http://www.unicode.org/.

If argument-1 is not of class UTF-8, the character string returned has the same length as argument-1.
For UTF-8 arguments, the returned string may have a different byte length than the byte length of
argument-1.

The character string returned has the same length as argument-1.

© Copyright IBM Corp. 1991, 2024 589

590 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 68. MAX
The MAX function returns the content of the argument that contains the maximum value.

The function type depends on the argument type, as follows:

Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

All arguments integer
(includes integer arguments of usage NATIONAL)

Integer

Numeric (some arguments can be integer)
(includes numeric arguments of usage NATIONAL)

Numeric

Format

FUNCTION MAX (argument-1)

argument-1
Must be class alphabetic, alphanumeric, national, or numeric.

All arguments must be of the same class, except that a combination of alphabetic and alphanumeric
arguments is allowed.

The returned value is the content of argument-1 having the greatest value. The comparisons used to
determine the greatest value are made according to the rules for simple conditions. For more information,
see “Conditional expressions” on page 268.

If more than one argument-1 has the same greatest value, the leftmost argument-1 having that value is
returned.

If the type of the function is alphanumeric or national, the size of the returned value is the size of the
selected argument-1.

© Copyright IBM Corp. 1991, 2024 591

592 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 69. MEAN
The MEAN function returns a numeric value that approximates the arithmetic average of its arguments.

The function type is numeric.

Format

FUNCTION MEAN (argument-1)

argument-1
Must be class numeric.

The returned value is the arithmetic mean of the argument-1 series. The returned value is defined as the
sum of the argument-1 series divided by the number of occurrences referenced by argument-1.

© Copyright IBM Corp. 1991, 2024 593

594 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 70. MEDIAN
The MEDIAN function returns the content of the argument whose value is the middle value in the list
formed by arranging the arguments in sorted order.

The function type is numeric.

Format

FUNCTION MEDIAN (argument-1)

argument-1
Must be class numeric.

The returned value is the content of argument-1 having the middle value in the list formed by arranging all
argument-1 values in sorted order.

If the number of occurrences referenced by argument-1 is odd, the returned value is such that at least
half of the occurrences referenced by argument-1 are greater than or equal to the returned value and
at least half are less than or equal. If the number of occurrences referenced by argument-1 is even, the
returned value is the arithmetic mean of the values referenced by the two middle occurrences.

The comparisons used to arrange the argument values in sorted order are made according to the rules for
simple conditions. For more information, see “Conditional expressions” on page 268.

© Copyright IBM Corp. 1991, 2024 595

596 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 71. MIDRANGE
The MIDRANGE function returns a numeric value that approximates the arithmetic average of the values
of the minimum argument and the maximum argument.

The function type is numeric.

Format

FUNCTION MIDRANGE (argument-1)

argument-1
Must be class numeric.

The returned value is the arithmetic mean of the value of the greatest argument-1 and the value of the
least argument-1. The comparisons used to determine the greatest and least values are made according
to the rules for simple conditions. For more information, see “Conditional expressions” on page 268.

© Copyright IBM Corp. 1991, 2024 597

598 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 72. MIN
The MIN function returns the content of the argument that contains the minimum value.

The function type depends on the argument type, as follows:

Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

All arguments integer
(includes integer arguments of usage NATIONAL)

Integer

Numeric (some arguments can be integer)
(includes numeric arguments of usage NATIONAL)

Numeric

Format

FUNCTION MIN (argument-1)

argument-1
Must be class alphabetic, alphanumeric, national, or numeric.

All arguments must be of the same class, except that a combination of alphabetic and alphanumeric
arguments is allowed.

The returned value is the content of argument-1 having the least value. The comparisons used to
determine the least value are made according to the rules for simple conditions. For more information,
see “Conditional expressions” on page 268.

If more than one argument-1 has the same least value, the leftmost argument-1 having that value is
returned.

If the type of the function is alphanumeric or national, the size of the returned value is the size of the
selected argument-1.

© Copyright IBM Corp. 1991, 2024 599

600 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 73. MOD
The MOD function returns an integer value that is argument-1 modulo argument-2.

The function type is integer.

The function result is an integer with as many digits as the shorter of argument-1 and argument-2.

Format
FUNCTION MOD (argument-1 argument-2)

argument-1
Must be an integer.

argument-2
Must be an integer. Must not be zero.

The returned value is argument-1 modulo argument-2. The returned value is defined as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

The following table lists expected results for some values of argument-1 and argument-2.

argument-1 argument-2 Returned value

11 5 1

-11 5 4

11 -5 -4

-11 -5 -1

© Copyright IBM Corp. 1991, 2024 601

602 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 74. NATIONAL-OF
The NATIONAL-OF function returns a national character string consisting of the national character
representation of the characters in argument-1.

The type of the function is national.

Format
FUNCTION NATIONAL-OF (argument-1

argument-2

)

argument-1
Must be of class alphabetic, alphanumeric, UTF-8, or DBCS. argument-1 specifies the source string for
the conversion.

argument-2
Must be an integer. argument-2 identifies the source code page for the conversion.

argument-2 must be a valid CCSID number and must identify an EBCDIC, ASCII, UTF-8, or EUC code
page. An EBCDIC or ASCII code page can contain both single-byte and double-byte characters.

If argument-2 is omitted and argument-1 is of class UTF-8, then the source code page is 1208.
Otherwise, the source code page is the one that was in effect for the CODEPAGE compiler option when
the source code was compiled.

The returned value is a national character string consisting of the characters of argument-1 converted to
national character representation. When a source character cannot be converted to a national character,
the source character is converted to a substitution character. The substitution character is:

• X'001A' if converting a single-byte character
• X'FFFD' if converting a multi-byte character

No exception condition is raised.

The length of the returned value depends on the content of argument-1 and the characteristics of the
source code page.

Usage note: The CCSID for UTF-8 is 1208.

Exception: If the conversion fails, a severe runtime error occurs. Verify that the z/OS Unicode conversion
services are installed and are configured to include the table for converting from the source code page to
CCSID 1200. See the Customization Guide for installation requirements to support the conversion.

© Copyright IBM Corp. 1991, 2024 603

604 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 75. NUMVAL
The NUMVAL function returns the numeric value represented by the alphanumeric character string or
national character string specified as the argument. The function removes any leading or trailing spaces in
the string to produce a numeric value.

The function type is numeric.

Format
FUNCTION NUMVAL (argument-1)

argument-1
Must be an alphanumeric literal, a national literal, or a data item of class national or class
alphanumeric that contains a character string in either of the following formats:

Format 1: argument-1

space +
 -

space
digit

.

digit

. digit

space

Format 2: argument-1, monetary format

space
digit

.

digit

. digit

space +
 -

CR

DB

space

space
A string of one or more spaces.

digit
A string of one or more digits. If the ARITH(COMPAT) compiler option is in effect, the total number
of digits must not exceed 18. If the ARITH(EXTEND) compiler option is in effect, the total number of
digits must not exceed 31.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a comma must
be used in argument-1 rather than a decimal point.

The returned value is a floating-point approximation of the numeric value represented by argument-1.
The precision of the returned value depends on the setting of the ARITH compiler option. For details, see
Converting to numbers (NUMVAL, NUMVAL-C, NUMVAL-F) in the Enterprise COBOL Programming Guide.

© Copyright IBM Corp. 1991, 2024 605

606 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 76. NUMVAL-C
The NUMVAL-C function returns the numeric value represented by the alphanumeric character string or
national character string specified as argument-1. The function removes the currency string, if any, and
any grouping separators (commas or periods) to produce a numeric value.

The function type is numeric.

Format
FUNCTION NUMVAL-C (argument-1

argument-2

)

argument-1
Must be an alphanumeric literal, a national literal, or a data item of class alphanumeric or class
national that contains a character string in either of the following formats:

Format 1: argument-1

space +
 -

space cs space

digit

, digit

.

digit

. digit

space

Format 2: argument-1, monetary format

space cs space

digit

, digit

.

digit

. digit

space

 +
 -

CR

DB

space

space
A string of one or more spaces.

© Copyright IBM Corp. 1991, 2024 607

cs
The string of one or more characters that form the currency sign. At most one copy of the
characters specified by cs can occur in argument-1.

digit
A string of one or more digits. If the ARITH(COMPAT) compiler option is in effect, the total number
of digits must not exceed 18. If the ARITH(EXTEND) compiler option is in effect, the total number
of digits must not exceed 31.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, the functions
of the comma and decimal point in argument-1 are reversed.

argument-2
Specifies the currency string value.

The following rules apply:

• argument-2 must be specified if the program contains more than one CURRENCY SIGN clause.
• argument-2, if specified, must be of the same class as argument-1.
• argument-2 must not contain any of the digits 0 through 9, any leading or trailing spaces, or any of

the special characters '+', '-', '.', or ','.
• argument-2 can be of any length valid for an elementary or group data item of the class of

argument-2, including zero.
• Matching of argument-2 is case sensitive. For example, if you specify argument-2 as 'CHF', it will not

match 'ChF', 'chf' or 'chF'.

If argument-2 is not specified, the character used for cs is the currency symbol specified for the
program.

The returned value is a floating-point approximation of the numeric value represented by argument-1.
The precision of the returned value depends on the setting of the ARITH compiler option. For details, see
Converting to numbers (NUMVAL, NUMVAL-C, NUMVAL-F) in the Enterprise COBOL Programming Guide.

608 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 77. NUMVAL-F
The NUMVAL-F function returns the numeric value represented by the alphanumeric character string or
national character string specified as the argument. The function removes any leading or trailing spaces in
the string to produce a numeric value.

The function type is numeric.

Format
FUNCTION NUMVAL-F (argument-1)

argument-1
Must be an alphanumeric literal, a national literal, or a data item of class national or class
alphanumeric that contains a character string in the following format:

Format: argument-1

space +
 -

space
digit

.

digit

. digit

space

E
space

 +
 - space-string

n
space

space
A string of one or more spaces.

digit
A string of one or more digits.
If the ARITH(COMPAT) compiler option is in effect, the total number of digits must not exceed 18.
If the ARITH(EXTEND) compiler option is in effect, the total number of digits must not exceed 31.
If the exponent clause is specified, the mantissa must not exceed 16 digits.

n
A string of one to four digits representing the exponent value.

E
If argument-1 is alphanumeric, E must be either an uppercase or lowercase E character.
If argument-1 is national, E must be either an uppercase or lowercase E national character.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a comma must
be used in argument-1 rather than a decimal point.

The returned value is a floating-point approximation of the numeric value represented by argument-1.
The precision of the returned value depends on the setting of the ARITH compiler option. For details, see
Converting to numbers (NUMVAL, NUMVAL-C, NUMVAL-F) in the Enterprise COBOL Programming Guide.

© Copyright IBM Corp. 1991, 2024 609

610 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 78. ORD
The ORD function returns an integer value that is the ordinal position of its argument in the collating
sequence for the program. The lowest ordinal position is 1.

The function type is integer.

The function result is a three-digit integer.

Format
FUNCTION ORD (argument-1)

argument-1
Must be one character in length and must be class alphabetic or alphanumeric.

The returned value is the ordinal position of argument-1 in the collating sequence for the program; it
ranges from 1 to 256 depending on the collating sequence.

© Copyright IBM Corp. 1991, 2024 611

612 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 79. ORD-MAX
The ORD-MAX function returns a value that is the ordinal position in the argument list of the argument
that contains the maximum value.

The function type is integer.

Format

FUNCTION ORD-MAX (argument-1)

argument-1
Must be class alphabetic, alphanumeric, national, or numeric.

All arguments must be of the same class, except that a combination of alphabetic and alphanumeric
arguments is allowed.

The returned value is the ordinal number that corresponds to the position of the argument-1 having the
greatest value in the argument-1 series.

The comparisons used to determine the greatest-valued argument-1 are made according to the rules for
simple conditions. For more information, see “Conditional expressions” on page 268.

If more than one argument-1 has the same greatest value, the number returned corresponds to the
position of the leftmost argument-1 having that value.

© Copyright IBM Corp. 1991, 2024 613

614 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 80. ORD-MIN
The ORD-MIN function returns a value that is the ordinal position in the argument list of the argument that
contains the minimum value.

The function type is integer.

Format

FUNCTION ORD-MIN (argument-1)

argument-1
Must be class alphabetic, alphanumeric, national, or numeric.

All arguments must be of the same class, except that a combination of alphabetic and alphanumeric
arguments is allowed.

The returned value is the ordinal number that corresponds to the position of the argument-1 having the
least value in the argument-1 series.

The comparisons used to determine the least-valued argument-1 are made according to the rules for
simple conditions. For more information, see “Conditional expressions” on page 268.

If more than one argument-1 has the same least value, the number returned corresponds to the position
of the leftmost argument-1 having that value.

© Copyright IBM Corp. 1991, 2024 615

616 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 81. PI
The PI function returns a value that is an approximation of pi, the ratio of the circumference of a circle to
its diameter.

The function type is numeric.

Format
FUNCTION PI

When ARITH(COMPAT) is in effect, FUNCTION PI returns the long precision (64-bit) floating-point
approximation of 3.141592653589793238462643383279503.

When ARITH(EXTEND) is in effect, FUNCTION PI returns the extended precision (128-bit) floating-point
approximation of 3.141592653589793238462643383279503.

© Copyright IBM Corp. 1991, 2024 617

618 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 82. PRESENT-VALUE
The PRESENT-VALUE function returns a value that approximates the present value of a series of future
period-end amounts specified by argument-2 at a discount rate specified by argument-1.

The function type is numeric.

Format

FUNCTION PRESENT-VALUE (argument-1 argument-2)

argument-1
Must be class numeric. Must be greater than -1.

argument-2
Must be class numeric.

The returned value is an approximation of the summation of a series of calculations with each term in the
following form:

argument-2 / (1 + argument-1) ** n

There is one term for each occurrence of argument-2. The exponent n is incremented from 1 by 1 for each
term in the series.

© Copyright IBM Corp. 1991, 2024 619

620 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 83. RANDOM
The RANDOM function returns a numeric value that is a pseudorandom number from a rectangular
distribution.

The function type is numeric.

Format
FUNCTION RANDOM

(argument-1)

argument-1
If argument-1 is specified, it must be zero or a positive integer. However, only values in the range from
zero up to and including 2,147,483,645 yield a distinct sequence of pseudorandom numbers.

If a subsequent reference specifies argument-1, a new sequence of pseudorandom numbers is started.

If the first reference to this function in the run unit does not specify argument-1, the seed value used will
be zero.

In each case, subsequent references without specifying argument-1 return the next number in the current
sequence.

The returned value is exclusively between zero and one.

For a given seed value, the sequence of pseudorandom numbers is always the same.

The RANDOM function can be used in threaded programs. For an initial seed, a single sequence of
pseudorandom numbers is returned, regardless of the thread that is running when RANDOM is invoked.

© Copyright IBM Corp. 1991, 2024 621

622 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 84. RANGE

The RANGE function returns a value that is equal to the value of the maximum argument minus the value
of the minimum argument.

The function type depends on the argument types, as follows:

Argument type Function type

All arguments integer Integer

Numeric (some arguments can be integer) Numeric

Format

FUNCTION RANGE (argument-1)

argument-1
Must be class numeric.

The returned value is equal to argument-1 with the greatest value minus the argument-1 with the least
value. The comparisons used to determine the greatest and least values are made according to the rules
for simple conditions. For more information, see “Conditional expressions” on page 268.

© Copyright IBM Corp. 1991, 2024 623

624 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 85. REM
The REM function returns a numeric value that is the remainder of argument-1 divided by argument-2.

The function type is numeric.

Format
FUNCTION REM (argument-1 argument-2)

argument-1
Must be class numeric.

argument-2
Must be class numeric. Must not be zero.

The returned value is the remainder of argument-1 divided by argument-2. It is defined as the expression:

argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1 / argument-2))

© Copyright IBM Corp. 1991, 2024 625

626 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 86. REVERSE
The REVERSE function returns a character value of the same length as the argument, whose characters
are the same as those specified in the argument except that they are in reverse order. For arguments of
type national, character positions are reversed; UTF-16 characters that are surrogate pairs are treated as
one character and UTF-16 characters that are not surrogate pairs are treated as one character.

The function type depends on the type of the argument, as follows:

Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

Format
FUNCTION REVERSE (argument-1)

argument-1
Must be class alphabetic, alphanumeric, or national and must be at least one character in length.
argument-1 must contain valid UTF-8 or UTF-16 encoded characters:

• If argument-1 is of class alphabetic or alphanumeric, it must contain valid UTF-8 data.
• If argument-1 is of class national, it must contain valid UTF-16 data.

The returned value is a character string of the same length as argument-1, with the characters of
argument-1 in reversed order. For example, if argument-1 contains ABC, the returned value is CBA.

Example 1
If argument-1 is an alphanumeric data item that contains the UTF-8 value x'4BC3A4666572' ('Käfer'), the
returned value is x'726566C3A44B' ('refäK').

Example 2
If argument-1 is a national data item that contains the UTF-16 value x'0054 00F6 D847DDF3 0062
0075 0072 D858DC6B 0073' (' '), the returned value is x'0073 D858DC6B 0072 0075 0062
D847DDF3 00F6 0054' (' ').

Example 3
If argument-1 is a UTF-8 encoded item and the UTF-8 argument contains composed characters, the
combining characters are counted individually. For example, when encoded in UTF-8, the Unicode
character ä can be x'C3A4' or x'61CC88'. With either of the UTF-8 characters in argument-1, the returned
values of the REVERSE function are different. See the following table for details.

© Copyright IBM Corp. 1991, 2024 627

Table 65. REVERSE function of character Kä

Characte
r Unicode encoding UTF-8 encoding

Returned values of the
REVERSE function

Kä U+004B + U+00E4

(precomposed form,
latin capital letter K + latin small letter a with diaeresis)

x'4BC3A4' (Kä) x’C3A44B’ (äK)

U+004B + U+0061 + U+0308

(canonical decomposition,
latin capital letter K + latin small letter a + combining diaeresis)

x'4B61CC88' (Kä) x’CC88614B’ (äK)

628 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 87. SECONDS-FROM-FORMATTED-TIME
The SECONDS-FROM-FORMATTED-TIME function converts a time that is in a specified format to a
numeric value that represents the number of seconds after midnight.

The function type is numeric.

Format
FUNCTION SECONDS-FROM-FORMATTED-TIME (argument-1 argument-2)

argument-1
Must be a national, UTF-8, or an alphanumeric literal in either a time format or a combined date and
time format. For details, see “Date and time formats” on page 504.

argument-2
Must be of the same type as argument-1.
If argument-1 is a time format, the content of argument-2 should be a time in that format.
If argument-1 is a combined date and time format, the content of argument-2 should be a valid date
and time in that format.

Returned values
The equivalent arithmetic expression is ((H * 3600) + (M * 60) + S), where H is the portion of argument-2
corresponding to the hours subfield of argument-1, M is the portion of argument-2 corresponding to the
minutes subfield of argument-1, and S is the portion of argument-2 corresponding to the seconds subfield
of argument-1.

Example
If the format for the first argument is "hhmmss.ss+hhmm" and the value for the second argument is
"05142781+0500", the returned value would be 18867.81. The same value would be returned if the
format for the first argument is "YYYYMMDDThhmmss.ss+hhmm" and the value for the second argument
is "19950215T051427.81+0500".

© Copyright IBM Corp. 1991, 2024 629

630 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 88. SECONDS-PAST-MIDNIGHT
The SECONDS-PAST-MIDNIGHT function returns a value in standard numeric time form that represents
the current local time of day provided by the system on which the function is evaluated.

The function type is numeric.

Format
FUNCTION SECONDS-PAST-MIDNIGHT

The SECONDS-PAST-MIDNIGHT function has no parameters.

Returned values
The returned value is in standard numeric time form that represents the current local time of the day
provided by the system on which the function is evaluated, expressed in seconds past midnight. The
precision is indicated by the z/OS operating environment and the precision of the user's data type.

Example
If the current time in the z/OS operating environment is 05:14:27.812479168304, the returned value
would be as close to 18867.812479168304 as the z/OS operating environment is capable of providing.

© Copyright IBM Corp. 1991, 2024 631

632 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 89. SIGN
The SIGN function returns +1, 0, or –1 depending on the sign of the argument.

The function type is integer.

Format
FUNCTION SIGN (argument-1)

argument-1
Must be of class numeric.

The returned value is as follows:

• If the value of argument-1 is greater than zero, the returned value is 1.
• If the value of argument-1 is zero, the returned value is 0.
• If the value of argument-1 is less than zero, the returned value is -1.

© Copyright IBM Corp. 1991, 2024 633

634 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 90. SIN
The SIN function returns a numeric value that approximates the sine of the angle or arc specified by the
argument in radians.

The function type is numeric.

Format
FUNCTION SIN (argument-1)

argument-1
Must be class numeric.

The returned value is the approximation of the sine of argument-1 and is greater than or equal to -1 and
less than or equal to +1.

© Copyright IBM Corp. 1991, 2024 635

636 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 91. SQRT
The SQRT function returns a numeric value that approximates the square root of the argument specified.

The function type is numeric.

Format
FUNCTION SQRT (argument-1)

argument-1
Must be class numeric. The value of argument-1 must be zero or positive.

The returned value is the absolute value of the approximation of the square root of argument-1.

© Copyright IBM Corp. 1991, 2024 637

638 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 92. STANDARD-DEVIATION
The STANDARD-DEVIATION function returns a numeric value that approximates the standard deviation of
its arguments.

The function type is numeric.

Format

FUNCTION STANDARD-DEVIATION (argument-1)

argument-1
Must be class numeric.

The returned value is the approximation of the standard deviation of the argument-1 series. The returned
value is calculated as follows:

1. The difference between each argument-1 and the arithmetic mean of the argument-1 series is
calculated and squared.

2. The values obtained are then added together. This quantity is divided by the number of values in the
argument-1 series.

3. The square root of the quotient obtained is then calculated. The returned value is the absolute value of
this square root.

If the argument-1 series consists of only one value, or if the argument-1 series consists of all variable-
occurrence data items and the total number of occurrences for all of them is one, the returned value is
zero.

© Copyright IBM Corp. 1991, 2024 639

640 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 93. SUM
The SUM function returns a value that is the sum of the arguments.

The function type depends on the argument types, as follows:

Argument type Function type

All arguments integer Integer

Numeric (some arguments can be integer) Numeric

Format

FUNCTION SUM (argument-1)

argument-1
Must be class numeric.

The returned value is the sum of the arguments. If the argument-1 series are all integers, the value
returned is an integer. If the argument-1 series are not all integers, a numeric value is returned.

© Copyright IBM Corp. 1991, 2024 641

642 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 94. TAN
The TAN function returns a numeric value that approximates the tangent of the angle or arc that is
specified by the argument in radians.

The function type is numeric.

Format
FUNCTION TAN (argument-1)

argument-1
Must be class numeric.

The returned value is the approximation of the tangent of argument-1.

© Copyright IBM Corp. 1991, 2024 643

644 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 95. TEST-DATE-YYYYMMDD
The TEST-DATE-YYYYMMDD function tests whether a date in standard date form (YYYYMMDD) is a valid
date in the Gregorian calendar. Argument-1 of the INTEGER-OF-DATE function must be in standard date
form.

The function type is integer.

Format
FUNCTION TEST-DATE-YYYYMMDD (argument-1)

argument-1
Must be an integer.

Returned values
• If the value of argument-1 is less than 16010000 or greater than 99999999, the returned value is 1,

which means the year is not within the range of 1601 to 9999.
• If the value of FUNCTION MOD (argument-1 10000) is less than 100 or greater than 1299, the returned

value is 2, which means the month is not within the range of 1 to 12.
• If the value of FUNCTION MOD (argument-1 100) is less than 1 or greater than the number of days in

the month determined by FUNCTION INTEGER (FUNCTION MOD (argument-1 10000)/100) of the year
determined by FUNCTION INTEGER (argument-1/10000), the returned value is 3, which means the day
is not valid for the given year and month.

• Otherwise, the returned value is 0 (zero) , which means the date is valid.

Examples
FUNCTION TEST-DATE-YYYYMMDD (19950215) returns 0 because the date is valid.

FUNCTION TEST-DATE-YYYYMMDD (12950215) returns 1 because the year is invalid and the value of
argument-1 is less than 16010000.

FUNCTION TEST-DATE-YYYYMMDD (912950215) returns 1 because the year is invalid and the value of
argument-1 is greater than 99999999.

FUNCTION TEST-DATE-YYYYMMDD (19921415) returns 2 because the month is not within the range of 1
to 12 and the value of FUNCTION MOD (argument-1 10000) is less than 100 or greater than 1299.

FUNCTION TEST-DATE-YYYYMMDD (19950240) returns 3 because the day is invalid for the given year
and given month.

Related references
“Format of arguments and return values
for date and time intrinsic functions” on page 503
Chapter 60, “INTEGER-OF-DATE,” on page 575

© Copyright IBM Corp. 1991, 2024 645

646 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 96. TEST-DAY-YYYYDDD
The TEST-DAY-YYYYDDD function tests whether a date in Julian date form (YYYYDDD) is a valid date in
the Gregorian calendar. Argument-1 of the INTEGER-OF-DAY function must be in Julian date form.

The function type is integer.

Format
FUNCTION TEST-DAY-YYYYDDD (argument-1)

argument-1
Must be an integer.

Returned values
• If the value of argument-1 is less than 1601000 or greater than 9999999, the returned value is 1, which

means the year is not within the range of 1601 to 9999.
• If the value of FUNCTION MOD (argument-1 1000) is less than 1 or greater than the number of days in

the year determined by FUNCTION INTEGER (argument-1/1000), the returned value is 2, which means
the day is not valid in the given year.

• Otherwise, the returned value is 0 (zero), which means the date is valid.

Examples
FUNCTION TEST-DAY-YYYYDDD (1995146) returns 0 because the date is valid.

FUNCTION TEST-DAY-YYYYDDD (1295146) returns 1 because the year is invalid and the value of
argument-1 is less than 1601000.

FUNCTION TEST-DAY-YYYYDDD (1995446) returns 2 because the day is not valid in the given year and
the value of FUNCTION MOD (argument-1 1000) is less than 1 or greater than the number of days in the
year determined by FUNCTION INTEGER (argument-1/1000).

Related references
“Format of arguments and return values
for date and time intrinsic functions” on page 503
Chapter 61, “INTEGER-OF-DAY,” on page 577

© Copyright IBM Corp. 1991, 2024 647

648 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 97. TEST-FORMATTED-DATETIME
The TEST-FORMATTED-DATETIME function tests whether a data item that represents a date, a time, or a
combined date and time is valid according to the specified format.

The function type is integer.

Format
FUNCTION TEST-FORMATTED-DATETIME (argument-1 argument-2)

argument-1
Must be a national, UTF-8, or an alphanumeric literal in a date format, a time format, or a combined
date and time format. For details, see “Date and time formats” on page 504.

Note: The permitted values associated with date and time formats are specified in the Date and time
formats of “Format of arguments and return values for date and time intrinsic functions” on page 503.

argument-2
Must be of the same type as argument-1.

Returned values
If no format problems or range problems occur during the evaluation of argument-2 according to the
format in argument-1, the returned value is zero. Otherwise, the returned value is the ordinal character
position where the first error in argument-2 is detected. In FUNCTION TEST-FORMATTED-DATETIME
("YYYYMMDD", A-DATE), where A-DATE is an 8-character data item, if A-DATE contains the value
20051314, the returned value will be 6, which indicates that the character 3 is in error because the
month portion of A-DATE (character positions 5 and 6) contains 13. If A-DATE contains the value
15990316, the returned value will be 2, which indicates that the second character 5 is in error. The
character 5 occupies the first position in which it can be determined that the year is less than 1601.

Examples
FUNCTION TEST-FORMATTED-DATETIME ("YYYYMMDD", "19950215") returns 0 because the data item in
argument-2 representing a date is valid according to the specified format in argument-1.

FUNCTION TEST-FORMATTED-DATETIME ("YYYYMMDD", "19959215") returns 5 because the data item in
argument-2 has an incorrect character at position 5 for the first digit of the month in YYYYMMDD.

FUNCTION TEST-FORMATTED-DATETIME ("YYYYMMDDThhmmss", "19950215T0514:27") returns 14
because the data item in argument-2 has an incorrect colon ":" character at position 14 instead of the first
character of the number of seconds according to the specified format in argument-1.

© Copyright IBM Corp. 1991, 2024 649

650 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 98. TEST-NUMVAL
The TEST-NUMVAL function verifies that the contents of argument-1 conform to the specification for
argument-1 of the NUMVAL function.

The function type is integer.

Format
FUNCTION TEST-NUMVAL (argument-1)

argument-1
Must be an alphanumeric literal, a national literal, or a data item of class alphanumeric or class
national.

The returned value is as follows:

• If the content of argument-1 conforms to the argument rules for the NUMVAL function, the returned
value is 0.

• If one or more characters are in error, the returned value is the position of the first character in error.

Notes:

– If one or more spaces are embedded within a string of numeric characters, the returned value is the
position of the first non-space character following the spaces, because one or more spaces following
one or more digits is valid. For example, if argument-1 is '0 1', the returned value will be 3.

– If the ARITH(COMPAT) compiler option is in effect, the returned value is the position of the 19th digit
if no prior error is found, because the character in error for an argument that is greater than 18 digits
is the 19th digit.

– If the ARITH(EXTEND) compiler option is in effect, the returned value is the position of the 32nd digit
if no prior error is found, because the character in error for an argument that is greater than 31 digits
is the 32nd digit.

• Otherwise, the returned value is (FUNCTION LENGTH (argument-1) + 1).

These errors include, but are not limited to:

– argument-1 is zero-length.
– argument-1 contains only spaces.
– argument-1 contains valid characters but is incomplete, such as the string ' +.'.

© Copyright IBM Corp. 1991, 2024 651

652 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 99. TEST-NUMVAL-C
The TEST-NUMVAL-C function verifies that the contents of argument-1 conform to the specification for
argument-1 of the NUMVAL-C function.

The function type is integer.

Format
FUNCTION TEST-NUMVAL-C (argument-1

argument-2

)

argument-1
Must be an alphanumeric literal, a national literal, or a data item of class alphanumeric or class
national that contains a character string in either of the following formats:

Format 1: argument-1

space +
 -

space cs space

digit

, digit

.

digit

. digit

space

Format 2: argument-1, monetary format

space cs space

digit

, digit

.

digit

. digit

space

 +
 -

CR

DB

space

space
A string of one or more spaces.

cs
The string of one or more characters that form the currency sign. At most one copy of the
characters specified by cs can occur in argument-1.

© Copyright IBM Corp. 1991, 2024 653

digit
A string of one or more digits.
If the ARITH(COMPAT) compiler option is in effect, the total number of digits must not exceed 18.
If the ARITH(EXTEND) compiler option is in effect, the total number of digits must not exceed 31.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, the functions
of the comma and decimal point in argument-1 are reversed.

argument-2
Specifies the currency string value.

The following rules apply:

• argument-2 must be specified if the program contains more than one CURRENCY SIGN clause.
• argument-2, if specified, must be of the same class as argument-1.
• argument-2 must not contain any of the digits 0 through 9, any leading or trailing spaces, or any of

the special characters '+', '-', '.', or ','.
• argument-2 can be of any length valid for an elementary or group data item of the class of

argument-2, including zero.
• Matching of argument-2 is case sensitive. For example, if you specify argument-2 as 'CHF', it will not

match 'ChF', 'chf' or 'chF'.

If argument-2 is not specified, the character used for cs is the currency symbol specified for the
program.

The returned value is as follows:

• If the content of argument-1 conforms to the argument rules for the NUMVAL-C function, the returned
value is 0.

• If one or more characters are in error, the returned value is the position of the first character in error.

Notes:

– If one or more spaces are embedded within a string of numeric characters, the returned value is the
position of the first non-space character following the spaces, because one or more spaces following
one or more digits is valid. For example, if argument-1 is '0 1', the returned value will be 3.

– If the ARITH(COMPAT) compiler option is in effect, the returned value is the position of the 19th digit
if no prior error is found, because the character in error for an argument that is greater than 18 digits
is the 19th digit.

– If the ARITH(EXTEND) compiler option is in effect, the returned value is the position of the 32nd digit
if no prior error is found, because the character in error for an argument that is greater than 31 digits
is the 32nd digit.

• Otherwise, the returned value is (FUNCTION LENGTH (argument-1) + 1).

These errors include, but are not limited to:

– argument-1 is zero-length.
– argument-1 contains only spaces.
– argument-1 contains valid characters but is incomplete, such as the string ' +.'.

654 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 100. TEST-NUMVAL-F
The TEST-NUMVAL-F function verifies that the contents of argument-1 conform to the specification for
argument-1 of the NUMVAL-F function.

The function type is integer.

Format
FUNCTION TEST-NUMVAL-F (argument-1)

argument-1
Must be an alphanumeric literal, a national literal, or a data item of class alphanumeric or class
national.

The returned value is as follows:

• If the content of argument-1 conforms to the argument rules for the NUMVAL-F function, the returned
value is 0.

• If one or more characters are in error, the returned value is the position of the first character in error.

Notes:

– If one or more spaces are embedded within a string of numeric characters, the returned value is the
position of the first non-space character following the spaces, because one or more spaces following
one or more digits is valid. For example, if argument-1 is '0 1', the returned value will be 3.

– If the ARITH(COMPAT) compiler option is in effect, the returned value is the position of the 19th digit
if no prior error is found, because the character in error for an argument that is greater than 18 digits
is the 19th digit.

– If the ARITH(EXTEND) compiler option is in effect, the returned value is the position of the 32nd digit
if no prior error is found, because the character in error for an argument that is greater than 31 digits
is the 32nd digit.

– If the exponent value in the argument contains more than four significant digits, the returned value is
the position of the fifth digit of the exponent.

• Otherwise, the returned value is (FUNCTION LENGTH (argument-1) + 1).

These errors include, but are not limited to:

– argument-1 is zero-length.
– argument-1 contains only spaces.
– argument-1 contains valid characters but is incomplete, such as the string ' +.'.

© Copyright IBM Corp. 1991, 2024 655

656 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 101. TRIM
The TRIM function returns a character string that contains the characters in the argument with leading
spaces, trailing spaces, or both, removed.

The function type depends on the argument type as follows:

Table 66. TRIM function types depending on the argument types

Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Format
FUNCTION TRIM (argument-1

LEADING

TRAILING

)

argument-1
Must be a data item of class alphabetic, alphanumeric, national, or UTF-8.

The returned value is:

• If LEADING is specified, the returned value is a character string that consists of the characters in
argument-1 beginning from the leftmost character position that does not contain a space character
through the rightmost character position.

• If TRAILING is specified, the returned value is a character string that consists of the characters in
argument-1 beginning from the leftmost character position through the rightmost character position
that does not contain a space character.

• If neither LEADING nor TRAILING is specified, the returned value is a character string that consists of
the characters in argument-1 beginning from the leftmost character position that does not contain a
space character through the rightmost character position that does not contain a space character.

• If argument-1 contains all spaces or argument-1 is of length zero, the returned value is of length zero.

Examples
• FUNCTION TRIM(" Hello, world! ", LEADING) returns "Hello, world! "
• FUNCTION TRIM(" Hello, world! ", TRAILING) returns " Hello, world!"
• FUNCTION TRIM(" Hello, world! ") returns "Hello, world!"
• FUNCTION TRIM(" ") returns ""
• FUNCTION TRIM("") returns ""

© Copyright IBM Corp. 1991, 2024 657

658 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 102. ULENGTH
The ULENGTH function returns an integer value that is equal to the number of UTF-8 or UTF-16
characters in a character data item argument that contains UTF-8 or UTF-16 data.

The function type is integer.

Format
FUNCTION ULENGTH (argument-1)

argument-1
Must be of class alphabetic, alphanumeric, national or UTF-8. argument-1 must contain valid UTF-8 or
UTF-16 encoded characters:

• If argument-1 is of class alphabetic, alphanumeric or UTF-8, it must contain valid UTF-8 data.
• If argument-1 is of class national, it must contain valid UTF-16 data.

The returned value is the number of UTF-8 or UTF-16 characters in argument-1. If LP(32) is in effect, the
returned value is a 9-digit integer; if LP(64) is in effect, the returned value is an 18-digit integer.

Example 1
If argument-1 is a UTF-8 encoded item and the UTF-8 argument contains composed characters, the
combining characters are counted individually in determining the length. For example, when encoded
in UTF-8, the Unicode character ä can be x'C3A4' or x'61CC88'. With either of the UTF-8 characters as
argument-1, the returned values of the ULENGTH function are different. See the following table for details.

Table 67. ULENGTH function of character ä

Character Unicode encoding UTF-8 encoding
Returned value of the ULENGTH
function

ä U+00E4

(precomposed form,
latin small letter a with diaeresis)

x'C3A4' 1

U+0061 + U+0308

(canonical decomposition,
latin small letter a + combining diaeresis)

x'61CC88' 2

Example 2
If argument-1 is a national data item that contains UTF-16 data and argument-1 contains surrogate pairs,
each pair of low and high surrogates will be counted as one UTF-16 character. For example, if B is a
national item that contains the UTF-16 value nx'005400F6006200750072D858DC6B0073' (' '),
the returned value from ULENGTH(B) will be 7. Character = X'D858DC6B' is counted as one UTF-16
character.

© Copyright IBM Corp. 1991, 2024 659

660 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 103. UPOS
The UPOS function returns an integer value that is equal to the index of the nth UTF-8 or UTF-16
character in a character data item argument that contains UTF-8 or UTF-16.

The function type is integer.

Format
FUNCTION UPOS (argument-1 argument-2)

argument-1
Must be of class alphabetic, alphanumeric, national or UTF-8. argument-1 must contain valid UTF-8 or
UTF-16 encoded characters:

• If argument-1 is of class alphabetic, alphanumeric or UTF-8, it must contain valid UTF-8 data.
• If argument-1 is of class national, it must contain valid UTF-16 data.

argument-2
Must be an integer.

Suppose argument-1 is alphabetic or alphanumeric and argument-2=n, the returned value is the byte
position of the nth UTF-8 character in argument-1. Suppose argument-1 is a national data item and
argument-2=n, the returned value is the byte position of the nth UTF-16 character in argument-1.

If argument-2 is not positive or if argument-2 is larger than ULENGTH(argument-1), zero is returned.
Otherwise, if argument-2=n, the returned value is the byte position in argument-1 where the nth UTF-8 or
UTF-16 character starts.

The returned value of UPOS is a 9-digit integer if LP(32) is in effect or an 18-digit integer if LP(64) is in
effect.

Example 1
If A is an alphanumeric item that contains the UTF-8 value x'4BC3A4666572' ('Käfer'), the returned
values are as follows:

• UPOS(A 1) returns 1
• UPOS(A 2) returns 2
• UPOS(A 3) returns 4
• UPOS(A 4) returns 5
• UPOS(A 5) returns 6

Example 2
If B is a national item that contains the UTF-16 value nx'005400F6006200750072D858DC6B0073'
(' '), the returned values are as follows:

• UPOS (B 1) returns 1
• UPOS (B 2) returns 3
• UPOS (B 3) returns 5
• UPOS (B 4) returns 7
• UPOS (B 5) returns 9
• UPOS (B 6) returns 11
• UPOS (B 7) returns 15

© Copyright IBM Corp. 1991, 2024 661

Example 3
If argument-1 is a UTF-8 encoded item and the UTF-8 argument contains composed characters, the
combining characters are counted individually. For example, when encoded in UTF-8, the Unicode
character ä can be x'C3A4' or x'61CC88'. With either of the UTF-8 characters in argument-1, the returned
values of the UPOS function are different. See the following table for details.

Table 68. Returned values of the UPOS function

argument-
1 Unicode encoding UTF-8 encoding

Returned values of the
UPOS function

C = äK U+00E4 + U+004B

(precomposed form,
latin small letter a with diaeresis + latin capital letter K)

x'C3A44B' (äK) UPOS(C 1) returns 1
UPOS(C 2) returns 3
UPOS(C 3) returns 0

U+0061 + U+0308 + U+004B

(canonical decomposition,
latin small letter a + combining diaeresis + latin capital letter K)

x'61CC884B' (äK) UPOS(C 1) returns 1
UPOS(C 2) returns 2
UPOS(C 3) returns 4

662 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 104. UPPER-CASE
The UPPER-CASE function returns a character string that contains the characters in the argument with
each lowercase letter replaced by the corresponding uppercase letter.

The function type depends on the type of the argument, as follows:

Argument type Function type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

UTF-8 UTF-8

Format
FUNCTION UPPER-CASE (argument-1)

argument-1
Must be of class alphabetic, alphanumeric, national, or UTF-8 and must be at least one character
position in length.

Note: If argument-1 is of the alphanumeric class, it must not contain UTF-8 encoded data.

The same character string as argument-1 is returned, except that each lowercase letter is replaced by the
corresponding uppercase letter.

If argument-1 is alphabetic or alphanumeric, the lowercase letters 'a' through 'z' are replaced by the
corresponding uppercase letters 'A' through 'Z', where the range of 'a' through 'z' and the range of 'A'
through 'Z' are as shown in “EBCDIC collating sequence” on page 751, regardless of the code page in
effect.

If argument-1 is national or UTF-8, each lowercase letter is replaced by its corresponding uppercase
letter based on the specification given in the Unicode database UnicodeData.txt, available from the
Unicode Consortium at www.unicode.org/.

If argument-1 is not of class UTF-8, the character string returned has the same length as argument-1.
For UTF-8 arguments, the returned string may have a different byte length than the byte length of
argument-1.

© Copyright IBM Corp. 1991, 2024 663

http://www.unicode.org/

664 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 105. USUBSTR
The USUBSTR function returns a substring of the data in a character data item argument that contains
UTF-8 or UTF-16 data.

The function type is alphanumeric, national, or UTF-8, depending on the class of argument-1.

Format
FUNCTION USUBSTR (argument-1 argument-2 argument-3)

argument-1
Must be of class alphabetic, alphanumeric, national or UTF-8. argument-1 must contain valid UTF-8 or
UTF-16 encoded characters:

• If argument-1 is of class alphabetic, alphanumeric or UTF-8, it must contain valid UTF-8 data.
• If argument-1 is of class national, it must contain valid UTF-16 data.

argument-2
Must be an integer that is greater than zero. It represents the starting position of a substring in
argument-1.

argument-3
Must be an integer that is greater than or equal to zero. It represents the length of a substring in
argument-1.

Note: The sum of argument-2 and argument-3 minus one must be less than or equal to
ULENGTH(argument-1).

Suppose argument-1 is alphabetic or alphanumeric, argument-2 = n and argument-3 = m, the returned
value is an alphanumeric item that contains m UTF-8 characters from argument-1, starting with the nth
UTF-8 character. Suppose argument-1 is a national data item, argument-2 = n and argument-3 = m, the
returned value is a national item that contains m UTF-16 characters from argument-1, starting with the
nth UTF-16 character.

Example 1
If A is an alphanumeric item that contains the UTF-8 value x'4BC3A4666572' ('Käfer'), the returned
values are as follows:

• USUBSTR(A 1 2) returns x'4BC3A4' ('Kä')
• USUBSTR(A 2 1) returns x'C3A4' ('ä')
• USUBSTR(A 2 2) returns x'C3A466' ('äf')
• USUBSTR(A 3 2) returns x'6665' ('fe')

Example 2
If B is a national item that contains the UTF-16 value nx'005400F6006200750072D858DC6B0073'
(' '), the returned values are as follows:

• USUBSTR(B 1 2) returns x'005400F6' ('Tö')
• USUBSTR(B 2 1) returns x'00F6' ('ö')
• USUBSTR(B 2 2) returns x'00F60062' ('öb')
• USUBSTR(B 3 2) returns x'00620075' ('be')

• USUBSTR(B 5 2) returns x'0072D858DC6B' (' ')

© Copyright IBM Corp. 1991, 2024 665

• USUBSTR(B 6 2) returns x'D858DC6B0073' (' ')

Example 3
If argument-1 is a UTF-8 encoded item and the UTF-8 argument contains composed characters, the
combining characters are counted individually. For example, when encoded in UTF-8, the Unicode
character ä can be x'C3A4' or x'61CC88'. With either of the UTF-8 characters in argument-1, the returned
values of the USUBSTR function are different. See the following table for details.

Table 69. Returned values of the USUBSTR function

argument-
1 Unicode encoding UTF-8 encoding Returned values of the USUBSTR function

C = äK U+00E4 + U+004B

(precomposed form,
latin small letter a with diaeresis +
latin capital letter K)

x'C3A44B' (äK) USUBSTR (C 1 1) returns x'C3A4' (ä)
USUBSTR (C 2 1) returns x'4B' (K)
USUBSTR (C 1 2) returns x'C3A44B' (äK)

U+0061 + U+0308 + U+004B

(canonical decomposition,
latin small letter a + combining diaeresis +
latin capital letter K)

x'61CC884B' (äK) USUBSTR (C 1 1) returns x'61' (a)
USUBSTR (C 2 1) returns x'CC88' (¨)
USUBSTR (C 1 2) returns x'61CC88' (ä)
USUBSTR (C 1 3) returns x'61CC884B' (äK)

666 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 106. USUPPLEMENTARY
The USUPPLEMENTARY function returns an integer value that is equal to the index of the first Unicode
supplementary character in a character data item argument that is encoded in UTF-8 or UTF-16.

A Unicode supplementary character is a character above U+FFFF, that is, a character outside of the Basic
Multilingual Plane (BMP). These characters are encoded in UTF-16 with a surrogate pair (two 16-bit code
units), or are encoded in UTF-8 with a 4-byte representation.

The function type is integer.

Format
FUNCTION USUPPLEMENTARY (argument-1)

argument-1
Must be of class alphabetic, alphanumeric, or national. argument-1 must contain valid UTF-8 or
UTF-16 data based on its class:

• If argument-1 is of class alphabetic or alphanumeric, it must contain valid UTF-8 data.
• If argument-1 is of class national, it must contain valid UTF-16 data.

The returned value is an integer, which differs based on the argument-1 value, and is 9-digit if LP(32) is in
effect or 18-digit if LP(64) is in effect:

• If the contents of argument-1 are not valid Unicode (UTF-8 or UTF-16, depending on class), the
returned result is unpredictable.

• If argument-1 contains no supplementary characters, the returned value is zero.
• If argument-1 is of class alphabetic or alphanumeric, the returned value is the byte position of the first

UTF-8 supplementary character in argument-1.
• If argument-1 is of class national, the returned value is the index, in UTF-16 encoding units, of the first

UTF-16 supplementary character in argument-1.

Example 1
For example, the musical G-clef symbol is represented in UTF-16 Unicode by the surrogate pair
nx'D834DD1E', or in UTF-8 Unicode by x'F09D849E'. Thus, for the following COBOL program fragment,
the output of both DISPLAY statements is value 3.

01 N pic N(4) value nx'00200020D834DD1E'.
01 X pic X(6) value x'2020F09D849E'.
01 I pic 9.
...
Compute I = function Usupplementary(N)
Display I
Compute I = function Usupplementary(X)
Display I

Example 2
If argument-1 is a UTF-8 encoded item and the UTF-8 argument contains composed characters, the
combining characters are counted individually. For example, when encoded in UTF-8, the Unicode
character ä can be x'C3A4' or x'61CC88'. With either of the UTF-8 characters in argument-1, the returned
values of the USUPPLEMENTARY function are different. See the following table for details.

© Copyright IBM Corp. 1991, 2024 667

Table 70. Returned values of the USUPPLEMENTARY function

argument-1 Unicode encoding UTF-8 encoding
Returned values of the
USUPPLEMENTARY function

B = U+00E4 + U21DE4 + U+004B

(precomposed form,
latin small letter a with diaeresis +
latin capital letter K)

x'C3A4F0A1B7A44B'

()

USUPPLEMENTARY (B) returns 3

U+0061 + U+0308 + U21DE4 + U+004B

(canonical decomposition,
latin small letter a + combining diaeresis +
latin capital letter K)

x'61CC88F0A1B7A44B'

()

USUPPLEMENTARY (B) returns 4

668 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 107. UUID4
The UUID4 function returns a 36-character alphanumeric string that is a version 4 universally unique
identifier(UUID).

The function type is alphanumeric.

Format
Function UUID4

Version 4 UUID is generated based on random numbers. It produces unique identifiers from separate
applications without the coordination of a centralized agent or process. To maintain a high degree of
randomness, the generation might take up processing time. The performance can be improved1 by
leveraging the random number generation facility in the IBM Z® hardware when it is available.

Note:

1. This performance improvement requires Message-Security-Assist Extension (MSA 7) that is supported
in IBM z14® and higher architectures. The intrinsic function will automatically detect the availability of
the facility and use it.

Example
The following COBOL program fragment produces output like 'UUID4:
4ed161b5-0d3c-4f06-8381-5f14678e13da', with subsequent executions producing different UUID
values.

DISPLAY "UUID4: " FUNCTION UUID4

© Copyright IBM Corp. 1991, 2024 669

670 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 108. UVALID
If a character data item contains valid UTF-8 or UTF-16 data, the UVALID function returns the value zero.
If a character data item contains invalid UTF-8 or UTF-16 data, the UVALID function returns the index of
the first invalid element.

The function type is integer.

Format
FUNCTION UVALID (argument-1)

argument-1
Must be of class alphabetic, alphanumeric, national or UTF-8.
Must be of class alphabetic, alphanumeric, or national.

The returned value is an integer, which differs based on argument-1, and is 9-digit if LP(32) is in effect or
18-digit if LP(64) is in effect:

• If argument-1 is of class alphabetic, alphanumeric or UTF-8, and it consists of valid UTF-8 encoded
Unicode data, the returned value is zero.

• If argument-1 is of class alphabetic, or alphanumeric, and it consists of valid UTF-8 encoded Unicode
data, the returned value is zero.

• If argument-1 is of class alphabetic, alphanumeric or UTF-8, and it contains invalid UTF-8 encoded
Unicode data, the returned value is the position of the first byte where the invalid UTF-8 data starts.

• If argument-1 is of class alphabetic, or alphanumeric, and it contains invalid UTF-8 encoded Unicode
data, the returned value is the position of the first byte where the invalid UTF-8 data starts.

• If argument-1 is of class national, and it consists of valid UTF-16 encoded Unicode data, the returned
value is zero.

• If argument-1 is of class national, and it contains invalid UTF-16 encoded Unicode data, the returned
value is the position of the first UTF-16 encoding unit where the invalid UTF-16 data starts. This position
is one plus the number of well-formed UTF-16 encoding units that precede the invalid data.

Note: The UVALID function indicates whether the character string contains well-formed Unicode UTF-8
or UTF-16 data. It does not indicate whether any or all of the Unicode code points represented by the
character string are assigned to characters.

For UTF-8 data, the validity of a byte varies according to its range as listed in the table:

Table 71. Byte validity for UTF-8 data

Value Range Dependency Validity

x'00' - x'7F' None Valid

x'80' - x'C1' None Invalid

x'C2' - x'DF' Followed by another byte that is in the range x'80' to x'BF' Valid

© Copyright IBM Corp. 1991, 2024 671

Table 71. Byte validity for UTF-8 data (continued)

Value Range Dependency Validity

x'E0' - x'EF' If the first byte is x'E0', followed by two more bytes that meet the following
requirements:

• The second byte is in the range x'A0' to x'BF'
• The third byte is in the range x'80' to x'BF'

Valid

If the first byte is in the range x'E1' to x'EC', both the second and third bytes
are in the range x'80' to x'BF'

Valid

If the first byte is x'ED', followed by two more bytes that meet the following
requirements:

• The second byte is in the range x'80' to x'9F'
• The third byte is in the range x'80' to x'BF'

Valid

If the first byte is in the range x'EE' to x'EF', both the second and third bytes
are in the range x'80' to x'BF'

Valid

x'F0' - x'F4' If the first byte is x'F0', followed by three more bytes that meet the following
requirements:

• The second byte is in the range x'90' to x'BF'
• The third byte is in the range x'80' to x'BF'
• The fourth byte is in the range x'80' to x'BF'

Valid

If the first byte is in the range x'F1' to x'F3', all the second, third, and fourth bytes
are in the range x'80' to x'BF'

Valid

If the first byte is x'F4', followed by three more bytes that meet the following
requirements:

• The second byte is in the range x'80' to x'8f'
• The third byte is in the range x'80' to x'BF'
• The fourth byte is in the range x'80' to x'BF'

Valid

x'F5' - x'FF' None Invalid

For UTF-16 data, the validity of an encoding unit varies according to its range as listed in the table:

Table 72. Encoding unit validity for UTF-16 data

Value Range Dependency Validity
Number of bytes if converted to
UTF-8

nx'0000' - nx'007F' None Valid 1

nx'0080' - nx'07FF' None Valid 2

nx'0800' - nx'D7FF' None Valid 3

nx'D800' - nx'DBFF' Must be followed by a second
encoding unit with a value in the
range nx'DC00' to nx'DFFF'

Valid 4

(A Unicode surrogate pair)

Other cases Invalid Not applicable

nx'E000' - nx'FFFF' None Valid 3

Example 1
If A is an alphabetic or alphanumeric data item that contains value x'4BC3A4666572' ('Käfer') in UTF-8
encoding, the returned value from UVALID(A) is 0.

672 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Example 2

If B is a national data item that contains value nx'005400F6006200750072D858DC6B0073' (' ')
in UTF-16 encoding, the returned value from UVALID(B) is 0.

Example 3
If C is a national data item that contains value nx'0054D9C3006200750072D858DC6B0073' in UTF-16
encoding, the returned value from UVALID(C) is 2 because x'D9C3' does not have a low surrogate pair.

Example 4
If D is a national data item that contains value nx'005400F60062DC010072D858DC6B0073' in UTF-16
encoding, the returned value from UVALID(D) is 4 because x'DC01' does not have a corresponding high
surrogate pair.

Chapter 108. UVALID 673

674 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 109. UWIDTH
The UWIDTH function returns an integer value that is equal to the width in bytes of the nth UTF-8 or
UTF-16 character in a character data item argument that is encoded in UTF-8 or UTF-16.

The function type is integer.

Format
FUNCTION UWIDTH (argument-1 argument-2)

argument-1
Must be of class alphabetic, alphanumeric, national , or UTF-8. argument-1 must contain valid UTF-8
or UTF-16 encoded characters:

• If argument-1 is of class alphabetic, alphanumeric , or UTF-8, it must contain valid UTF-8 data.
• If argument-1 is of class national, it must contain valid UTF-16 data.

argument-2
Must be an integer.

The returned value is an integer.

If argument-2 is not positive or if argument-2 is larger than ULENGTH(argument-1), zero is returned.
Otherwise, if argument-2=n, the returned value is the width in bytes of the nth UTF-8 or UTF-16 character
in argument-1.

Example 1
If A is an alphanumeric item that contains the UTF-8 value x'4BC3A4666572' ('Käfer'), the returned
values are as follows:

• UWIDTH(A 1) returns 1
• UWIDTH(A 2) returns 2
• UWIDTH(A 3) returns 1
• UWIDTH(A 4) returns 1
• UWIDTH(A 5) returns 1

Example 2
If B is a national item that contains the UTF-16 value nx'005400F6006200750072D858DC6B0073'
(' '), the returned values are as follows:

• UWIDTH (B 1) returns 2
• UWIDTH (B 2) returns 2
• UWIDTH (B 3) returns 2
• UWIDTH (B 4) returns 2
• UWIDTH (B 5) returns 2
• UWIDTH (B 6) returns 4
• UWIDTH (B 7) returns 2

© Copyright IBM Corp. 1991, 2024 675

Example 3
If argument-1 is a UTF-8 encoded item and the UTF-8 argument contains composed characters, the
combining characters are counted individually. For example, when encoded in UTF-8, the Unicode
character ä can be x'C3A4' or x'61CC88'. With either of the UTF-8 characters in argument-1, the returned
values of the UWIDTH function are different. See the following table for details.

Table 73. Returned values of the UWIDTH function

argument-
1 Unicode encoding UTF-8 encoding

Returned values of the
UWIDTH function

C = äK U+00E4 + U+004B

(precomposed form,
latin small letter a with diaeresis + latin capital letter K)

x'C3A44B' (äK) UWIDTH (C 1) returns 2
UWIDTH (C 2) returns 1
UWIDTH (C 3) returns 0

U+0061 + U+0308 + U+004B

(canonical decomposition,
latin small letter a + combining diaeresis + latin capital letter K)

x'61CC884B' (äK) UWIDTH (C 1) returns 1
UWIDTH (C 2) returns 2
UWIDTH (C 3) returns 1

676 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 110. VARIANCE
The VARIANCE function returns a numeric value that approximates the variance of its arguments.

The function type is numeric.

Format

FUNCTION VARIANCE (argument-1)

argument-1
Must be class numeric.

The returned value is the approximation of the variance of the argument-1 series.

The returned value is defined as the square of the standard deviation of the argument-1 series. This value
is calculated as follows:

1. The difference between each argument-1 value and the arithmetic mean of the argument-1 series is
calculated and squared.

2. The values obtained are then added together. This quantity is divided by the number of values in the
argument series.

If the argument-1 series consists of only one value, or if the argument-1 series consists of all variable-
occurrence data items and the total number of occurrences for all of them is one, the returned value is
zero.

© Copyright IBM Corp. 1991, 2024 677

678 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 111. WHEN-COMPILED
The WHEN-COMPILED function returns the date and time that the program was compiled as provided by
the system on which the program was compiled.

The function type is alphanumeric.

Format
FUNCTION WHEN-COMPILED

Reading from left to right, the 21 character positions of the returned value are as follows:

Character
positions

Contents

1-4 Four numeric digits of the year in the Gregorian calendar

5-6 Two numeric digits of the month of the year, in the range 01 through 12

7-8 Two numeric digits of the day of the month, in the range 01 through 31

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23

11-12 Two numeric digits of the minutes past the hour, in the range 00 through 59

13-14 Two numeric digits of the seconds past the minute, in the range 00 through 59

15-16 Two numeric digits of the hundredths of a second past the second, in the range
00 through 99. The value 00 is returned if the system on which the function is
evaluated does not have the facility to provide the fractional part of a second.

17 Either the character '-' or the character '+'. The character '-' is returned if the local
time indicated in the previous character positions is behind Greenwich mean time.
The character '+' is returned if the local time indicated is the same as or ahead
of Greenwich mean time. The character '0' is returned if the system on which this
function is evaluated does not have the facility to provide the local time differential
factor.

18-19 If character position 17 is '-', two numeric digits are returned in the range 00
through 12 indicating the number of hours that the reported time is behind
Greenwich mean time. If character position 17 is '+', two numeric digits are
returned in the range 00 through 13 indicating the number of hours that the
reported time is ahead of Greenwich mean time. If character position 17 is '0', the
value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the number
of additional minutes that the reported time is ahead of or behind Greenwich
mean time, depending on whether character position 17 is '+' or '-', respectively. If
character position 17 is '0', the value 00 is returned.

The returned value is the date and time of compilation of the source unit that contains this function. If a
program is a contained program, the returned value is the compilation date and time associated with the
containing program.

© Copyright IBM Corp. 1991, 2024 679

680 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 112. YEAR-TO-YYYY
The YEAR-TO-YYYY function converts argument-1, a two-digit year, to a four-digit year. argument-2, when
added to the year at the time of execution, defines the ending year of a 100-year interval, or sliding
century window, into which the year of argument-1 falls.

The function type is integer.

Format
FUNCTION YEAR-TO-YYYY (argument-1

argument-2

)

argument-1
Must be a non-negative integer that is less than 100.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated assuming the value 50 was
specified.

The sum of the year at the time of execution and the value of argument-2 must be less than 10,000 and
greater than 1,699.

Examples of return values from the YEAR-TO-YYYY function are shown in the following table.

Current year argument-1 value argument-2 value Returned value

1995 4 23 2004

1995 4 -15 1904

2008 98 23 1998

2008 98 -15 1898

© Copyright IBM Corp. 1991, 2024 681

682 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Part 8. Compiler-directing statements and compiler
directives

© Copyright IBM Corp. 1991, 2024 683

684 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 113. Compiler-directing statements
A compiler-directing statement is a statement that causes the compiler to take a specific action during
compilation.

You can use compiler-directing statements for the following purposes:

• Extended source library control (BASIS, DELETE, and INSERT statements)
• Source text manipulation (COPY and REPLACE statements)
• Exception handling (USE statement)
• Controlling compiler listings (*CONTROL, *CBL, EJECT, TITLE, SKIP1, SKIP2, and SKIP3 statements)
• Specifying compiler options (CBL and PROCESS statements)
• Specifying COBOL exception handling procedures (USE statements)

The SERVICE LABEL statement is used with Language Environment condition handling. It is also
generated by the CICS integrated translator (and the separate CICS translator).

The following compiler directing statements have no effect: ENTER, READY or RESET TRACE, and
SERVICE RELOAD.

BASIS statement
The BASIS statement is an extended source text library statement. It provides a complete COBOL
program as the source for a compilation.

A complete program can be stored as an entry in a user-defined library and can be used as the source
for a compilation. Compiler input is a BASIS statement, optionally followed by any number of INSERT and
DELETE statements.

Format

sequence-number

BASIS basis-name

literal-1

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The content of this field is ignored.

BASIS
Can appear anywhere in columns 1 through 72, followed by basis-name. There must be no other text
in the statement.

basis-name, literal-1
Is the name by which the library entry is known to the system environment.

For rules of formation and processing rules, see the description under literal-1 and text-name of the
“COPY statement” on page 688.

The source file remains unchanged after execution of the BASIS statement.

Usage note: If INSERT or DELETE statements are used to modify the COBOL source text provided by a
BASIS statement, the sequence field of the COBOL source text must contain numeric sequence numbers
in ascending order.

© Copyright IBM Corp. 1991, 2024 685

PROCESS(CBL) statement
With the PROCESS(CBL) statement, you can specify compiler options to be used in the compilation of the
program. The PROCESS(CBL) statement is placed before the IDENTIFICATION DIVISION header of an
outermost program.

Format
PROCESS

CBL options-list

options-list
A series of one or more compiler options, each one separated by a comma or a space.

For more information about compiler options, see Compiler options in the Enterprise COBOL
Programming Guide.

The PROCESS(CBL) statement can be preceded by a sequence number in columns 1 through 6. The first
character of the sequence number must be numeric, and PROCESS or CBL can begin in column 8 or after;
if a sequence number is not specified, PROCESS or CBL can begin in column 1 or after.

The PROCESS(CBL) statement must end before or at column 72, and options cannot be continued across
multiple PROCESS(CBL) statements. However, you can use more than one PROCESS(CBL) statement.
Multiple PROCESS(CBL) statements must follow one another with no intervening statements of any other
type.

The PROCESS(CBL) statement must be placed before any comment lines or other compiler-directing
statements.

*CONTROL (*CBL) statement
With the *CONTROL (or *CBL) statement, you can selectively display or suppress the listing of source
code, object code, and storage maps throughout the source text.

Format

*CONTROL

*CBL

SOURCE

NOSOURCE

LIST

NOLIST

MAP

NOMAP

.

For a complete discussion of the output produced by these options, see Getting listings in the Enterprise
COBOL Programming Guide.

The *CONTROL and *CBL statements are synonymous. *CONTROL is accepted anywhere that *CBL is
accepted.

The characters *CONTROL or *CBL can start in any column beginning with column 7, followed by at least
one space or comma and one or more option keywords. The option keywords must be separated by one or
more spaces or commas. This statement must be the only statement on the line, and continuation is not
allowed. The statement can be terminated with a period.

686 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The *CONTROL and *CBL statements must be embedded in a program source. For example, in the case
of batch applications, the *CONTROL and *CBL statements must be placed between the PROCESS (CBL)
statement and the end of the program (or END PROGRAM marker, if specified).

The source line containing the *CONTROL (*CBL) statement will not appear in the source listing.

If an option is defined at installation as a fixed option, that fixed option takes precedence over all of the
following parameter and statements:

• PARM (if available)
• CBL statement
• *CONTROL (*CBL) statement

The requested options are handled in the following manner:

1. If an option or its negation appears more than once in a *CONTROL statement, the last occurrence of
the option word is used.

2. If the corresponding option has been requested as a parameter to the compiler, then a *CONTROL
statement with the negation of the option word must precede the portions of the source text for which
listing output is to be inhibited. Listing output then resumes when a *CONTROL statement with the
affirmative option word is encountered.

3. If the negation of the corresponding option has been requested as a parameter to the compiler, then
that listing is always inhibited.

4. The *CONTROL statement is in effect only within the source program in which it is written, including
any contained programs. It does not remain in effect across batch compiles of two or more COBOL
source programs.

Source code listing
The topic lists statements that control the listing of the input source text lines.

The statement can be any of the following one:

*CONTROL SOURCE [*CBL SOURCE]
*CONTROL NOSOURCE [*CBL NOSOURCE]

If a *CONTROL NOSOURCE statement is encountered and SOURCE has been requested as a compilation
option, printing of the source listing is suppressed from this point on. An informational (I-level) message is
issued stating that printing of the source has been suppressed.

Object code listing
The topic lists statements that control the listing of generated object code in the PROCEDURE DIVISION.

The statement can be any of the following one:

*CONTROL LIST [*CBL LIST]
*CONTROL NOLIST [*CBL NOLIST]

If a *CONTROL NOLIST statement is encountered, and LIST has been requested as a compilation option,
listing of generated object code is suppressed from this point on.

Storage map listing
The topic lists statements that control the listing of storage map entries occurring in the DATA DIVISION.

The statement can be any of the following one:

*CONTROL MAP [*CBL MAP]
*CONTROL NOMAP [*CBL NOMAP]

Chapter 113. Compiler-directing statements 687

If a *CONTROL NOMAP statement is encountered, and MAP has been requested as a compilation option,
listing of storage map entries is suppressed from this point on.

For example, either of the following sets of statements produces a storage map listing in which A and B
will not appear:

*CONTROL NOMAP *CBL NOMAP
 01 A 01 A
 02 B 02 B
*CONTROL MAP *CBL MAP

COPY statement
The COPY statement is a library statement that places prewritten text in a COBOL compilation unit.

Prewritten source code entries can be included in a compilation unit at compile time. Thus, an installation
can use standard file descriptions, record descriptions, or procedures without recoding them. These
entries and procedures can then be saved in user-created libraries; they can then be included in programs
and class definitions by means of the COPY statement.

Compilation of the source code containing COPY statements is logically equivalent to processing all COPY
statements before processing the resulting source text.

The effect of processing a COPY statement is that the library text associated with text-name is copied into
the compilation unit, logically replacing the entire COPY statement, beginning with the word COPY and
ending with the period, inclusive. When the REPLACING phrase is not specified, the library text is copied
unchanged.

Format
COPY text-name

literal-1 OF

IN

library-name

literal-2

SUPPRESS

REPLACING operand-1 BY operand-2

LEADING

TRAILING

 == partial-word-1 == BY == partial-word-2 ==

.

text-name, library-name
text-name identifies the copy text. library-name identifies where the copy text exists.

• Can be from 1-30 characters in length
• Can contain the following characters: Latin uppercase letters A-Z, Latin lowercase letters a-z, digits

0-9, and hyphen
• The first or last character must not be a hyphen
• Cannot contain an underscore

Neither text-name nor library-name need to be unique within a program. They can be identical to other
user-defined words in the program.

text-name need not be qualified. If text-name is not qualified, a library-name of SYSLIB is assumed.

When the compiler searches for COPY members in PDS or PDSE datasets, including those specified
in the COPYLOC option with the DSN argument, only the first eight characters of text-name are used

688 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

as the identifying name. When the compiler searches for COPY text in z/OS Unix directories, such as
those directories specified via the -I option of the cob2 command or those directories specified via the
SYSLIB environment variable (when the compiler is invoked from cob2) or those directories specified
via the COPYLOC option with the PATH argument, all characters are significant.

If you have specified only z/OS UNIX search locations for COPY members, the restrictions mentioned
above on the legal characters in text-name do not apply and any valid COBOL character can be used in
the name.

For details, see “Copy member search order” on page 697.

literal-1 , literal-2
Must be alphanumeric literals. literal-1 identifies the copy text. literal-2 identifies where the copy text
exists.

When compiling from JCL or TSO:

• Literals can be from 1-30 characters in length.
• Literals can contain characters: A-Z, a-z, 0-9, hyphen, @, #, or $.
• The first or last character must not be a hyphen.
• Literals cannot contain an underscore.
• Only the first eight characters are used as the identifying name.

When compiling with the cob2 command and processing COPY text residing in the z/OS UNIX file
system, the literal can be from 1 to 160 characters in length and the restrictions on characters in the
literal mentioned above do not apply and any character that is legal in a z/OS UNIX file name can
appear in the literal.

The uniqueness of text-name and library-name is determined after the formation and conversion rules for
a system-dependent name have been applied.

For information about the mapping of characters in the text-name, library-name, and literals, see
Compiler-directing statements in the Enterprise COBOL Programming Guide.

operand-1, operand-2
Can be pseudo-text, an identifier, a function-identifier, a literal, or a COBOL word (except the word
COPY). For details, see “REPLACING phrase” on page 690.

Format
 == pseudo-text ==

identifier

function-identifier

literal

word

partial-word-1, partial-word-2
Can be a partial-word. For details, see “REPLACING phrase” on page 690.

Each COPY statement must be preceded by a space and ended with a separator period.

A COPY statement can appear in the source text anywhere a character string or a separator can appear.

COPY statements can be nested, and any COPY statement in a chain of nested COPY statements can
have the REPLACING phrase, provided there is only one such COPY statement in the chain. When the
REPLACING phrase is specified for a COPY statement that appears in a chain of nested COPY statements,
the REPLACING phrase applies to all library text that is included by COPY statements nested under the
COPY statement that has the REPLACING phrase.

A nested COPY statement cannot cause recursion. That is, a COPY member can be named only once in
a set of nested COPY statements until the end-of-file for that COPY member is reached. For example,

Chapter 113. Compiler-directing statements 689

assume that the source text contains the statement: COPY X. and library text X contains the statement:
COPY Y..

In this case, library text contained in Y must not have a COPY X or a COPY Y statement.

For details, see “Comparison and replacement rules” on page 691.

Library text copied from the library is placed into the same area of the resultant program as it is in the
library. Library text must conform to the rules for the 85 COBOL Standard format. Library text can consist
of or include any words, identifiers, or literals that can be written in the source text. This includes DBCS
user-defined words, DBCS literals, and national literals.

Note: Characters outside those defined for COBOL words and separators must not appear in library text
or pseudo-text except in comment lines, inline comments, comment-entries, alphanumeric literals, DBCS
literals, or national literals.

SUPPRESS phrase
The SUPPRESS phrase specifies that the library text is not to be printed on the source listing.

REPLACING phrase
When the REPLACING phrase is specified, the library text is copied, and each properly matched
occurrence of operand-1 or partial-word-1 within the library text is replaced by the associated operand-2
or partial-word-2.

In the discussion that follows, when the LEADING or TRAILING keyword of the REPLACING phrase is
specified, each operand of the REPLACING phrase must be a partial-word. Otherwise, each operand can
consist of one of the following items:

• Pseudo-text
• An identifier
• A literal
• A COBOL word (except the word COPY)
• A function-identifier

pseudo-text

A sequence of text words that are bounded by, but not including, pseudo-text delimiters (==). Both
characters of each pseudo-text delimiter must appear on one line.

Individual text words within pseudo-text can be up to 322 characters long. They can be continued
subject to the normal continuation rules for source code format.

A text word must be delimited by separators. For more information, see Chapter 1, “Characters,” on
page 3.

pseudo-text-1 refers to pseudo-text when used for operand-1, and pseudo-text-2 refers to pseudo-
text when used for operand-2.

pseudo-text-1 can be one or more text words. It can consist solely of the separator comma or
separator semicolon. pseudo-text-2 can be zero or more text words. It can consist solely of space
characters, comment lines, or inline comments.

Each text word in pseudo-text-2 that is to be copied into the program is placed in the same area of the
resultant program as the area in which it appears in pseudo-text-2.

Pseudo-text can consist of or include any words (except COPY), identifiers, or literals that can be
written in the source text. This includes DBCS user-defined words, DBCS literals, and national literals.

690 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

DBCS user-defined words must be wholly formed; that is, there is no partial-word replacement for
DBCS words.

Words or literals containing DBCS characters cannot be continued across lines.

Use pseudo-text when you replace a PICTURE character-string. To avoid ambiguities, the entire
PICTURE clause, including the keyword PICTURE or PIC, should be specified in pseudo-text-1.

identifier
Can be defined in any section of the DATA DIVISION.

literal
Can be numeric, alphanumeric, DBCS, or national.

word
Can be any single COBOL word (except COPY), including DBCS user-defined words. DBCS user-
defined words must be wholly formed. You cannot replace part of a DBCS word.

You can include the nonseparator COBOL characters (for example, + * / $ < > =) as part of a
COBOL word when used as REPLACING operands. In addition, a hyphen or underscore can be at
the beginning of the word or a hyphen can be at the end of the word.

function-identifier
A sequence of character strings and separators that uniquely references the data item that results
from the evaluation of a function. For more information, see “Function-identifier” on page 77.

partial-word
A single text word that is bounded by, but not including, pseudo-text delimiters (==). Both characters
of each pseudo-text delimiter must appear on one line. However, the text word within a partial-word
can be continued.

The following rules apply to partial-word-1 and partial-word-2:

• partial-word-1 consists of one text word.
• partial-word-2 consists of zero or one text word.
• partial-word-1 and partial-word-2 cannot be an alphanumeric literal, national literal, DBCS literal, or

DBCS word.

For purposes of matching, each identifier, literal, word, or function-identifier is treated as pseudo-text
that contains only that identifier, literal, word, or function-identifier, respectively.

Comparison and replacement rules
This topic introduces detailed rules for comparison and replacement.

• Arithmetic and logical operators are considered text words and can be replaced only through a pseudo-
text operand.

• Beginning and ending blanks are not included in the text comparison process. Embedded blanks are
used in the text comparison process to separate multiple text words.

• When operand-1 is a figurative constant, operand-1 matches only the same exact figurative constant.
For example, if ALL "AB" is specified in operand-1, "ABAB" in the library text is not considered a
match; only ALL "AB" is considered a match.

• Any separator comma, semicolon, or space that precedes the leftmost word in the library text is
copied into the source text. Beginning with the leftmost library text word and the first operand-1 or
partial-word-1 specified in the REPLACING phrase, the entire REPLACING operand that precedes the
keyword BY is compared to an equivalent number of contiguous library text words.

• operand-1 matches the library text only if the ordered sequence of text words that forms operand-1 is
equal, character for character, to the ordered sequence of library words. For national characters, the
sequence of national characters must be equal, national character for national character, to the ordered
sequence of library words.

Chapter 113. Compiler-directing statements 691

• When the LEADING phrase is specified, partial-word-1 matches the library text only if the contiguous
sequence of characters that forms partial-word-1 is equal, character for character, to an equal number
of contiguous characters that start with the leftmost character position of a library text word.

When the TRAILING phrase is specified, partial-word-1 matches the library text only if the contiguous
sequence of characters that forms partial-word-1 is equal, character for character, to an equal number
of contiguous characters that end with the rightmost character position of a library text word.

• For matching purposes, each occurrence of a separator comma, a separator semicolon, or a sequence
of one or more separator spaces is considered to be a single space.

However, when operand-1 or partial-word-1 consists solely of a separator comma or separator
semicolon, the operand-1 or partial-word-1 participates in the match as a text word. In this case, the
space that follows the comma or semicolon separator can be omitted.

When the library text contains a closing quotation mark that is not immediately followed by a separator
space, a separator comma, a separator semicolon, or a separator period, the closing quotation mark is
considered a separator quotation mark.

• If no match occurs, the comparison is repeated with each successive operand-1 or partial-word-1 if
specified, until either a match is found or no further REPLACING operands exist.

• Whenever a match occurs between operand-1 and the library text, the corresponding operand-2 is
copied into the source text. Whenever a match occurs between partial-word-1 and the library text word,
the matched characters of that library text word are either replaced by partial-word-2 or deleted when
partial-word-2 consists of zero text words.

• When all operands are compared and no match occurs, the leftmost library text word is copied into the
source text.

• Once a library text word is finished being processed and is either copied into the source text unchanged
or replaced because of a match, the next successive uncopied library text word is then considered to
be the leftmost text word, and the comparison cycle starts again, beginning with the first occurrence of
operand-1 or partial-word-1. The process continues until the rightmost library text word is compared.

• The sequence of text words in the library text, pseudo-text-1, and partial-word-1 is determined by the
rules for reference format. For more information, see Chapter 6, “Reference format,” on page 55.

• When text words are placed in the source text, additional spaces are introduced only between text
words where there already exists a space, including the assumed space between source lines.

• The following rules apply to comment lines, inline comments, and blank lines:

– Comment lines, inline comments, or blank lines in the library text, pseudo-text-1, or partial-word-1
are ignored for purposes of matching.

– Comment lines, inline comments, or blank lines in the library text are copied into the resultant source
text unchanged with the following exception: a comment line, an inline comment, or a blank line
in the library text is not copied if that comment line, inline comment, or blank line appears in the
sequence of text words that match pseudo-text-1 or partial-word-1.

– Comment lines, inline comments, or blank lines in pseudo-text-2 or partial-word-2 are copied into
the resultant program unchanged whenever pseudo-text-2 or partial-word-2 is placed into the source
text as a result of text replacement.

– If the word COPY appears in a comment-entry, or in the place where a comment-entry can appear, it
is considered part of the comment-entry.

• COPY REPLACING does not affect the EJECT, SKIP1, SKIP2, SKIP3, or TITLE compiler-directing
statements.

• Lines that contain *CONTROL (*CBL), EJECT, SKIP1, SKIP2, SKIP3, or TITLE statements can appear in
the library text. Such lines are copied into the resultant source text unchanged.

• The following rules apply to debugging lines:

– Debugging lines are permitted in library text and pseudo-text. Text words within a debugging line
participate in the matching rules as if the letter "D" did not appear in the indicator area. A debugging

692 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

line is specified within pseudo-text if the debugging line begins in the source text after the opening
pseudo-text delimiter but before the matching closing pseudo-text delimiter.

– If more lines are introduced into the source text as a result of a COPY statement, each text word that
is introduced appears on a debugging line if the COPY statement begins on a debugging line or if the
text word that is introduced appears on a debugging line in library text. When a text word specified in
the BY phrase is introduced, it appears on a debugging line if the first library text word that is being
replaced is specified on a debugging line.

– When a COPY statement is specified on a debugging line, the copied text is treated as though it
appeared on a debugging line, except that comment lines in the text appear as comment lines in the
resulting source text.

– After all COPY and REPLACE statements are processed, a debugging line will be considered to have
all the characteristics of a comment line, if the WITH DEBUGGING MODE clause is not specified in the
SOURCE-COMPUTER paragraph.

• The syntactic correctness of the entire COBOL source text cannot be determined until all COPY and
REPLACE statements have been completely processed, because the syntactic correctness of the library
text cannot be independently determined.

• (This rule applies to pseudo-text only.) If the source text has occurrences of a dummy operand :TAG:
that is delimited by colons in the program text, the compiler replaces the dummy operand with the
required text. Example 3 shows how it is used with the dummy operand :TAG:. The colons serve as
separators and make TAG a stand-alone operand. Note that parenthesis can also be used as delimiters,
as in (TAG).

• The COPY statement with REPLACING phrase can be used to replace parts of words, either by using
the LEADING|TRAILING partial-word-1 BY partial-word-2 phrase, or by using the pseudo-
text :TAG: or (TAG) method.

• After replacement, text words are placed in the source text according to the 85 COBOL Standard format
rules.

Comparison and replacement examples
This topic shows examples of comparison and replacement.

Sequences of code (such as file and data descriptions, error, and exception routines) that are common
to a number of programs can be saved in a library, and then used with the COPY statement. If naming
conventions are established for such common code, the REPLACING phrase need not be specified. If the
names change from one program to another, the REPLACING phrase can be used to supply meaningful
names for this program.

Example 1

In this example, the library text PAYLIB consists of the following DATA DIVISION entries:

01 A.
 02 B PIC S99.
 02 C PIC S9(5)V99.
 02 D PIC S9999 OCCURS 1 TO 52 TIMES
 DEPENDING ON B OF A.

You can use the COPY statement in the DATA DIVISION of a program as follows:

COPY PAYLIB.

In this program, the library text is copied. The resulting text is treated as if it were written as follows:

01 A.
 02 B PIC S99.
 02 C PIC S9(5)V99.

Chapter 113. Compiler-directing statements 693

 02 D PIC S9999 OCCURS 1 TO 52 TIMES
 DEPENDING ON B OF A.

Example 2

To change some or all of the names within the library text, you can use the REPLACING phrase:

COPY PAYLIB REPLACING A BY PAYROLL
 B BY PAY-CODE
 C BY GROSS-PAY
 D BY HOURS.

In this program, the library text is copied. The resulting text is treated as if it were written as follows:

01 PAYROLL.
 02 PAY-CODE PIC S99.
 02 GROSS-PAY PIC S9(5)V99.
 02 HOURS PIC S9999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAY-CODE OF PAYROLL.

The changes that are shown are made only for this program. The text remains unchanged as it appears in
the library.

Example 3

If the following conventions are followed in the library text, parts of names (for example, the prefix portion
of data names) can be changed with the REPLACING phrase.

In this example, the library text PAYLIB consists of the following DATA DIVISION entries:

01 :TAG:.
 02 :TAG:-WEEK PIC S99.
 02 :TAG:-GROSS-PAY PIC S9(5)V99.
 02 :TAG:-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON :TAG:-WEEK OF :TAG:.

You can use the COPY statement in the DATA DIVISION of a program as follows:

COPY PAYLIB REPLACING ==:TAG:== BY ==Payroll==.

Usage Note: In this example, the use of either colons or parentheses as delimiters is required in the
library text. (Colons and parenthesis are the only valid delimiters.) Colons are recommended for clarity
because parentheses can be used for a subscript, for instance in referencing a table element.

In this program, the library text is copied. The resulting text is treated as if it were written as follows:

01 PAYROLL.
 02 PAYROLL-WEEK PIC S99.
 02 PAYROLL-GROSS-PAY PIC S9(5)V99.
 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL-WEEK OF PAYROLL.

The changes that are shown are made only for this program. The text remains unchanged as it appears in
the library.

Example 4

This example shows how to selectively replace level numbers without replacing the numbers in the
PICTURE clause:

COPY xxx REPLACING ==(01)== BY ==(01)==
 == 01 == BY == 05 ==.

Example 5

694 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

This example demonstrates use of the LEADING keyword of the REPLACING phrase in the COPY
statement. The library text PAYLIB consists of the following DATA DIVISION entries:

01 DEPT.
 02 DEPT-WEEK PIC S99.
 02 DEPT-GROSS-PAY PIC S9(5)V99.
 02 DEPT-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON DEPT-WEEK OF DEPT.

You can use the COPY statement in the DATA DIVISION of a program as follows:

COPY PAYLIB REPLACING LEADING == DEPT == BY == PAYROLL ==.

In this program, the library text is copied. The resulting text is treated as if it were written as follows:

01 PAYROLL.
 02 PAYROLL-WEEK PIC S99.
 02 PAYROLL-GROSS-PAY PIC S9(5)V99.
 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL-WEEK OF PAYROLL.

The changes that are shown are made only for this program. The text remains unchanged as it appears in
the library.

Example 6

This example demonstrates use of the TRAILING keyword of the REPLACING phrase in the COPY
statement. The library text PAYLIB consists of the following DATA DIVISION entries:

01 PAYROLL.
 02 PAYROLL-WEEK PIC S99.
 02 PAYROLL-GROSS-PAY PIC S9(5)V99.
 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL-WEEK OF PAYROLL.

You can use the COPY statement in the DATA DIVISION of a program as follows:

COPY PAYLIB REPLACING TRAILING == GROSS-PAY == BY == NET-PAY ==.

In this program, the library text is copied. The resulting text is treated as if it were written as follows:

01 PAYROLL.
 02 PAYROLL-WEEK PIC S99.
 02 PAYROLL-NET-PAY PIC S9(5)V99.
 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL-WEEK OF PAYROLL.

The changes that are shown are made only for this program. The text remains unchanged as it appears in
the library.

Example 7

This example demonstrates a scenario where two types of partial-word replacement are specified in a
single REPLACING phrase. The library text PAYLIB consists of the following DATA DIVISION entries:

01 PAYROLL.
 02 PAYROLL-WEEK PIC S99.
 02 :TAG:-GROSS-PAY PIC S9(5)V99.
 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL-WEEK OF PAYROLL.

Chapter 113. Compiler-directing statements 695

You can use the COPY statement in the DATA DIVISION of a program as follows:

COPY PAYLIB REPLACING == :TAG: == BY == PAYROLL ==
 TRAILING == GROSS-PAY == BY == NET-PAY ==.

In this program, the library text is copied. The resulting text is treated as if it were written as follows:

01 PAYROLL.
 02 PAYROLL-WEEK PIC S99.
 02 PAYROLL-GROSS-PAY PIC S9(5)V99.
 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL-WEEK OF PAYROLL.

Two types of partial-word replacement are specified in the same REPLACING operation, but as usual,
one replacement is done on a single library text word. Therefore, even though :TAG:-GROSS-PAY is
considered a match with the first operand of both replacement operations, after the first match and
replacement is performed, no more replacement is performed on that word.

The changes that are shown are made only for this program. The text remains unchanged as it appears in
the library.

Example 8

This example demonstrates support for the REPLACING phrase in a chain of nested COPY statements.
In this example, it is the outermost COPY statement that has the REPLACING phrase, but note that the
REPLACING phrase can be specified on any of the nested COPY statements in the chain, provided it is
specified on only one of them. The library text PAYLIB consists of the following DATA DIVISION entries:

01 PAYROLL.
 02 PAYROLL-WEEK PIC S99.
 02 :TAG:-GROSS-PAY PIC S9(5)V99.
 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL-WEEK OF PAYROLL.
 COPY PAYLIB2

The library text PAYLIB2 consists of the following DATA DIVISION entries:

01 PAYROLL2.
 02 PAYROLL2-WEEK PIC S99.
 02 :TAG:2-GROSS-PAY PIC S9(5)V99.
 02 PAYROLL2-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL2-WEEK OF PAYROLL2.

You can use the COPY statement in the DATA DIVISION of a program as follows:

COPY PAYLIB REPLACING == :TAG: == BY == PAYROLL ==
 TRAILING == GROSS-PAY == BY == NET-PAY ==.

In this program, the library text is copied. The resulting text is treated as if it were written as follows:

01 PAYROLL.
 02 PAYROLL-WEEK PIC S99.
 02 PAYROLL-NET-PAY PIC S9(5)V99.
 02 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL-WEEK OF PAYROLL.

01 PAYROLL2.
 02 PAYROLL2-WEEK PIC S99.
 02 PAYROLL2-NET-PAY PIC S9(5)V99.
 02 PAYROLL2-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON PAYROLL2-WEEK OF PAYROLL2.

The REPLACING phrase in the outermost COPY statement applies not only to the library text in PAYLIB
but also to the text in PAYLIB2.

696 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

The changes that are shown are made only for this program. The text remains unchanged as it appears in
the library.

Copy member search order
This topic discusses the search order of copy members when a COPY statement is processed.

When the compiler is invoked from JCL or any method other than from z/OS UNIX, the search for a copy
member is performed according to the following rules:

• If an explicit library name is specified in the COPY statement, the name is assumed to correspond to
a ddname that has been allocated to a concatenation of datasets where the compiler will search for
the copy member. If no library name is specified in the COPY statement, the concatenation of datasets
allocated to the SYSLIB ddname is searched.

• If the copy member was not found during the above search, then all locations specified via the COPYLOC
option will be searched in the order that they were specified. These locations can include a mix of z/OS
UNIX directories and PDS or PDSE datasets.

When the compiler is invoked in z/OS UNIX using the cob2 command, the search for a copy member is
performed according to the following rules:

• If an explicit library name is specified in the COPY statement and the name is a literal, the name will be
interpreted as a z/OS UNIX directory and that directory will be searched.

• If an explicit library name is specified in the COPY statement and it is not a literal, the name is
interpreted to be an environment variable that specifies a colon-separated list of z/OS UNIX directories.
If the environment variable exists, those z/OS UNIX directories will be searched in the order they
appear in the list. If the environment variable does not exist, the current directory will be searched.

• If an explicit library name was not specified in the COPY statement, the compiler searches for copy
members in this order:

– The current z/OS UNIX directory is searched for the copy member.
– Any z/OS UNIX directories specified via the -I option of cob2 are searched.
– Any z/OS UNIX directories specified via the SYSLIB environment variable are searched.

• If the copy member was not found during the above search; then all locations specified via the COPYLOC
option are searched in the order that they were specified. These locations can include a mix of z/OS
UNIX directories and PDS or PDSE datasets.

Note: When the compiler searches for a copy member in a z/OS UNIX directory and the copy member
name in the corresponding COPY statement is not a literal and is not found to be referring to an
environment variable, then the compiler searches for multiple different versions of the provided name
with the following extensions: .cpy, .CPY, .cbl, .CBL, .cob, and .COB.

DELETE statement
The DELETE statement is an extended source library statement. It removes COBOL statements from a
source program that was included by a BASIS statement.

Format

sequence-number

DELETE sequence-number-field

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The content of this field is ignored.

DELETE
Can appear anywhere within columns 1 through 72. The keyword DELETE must be followed by a
space and the sequence-number-field. There must be no other text in the statement.

Chapter 113. Compiler-directing statements 697

sequence-number-field
Each number must be equal to a sequence-number in the BASIS source program. This sequence-
number is the six-digit number the programmer assigns in columns 1 through 6 of the COBOL coding
form. The numbers referenced in the sequence-number-field of INSERT or DELETE statements must
always be specified in ascending numeric order.

The sequence-number-field must be one of the following options:

• A single number
• A series of single numbers
• A range of numbers (indicated by separating the two bounding numbers of the range by a hyphen)
• A series of ranges of numbers
• Any combination of one or more single numbers and one or more ranges of numbers

Each entry in the sequence-number-field must be separated from the preceding entry by a comma
followed by a space. For example:

000250 DELETE 000010-000050, 000400, 000450

Source program statements can follow a DELETE statement. These source program statements are then
inserted into the BASIS source program before the statement following the last statement deleted (that
is, in the example above, before the next statement following deleted statement 000450).

If a DELETE statement begins in column 12 or higher and a valid sequence-number-field does not follow
the keyword DELETE, the compiler assumes that this DELETE statement is a COBOL DELETE statement.

Usage note: If INSERT or DELETE statements are used to modify the COBOL source program provided
by a BASIS statement, the sequence field of the COBOL source program must contain numeric sequence
numbers in ascending order. The source file remains unchanged. Any INSERT or DELETE statements
referring to these sequence numbers must occur in ascending order.

EJECT statement
The EJECT statement specifies that the next source statement is to be printed at the top of the next page.

Format
EJECT

.

The EJECT statement must be the only statement on the line. It can be written in either Area A or Area B,
and can be terminated with a separator period.

The EJECT statement must be embedded in a program source. For example, in the case of batch
applications, the EJECT statement must be placed between the CBL (PROCESS) statement and the end of
the program (or the END PROGRAM marker, if specified).

The EJECT statement has no effect on the compilation of the source unit itself.

ENTER statement
The ENTER statement is designed to facilitate the use of more than one source language in the same
source program. However, only COBOL is allowed in the source program.

The ENTER statement is syntax checked but has no effect on the execution of the program.

698 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format
ENTER language-name-1

routine-name-1

.

language-name-1
A system name that has no defined meaning. It must be either a correctly formed user-defined word
or the word "COBOL." At least one character must be alphabetic.

routine-name-1
Must follow the rules for formation of a user-defined word. At least one character must be alphabetic.

INSERT statement
The INSERT statement is a library statement that adds COBOL statements to a source program that was
included by a BASIS statement.

Format

sequence-number

INSERT sequence-number-field

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The content of this field is ignored.

INSERT
Can appear anywhere within columns 1 through 72, followed by a space and the sequence-number-
field. There must be no other text in the statement.

sequence-number-field
A number that must be equal to a sequence-number in the BASIS source program. This sequence-
number is a six-digit number that the programmer assigns in columns 1 through 6 of the COBOL
source line.

The numbers referenced in the sequence-number-field of INSERT or DELETE statements must always
be specified in ascending numeric order.

The sequence-number-field must be a single number (for example, 000130). At least one new source
program statement must follow the INSERT statement for insertion after the statement number
specified by the sequence-number-field.

New source program statements following the INSERT statement can include any COBOL syntax.

Usage note: If INSERT or DELETE statements are used to modify the COBOL source program provided
by a BASIS statement, the sequence field of the COBOL source program must contain numeric sequence
numbers in ascending order. The source file remains unchanged. Any INSERT or DELETE statements
referring to these sequence numbers must occur in ascending order.

READY or RESET TRACE statement
The READY or RESET TRACE statement was designed to trace the execution of procedures. The READY
or RESET TRACE statement can appear only in the PROCEDURE DIVISION, but has no effect on your
program.

Format
READY

RESET

TRACE .

Chapter 113. Compiler-directing statements 699

You can trace the execution of procedures by using the USE FOR DEBUGGING declarative as described in
Example: USE FOR DEBUGGING in the Enterprise COBOL Programming Guide.

REPLACE statement
The REPLACE statement is used to replace source text.

A REPLACE statement can occur anywhere in the source text that a character-string can occur. It must be
preceded by a separator period except when it is the first statement in a separately compiled program. It
must end with a separator period.

The REPLACE statement provides a means of applying a change to an entire COBOL compilation group,
or part of a compilation group, without manually having to find and modify all places that need to be
changed. It is an easy method of doing simple string substitutions. It is similar in action to the REPLACING
phrase of the COPY statement, except that it acts on the entire source text, not just on the text in COPY
libraries.

If the word REPLACE appears in a comment-entry or in the place where a comment-entry can appear, it is
considered part of the comment-entry.

Format 1
REPLACE

 == pseudo-text-1 == BY == pseudo-text-2 ==

LEADING

TRAILING

 == partial-word-1 == BY == partial-word-2 ==

.

Each matched occurrence of pseudo-text-1 in the source text is replaced by the corresponding pseudo-
text-2.

Format 2
REPLACE OFF.

Any text replacement currently in effect is discontinued with the format-2 form of REPLACE. If format
2 is not specified, a specific occurrence of the REPLACE statement is in effect from the point at which
it is specified until the next occurrence of a REPLACE statement or the end of the separately compiled
program.

pseudo-text-1, pseudo-text-2

A sequence of text words that are bounded by, but not including, pseudo-text delimiters (==). Both
characters of each pseudo-text delimiter must appear on one line.

Individual text words within pseudo-text can be up to 322 characters long. They can be continued
subject to the normal continuation rules for source code format.

A text word must be delimited by separators. For more information, see Chapter 1, “Characters,” on
page 3.

pseudo-text-1 can be one or more text words. It can consist solely of the separator comma or
separator semicolon. pseudo-text-2 can be zero or more text words. It can consist solely of space
characters, comment lines, or inline comments.

700 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Each text word in pseudo-text-2 that is to be copied into the program is placed in the same area of the
resultant program as the area in which it appears in pseudo-text-2.

Pseudo-text can consist of or include any words (except COPY), identifiers, or literals that can be
written in the source text. This includes DBCS user-defined words, DBCS literals, and national literals.

DBCS user-defined words must be wholly formed; that is, there is no partial-word replacement for
DBCS words.

Words or literals containing DBCS characters cannot be continued across lines.

partial-word-1, partial-word-2
A single text word that is bounded by, but not including, pseudo-text delimiters (==). Both characters
of each pseudo-text delimiter must appear on one line. However, the text word within a partial-word
can be continued.

The following rules apply to partial-word-1 and partial-word-2:

• partial-word-1 consists of one text word.
• partial-word-2 consists of zero or one text word.
• partial-word-1 and partial-word-2 cannot be an alphanumeric literal, national literal, DBCS literal, or

DBCS word.

The compiler processes REPLACE statements in source text after the processing of any COPY statements.
COPY must be processed first to assemble complete source text. Then, REPLACE can be used to modify
that source text, performing simple string substitution. REPLACE statements cannot themselves contain
COPY statements.

The text that is produced as a result of the processing of a REPLACE statement must not contain a
REPLACE statement.

Continuation rules for pseudo-text and partial-word
The character-strings and separators that comprise pseudo-text and partial-words can start in either
Area A or Area B. However, if a hyphen is in the indicator area of a line, and that hyphen follows the
opening pseudo-text or partial-word delimiter, Area A of the line must be blank, and the normal rules for
continuation of lines apply to the formation of text words. See “Continuation lines” on page 58.

Example
The following example shows the use of REPLACE statement to replace source text.

IDENTIFICATION DIVISION.
PROGRAM-ID. REPLEXMP.
DATA DIVISION.
WORKING-STORAGE SECTION.
 REPLACE =="(Hello, World!)"== BY =="(Hello, Mom!)"==.
01 WS-STRING1 PIC X(30) VALUE "(Hello, World!)".
01 WS-STRING2 PIC X(30) VALUE "Hello, COBOL!".
PROCEDURE DIVISION.
 DISPLAY "Original: " WS-STRING1
 REPLACE LEADING ==XX-== BY ====
 ==:TAG:== BY ==STRING==
 TRAILING ==1== BY ==2==.
 DISPLAY "Modified: " XX-WS-:TAG:1
 REPLACE OFF.
 GOBACK.

The output of this program is:

Original: (Hello, Mom!)
Modified: Hello, COBOL!

Chapter 113. Compiler-directing statements 701

Comparison rules
The comparison operation that determines text replacement starts with the leftmost source text word
that follows the REPLACE statement, and with the first word of pseudo-text-1 or partial-word-1.

• pseudo-text-1 is compared to an equivalent number of contiguous source text words. pseudo-text-1
matches the source text only if the ordered sequence of text words that forms pseudo-text-1 is equal,
character for character, to the ordered sequence of source text words. For national characters, the
sequence of national characters must be equal, national character for national character, to the ordered
sequence of library words.

• When the LEADING phrase is specified, partial-word-1 matches the source text only if the contiguous
sequence of characters that forms partial-word-1 is equal, character for character, to an equal number
of contiguous characters that start with the leftmost character position of a source text word.

When the TRAILING phrase is specified, partial-word-1 matches the source text only if the contiguous
sequence of characters that forms partial-word-1 is equal, character for character, to an equal number
of contiguous characters that end with the rightmost character position of a source text word.

• For matching purposes, each occurrence of a separator comma, a separator semicolon, or a sequence
of one or more separator spaces is considered to be a single space.

However, when pseudo-text-1 or partial-word-1 consists solely of a separator comma or separator
semicolon, the comma or semicolon participates in the match as a text word. In this case, the space
that follows the comma or semicolon separator can be omitted.

When the source text contains a closing quotation mark that is not immediately followed by a separator
space, a separator comma, a separator semicolon, or a separator period, the closing quotation mark is
considered a separator quotation mark.

• If no match occurs, the comparison is repeated with each successive occurrence of pseudo-text-1 or
partial-word-1 if specified, until either a match is found or no further REPLACING operands exist.

• When all occurrences of pseudo-text-1 or partial-word-1 are compared and no match occurs, the next
successive source text word is then considered to be the leftmost source text word, and the comparison
cycle starts again, beginning with the first occurrence of pseudo-text-1 or partial-word-1.

• Whenever a match occurs between pseudo-text-1 and the source text, the corresponding pseudo-text-2
replaces the matched text in the source text. Whenever a match occurs between partial-word-1 and the
source text word, the matched characters of that source text word are either replaced by partial-word-2
or deleted if partial-word-2 consists of zero text words.The source text word that immediately follows
the rightmost text word that participated in the match is then considered as the leftmost source
text word. The comparison cycle starts again, beginning with the first occurrence of pseudo-text-1 or
partial-word-1.

• The comparison operation continues until the rightmost text word in the source text that is within the
scope of the REPLACE statement has either participated in a match, or been considered as a leftmost
source text word and participated in a complete comparison cycle.

Replacement rules
This topic introduces detailed rules for replacement.

• The sequence of text words in the source text, pseudo-text-1, and partial-word-1 is determined by the
rules for reference format. For more information, see Chapter 6, “Reference format,” on page 55.

• Text words that are inserted into the source text as a result of processing a REPLACE statement are
placed in the source text according to the rules for reference format. When inserting text words of
pseudo-text-2 or partial-word-2 into the source text, additional spaces are introduced only between text
words where there already exists a space, including the assumed space between source lines.

• If more lines are introduced into the source text as a result of the processing of REPLACE statements,
the indicator area of the introduced lines contains the same character as the line on which the text
being replaced begins, unless that line contains a hyphen, in which case the introduced line contains a
space.

702 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If any literal within pseudo-text-2 or partial-word-2 is of a length too great to be accommodated on
a single line without continuation to another line in the resultant program, and the literal is not being
placed on a debugging line, more continuation lines are introduced that contain the remainder of the
literal. If replacement requires the continued literal to be continued on a debugging line, the program is
in error.

• Each word in pseudo-text-2 or partial-word-2 that is to be placed into the resultant program begins in
the same area of the resultant program as it appears in pseudo-text-2 or partial-word-2.

• The following rules apply to comment lines, inline comments, and blank lines:

– Comment lines, inline comments, or blank lines in the source text, pseudo-text-1, or partial-word-1
are ignored for purposes of matching.

– Comment lines, inline comments, or blank lines in the source text are copied into the resultant source
text unchanged with the following exception: a comment line, an inline comment, or a blank line
in the source text is not copied if that comment line, inline comment, or blank line appears in the
sequence of text words that match pseudo-text-1 or partial-word-1.

– Comment lines, inline comments, or blank lines in pseudo-text-2 or partial-word-2 are copied into
the resultant program unchanged whenever pseudo-text-2 or partial-word-2 is placed into the source
text as a result of text replacement.

• Lines that contain *CONTROL (*CBL), EJECT, SKIP1, SKIP2, SKIP3, or TITLE statements can appear in
the source text. Such lines are copied into the resultant source text unchanged.

• The following rules apply to debugging lines:

– Debugging lines are permitted in pseudo-text or partial-words. Text words within a debugging line
participate in the matching rules as if the letter "D" did not appear in the indicator area.

– When a REPLACE statement is specified on a debugging line, the statement is treated as if the letter
"D" did not appear in the indicator area.

– After all COPY and REPLACE statements are processed, a debugging line is considered to have all
the characteristics of a comment line if the WITH DEBUGGING MODE clause is not specified in the
SOURCE-COMPUTER paragraph.

• Except for COPY and REPLACE statements, the syntactic correctness of the source text cannot be
determined until all COPY and REPLACE statements are completely processed.

• (This rule only applies to pseudo-text.) If the source text has occurrences of a dummy operand :TAG:
that is delimited by colons in the program text, the compiler replaces the dummy operand with the
required text. The colons serve as separators and make TAG a stand-alone operand.

For example, you can use the REPLACE statement in the DATA DIVISION of a program as follows:

REPLACE ==:TAG:== BY ==Payroll==.

01 :TAG:.
 02 :TAG:-WEEK PIC S99.
 02 :TAG:-GROSS-PAY PIC S9(5)V99.
 02 :TAG:-HOURS PIC S999 OCCURS 1 TO 52 TIMES
 DEPENDING ON :TAG:-WEEK OF :TAG:.

• The REPLACE statement can be used to replace parts of words, either by using the LEADING|
TRAILING partial-word-1 BY partial-word-2 phrase, or by using the pseudo-text :TAG:
method.

SERVICE LABEL statement
This statement is generated by the CICS integrated language translator (and the separate CICS translator)
to indicate control flow. It is also used after calls to CEE3SRP when using Language Environment

Chapter 113. Compiler-directing statements 703

condition handling. For more information about CEE3SRP, see the Language Environment Programming
Guide.

Format
SERVICE LABEL

The SERVICE LABEL statement can appear only in the PROCEDURE DIVISION, but not in the declaratives
section.

SERVICE RELOAD statement
The SERVICE RELOAD statement is syntax checked, but has no effect on the execution of the program.

Format
SERVICE RELOAD identifier-1

SKIP statements
The SKIP1, SKIP2, and SKIP3 statements specify blank lines that the compiler should add when printing
the source listing. SKIP statements have no effect on the compilation of the source text itself.

Format
SKIP1

SKIP2

SKIP3

.

SKIP1
Specifies a single blank line to be inserted in the source listing.

SKIP2
Specifies two blank lines to be inserted in the source listing.

SKIP3
Specifies three blank lines to be inserted in the source listing.

SKIP1, SKIP2, or SKIP3 can be written anywhere in either Area A or Area B, and can be terminated with a
separator period. It must be the only statement on the line.

The SKIP statements must be embedded in a program source. For example, in the case of batch
applications, a SKIP1, SKIP2, or SKIP3 statement must be placed between the CBL (PROCESS) statement
and the end of the program or class (or the END CLASS marker or END PROGRAM marker, if specified).

TITLE statement
The TITLE statement specifies a title to be printed at the top of each page of the source listing produced
during compilation.

If no TITLE statement is found, a title containing the identification of the compiler and the current release
level is generated. The title is left-justified on the title line.

704 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Format
TITLE literal

.

literal
Must be an alphanumeric literal, DBCS literal, or national literal and can be followed by a separator
period.

Must not be a figurative constant.

In addition to the default or chosen title, the right side of the title line contains the following items:

• For programs, the name of the program from the PROGRAM-ID paragraph for the outermost program.
(This space is blank on pages preceding the PROGRAM-ID paragraph for the outermost program.)

• For classes, the name of the class from the CLASS-ID paragraph.
• Current page number.
• Date and time of compilation.

The TITLE statement:

• Forces a new page immediately, if the SOURCE compiler option is in effect
• Is not itself printed on the source listing
• Has no other effect on compilation
• Has no effect on program execution
• Cannot be continued on another line
• Can appear anywhere in any of the divisions

A title line is produced for each page in the listing produced by the LIST option. This title line uses the last
TITLE statement found in the source statements or the default.

The word TITLE can begin in either Area A or Area B.

The TITLE statement must be embedded in a class or program source. For example, in the case of batch
applications, the TITLE statement must be placed between the CBL (PROCESS) statement and the end of
the class or program (or the END CLASS marker or END PROGRAM marker, if specified).

No other statement can appear on the same line as the TITLE statement.

USE statement
The USE statement defines the conditions under which the procedures that follow the statement will be
executed.

The formats for the USE statement are:

• EXCEPTION/ERROR declarative
• DEBUGGING declarative

For general information about declaratives, see “Declaratives” on page 264.

EXCEPTION/ERROR declarative
The EXCEPTION/ERROR declarative specifies procedures for input/output exception or error handling that
are to be executed in addition to the standard system procedures.

The words EXCEPTION and ERROR are synonymous and can be used interchangeably.

Chapter 113. Compiler-directing statements 705

Format 1: USE statement for EXCEPTION/ERROR declarative
USE

GLOBAL

AFTER

STANDARD

EXCEPTION

ERROR

PROCEDURE

ON

file-name-1

INPUT

OUTPUT

I-O

EXTEND

file-name-1
Valid for all files. When this option is specified, the procedure is executed only for the files named. No
file-name can refer to a sort or merge file. For any given file, only one EXCEPTION/ERROR procedure
can be specified; thus, file-name specification must not cause simultaneous requests for execution of
more than one EXCEPTION/ERROR procedure.

A USE AFTER EXCEPTION/ERROR declarative statement specifying the name of a file takes
precedence over a declarative statement specifying the open mode of the file.

INPUT
Valid for all files. When this option is specified, the procedure is executed for all files opened in INPUT
mode or in the process of being opened in INPUT mode that get an error.

OUTPUT
Valid for all files. When this option is specified, the procedure is executed for all files opened in
OUTPUT mode or in the process of being opened in OUTPUT mode that get an error.

I-O
Valid for all direct-access files. When this option is specified, the procedure is executed for all files
opened in I-O mode or in the process of being opened in I-O mode that get an error.

EXTEND
Valid for all files. When this option is specified, the procedure is executed for all files opened in
EXTEND mode or in the process of being opened in EXTEND mode that get an error.

The EXCEPTION/ERROR procedure is executed:

• Either after completing the system-defined input/output error routine, or
• Upon recognition of an INVALID KEY or AT END condition when an INVALID KEY or AT END phrase has

not been specified in the input/output statement, or
• Upon recognition of an IBM-defined condition that causes file status key 1 to be set to 9. (See “File

status key” on page 299.)

After execution of the EXCEPTION/ERROR procedure, control is returned to the invoking routine in the
input/output control system. If the input/output status value does not indicate a critical input/output
error, the input/output control system returns control to the next executable statement following the
input/output statement whose execution caused the exception.

An applicable EXCEPTION/ERROR procedure is activated when an input/output error occurs during
execution of a READ, WRITE, REWRITE, START, OPEN, CLOSE, or DELETE statement. To determine what
conditions are errors, see “Common processing facilities” on page 299.

The following rules apply to declarative procedures:

• A declarative procedure can be performed from a nondeclarative procedure.
• A nondeclarative procedure can be performed from a declarative procedure.

706 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• A declarative procedure can be referenced in a GO TO statement in a declarative procedure.
• A nondeclarative procedure can be referenced in a GO TO statement in a declarative procedure.

You can include a statement that executes a previously called USE procedure that is still in control.
However, to avoid an infinite loop, you must be sure that there is an eventual exit at the bottom.

You cannot use a GOBACK statement or a STOP RUN statement when an EXCEPTION/ERROR declarative
is active due to a QSAM abend for a READ, WRITE, or REWRITE statement. You cannot use an EXIT
PROGRAM statement in a non-nested subprogram when an EXCEPTION/ERROR declarative is active due
to a QSAM abend for a READ, WRITE, or REWRITE statement. When a QSAM abend occurs during a READ,
WRITE, or REWRITE statement, the file status code can be "34" or "90".

You cannot use a GOBACK statement or an EXIT PROGRAM statement while a declarative is active in a
nested program. You cannot use a GOBACK statement or an EXIT METHOD statement while a declarative
is active in a method.

EXCEPTION/ERROR procedures can be used to check the file status key values whenever an input/output
error occurs.

Precedence rules for nested programs
Special precedence rules are followed when programs are contained within other programs.

In applying these rules, only the first qualifying declarative is selected for execution. The order of
precedence for selecting a declarative is:

1. A file-specific declarative (that is, a declarative of the form USE AFTER ERROR ON file-name-1) within
the program that contains the statement that caused the qualifying condition.

2. A mode-specific declarative (that is, a declarative of the form USE AFTER ERROR ON INPUT) within the
program that contains the statement that caused the qualifying condition.

3. A file-specific declarative that specifies the GLOBAL phrase and is within the program directly
containing the program that was last examined for a qualifying declarative.

4. A mode-specific declarative that specifies the GLOBAL phrase and is within the program directly
containing the program that was last examined for a qualifying condition.

Steps 3 and 4 are repeated until the last examined program is the outermost program, or until a qualifying
declarative has been found.

DEBUGGING declarative
Debugging sections are permitted only in the outermost program; they are not valid in nested programs.
Debugging sections are never triggered by procedures contained in nested programs.

Debugging sections are not permitted in:

• A method
• A program defined with the recursive attribute
• A program compiled with the THREAD compiler option

The WITH DEBUGGING MODE clause of the SOURCE-COMPUTER paragraph activates all debugging
sections and lines that have been compiled into the object code. See Appendix D, “Source language
debugging,” on page 759 for additional details.

When the debugging mode is suppressed by not specifying the WITH DEBUGGING MODE clause, all USE
FOR DEBUGGING declarative procedures and all debugging lines are inhibited.

Automatic execution of a debugging section is not caused by a statement that appears in a debugging
section.

Chapter 113. Compiler-directing statements 707

Format 2: USE statement for DEBUGGING declarative

USE

FOR

DEBUGGING

ON

procedure-name-1

ALL PROCEDURES

USE FOR DEBUGGING
All debugging statements must be written together in a section immediately after the DECLARATIVES
header.

Except for the USE FOR DEBUGGING sentence itself, within the debugging procedure there must be
no reference to any nondeclarative procedures.

procedure-name-1
Must not be defined in a debugging session.

Table 74 on page 708 shows, for each valid option, the points during execution when the USE FOR
DEBUGGING procedures are executed.

Any given procedure-name can appear in only one USE FOR DEBUGGING sentence, and only once in
that sentence. All procedures must appear in the outermost program.

ALL PROCEDURES
procedure-name-1 must not be specified in any USE FOR DEBUGGING sentences. The ALL
PROCEDURES phrase can be specified only once in a program. Only the procedures contained in
the outermost program will trigger execution of the debugging section.

Table 74. Execution of debugging declaratives

USE FOR DEBUGGING
operand

Upon execution of the following, the USE FOR DEBUGGING procedures are
executed immediately

procedure-name-1 Before each execution of the named procedure

After the execution of an ALTER statement referring to the named procedure

ALL PROCEDURES Before each execution of each nondebugging procedure in the outermost
program

After the execution of each ALTER statement in the outermost program
(except ALTER statements in declarative procedures)

708 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Chapter 114. Compiler directives
A compiler directive is a statement that causes the compiler to take a specific action during compilation.

CALLINTERFACE
The CALLINTERFACE directive specifies the interface convention for CALL and SET statements. The
convention specified stays in effect until another CALLINTERFACE directive is encountered in the source.

Format
>>CALLINTERFACE

>>CALLINT DLL

DYNAMIC

STATIC

DLL
Specifies that the interface convention for subsequent CALL statements is a call to a DLL, and that
subsequent SET function-pointer and procedure-pointer statements are treated as if the DLL compiler
option was in effect.

DYNAMIC
Specifies that the interface convention for subsequent CALL literal statements and subsequent SET
function-pointer and procedure-pointer statements is dynamic (as if the DYNAM compiler option was
in effect).

STATIC
Specifies that the interface convention for subsequent CALL statements and subsequent SET function
pointer and procedure pointer statements is static (as if the NODLL and NODYNAM compiler options
were in effect).

If the >>CALLINTERFACE directive has no suboptions, the interface convention for subsequent CALL and
SET statements is determined by the setting of the DLL and DYNAM compiler options.

The >>CALLINTERFACE directive has no effect on the CANCEL statement.

The >>CALLINTERFACE directive can only appear in the procedure division.

The positions of CALL statements relative to the CALLINTERFACE directive are determined following
any processing of COPY and REPLACE statements. For example, CALL statements and CALLINTERFACE
directives in COPY text are processed by the rules specified for the CALLINTERFACE directive.

Syntax and general rules
You must specify >>CALLINTERFACE on a line by itself, in either Area A or Area B.

You cannot specify >>CALLINTERFACE in the following cases:

• Within a COPY or REPLACE statement
• Between the lines of a continued character string
• In the middle of a COBOL statement

The >>CALLINTERFACE specification is limited to the current compilation unit.

The REPLACE statement and REPLACING phrase of the COPY statement do not affect the
CALLINTERFACE directive.

© Copyright IBM Corp. 1991, 2024 709

Precedence of CALLINTERFACE directive versus DLL and DYNAM compiler options
If you specify both the CALLINTERFACE directive (with suboptions) and the DLL or the DYNAM compiler
option, the directive overrides the compiler option in effect and determines the interface to be used for
subsequent CALL and SET statements.

If you specify the CALLINTERFACE directive without any suboptions, the DLL or the DYNAM compiler
option will determine the interface to use for subsequent CALL and SET statements.

DATA
The DATA directive is supported when the compiler option LP(64) is in effect. It specifies the storage
location of identifiers in WORKING-STORAGE section following the directive, and applies to level 01 and
77 data items. The storage location specified stays in effect until another DATA directive is encountered in
the source. The directive must not be placed in the middle of a group data item. The directive also applies
to external data items.

Format
>>DATA integer-1

integer-1
Must be an unsigned integer with a value of 64 or 31. The default for LP(64) is 64. The directive is not
supported in LP(32).

Location of data items in WORKING-STORAGE Section
Data items in WORKING-STORAGE, which is also called storage location or data location, can reside
above the bar, or below the bar, which informally are referred as 64-bit data items, and 31-bit data
items respectively. This applies to programs compiled with the LP(64) option. By default, data items in
WORKING-STORAGE are allocated above the bar when the LP(64) compiler option is in effect. The DATA
compiler directive can be used to change this default to a different storage location.

Note: All subordinate items belonging to the same group item must be allocated in the same storage
location.

>>DATA 31 specifies that storage should reside below the 2GB bar, accessible by AMODE 31 or AMODE
64 programs.

>>DATA 64 specifies that storage could reside above the 2GB bar, accessible by AMODE 64 programs
only.

Related topics
Dynamic call between AMODE 31 and AMODE 64 programs (Enterprise COBOL Programming Guide)
“WORKING-STORAGE SECTION” on page 163

INLINE
The INLINE directive lets you selectively prevent the compiler from considering procedures eligible
for inlining. Specifying >>INLINE OFF prevents the compiler from inlining procedures referenced by
PERFORM statements. If the NOINLINE compiler option is in effect, all INLINE directives are ignored. The
relative location of an INLINE directive to the definition of a procedure name is important for determining
the inlining behavior for that procedure.

Format
>>INLINE ON

OFF

710 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

ON
Specifies that the compiler determines if the procedures within the scope of the directive are inlined
in a specific PERFORM statement when OPTIMIZE(1) or OPTIMIZE(2) is in effect.

OFF
Specifies that procedures within the scope of the directive will not be inlined when referenced by
PERFORM statements, no matter which optimization level setting is in effect.

Note: The word inlining here implies that the compiler might choose to replace the PERFORM of a
procedure (paragraph or section) that is performed more than once with a copy of that procedure's code.
By inserting the procedure code at the location of the PERFORM, the compiler saves the overhead of
branching logic to and from the procedure. Note that if a procedure is only performed once, the compiler
might move the code for that procedure to the PERFORM site, even with >>INLINE OFF.

Syntax and general rules
You must specify >>INLINE ON or >>INLINE OFF on a line by itself, in either Area A or Area B.

You cannot specify >>INLINE ON or >>INLINE OFF in the following cases:

• Within a COPY or REPLACE statement
• Between the lines of a continued character string
• In the middle of a COBOL statement

The >>INLINE ON or >>INLINE OFF specification is limited to the current compilation unit.

Note: The INLINE directive can appear multiple times in the program.

Inlining eligibility of procedures for PERFORM statements
A procedure is "in the scope of" a particular INLINE directive when:

• This INLINE directive appears before the definition of the procedure name

and
• There are no other intervening INLINE directives between the definition of the procedure name and this

particular INLINE directive

A procedure is eligible for inlining for statements of the form "PERFORM procedure-name-1 [THROUGH
procedure-name-2]", if and only if:

• The procedure is in the scope of an INLINE ON directive

or
• The INLINE compiler option is in effect and the procedure is not in the scope of an INLINE OFF directive

For a section that contains paragraphs, it is possible that this section is under the scope of one INLINE
directive while some of its paragraphs are under the scope of another INLINE directive.

Example
Following is an example of the effect of the inlining directive on a section that is comprised of one or more
paragraphs:

>>INLINE ON

MY-SUBROUTINE SECTION.

MY-PARAGRAPH-ONE.
.
.

>>INLINE OFF

MY-PARAGRAPH-TWO.
.

Chapter 114. Compiler directives 711

.

MY-PARAGRAPH-THREE.
.
.

EXIT.

Notes:

1. Procedure MY-SUBROUTINE will be eligible for inlining in any statements that PERFORM it.
2. Procedure MY-PARAGRAPH-ONE will be eligible for inlining in any statements that PERFORM it.
3. Procedure MY-PARAGRAPH-TWO will not be eligible for inlining in any statements that PERFORM it.
4. Procedure MY-PARAGRAPH-THREE will not be eligible for inlining in any statements that PERFORM it.
5. Procedures MY-PARAGRAPH-ONE through MY-PARAGRAPH-THREE will be eligible for inlining in

any statements that PERFORM "MY-PARAGRAPH-ONE THRU MY-PARAGRAPH-THREE", because MY-
PARAGRAPH-ONE is eligible for inlining in a PERFORM statement.

Related references
INLINE compiler option (Enterprise COBOL Programming Guide)

Conditional compilation
Conditional compilation provides a way of including or omitting selected lines of source code depending
on the values of literals specified by the DEFINE directive. In this way, you can create multiple variants of
the same program without the need to maintain separate source streams.

The compiler directives that are used for conditional compilation are the DEFINE directive, the EVALUATE
directive, and the IF directive. The DEFINE directive is used to define compilation variables that are
referenced in the EVALUATE and IF directives to select lines of source code that are to be included or
omitted in a compilation group.

Conditional compilation directives are processed according to the following rules:

• Within a source file, if a conditional compilation directive appears before a COPY or REPLACE statement,
it is processed before the COPY or REPLACE statement is processed. This means that conditional
compilation directives may be used to exclude COPY and REPLACE statements from a program.

• Conditional compilation directives are not affected by substitutions made as the result of REPLACE
statements or the REPLACING phrase of COPY statements.

• Conditional compilation directives may appear in copybooks.

Note:

• Conditional compilation directives can be included in a file that contains the BASIS statement, but in
that file, conditional compilation directives do not control the inclusion or exclusion of source from that
file. Instead, the conditional compilation directives will be processed like any other source lines in the
BASIS file that are not INSERT or DELETE statements, and those directives will be passed through to
the source that is being assembled to be processed later during the library phase.

• Conditional compilation directives along with their included and excluded source text can be viewed
in the listing. Excluded source text can be omitted from the listing by using the CONDCOMP(SKIPSRC)
option.

Related references
“DEFINE” on page 713
“EVALUATE” on page 714
“IF” on page 716
CONDCOMP (Enterprise COBOL Programming Guide) Example: conditional compilation output (Enterprise
COBOL Programming Guide)

712 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

DEFINE
The DEFINE directive defines or undefines a compilation variable. The compilation variables can be used
within any of the conditional compilation directives (DEFINE, EVALUATE, and IF). The compilation variable
is treated as a symbolic reference to the literal value it currently represents.

Format
>>DEFINE compilation-variable-name-1

AS

arith-expr-1

literal-1

PARAMETER

OVERRIDE

OFF

>>DEFINE
Must begin on a new line in area A or B and must be specified entirely on that line.

compilation-variable-name-1
Must not be the same as a conditional compiler directive keyword and must not be one of the
predefined compilation variable names.

If a DEFINE directive does not specify the OFF or the OVERRIDE phrase, then one of the following
conditions must be true:

• compilation-variable-name-1 was not declared previously within the same compilation group.
• The previous DEFINE directive referring to compilation-variable-name-1 must have been specified

with the OFF phrase.
• The previous DEFINE directive referring to compilation-variable-name-1 must have specified the

same value.

literal-1
Must be one of the following items:

• An alphanumeric literal, which can be specified as a regular alphanumeric literal ('abcd') or as a
hex literal (x'F1F2F3'). National literals, DBCS literals, and null-terminated alphanumeric literals (Z
literals) are not supported.

• An integer literal.
• A boolean literal (only B'0' and B'1' are supported).

arith-expr-1
Must be formed in accordance with the arithmetic expression rules as described in “Compile-time
arithmetic expressions” on page 719.

General rules
• DEFINE directives that appear in code that is omitted as the result of other conditional compilation

directives are not processed.
• In the text that follows a DEFINE directive that defines compilation-variable-name-1 and does not

include the OFF phrase, compilation-variable-name-1 can be used in a conditional compilation directive
wherever a literal of the category associated with the name is permitted, including in a defined condition
and a boolean condition.

• In the text that follows a DEFINE directive specifying compilation-variable-name-1 with the OFF phrase,
compilation-variable-name-1 can be used only in a defined condition, unless compilation-variable-
name-1 is redefined in a subsequent DEFINE directive without the OFF phrase.

Chapter 114. Compiler directives 713

• If the OVERRIDE phrase is specified, compilation-variable-name-1 is unconditionally set to reference
the value of the specified operand.

• If the AS PARAMETER phrase is specified, the value referenced by compilation-variable-name-1 is
obtained from a DEFINE option for compilation-variable-name-1, if such an option exists. If there is no
DEFINE option for compilation-variable-name-1, compilation-variable-name-1 is not defined.

• If arith-expr-1 is specified, arith-expr-1 is evaluated according to “Compile-time arithmetic
expressions” on page 719, and compilation-variable-name-1 references the resultant value.

• If literal-1 is specified, compilation-variable-name-1 references literal-1.

Related references
“Defined conditions” on page 719
“Predefined compilation variables” on page 720
DEFINE (Enterprise COBOL Programming Guide)

EVALUATE
The EVALUATE directive provides a multi-branch method of choosing the source lines to include in a
compilation group.

Format 1
>>EVALUATE literal-1

arith-expr-1

>>WHEN literal-2

arith-expr-2 THROUGH

THRU

literal-3

arith-expr-3 text-1

>>WHEN OTHER

text-2

>>END-EVALUATE

Format 2

>>EVALUATE TRUE >>WHEN constant-conditional-expression-1

text-1

>>WHEN OTHER

text-2

>>END-EVALUATE

For descriptive purposes, in this topic:

• operand-1 refers to literal-1 or arith-expr-1 in format 1, and to the TRUE keyword in format 2.
• operand-2 refers to literal-2 or arith-expr-2 in format 1, and to constant-conditional-expression-1 in

format 2.
• operand-3 refers to literal-3 or arith-expr-3 in format 1.

All formats:

714 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

>>EVALUATE, >>WHEN, >>WHEN OTHER, >>END-EVALUATE
Must begin on a new line in area A or B and must be specified entirely on that line.

text-1, text-2
Must begin on a new line and may consist of multiple lines.

May be any kind of source lines, including compiler directives. text-1 or text-2 may also include COPY
statements.

The phrases of a given EVALUATE directive must be specified all in the same library text or all in
source text. For purposes of this rule, text-1 and text-2 are not considered phrases of the EVALUATE
directive. A nested EVALUATE directive specified in text-1 or text-2 is considered a new EVALUATE
directive.

Format 1:
>>EVALUATE

All operands of one EVALUATE directive must be of the same category. For this rule, an arithmetic
expression is of category numeric.

literal-1, arith-expr-1
Selection subjects.

literal-2, literal-3, arith-expr-2, arith-expr-3
Selection objects.

THROUGH, THRU
The words THROUGH and THRU are equivalent. If the THROUGH phrase is specified, all selection
subjects and selection objects must be of category numeric.

arith-expr-1, arith-expr-2, arith-expr-3
Must be formed in accordance with the arithmetic expression rules as described in “Compile-time
arithmetic expressions” on page 719.

Format 2:
constant-conditional-expression-1

Must be formed in accordance with the constant conditional expression rules as described in
“Constant conditional expressions” on page 718.

General rules
All Formats:

• text-1 and text-2 are not part of the EVALUATE compiler directive line. text-1 and text-2 that are in the
first true branch of the EVALUATE statement are subject to the matching and replacing rules of the COPY
statement and REPLACE statement.

• If the END-EVALUATE phrase is reached without any WHEN phrase evaluating to TRUE, or without
encountering a WHEN OTHER phrase, all lines of text-1 associated with all WHEN phrases are omitted
from the resultant text.

Format 1:

• The selection subject is compared against the values specified in each WHEN phrase in turn as follows:

– If the THROUGH phrase is not specified, a TRUE result is returned if the selection subject is equal to
operand-2.

– If the THROUGH phrase is specified, a TRUE result is returned if the selection subject is greater than
or equal to operand-2 and less than or equal to operand-3.

• If a WHEN phrase evaluates to TRUE, all the lines of text-1 associated with that WHEN phrase are
included in the resultant text. All lines of text-1 associated with other WHEN phrases in that EVALUATE
directive and all lines of text-2 associated with a WHEN OTHER phrase are omitted from the resultant
text.

Chapter 114. Compiler directives 715

• If no WHEN phrase evaluates to TRUE, all lines of text-2 associated with the WHEN OTHER phrase, if
specified, are included in the resultant text. All lines of text-1 associated with the other WHEN phrases
are omitted from the resultant text.

• If literal-1 is an alphanumeric literal, a character-by-character comparison for equality based on the
binary value of each character’s encoding is used. If the literals are of unequal length, they are not
equal.

Format 2:

• For each WHEN phrase in turn, the constant-conditional-expression-1 is evaluated in accordance with
the rules in “Constant conditional expressions” on page 718.

• If a WHEN phrase evaluates to TRUE, all lines of text-1 associated with that WHEN phrase are included
in the resultant text. All lines of text-1 associated with other WHEN phrases of that EVALUATE directive
and all lines of text-2 associated with a WHEN OTHER phrase are omitted from the resultant text.

• If no WHEN phrase evaluates to TRUE, all lines of text-2 associated with the WHEN OTHER phrase, if
specified, are included in the resultant text. All lines of text-1 associated with other WHEN phrases are
omitted from the resultant text.

Related references
“COPY statement” on page 688
“REPLACE statement” on page 700

IF
The IF directive provides for a one-way or two-way conditional compilation.

Format
>>IF constant-conditional-expression-1

text-1 >>ELSE

text-2

>>END-IF

>>IF, >>ELSE, >>END-IF
Must begin on a new line in area A or B and must be specified entirely on that line.

constant-conditional-expression-1
Must be formed in accordance with the constant conditional expression rules as described in
“Constant conditional expressions” on page 718.

text-1, text-2

Must begin on a new line and may consist of multiple lines.

May be any kind of source lines, including compiler directives. text-1 or text-2 may also include COPY
statements.

The phrases of a given IF directive must be specified all in the same library text or all in source text.
For purposes of this rule, text-1 and text-2 are not considered phrases of the IF directive. A nested IF
directive specified in text-1 or in text-2 is considered a new IF directive.

General Rules
• text-1 and text-2 are not part of the IF compiler directive line. The text in the IF directive (either text-1 or

text-2) is subject to the matching and replacing rules of the COPY and REPLACE statements.
• If constant-conditional-expression-1 evaluates to TRUE, all lines of text-1 are included in the resultant

text and all lines of text-2 are omitted from the resultant text.

716 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

• If constant-conditional-expression-1 evaluates to FALSE, all lines of text-2 are included in the resultant
text and all lines of text-1 are omitted from the resultant text.

Related references
“COPY statement” on page 688
“REPLACE statement” on page 700

Examples of conditional compilation

Example 1: use predefined compilation variables to enable a program to be used in
both CICS and BATCH:
Suppose that the CICS compiler option is in effect and the compiler works with the integrated CICS
translator:

>>IF IGY-CICS
 EXEC CICS READ FILE-1... *> Read a record in CICS
>>ELSE
 READ FILE-2 *> Read a record in BATCH
>>END-IF

Example 2: import numeric variable value from outside the source and test it
Suppose that DEFINE(VAR1=10) is in effect:

>>DEFINE VAR1 AS PARAMETER
. . .
>>DEFINE VAR2 AS VAR1 + 2
. . .
>>IF VAR2 < 12
 compute x = x + 1 *> this code should NOT be included
>>ELSE
 compute x = x – 1 *> this code should be included
>>END-IF

Example 3: use the format 1 EVALUATE directive with numeric compilation variables
>>DEFINE VAR1 AS 6
>>DEFINE VAR2 AS 1
. . .
>>EVALUATE VAR1
>>WHEN VAR2 + 2
 compute x = x + 1 *> this code should NOT be included
>>WHEN 4 THRU 8
 compute x = x – 1 *> this code should be included
>>WHEN OTHER
 compute x = x * 2 *> this code should NOT be included
>>END-EVALUATE

Example 4: use the format 2 EVALUATE directive with alphanumeric compilation
variables
>>DEFINE VAR1 AS 'MOO'
. . .
>>EVALUATE TRUE
>>WHEN VAR2 IS DEFINED
 compute x = x + 1 *> this code should NOT be included
>>WHEN VAR1 IS EQUAL TO 'GOO' OR VAR1 IS EQUAL TO 'MOO'
 compute x = x – 1 *> this code should be included
>>END-EVALUATE

Chapter 114. Compiler directives 717

Example 5: use OVERRIDE and OFF in the DEFINE directive
>>DEFINE VAR AS 12
. . .
>>DEFINE VAR OFF
. . .
>>IF VAR IS DEFINED
 compute x = x + 1 *> this code should NOT be included
>>ELSE
 compute x = x - 1 *> this code should be included
>>END-IF
. . .
>>DEFINE VAR AS 16
. . .
>>DEFINE VAR AS VAR - 2 OVERRIDE
. . .
>>IF VAR IS EQUAL TO 16
 compute x = x + 1 *> this code should NOT be included
>>ELSE
 compute x = x - 1 *> this code should be included
>>END-IF

Example 6: general use of boolean literals and compilation variables
>>DEFINE B1 B'1' *> B1 is category boolean
>>DEFINE B2 B'0' *> B2 is category boolean
. . .
>>IF B1 AND B2
 display “Both B1 and B2 are true” *> not included
>>ELSE
 >>IF B1
 display “Only B1 is true” *> included
 >>ELSE
 >>IF B2
 display “Only B2 is true” *> not included
 >>ELSE
 display “Neither B1 nor B2 is true” *> not included
 >>END-IF
 >>END-IF
>>END-IF

Constant conditional expressions
A constant conditional expression is an expression that is specified in conditional compilation directives
and evaluated during the processing of those directives to determine the text that is included in the
resultant program.

Note: In this topic, "literals" also include compilation variables, which means that you can use
compilation variables in constant conditional expressions.

A constant conditional expression shall be one of the following items:

• A relation condition in which both operands are literals or arithmetic expressions that contain only
literal terms. The condition shall follow the rules for relation conditions, with the following additions:

– The operands shall be of the same category. An arithmetic expression is of the category numeric.
– If literals are specified and they are not numeric literals, the relational operator shall be “IS EQUAL
TO”, “IS NOT EQUAL TO”, “IS =”, or “IS NOT =”.

• A defined condition.
• A boolean condition.
• A complex condition formed by combining the above forms of simple conditions into complex conditions

by using AND, OR, and NOT. Abbreviated combined relation conditions shall not be specified.

Related references
“Relation conditions” on page 272
“Defined conditions” on page 719
“Abbreviated combined relation conditions” on page 287

718 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Defined conditions
A defined condition expression tests whether a compilation variable is defined.

Format
compilation-variable-name-1

IS NOT

DEFINED

compilation-variable-name-1
Must not be the same as a conditional compiler directive keyword.

IS DEFINED
A defined condition that uses the IS DEFINED syntax evaluates to TRUE if the compilation-variable-
name-1 is defined.

If a defined condition references a compilation variable that was defined via a DEFINE compiler
option, but preceding the defined condition in the program there is neither a corresponding DEFINE
directive with the AS PARAMETER phrase nor a DEFINE directive without the OFF phrase for the
compilation variable, then the defined condition for the compilation variable evaluates to FALSE.

IS NOT DEFINED
A defined condition that uses the IS NOT DEFINED syntax evaluates to TRUE if the compilation-
variable-name-1 is not defined.

A compilation variable whose most recent definition is via a DEFINE directive with the OFF phrase is
considered to be not defined.

Related references
“Predefined compilation variables” on page 720
DEFINE (Enterprise COBOL Programming Guide)

Boolean conditions
A boolean condition determines whether a boolean literal is true or false.

Format

NOT

boolean-literal-1

boolean-literal-1
Evaluates to true if it is B'1', and evaluates to false if it is B'0'.

The condition NOT boolean-literal-1 evaluates to the reverse truth-value of boolean-literal-1.

Related references
DEFINE (Enterprise COBOL Programming Guide)

Compile-time arithmetic expressions
You can specify a compile-time arithmetic expression in the DEFINE and EVALUATE directives and as
part of a constant conditional expression, such as those found in IF directives or WHEN phrases of the
EVALUATE directives.

Note: In this topic, "literals" also include compilation variables, which means that you can use
compilation variables in compile-time arithmetic expressions.

A compile-time arithmetic expression follows the usual arithmetic expression rules, with the following
exceptions:

• The exponentiation operator shall not be specified.

Chapter 114. Compiler directives 719

• All operands shall be integer numeric literals or arithmetic expressions in which all operands are integer
numeric literals.

• The expression shall be specified in such a way that a division by zero does not occur.
• Intermediate results are computed according to the rules described in Fixed-point data and

intermediate results in the Enterprise COBOL Programming Guide. For that purpose, the integer operands
of compile-time arithmetic expressions can be considered fixed-point numbers with 0 decimal digits.
The ARITH(COMPAT|EXTEND) option setting is taken into account when deciding how many digits of
precision to maintain for intermediate results.

Related references
“Arithmetic expressions” on page 266
ARITH (Enterprise COBOL Programming Guide)

Predefined compilation variables
There are compilation variables that are defined automatically by the compiler. These compilation
variables listed in this topic can be referenced in conditional compilation directives wherever a
compilation variable is allowed.

Table 75. Predefined compilation variables

Predefined compilation variable
name1 Description Value

IGY-ARCH Indicates the target architecture
for which the source code is
being compiled.

The value of the ARCH option
that was used to compile the
program: 10, 11, 12, 13, or 14.

IGY-CICS Indicates whether embedded
CICS statements are accepted.

B'1' if the CICS compiler option is
in effect; B'0' otherwise.

IGY-COMPILER-VRM Indicates the version of the
compiler.

An integer in the format
VVRRMM, where:

• VV represents the version
number.

• RR represents the release
number.

• MM represents the modification
number.

For example, compiler version
6.4.0 has an IGY-COMPILER-VRM
value of 060400.

IGY-DLL Indicates whether the program is
compiled as DLL code.

B'1' if the DLL compiler option is
in effect; B'0' otherwise.

IGY-DYNAM Indicates whether programs
invoked through the CALL literal
statement will be loaded or
deleted dynamically at run time.

B'1' if the DYNAM compiler
option is in effect; B'0' otherwise.

IGY-LP Indicates whether an AMODE 31
or AMODE 64 program should
be generated with the related
language features enabled.

The value of the LP option that is
used to compile the program: 32
or 64.

IGY-OPTIMIZE Indicates the optimization level. The optimization level that was
used to compile the program: 0,
1 or 2.

720 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 75. Predefined compilation variables (continued)

Predefined compilation variable
name1 Description Value

IGY-SQL Indicates whether processing of
embedded SQL statements is
enabled.

B'1' if the SQL compiler option is
in effect; B'0' otherwise.

IGY-SQLIMS Indicates whether processing of
embedded SQLIMS statements is
enabled.

B'1' if the SQLIMS compiler
option is in effect; B'0' otherwise.

IGY-THREAD Indicates whether the program
is compiled with multithread
support enabled.

B'1' if the THREAD compiler
option is in effect; B'0' otherwise.

1. The older predefined compilation variables without the IGY- prefix are tolerated. It is suggested that
the IGY- prefixed names be used. Do not use the IGY- prefix when you define your own compilation
variables.

Related references
“DEFINE” on page 713
DEFINE (Enterprise COBOL Programming Guide)

COBOL/Java interoperability
Enterprise COBOL provides two directives, JAVA-CALLABLE and JAVA-SHAREABLE, that facilitate
interoperability between COBOL programs and Java programs.

JAVA-CALLABLE
The JAVA-CALLABLE directive instructs the compiler to make the COBOL program automatically callable
from Java. When a COBOL program that is callable from Java is compiled, a program referred to as
a "native method call stub program" is automatically generated by the compiler. This program is an
interface between the Java caller and the user COBOL program. When the call stub program receives
control from Java, it performs conversion of incoming argument values to their corresponding COBOL
format and then dynamically calls the user COBOL program, which must be located by the application's
STEPLIB. If the user program returns a value, then that value is converted to its corresponding Java
format before the call stub returns.

Format
>>JAVA-CALLABLE

General rules
The JAVA-CALLABLE directive must appear before the PROCEDURE DIVISION header for the outermost
program of a compilation unit, and in a file that contains multiple compilation units, the JAVA-CALLABLE
directive can only be used in the first function or program compilation unit in the file..

Since a Java-callable program is invoked dynamically by the call stub, the program name must be 8
characters or less.

The generated native method call stub program is written to a z/OS UNIX directory that is specified by the
JAVAIOP(OUTPATH(zos-unix-directory)) compiler option. If that option is not in effect, the default output
location is the current directory if the compiler is being run from the cob2 utility; otherwise, the output
location is the home directory of the userid under which the compiler is running.

The name of the COBOL native method call stub program has the following format:

Chapter 114. Compiler directives 721

<cobol-program-name>_java_native.cbl

where cobol-program-name is the name of the COBOL program that is being compiled as specified in
the program's IDENTIFICATION DIVISION.

Handling parameters and returned values
• If the COBOL program containing the JAVA-CALLABLE directive specifies parameters through the

USING phrase of its PROCEDURE DIVISION header, the native method call stub program that is
generated by the compiler automatically handles conversions between incoming Java arguments and
the parameter types of the user COBOL program before calling that program. Using the data definition
of the COBOL program's parameters, the compiler assumes the incoming Java argument values are in
a format that adheres to the COBOL/Java type mapping and code to do the conversion is generated
accordingly. For mapping details, see Legal COBOL types for Java interoperability and corresponding
Java types.

Note: For parameters that are fixed length tables, if the numbers of elements in the incoming Java
array argument does not match the number of elements indicated in the OCCURS clause of the table
definition in the corresponding COBOL parameter, a runtime error will occur. For mapping details, see
Legal COBOL types for Java interoperability and corresponding Java types.

• If the COBOL program containing the JAVA-CALLABLE directive also contains a RETURNING phrase in
its PROCEDURE DIVISION header, then after the user program is called, the native method call stub
program will automatically convert the returned COBOL value to its corresponding Java value that is
then returned to the Java caller. For mapping details, see Legal COBOL types for Java interoperability
and corresponding Java types.

Note: When a call is made from a Java program to a COBOL program compiled with the JAVA-
CALLABLE directive, the Java program will use a signature for the COBOL native method that is
generated by the COBOL compiler itself and is based on the definition of the COBOL program and
its parameters and possible returned value. This allows the Java program to perform compile-time
checking to ensure that only arguments of the appropriate Java type can be passed to the COBOL
program.

Data access properties
Some data types are treated as read-only data items and some are treated as read/write data items when
passed as parameters in the following cases:

• A COBOL parameter that corresponds to a primitive Java type (that is, byte, short, int, long, float,
double or boolean) is treated as a read-only data item in a COBOL/Java interoperable application,
regardless of whether the parameter is defined as BY REFERENCE, BY VALUE, or BY CONTENT. If a
COBOL program modifies such a parameter value, the change is not reflected in the Java caller. This
also applies to COBOL parameters that correspond to the immutable Java classes java.lang.String
and java.math.BigDecimal.

• A COBOL parameter that corresponds to a single-dimension array of a primitive Java type (that
is, byte[], short[], int[], long[], float[], double[], or boolean[]). If the COBOL program modifies such
a parameter value, the change is reflected in the Java caller. This behavior is consistent with the
semantics of arrays of primitive types when they are used as parameters in a pure Java application.

• Changes to a COBOL parameter that is an alphanumeric group item will be reflected in the Java caller.

Building COBOL native method call stub programs
The COBOL native method call stub program, along with any other COBOL stub programs that are
generated by the compiler for the application, must be compiled into a Java native method DLL using
the cjbuild tool. See Building and running non-OO applications that interoperate with Java in Enterprise
COBOL Programming Guide for more details. This native method DLL will be loaded into the JVM at run
time when a call is made to a COBOL program from Java. If the output location of the DLL is specified as
a data set to cjbuild, then that data set must be in your STEPLIB at run time. If the output location of the

722 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

DLL is specified as a z/OS UNIX directory, then JVM property java.library.path should be set to indicate
that directory, which can be done by adding -Djava.library.path=<path> to the "java" command
used to execute the Java application.

Invoking COBOL programs from Java
COBOL programs containing the JAVA-CALLABLE directive are considered to be native methods in a class
called "progs". The class is part of a package whose name is provided to the cjbuild utility. If no package
name is specified when using cjbuild, the name of the package defaults to enterprise.COBOL.

For example, if a COBOL program named COBPROG1 contains the JAVA-CALLABLE directive and the
native method DLL for the associated application is compiled with the cjbuild utility using the default
package name, then COBPROG1 can be invoked in Java as a COBOL native method as follows:

import enterprise.COBOL.*;

:

enterprise.COBOL.progs.COBPROG1(...);

If the name of a Java-callable COBOL program is not specified as a literal in the IDENTIFICATION
DIVISION, then the name of the corresponding COBOL native method in Java will be the upper-cased
version of the program name. If the name of the Java-callable program is specified as a literal in the
IDENTIFICATION DIVISION, then the case of the letters in the corresponding COBOL native method
name in Java will match the case of the letters in the literal exactly.

Related references
COBOL/Java interoperability outside of the object-oriented (OO) COBOL framework (Enterprise COBOL
Programming Guide)
Compiling COBOL applications that interoperate with Java (Enterprise COBOL Programming Guide)
JAVAIOP (Enterprise COBOL Programming Guide)
“Mapping between COBOL and Java data types for non-OO COBOL/Java interoperability” on page 725

JAVA-SHAREABLE
Use the JAVA-SHAREABLE ON and JAVA-SHAREABLE OFF directives to bracket one or more WORKING-
STORAGE data items to indicate that they are to be made read/write accessible from Java applications
interoperating with this COBOL program.

Note: In order for a Java method to access a COBOL program's WORKING-STORAGE, the COBOL program
must be part of the run unit associated with the COBOL/Java application, and the program must also have
been invoked at least once, either directly by a Java method or indirectly by another COBOL program that
is callable from Java, so that its WORKING-STORAGE is initialized before the Java method tries to access
it.

Format
>>JAVA-SHAREABLE ON

OFF

General rules
The JAVA-SHAREABLE directive must be specified in the DATA DIVISION and is only relevant for data
items defined in the WORKING-STORAGE SECTION and only for data items that are Java-compatible. See
“Mapping between COBOL and Java data types for non-OO COBOL/Java interoperability” on page 725
for details. Otherwise, the data item is ignored.

If JAVA-SHAREABLE ON appears in the middle of a group definition, it will take effect starting with the
next 01/77 level data item and will apply to that item and its subordinates if any, and will also apply to any

Chapter 114. Compiler directives 723

subsequently defined data items until either a JAVA-SHAREABLE OFF directive is encountered or the end
of the data division is encountered, whichever is first.

Because the mechanism for sharing data between COBOL and Java involves external data items in
COBOL, data items that are Java-shareable should have a unique name across the entire COBOL part of
the application; otherwise, there's a possibility for a name collision. The name of Java-shareable data
items must also be 26 characters or less.

The generated stub programs and Java interface classes are written to a z/OS UNIX directory that is
specified by the JAVAIOP(OUTPATH(zos-unix-directory)) compiler option. If that option is not in effect,
the default output location is the current directory if the compiler is being run from the cob2 utility;
otherwise, the output location is the home directory of the userid under which the compiler is running.

Building COBOL stub programs and Java interface classes
• The WORKING-STORAGE initialization stub program, along with any other COBOL stub programs

generated by the compiler for the application, must be compiled into an application DLL using the
cjbuild tool, which will also build any generated Java interface classes. For details, see Building and
running non-OO applications that interoperate with Java in Enterprise COBOL Programming Guide. This
application DLL will be loaded into the JVM at run time when Java makes a call to COBOL. If the
output location of the DLL is specified as a data set to cjbuild, then that data set must be in your
STEPLIB at run time. If the output location of the DLL is specified as a z/OS UNIX directory, then
JVM property java.library.path should be set to that directory, which can be done by adding
-Djava.library.path=<path> to the "java" command used to execute the Java application.

Accessing COBOL WORKING-STORAGE items from Java
The Java strg class used for accessing a program's WORKING-STORAGE items from Java is considered
to be part of a package. The package name can be specified using the --pkgname option of the cjbuild
utility when it is invoked to build the native method DLL for an interoperable application. If the name is
not specified, it defaults to enterprise.COBOL.

The strg class consists of a 2-level hierarchy of classes and objects that can be used to access COBOL
WORKING-STORAGE items. In particular, strg contains one nested class per each COBOL program that
is part of your interoperable application, and for each such class, there is one object per 01/77-level
WORKING-STORAGE item that is accessible from Java.

The name of the Java object corresponding to the COBOL data item contains only uppercase letters. This
is true even if the data item is defined in your COBOL program with some lowercase letters. This is due to
the fact that COBOL is a case insensitive language.

For example, if you have two COBOL programs in your application, PROG1 and PROG2, and PROG1 has
shareable WORKING-STORAGE item DATA1, and PROG2 has shareable WORKING-STORAGE item DATA2,
where DATA1 and DATA2 are both defined with picture string PIC S9(9) COMP-5, then DATA1 and
DATA2 can be accessed from your Java application as follows:

import enterprise.COBOL.*;
:
int data1 = enterprise.COBOL.strg.PROG1.DATA1.get();
enterprise.COBOL.strg.PROG1.DATA1.put(24);

int data2 = enterprise.COBOL.strg.PROG2.DATA2.get();
enterprise.COBOL.strg.PROG2.DATA2.put(12);

Accessing groups

• If a Java-shareable WORKING-STORAGE item is a group, then the corresponding Java accessor class
has a structure that mimics the structure of the COBOL group.

For example, consider a COBOL program PROG1 with the following COBOL group G1 in WORKING-
STORAGE:

>>JAVA-SHAREABLE ON
01 G1.

724 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

 03 N1 PIC S9(9) COMP-5.
 03 G1SUB.
 05 S1 PIC X(20).
>>JAVA-SHAREABLE OFF

A Java program can access the items in group G1 as follows:

import enterprise.COBOL.*;
:
int n1 = enterprise.COBOL.strg.PROG1.G1.N1.get();
String s2 = enterprise.COBOL.strg.PROG1.G1.G1SUB.S1.get();

Accessing tables

To access an element of a table, the corresponding Java array variable must be indexed.

For example, consider the following COBOL program PROG1 with the following COBOL table:

>>JAVA-SHAREABLE ON
01 LIST.
 03 NUM PIC S9(9) COMP-5 OCCURS 10 TIMES.
>>JAVA-SHAREABLE OFF

Java code can access elements of table NUM as follows:

import enterprise.COBOL.*; :
int n1 = enterprise.COBOL.PROG1.LIST.NUM[0].get();
// get value of NUM(1)
enterprise.COBOL.strg.PROG1.LIST.NUM[0].put(12);
// Set NUM(1) to 12

Related references
COBOL/Java interoperability outside of the object-oriented (OO) COBOL framework (Enterprise COBOL
Programming Guide)
Compiling COBOL applications that interoperate with Java (Enterprise COBOL Programming Guide)
JAVAIOP (Enterprise COBOL Programming Guide)
“Mapping between COBOL and Java data types for non-OO COBOL/Java interoperability” on page 725

Mapping between COBOL and Java data types for non-OO COBOL/Java
interoperability

This section describes the COBOL data types and related Java data types in non-OO COBOL programs that
interoperate with Java through use of the JAVA-CALLABLE or JAVA-SHAREABLE directives or through use
of the CALL statement to call a static Java method.

A COBOL program and a Java method need to pass data between one another under the following
circumstances:

• A Java method passes arguments to a COBOL native method
• A Java method receives a returned value from a COBOL native method
• A COBOL program passes arguments to a static Java method
• A COBOL program receives a returned value from a static Java method
• A Java method directly accesses a data item in a native COBOL method's working-storage

To deal with these scenarios, Enterprise COBOL defines the following legal COBOL types for Java
interoperability and their corresponding Java types:

Table 76. Java-compatible elementary COBOL types

PIC X byte

Chapter 114. Compiler directives 725

Table 76. Java-compatible elementary COBOL types (continued)

PIC X(m) DISPLAY, m>1
PIC N(m) NATIONAL, m>0
PIC U(m) UTF-8, m>0
PIC U BYTE-LENGTH m, m>0
PIC X DYNAMIC [LIMIT n] (not supported
by the JAVA-SHAREABLE directive and will be
ignored)
PIC U DYNAMIC [LIMIT n](not supported
by the JAVA-SHAREABLE directive and will be
ignored)

String

PIC S9(n) COMP-5, 1 ≤ n ≤ 4 short

PIC S9(n) COMP-5, 5 ≤ n ≤ 9 int

PIC S9(n) COMP-5, 10 ≤ n ≤ 18 long

COMP-1 (4-byte IBM hex float) float (4-byte IEEE float)

COMP-2 (8-byte IBM hex float) double (8-byte IEEE float)

usage COMP-3/PACKED-DECIMAL numeric java.math.BigDecimal

usage DISPLAY numeric (zoned) java.math.BigDecimal

01 flag pic x.
 88 flag-false value x'00'.
 88 flag-true value x'01'.

boolean

Table 77. Java-compatible array COBOL types

01 byte-list.
 03 b1 pic x occurs m times.

byte[m]

01 short-list.
 03 s1 pic s9(n) comp-5 occurs m times.

where 1 ≤ n ≤ 4.

short[m]

01 int-list.
 03 i1 pic s9(n) comp-5 occurs m times.

where 5 ≤ n ≤ 9.

int[m]

01 long-list.
 03 l1 pic s9(n) comp-5 occurs m times.

where 10 ≤ n ≤ 18.

long[m]

01 float-list.
 03 f1 pic comp-1 occurs m times.

float[m]

726 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 77. Java-compatible array COBOL types (continued)

01 double-list.
 03 d1 pic comp-2 occurs m times.

double[m]

01 bool-list.
 03 b1 pic x occurs m times.
 88 flag-false value x'00'.
 88 flag-true value x'01'.

boolean[m]

01 dec-list.
 03 n1 pic s9(m)[v9(n))] display/comp-3
occurs j times.

BigDecimal[j]

01 alpha-list.
 03 s1 pic x(m) occurs n times.

where m>1.

String[n]

01 nat-list.
 03 n1 pic n(m) occurs n times.

String[n]

01 utf8-list.
 03 u1 pic u(m) occurs m times.

String[m]

Table 78. Java-compatible alphanumeric group COBOL types

Any alphanumeric group item that does not satisfy
the definition of a Java-compatible array type is
considered to map to a Java byte array (byte[]) and
it is the Java application's responsibility to both
read and set the byte array appropriately based on
the corresponding COBOL group definition.

byte[]

Alphanumeric groups
An alphanumeric group item in COBOL that does not satisfy the definition of one of the Java-compatible
array types can still be used as an argument in a call to a static Java method and as a parameter in a
COBOL program that is callable from Java.

When the group is used as a parameter in a Java callable program, it is assumed that the data being
passed from Java to the parameter is a byte array object (byte[]), and it is the responsibility of the calling
Java method to set up the data in the corresponding byte array to match the byte layout of the receiving
COBOL group item. Conversely, when the group is used as an argument in a call to a static Java method,
the called Java method must assume that it is receiving a Java byte array object (byte[]), and it is the
responsibility of the Java method to wrap the incoming byte array with a ByteBuffer in order to extract
data out of the byte array in a meaningful way based on the layout of the bytes in the corresponding
COBOL group.

Using general groups as parameters and arguments offers added flexibility to application developers,
allowing them to achieve interoperability between Java and COBOL with complex group items for which
there is no clear mapping to a Java type.

Chapter 114. Compiler directives 727

Note: When an alphanumeric group item is automatically treated as a Java byte array object because
it doesn't satisfy the definition of a Java-compatible array type, the compiler produces informational
message IGYPA3415I for the item.

Further considerations
• Alphanumeric group items are only compatible with Java when used as COBOL parameters or

arguments. That is, alphanumeric group items cannot be the returned value of a java-callable program
or the returned value from a call to a Java static method.

• Single-dimension arrays of each supported Java type are supported. To have the compiler treat an
incoming Java argument as a single dimension array, or to treat an outgoing COBOL argument as being
intended for a single dimension Java array, the COBOL parameter or argument should be defined using
the following format:

01 identifier-1 occurs n times.
 03 identifier-2 <java-compatibile-cobol-data-definition>.

For example, the following COBOL definition corresponds to a Java int[] type:

01 list-data occurs 10 times.
 03 num pic s9(9) comp-5.

Note: If the number of elements in an incoming Java array argument does not match the number of
elements indicated in the OCCURS clause of a fixed length table definition in the corresponding COBOL
parameter, a runtime error will occur.

• For conversions between COBOL COMP-1/COMP-2 items and Java float/double items, a loss of
precision may occur due to the difference in the underlying representation. That is, COMP-1/COMP-2
are stored in IBM hex float format, and float/double are stored in IEEE binary float format:

– Conversions between IBM hexadecimal floating point format and IEEE floating point format are
done via Language Environment special purpose C/C++ interface __fp_htob(), using rounding mode
_FP_HB_BRN (biased round to nearest).

– Conversions between IEEE floating point format and IBM hexadecimal floating point format are
done via Language Environment special purpose C/C++ interface__fp_btoh(), using rounding mode
_FP_HB_BRN (biased round to nearest).

• A BigDecimal value can be received into either a zoned or packed decimal item in COBOL. Similarly,
zoned and packed decimal items are both legal senders for BigDecimal receivers in Java. The
conversion between zoned/packed decimal and BigDecimal (and vice versa) is handled automatically by
routines in the IBM JZOS toolkit, which must be installed in the environment in which the COBOL / Java
interoperable application is running.

• Data items defined as "PIC X(m)/U(m)/N(m)" will be padded with an appropriate space character
to a length of m characters when the length of the corresponding Java String object is smaller than m
characters. Data items defined as "PIC U BYTE-LENGTH m" will be padded with an appropriate space
character to a maximum length of m bytes when the length of the corresponding Java String object is
smaller than m bytes. Data items defined as "PIC X/U DYNAMIC [LIMIT n]" will not be padded with
spaces and will have the same byte length as the corresponding Java String object, up to a maximum of
n bytes if the LIMIT phrase of the DYNAMIC clause is specified.

728 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix A. IBM extensions
IBM extensions are features, syntax rules, or behaviors defined by IBM rather than by the COBOL
standards.

The COBOL standards are listed in Appendix H, “Industry specifications,” on page 785.

Table 79 on page 729 lists IBM extensions with a brief description. Standard behavior is shown
in brackets, [], when the standard behavior is not obvious. Extensions are described in more detail
throughout this document, but they are not further identified as extensions.

Many IBM extensions are distinguished from standard language by their syntax. For others, you use
compiler options to choose between standard and extension behavior. Generally, the related compiler
options are noted in the detailed rules. For information about compiler options, see Option settings for 85
COBOL Standard conformance in the Enterprise COBOL Programming Guide.

If an item is listed as an extension, all related rules are also extensions. For example, USAGE DISPLAY-1
for DBCS characters is listed as an extension; its many uses in statements and clauses are also
extensions, but are not listed separately.

Table 79. IBM extension language elements

Language area Extension elements

COBOL words User-defined words written in DBCS characters

Computer-name written in DBCS characters

Class-names (for object orientation)

Method-names

User-defined words can include an underscore, but not as the first
character.

National character support (Unicode
support)

Support for UTF-16 with USAGE NATIONAL

Allowance of UTF-8 with USAGE DISPLAY

Usage NATIONAL for data categories national, national-edited,
numeric, numeric-edited, external decimal, and external floating-point

GROUP-USAGE clause with the NATIONAL phrase

National literals (basic and hexadecimal)

National character value for figurative constants SPACE, ZERO, QUOTE,
HIGH-VALUES, LOW-VALUES, ALL literal

Intrinsic functions for data conversion:

• DISPLAY-OF
• NATIONAL-OF

Extended case mapping with UPPER-CASE and LOWER-CASE functions

© Copyright IBM Corp. 1991, 2024 729

Table 79. IBM extension language elements (continued)

Language area Extension elements

Implicit items Special object references:

• SELF
• SUPER

Special registers:

• ADDRESS OF
• JNIENVPTR
• JSON-CODE
• JSON-STATUS
• LENGTH OF
• RETURN-CODE
• SHIFT-IN
• SHIFT-OUT
• SORT-CONTROL
• SORT-CORE-SIZE
• SORT-FILE-SIZE
• SORT-MESSAGE
• SORT-MODE-SIZE
• SORT-RETURN
• TALLY
• WHEN-COMPILED
• XML-CODE
• XML-EVENT
• XML-INFORMATION
• XML-NAMESPACE
• XML-NAMESPACE-PREFIX
• XML-NNAMESPACE
• XML-NNAMESPACE-PREFIX
• XML-NTEXT
• XML-TEXT

Figurative constants Selection of apostrophe (') as the value of the figurative constant
QUOTE

NULL and NULLS for pointers and object references

730 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 79. IBM extension language elements (continued)

Language area Extension elements

Literals Use of apostrophe (') as an alternative to the quotation mark (") in
opening and closing delimiters

Mixed single-byte and double-byte characters in alphanumeric literals
(mixed literals)

Hexadecimal notation for alphanumeric literals, defined by opening
delimiters X" and X'

Null-terminated alphanumeric literals, defined by opening delimiters
Z" and Z'

DBCS literals, defined by opening delimiters N", N', G", and G'. N" and
N' are defined as DBCS when the NSYMBOL(DBCS) compiler option is
in effect.

Consecutive alphanumeric literals (coding two consecutive
alphanumeric literals by ending the first literal in column 72 of a
continued line and starting the next literal with a quotation mark in
the continuation line)

National literals N", N', NX", NX' for storing literal content as
national characters. N" and N' are defined as national when the
NSYMBOL(NATIONAL) compiler option is in effect.

19- to 31-digit fixed-point numeric literals. [The 85 COBOL Standard
specifies a maximum of 18 digits.]

Floating-point numeric literals

Comments Comment lines before the IDENTIFICATION DIVISION header

Comment lines and comment entries containing multibyte characters

Inline comments

End markers The following end markers:

• END CLASS
• END FACTORY
• END METHOD
• END OBJECT

Indexing and subscripting Referencing a table with an index-name defined for a different table

Specifying a positive signed integer literal following the operator + or -
in relative subscripting

Appendix A. IBM extensions 731

Table 79. IBM extension language elements (continued)

Language area Extension elements

IDENTIFICATION DIVISION for
programs

Abbreviation ID for IDENTIFICATION

RECURSIVE clause

An optional separator period following PROGRAM-ID, AUTHOR,
INSTALLATION, DATE-WRITTEN, and SECURITY paragraph headers.
[The 85 COBOL Standard requires a period following each of these
paragraph headers.]

An optional separator period following program-name in the
PROGRAM-ID paragraph. [The 85 COBOL Standard requires a period
following program-name.]

An alphanumeric literal for program-name in the PROGRAM-ID
paragraph; characters $, #, and @ in the name of the outermost
program, and the underscore can be the first character; program-name
up to 160 characters in length. [The 85 COBOL Standard requires that
program-name be specified as a user-defined word.]

End markers Program-name in a literal. [The 85 COBOL Standard requires that
program-name be specified as a user-defined word.]

Object-oriented structure In a class definition:

• CLASS-ID paragraph
• INHERITS clause
• END CLASS marker

In a method definition:

• METHOD-ID paragraph
• EXIT METHOD statement
• END METHOD marker

Configuration section Repository paragraph

732 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 79. IBM extension language elements (continued)

Language area Extension elements

SPECIAL-NAMES paragraph The optional order of clauses. [The 85 COBOL Standard requires that
the clauses be coded in the order presented in the syntax diagram.]

Optionality of a period after the last clause when no clauses are coded.
[The 85 COBOL Standard requires a period, even when no clauses are
coded.]

Multiple CURRENCY SIGN clauses. [The 85 COBOL Standard allows a
single CURRENCY SIGN clause.]

WITH PICTURE SYMBOL phrase in the CURRENCY SIGN clause

Multiple-character and mixed-case currency signs in the CURRENCY
SIGN clause (when the WITH PICTURE SYMBOL phrase is specified).
[The 85 COBOL Standard allows only one character, and it is both the
currency sign and the currency picture symbol. The standard currency
sign must not be:

• The same character as any standard picture symbol
• A digit 0-9
• One of the special characters * + - , ; () " = /
• A space]

Use of lower-case alphabetic characters as a currency sign. [The 85
COBOL Standard allows only uppercase characters.]

Appendix A. IBM extensions 733

Table 79. IBM extension language elements (continued)

Language area Extension elements

INPUT-OUTPUT SECTION, FILE-
CONTROL paragraph

Optionality of "FILE-CONTROL." when the INPUT-OUTPUT SECTION is
specified, no file-control-paragraph is specified, and there are no files
defined in the compilation unit. [The 85 COBOL Standard requires that
"FILE-CONTROL." be coded if "INPUT-OUTPUT SECTION." is coded.]

Optionality of the file-control-paragraph when the "FILE CONTROL."
syntax is specified and there are no files defined in the compilation
unit. [The 85 COBOL Standard requires that a file-control-paragraph be
coded if "INPUT-OUTPUT SECTION." is coded.]

PASSWORD clause

The second data-name in the FILE STATUS clause

Optionality of RECORD in the ALTERNATE RECORD KEY clause. [The 85
COBOL Standard requires the word RECORD.]

A numeric, numeric-edited, alphanumeric-edited, alphabetic, internal
floating-point, external floating-point, national, national-edited, or
DBCS primary or alternate record key data item. [The 85 COBOL
Standard requires that the key be alphanumeric.]

A primary or alternate record key defined outside the minimum record
size for indexed files containing variable-length records. [The 85
COBOL Standard requires that the primary and alternate record keys
be within the minimum record size.]

A numeric data item of usage DISPLAY or NATIONAL in the FILE
STATUS clause. [The 85 COBOL Standard requires an alphanumeric file
status data item.]

The ORGANIZATION IS LINE SEQUENTIAL clause and line-sequential
file control format

National literal in the PADDING CHARACTER clause

INPUT-OUTPUT SECTION, I-O-
CONTROL paragraph

APPLY WRITE-ONLY clause

Specifying only one file-name in the SAME clause in the sequential,
indexed, and sort-merge formats of the I-O-control entry. [The 85
COBOL Standard requires at least two file-names.]

Optionality of the keyword ON in the RERUN clause. [The 85 COBOL
Standard requires that ON be coded.]

The line-sequential format I-O-control entry

The RERUN clause in the sort-merge I-O-control entry

734 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 79. IBM extension language elements (continued)

Language area Extension elements

DATA DIVISION LOCAL-STORAGE SECTION

The GLOBAL clause in the LINKAGE SECTION

Specifying level numbers that are lower than other level numbers at
the same hierarchical level in a data description entry. [The 85 COBOL
Standard requires that all elementary or group items at the same level
in the hierarchy be assigned identical level numbers.]

Data categories internal floating-point, external floating-point, DBCS,
national, and national-edited.

Data category numeric with usage NATIONAL.

Data category numeric-edited with usage NATIONAL.

FILE SECTION data-name in the LABEL RECORDS clause, for specifying user labels

RECORDING MODE clause

Line-sequential format file description entry

Sort/merge file description entry The following clauses:

• BLOCK CONTAINS
• LABEL RECORDS
• VALUE OF
• LINAGE
• CODE-SET
• WITH FOOTING
• LINES AT

BLOCK CONTAINS clause BLOCK CONTAINS 0 for QSAM files. [The 85 COBOL Standard requires
that at least 1 CHARACTER or RECORD be specified in the BLOCK
CONTAINS clause.]

VALUE OF clause The lack of VALUE clause effect on execution when specified under an
SD

DATA RECORDS clause Optionality of an 01 record description entry for a specified data-name.
[The 85 COBOL Standard requires that an 01 record with the same
data-name be specified.]

LINAGE clause Specifying LINAGE for files opened in EXTEND mode

BLANK WHEN ZERO clause Alternative spellings ZEROS and ZEROES for ZERO

GLOBAL clause Specifying GLOBAL in the LINKAGE SECTION

INDEXED BY phrase Nonunique unreferenced index names

Appendix A. IBM extensions 735

Table 79. IBM extension language elements (continued)

Language area Extension elements

OCCURS clause Omission of "integer-1 TO" for variable-length tables

Complex OCCURS DEPENDING ON. [The 85 COBOL Standard requires
that an entry containing OCCURS DEPENDING ON be followed only by
subordinate entries, and that no entry containing OCCURS DEPENDING
ON be subordinate to an entry containing OCCURS DEPENDING ON.]

Implicit qualification of a key specified without qualifiers when the key
name is not unique

Reference to a table through indexing when no INDEXED BY phrase is
specified

Keys of usages COMPUTATIONAL-1, COMPUTATIONAL-2,
COMPUTATIONAL-3, COMPUTATIONAL-4, and COMPUTATIONAL-5 in
the ASCENDING/DESCENDING KEY phrase

Acceptance of nonunique index-names that are not referenced

Unbounded tables and groups

PICTURE clause A picture character-string containing 31 to 50 characters. [The 85
COBOL Standard allows a maximum of 30 characters.]

Picture symbols G and N

Picture symbol E and the external floating-point picture format

Coding a trailing comma insertion character or trailing period insertion
character immediately followed by a separator comma or separator
semicolon in a PICTURE clause that is not the last clause of a data
description entry. [The 85 COBOL Standard requires that a PICTURE
clause containing a picture ending with a comma or period be the last
clause in the entry and that it be followed immediately by a separator
period.]

Selecting a currency sign and currency symbol with the CURRENCY
compiler option

Case-sensitive currency symbols

The maximum of 31 digits for numeric items of usages DISPLAY and
PACKED-DECIMAL and for numeric-edited items of USAGE DISPLAY

The effect of the TRUNC compiler option on the value of data
items described with a usage of BINARY, COMPUTATIONAL, or
COMPUTATIONAL-4

REDEFINES clause Specifying REDEFINES of a redefined data item

At a subordinate level, specifying a redefining data item that has a size
greater than the size of the redefined data item

SYNCHRONIZED clause Specifying SYNCHRONIZED for a level 01 entry

736 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 79. IBM extension language elements (continued)

Language area Extension elements

USAGE clause The following phrases:

• NATIVE
• COMP-1 and COMPUTATIONAL-1
• COMP-2 and COMPUTATIONAL-2
• COMP-3 and COMPUTATIONAL-3
• COMP-4 and COMPUTATIONAL-4
• COMP-5 and COMPUTATIONAL-5
• DISPLAY-1
• OBJECT REFERENCE
• NATIONAL
• POINTER
• PROCEDURE-POINTER
• FUNCTION-POINTER

Use of the SYNCHRONIZED clause for items of usage INDEX

VALUE clause for condition-name
entries

A VALUE clause in file and LINKAGE SECTION other than in condition-
name entries

A VALUE clause for a condition-name entry on a group that has usages
other than DISPLAY

VALUE IS NULL and VALUE IS NULLS

VOLATILE clause A VOLATILE clause in a format 1 data description entry

PROCEDURE DIVISION Omission of a section-name

Omission of a paragraph-name when a section-name is omitted

A method, factory, or object procedure division

Referencing data items in the LINKAGE SECTION without a USING
phrase in the PROCEDURE DIVISION header (when those data-names
are the operand of an ADDRESS OF phrase or ADDRESS OF special
register)

The following statements:

• ENTRY
• EXIT METHOD
• GOBACK
• INVOKE
• JSON PARSE
• JSON GENERATE
• XML PARSE
• XML GENERATE

Appendix A. IBM extensions 737

Table 79. IBM extension language elements (continued)

Language area Extension elements

PROCEDURE DIVISION header The BY VALUE phrase

The RETURNING phrase

Specifying a data item in the USING phrase when the data item has a
REDEFINES clause in its description

Specifying multiple instances of a given data item in the USING phrase

The formats for method, factory, and object definitions

Declarative Procedures Performing a nondeclarative procedure from a declarative procedure

Referencing a declarative procedure or nondeclarative procedure in
a GO TO statement from a declarative procedure. [The 85 COBOL
Standard specifies that a declarative procedure must not reference a
nondeclarative procedure. A reference to a declarative procedure from
either another declarative procedure or a nondeclarative procedure is
allowed only with a PERFORM statement.]

Executing an active declarative

Procedures Specifying priority-number as a positive signed numeric literal. [The 85
COBOL Standard requires an unsigned integer.]

Omitting the section-header after the declaratives or when there
are no declaratives. [The 85 COBOL Standard requires a section-
header following the "DECLARATIVES." syntax and following the "END
DECLARATIVES." syntax.]

Omitting an initial paragraph-name if there are no declaratives. [The
85 COBOL Standard requires a paragraph-name in the following
circumstances:

• After the USE statement if there are statements in the declarative
procedure

• Following a section header outside declarative procedures
• Before any procedural statement if there are no declaratives

and the 85 COBOL Standard requires that procedural statements be
within a paragraph.]

Specifying paragraphs that are not contained within a section, even
if some paragraphs are so contained. [The 85 COBOL Standard
requires that paragraphs be within a section except when there are
no declaratives. The 85 COBOL Standard requires that either all
paragraphs be in sections or that none be.]

Conditional expressions DBCS and KANJI class conditions

Specifying data items of usage COMPUTATIONAL-3 or usage PACKED-
DECIMAL in a NUMERIC class test

738 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 79. IBM extension language elements (continued)

Language area Extension elements

Relation condition Enclosing an alphanumeric, DBCS, or national literal in parentheses

The data-pointer format, the procedure-pointer and function-pointer
format, and the object-reference format

Comparison of an index-name with an arithmetic expression

Use of parentheses within abbreviated combined relation conditions

Note: Enterprise COBOL supports most parenthesis usage as IBM
extensions with the following exceptions:

• Within the scope of an abbreviated combined relation condition,
Enterprise COBOL does not support relational operators inside
parentheses. For example:

A = B AND (< C OR D)

• Incorrect usages of parentheses in relation conditions are not
accepted by Enterprise COBOL. For example:

(A = 0 AND B) = 0

CORRESPONDING phrase Specifying an identifier that is subordinate to a filler item

INVALID KEY phrase Omission of both the INVALID KEY phrase and an applicable
EXCEPTION/ERROR procedure. [The 85 COBOL Standard requires at
least one of them.]

ACCEPT statement The environment-name operand of the FROM phrase

The DATE YYYYMMDD phrase

The DAY YYYYDDD phrase

ADD statement A composite of operands greater than 18 digits

ALLOCATE statement The LOC phrase

CALL statement The procedure-pointer and function-pointer operands for identifying
the program to be called

The following phrases and parameters:

• ADDRESS OF
• LENGTH OF
• OMITTED
• BY VALUE
• RETURNING

Specifying a file-name as an argument

Specifying the called program-name in an alphabetic or zoned-decimal
data item

Specifying an argument defined as a subordinate group item. [The 85
COBOL Standard requires that arguments be an elementary data item
or a group item defined with level 01.]

Appendix A. IBM extensions 739

Table 79. IBM extension language elements (continued)

Language area Extension elements

CANCEL statement Specifying the name of the program to be canceled in an alphabetic or
zoned-decimal data item

The effect of the PGMNAME compiler option on the name of the
program to be canceled

CLOSE statement WITH NO REWIND phrase

The line-sequential format

COMPUTE statement The use of the word EQUAL in place of the equal sign (=)

DISPLAY statement The environment-name operand of the UPON phrase

Displaying signed numeric literals and noninteger numeric literals

DIVIDE statement A composite of operands greater than 18 digits

EXIT statement Specifying the EXIT statement in a sentence that has statements
before or after the EXIT statement or in a paragraph that has other
sentences. [The 85 COBOL Standard requires that the EXIT statement
be specified in a sentence by itself and that the sentence be the only
sentence in the paragraph.]

EXIT PROGRAM statement Specifying EXIT PROGRAM before the last statement in a sequence of
imperative statements. [The 85 COBOL Standard requires that the EXIT
PROGRAM statement be specified as the last statement in a sequence
of imperative statements.]

GO TO statement Coding the unconditional format before the last statement in a
sequence of imperative statements. [The 85 COBOL Standard requires
that an unconditional GO TO be coded:

• Only in a single-statement paragraph if no procedure-name is
specified

• Otherwise, as the last statement of a sentence.]

IF statement The use of END-IF with the NEXT SENTENCE phrase. [The 85 COBOL
Standard disallows use of END-IF with NEXT SENTENCE.]

INITIALIZE statement DBCS, EGCS, NATIONAL, and NATIONAL-EDITED in the REPLACING
phrase

Initializing a data item that contains the DEPENDING phrase of the
OCCURS clause

MERGE statement Specifying file-names in a SAME clause

MULTIPLY statement A composite of operands greater than 18 digits

OPEN statement The line-sequential format

Specifying the EXTEND phrase for files that have a LINAGE clause

PERFORM statement An empty in-line PERFORM statement

A common exit for two or more active PERFORMS

740 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 79. IBM extension language elements (continued)

Language area Extension elements

READ statement Omission of both the AT END phrase and an applicable declarative
procedure

Omission of both the INVALID KEY phrase and an applicable
declarative procedure

Read into an item that is neither an alphanumeric group item nor an
elementary alphanumeric item

RETURN statement Return into an item that is neither an alphanumeric group item nor an
elementary alphanumeric item

REWRITE statement Omission of both the INVALID KEY phrase and an applicable
declarative procedure

Rewriting a record with a different number of character positions than
the number of character positions in the record being rewritten

SEARCH statement Specifying END SEARCH with NEXT SENTENCE

Omission of both the NEXT SENTENCE phrase and imperative
statements in the binary search format

SET statement The data-pointer format

The procedure-pointer and function-pointer format

The object reference format

SORT statement Specifying GIVING file-names in the SAME clause

START statement Omission of both the INVALID KEY phrase and an applicable exception
procedure

Use of a key of a category other than alphanumeric

STOP statement Specifying a noninteger fixed-point literal or a signed numeric integer
or noninteger fixed-point literal

Coding STOP as other than the last statement in a sentence

STRING statement Reference modification of the data item specified in the INTO phrase

SUBTRACT statement A composite of operands greater than 18 digits

UNSTRING statement Reference modification of the sending field

WRITE statement INVALID KEY and NOT ON INVALID KEY phrases

The line-sequential format

For a relative file, writing a different number of character positions than
the number of character positions in the record being replaced

Specifying both the ADVANCING PAGE and END-OF-PAGE phrases in a
single WRITE statement

The effect of the ADV compiler option on the length of the record
written to a file

Using WRITE ADVANCING with stacker selection for a card punch file

For a relative or indexed file, omission of both the INVALID KEY phrase
and an applicable exception procedure

Appendix A. IBM extensions 741

Table 79. IBM extension language elements (continued)

Language area Extension elements

Intrinsic functions The effect of the INTDATE compiler options on the INTEGER-OF-DATE
and INTEGER-OF-DAY functions

The following functions:

• Chapter 36, “BIT-OF,” on page 527
• Chapter 37, “BIT-TO-CHAR,” on page 529
• Chapter 45, “DATE-TO-YYYYMMDD,” on page 545
• Chapter 47, “DAY-TO-YYYYDDD,” on page 549
• Chapter 48, “DISPLAY-OF,” on page 551
• Chapter 57, “HEX-OF,” on page 569
• Chapter 58, “HEX-TO-CHAR,” on page 571
• Chapter 74, “NATIONAL-OF,” on page 603
• ULENGTH
• UPOS
• USUBSTR
• USUPPLEMENTARY
• Chapter 107, “UUID4,” on page 669
• UVALID
• UWIDTH
• Chapter 112, “YEAR-TO-YYYY,” on page 681

FACTORIAL function The effect of the ARITH(EXTEND) compiler option on the range of
values permitted in the argument

LENGTH function Specifying a pointer, the ADDRESS OF special register, or the LENGTH
OF special register as an argument to the function

NUMVAL function The effect of the ARITH(EXTEND) compiler option on the maximum
number of digits allowed in the argument

NUMVAL-C function The effect of the ARITH(EXTEND) compiler option on the maximum
number of digits allowed in the argument

NUMVAL-F function The effect of the ARITH(EXTEND) compiler option on the maximum
number of digits allowed in the argument

TEST-NUMVAL function The effect of the ARITH(EXTEND) compiler option on the maximum
number of digits allowed in the argument

TEST-NUMVAL-C function The effect of the ARITH(EXTEND) compiler option on the maximum
number of digits allowed in the argument

TEST-NUMVAL-F function The effect of the ARITH(EXTEND) compiler option on the maximum
number of digits allowed in the argument

742 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 79. IBM extension language elements (continued)

Language area Extension elements

Compiler-directing statements The following statements:

• BASIS
• CBL(PROCESS)
• *CONTROL and *CBL
• DELETE
• EJECT
• INSERT
• READY or RESET TRACE
• SERVICE LABEL
• SERVICE RELOAD
• SKIP1, SKIP2, and SKIP3
• TITLE

Compiler directives CALLINTERFACE directive

COPY statement The optionality of the syntax "OF library-name" for specifying a text-
name qualifier

Literals for specifying text-name and library-name

SUPPRESS phrase

Nested COPY statements

Hyphen as the first or last character in the word form of REPLACING
operands

The use of any character (other than a COBOL separator) in the word
form of REPLACING operands. [The 85 COBOL Standard accepts only
the characters used in formation of user-defined words.]

Appendix A. IBM extensions 743

744 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix B. Compiler limits
Enterprise COBOL has the following limits for programs and class definitions.

Although the COBOL compiler supports addressing various memory areas in a compile unit up to the
limits described in this appendix, a complete application, typically consisting of multiple compile units, is
still restricted by the amount of private storage available in the address space in which it runs. In other
words, an application might run out of storage before reaching the described limits.

For details about how to calculate the length of data items, see Finding the length of data items in the
Enterprise COBOL Programming Guide.

You can sum the length fields in the MAP (also requires either OFFSET or LIST) option output's PPA4
section for the static memory footprint of a compile unit. For automatic (local-storage) requirements, see
Example: DSA memory map (stack storage map) in the Enterprise COBOL Programming Guide.

In general, the maximum size of tables and of elementary alphanumeric data items in LP(64) is
2,147,483,646 bytes. See the table below for more details.

The LOCAL-STORAGE SECTION is allocated on the Language Environment stack. Its total size is limited
by the settings in the Language Environment as well as the requirements of internal variables used by the
compiler. The actual limit available for COBOL programs is less than 2,147,483,646 bytes.

The Language Environment STACK64 runtime option controls the allocation of stack storage for AMODE
64 applications. The default value is STACK64(1M,1M,128M). Use this runtime option to specify the
maximum size of the stack required by your application.

The WORKING-STORAGE SECTION is allocated on the Language Environment heap. Its total size is
limited by the 64-bit storage capacity of the machine.

Table 80. Compiler limits

Language element Compiler limit

Maximum length of alphanumeric literals 160 bytes

Maximum length of user-defined words (for example,
data-name, file-name, class-name)

30 bytes

Size of program 999,999 lines

With SOURCE(DEC): 999,999 lines

With SOURCE(HEX): 16,777,215 lines

Size of the following data types:
USAGE IS INDEX
USAGE IS POINTER
USAGE IS FUNCTION-POINTER
USAGE IS OBJECT-REFERENCE

With LP(32): 4 bytes
With LP(64): 8 bytes

Size of the following data types:
USAGE IS PROCEDURE-POINTER

With LP(32): 8 bytes
With LP(64): 8 bytes

LENGTH OF special register With LP(32): USAGE IS BINARY PICTURE 9(9)
With LP(64): USAGE IS BINARY PICTURE 9(18)

ADDRESS OF special register With LP(32): 4 bytes
With LP(64): 8 bytes

Number of literals 4,194,303(Note 1)

Total length of literals 4,194,303 bytes(Note 1)

© Copyright IBM Corp. 1991, 2024 745

Table 80. Compiler limits (continued)

Language element Compiler limit

Reserved word table entries 1536

COPY REPLACING . . . BY . . . (items per COPY
statement)

No limit

Number of COPY libraries No limit

Block size of COPY library 32,760 bytes

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

Configuration section

Special-names paragraph

mnemonic-name IS 18

UPSI-n . . . (switches) 0-7

alphabet-name IS . . . No limit

Literal THRU . . . or ALSO . . . 256

Input-Output section

File-control paragraph

SELECT file-name . . . A maximum of 65,535 file names can be assigned
external names

ASSIGN system-name . . . No limit

ALTERNATE RECORD KEY data-name . . . 253

RECORD KEY length No limit(Note 3)

RESERVE integer (buffers) 255(Note 4)

I-O-control paragraph

RERUN ON system-name . . . 32,767

RERUN integer RECORDS 16,777,215

SAME RECORD AREA 255

SAME RECORD AREA FOR file-name . . . 255

SAME SORT/MERGE AREA No limit(Note 2)

MULTIPLE FILE file-name . . . No limit(Note 2)

DATA DIVISION

77 data item size With LP(32): 999,999,999 bytes
With LP(64): 2,147,483,646 bytes

01-49 data item size With LP(32): 999,999,999 bytes
With LP(64): 2,147,483,646 bytes

Total 01 + 77 (data items) No limit

88 condition-names . . . No limit

88 level VALUE clause . . . No limit

746 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 80. Compiler limits (continued)

Language element Compiler limit

66 RENAMES . . . No limit

PICTURE clause, number of characters in character-
string

50

PICTURE clause, numeric item digit positions With ARITH(COMPAT): 18

With ARITH(EXTEND): 31

PICTURE clause, numeric-edited character positions 249

Picture symbol replication () With LP(32): 999,999,999 bytes
With LP(64): 2,147,483,646 bytes

Picture symbol replication (editing) 32,767

Picture symbol replication (), class DBCS items With LP(32): 499,999,999 bytes
With LP(64): 1,073,741,823 bytes

Picture symbol replication (), class national items With LP(32): 499,999,999 bytes
With LP(64): 1,073,741,823 bytes

Elementary item size With LP(32): 999,999,999 bytes
With LP(64): 2,147,483,646 bytes

OCCURS integer With LP(32): 999,999,999 bytes
With LP(64): 2,147,483,646 bytes

Total number of ODOs 4,194,303(Note 1)

Table size With LP(32): 999,999,999 bytes
With LP(64): 2,147,483,646 bytes

Table element size With LP(32): 999,999,999 bytes
With LP(64): 2,147,483,646 bytes

ASCENDING or DESCENDING KEY . . . (per OCCURS
clause)

12 KEYS

Total length of keys (per OCCURS clause) 256 bytes

INDEXED BY . . . (index names per OCCURS clause) 12

Total number of indexes (index names) per class or
program

65,535

Size of relative index 32,765

FILE SECTION

FD record description entry 1,048,575 bytes

FD file-name . . . 65,535

LABEL data-name . . . (if no optional clauses) 255

Label record length 80 bytes

BLOCK CONTAINS integer 2,147,483,647(Note 8)

RECORD CONTAINS integer 1,048,575(Note 5)

LINAGE clause values 99,999,999

SD file-name . . . 65,535

Appendix B. Compiler limits 747

Table 80. Compiler limits (continued)

Language element Compiler limit

DATA RECORD data-name . . . No limit(Note 2)

LINKAGE SECTION

Total size With LP(32): 2,147,483,646 bytes
With LP(64): Unlimited, up to the available 64-bit
addressing capacity of the machine.

LOCAL-STORAGE SECTION

Total size With LP(32): 2,147,483,646 bytes
With LP(64): 2,147,483,646 bytes

WORKING-STORAGE SECTION

Total size of items without the external attribute With LP(32): 2,147,483,646 bytes
With LP(64): Unlimited, up to the available 64-bit
addressing capacity of the machine.

Total size of items with the external attribute With LP(32): 2,147,483,646 bytes
With LP(64): Unlimited, up to the available 64-bit
addressing capacity of the machine.

PROCEDURE DIVISION

Procedure and constant area 4,194,303 bytes(Note 1)

PROCEDURE DIVISION USING identifier . . . 32,767

Procedure-names 1,048,575(Note 1)

Subscripted data-names per statement 32,767

Statements per line (TEST) 7

ACCEPT statement, record length on input device 32,760

ADD identifier . . . No limit

ALTER procedure-name-1 TO procedure-name-2 . . . 4,194,303(Note 1)

CALL . . . BY CONTENT identifier 2,147,483,647 bytes

CALL identifier or literal USING identifier or literal . . . 16,380

CALL literal . . . 4,194,303(Note 1)

Active programs in a run unit 32,767

Number of names called (DYN option) No limit

CANCEL identifier or literal . . . No limit

CLOSE file-name . . . No limit

COMPUTE identifier . . . No limit

DISPLAY identifier or literal . . . No limit

DIVIDE identifier . . . No limit

ENTRY USING identifier or literal . . . No limit

EVALUATE . . . subjects 64

EVALUATE . . . WHEN clauses 256

748 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 80. Compiler limits (continued)

Language element Compiler limit

GO procedure-name . . . DEPENDING 255

INSPECT TALLYING and REPLACING clauses No limit

MERGE file-name ASC or DES KEY . . . No limit

Total merge key length 4,092 bytes(Note 6)

MERGE USING file-name . . . 16(Note 7)

MOVE identifier or literal TO identifier . . . No limit

MULTIPLY identifier . . . No limit

OPEN file-name . . . No limit

PERFORM 4,194,303

PERFORM . . . TIMES identifier or literal 999,999,999

SEARCH ALL . . . maximum key length No limit

SEARCH ALL . . . total length of keys No limit

SEARCH . . . WHEN . . . No limit

SET index or identifier . . . TO No limit

SET index . . . UP/DOWN No limit

SORT file-name ASC or DES KEY No limit

Total sort key length 4,092 bytes(Note 6)

SORT USING file-name . . . 16(Note 7)

STRING identifier . . . No limit

STRING DELIMITED identifier or literal . . . No limit

UNSTRING DELIMITED identifier or literal . . . No limit

UNSTRING INTO identifier or literal . . . No limit

USE . . . ON file-name . . . No limit

XML PARSE statement, maximum size of identifier 999,999,999 bytes

Intrinsic Function

LENGTH
UPOS
UVALID
ULENGTH
USUPPLEMENTARY

With LP(32): Return maximum 9-digit integer
With LP(64): Return maximum 18-digit integer

Appendix B. Compiler limits 749

Table 80. Compiler limits (continued)

Language element Compiler limit

Notes:

1. Items included in 4,194,303 byte limit for procedure plus constant area.
2. Syntax checked, but has no effect on the execution of the program; there is no limit.
3. No compiler limit, but VSAM limits it to 255 bytes.
4. QSAM.
5. Compiler limit shown, but QSAM limits it to 32,760 bytes.
6. For QSAM and VSAM, the limit is 4088 bytes if EQUALS is coded on the OPTION control statement.
7. SORT limit for QSAM and VSAM.
8. Requires large block interface (LBI) support provided by OS/390 DFSMS 2.10.0 or later. On OS/390 systems

with earlier releases of DFSMS, the limit is 32,760 bytes. For more information about using large block
sizes, see Setting block sizes in the Enterprise COBOL Programming Guide.

750 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix C. EBCDIC and ASCII collating sequences
A collating sequence defines the order of characters within a coded character set or COBOL alphabet for
purposes of sorting, merging, and comparing data and for processing files with indexed organization.

The ascending collating sequences for both the single-byte EBCDIC (Extended Binary Coded Decimal
Interchange Code) and single-byte ASCII (American National Standard Code for Information Interchange)
character sets are shown in this appendix. The collating sequence is defined by the ordinal number of
characters in the character set, relative to 1.

The symbols and associated meanings shown for the EBCDIC collating sequence are those defined in the
EBCDIC code page defined with CCSID 1140. Symbols and meanings can vary for other EBCDIC code
pages, but the collating sequence is unchanged.

EBCDIC collating sequence
The EBCDIC collating sequence is the order in which characters are defined in EBCDIC.

The following table presents the collating sequence for single-byte EBCDIC code page 1140.

Ellipsis (...) indicates omission of a range of ordinal numbers between predecessor and successor ordinal
numbers.

Table 81. EBCDIC collating sequence

Ordinal
number

Symbol Meaning Decimal
representation

Hex representation

. . .

65 Space 64 40

. . .

75 ¢ Cent sign 74 4A

76 . Period, decimal point 75 4B

77 < Less than sign 76 4C

78 (Left parenthesis 77 4D

79 + Plus sign 78 4E

80 | Vertical bar, logical OR 79 4F

81 & Ampersand 80 50

. . .

91 ! Exclamation point 90 5A

92 $ Dollar sign 91 5B

93 * Asterisk 92 5C

94) Right parenthesis 93 5D

95 ; Semicolon 94 5E

96 ¬ Logical NOT 95 5F

97 - Minus, hyphen 96 60

98 / Slash 97 61

© Copyright IBM Corp. 1991, 2024 751

Table 81. EBCDIC collating sequence (continued)

Ordinal
number

Symbol Meaning Decimal
representation

Hex representation

. . .

108 , Comma 107 6B

109 % Percent sign 108 6C

110 _ Underscore 109 6D

111 > Greater than sign 110 6E

112 ? Question mark 111 6F

. . .

122 ` Grave accent 121 79

123 : Colon 122 7A

124 # Number sign, pound sign 123 7B

125 @ At sign 124 7C

126 ' Apostrophe, prime sign 125 7D

127 = Equal sign 126 7E

128 " Quotation marks 127 7F

. . .

130 a 129 81

131 b 130 82

132 c 131 83

133 d 132 84

134 e 133 85

135 f 134 86

136 g 135 87

137 h 136 88

138 i 137 89

. . .

146 j 145 91

147 k 146 92

148 l 147 93

149 m 148 94

150 n 149 95

151 o 150 96

152 p 151 97

153 q 152 98

154 r 153 99

752 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 81. EBCDIC collating sequence (continued)

Ordinal
number

Symbol Meaning Decimal
representation

Hex representation

. . .

160 € Euro currency sign 159 9F

. . .

162 ~ Tilde 161 A1

163 s 162 A2

164 t 163 A3

165 u 164 A4

166 v 165 A5

167 w 166 A6

168 x 167 A7

169 y 168 A8

170 z 169 A9

. . .

177 ^ Caret 176 B0

. . .

188 [Opening square bracket 187 BA

189] Closing square bracket 188 BB

. . .

193 { Opening brace 192 C0

194 A 193 C1

195 B 194 C2

196 C 195 C3®

197 D 196 C4

198 E 197 C5

199 F 198 C6

200 G 199 C7

201 H 200 C8

202 I 201 C9

. . .

209 } Closing brace 208 D0

210 J 209 D1

211 K 210 D2

212 L 211 D3

213 M 212 D4

Appendix C. EBCDIC and ASCII collating sequences 753

Table 81. EBCDIC collating sequence (continued)

Ordinal
number

Symbol Meaning Decimal
representation

Hex representation

214 N 213 D5

215 O 214 D6

216 P 215 D7

217 Q 216 D8

218 R 217 D9

. . .

225 \ Backslash 224 E0

. . .

227 S 226 E2

228 T 227 E3

229 U 228 E4

230 V 229 E5

231 W 230 E6

232 X 231 E7

233 Y 232 E8

234 Z 233 E9

. . .

241 0 240 F0

242 1 241 F1

243 2 242 F2

244 3 243 F3

245 4 244 F4

246 5 245 F5

247 6 246 F6

248 7 247 F7

249 8 248 F8

250 9 249 F9

. . .

US English ASCII code page
The ASCII collating sequence is the order in which characters are defined in ASCII.

The following table presents the collating sequence for the US English ASCII code page. The collating
sequence is the order in which characters are defined in ANSI INCITS 4, the 7-Bit American National
Standard Code for Information Interchange (7-Bit ASCII), and in the International Reference Version of
ISO/IEC 646, 7-Bit Coded Character Set for Information Interchange.

754 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Ellipsis (. . .) indicates omission of a range of ordinal numbers between predecessor and successor ordinal
numbers.

Table 82. ASCII collating sequence

Ordinal
number

Symbol Meaning Decimal
representation

Hex representation

1 Null 0 0

. . .

33 Space 32 20

34 ! Exclamation point 33 21

35 " Quotation mark 34 22

36 # Number sign 35 23

37 $ Dollar sign 36 24

38 % Percent sign 37 25

39 & Ampersand 38 26

40 ' Apostrophe, prime sign 39 27

41 (Opening parenthesis 40 28

42) Closing parenthesis 41 29

43 * Asterisk 42 2A

44 + Plus sign 43 2B

45 , Comma 44 2C

46 - Hyphen, minus 45 2D

47 . Period, decimal point 46 2E

48 / Slash, solidus 47 2F

49 0 48 30

50 1 49 31

51 2 50 32

52 3 51 33

53 4 52 34

54 5 53 35

55 6 54 36

56 7 55 37

57 8 56 38

58 9 57 39

59 : Colon 58 3A

60 ; Semicolon 59 3B

61 < Less than sign 60 3C

62 = Equal sign 61 3D

Appendix C. EBCDIC and ASCII collating sequences 755

Table 82. ASCII collating sequence (continued)

Ordinal
number

Symbol Meaning Decimal
representation

Hex representation

63 > Greater than sign 62 3E

64 ? Question mark 63 3F

65 @ Commercial At sign 64 40

66 A 65 41

67 B 66 42

68 C 67 43

69 D 68 44

70 E 69 45

71 F 70 46

72 G 71 47

73 H 72 48

74 I 73 49

75 J 74 4A

76 K 75 4B

77 L 76 4C

78 M 77 4D

79 N 78 4E

80 O 79 4F

81 P 80 50

82 Q 81 51

83 R 82 52

84 S 83 53

85 T 84 54

86 U 85 55

87 V 86 56

88 W 87 57

89 X 88 58

90 Y 89 59

91 Z 90 5A

92 [Opening bracket 91 5B

93 \ Backslash, reverse solidus 92 5C

94] Closing bracket 93 5D

95 ^ Caret 94 5E

96 _ Underscore 95 5F

756 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 82. ASCII collating sequence (continued)

Ordinal
number

Symbol Meaning Decimal
representation

Hex representation

97 ` Grave accent 96 60

98 a 97 61

99 b 98 62

100 c 99 63

101 d 100 64

102 e 101 65

103 f 102 66

104 g 103 67

105 h 104 68

106 i 105 69

107 j 106 6A

108 k 107 6B

109 l 108 6C

110 m 109 6D

111 n 110 6E

112 o 111 6F

113 p 112 70

114 q 113 71

115 r 114 72

116 s 115 73

117 t 116 74

118 u 117 75

119 v 118 76

120 w 119 77

121 x 120 78

122 y 121 79

123 z 122 7A

124 { Opening brace 123 7B

125 | Vertical bar 124 7C

126 } Closing brace 125 7D

127 ~ Tilde 126 7E

Appendix C. EBCDIC and ASCII collating sequences 757

758 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix D. Source language debugging
Several COBOL language elements implement the debugging feature.

COBOL language elements are:

• Debugging lines
• Debugging sections
• DEBUG-ITEM special register
• Compile-time switch (WITH DEBUGGING MODE clause)
• Object-time switch

Debugging lines
A debugging line is a statement that is compiled only when the compile-time switch is activated.
Debugging lines allow you, for example, to check the value of a data item at certain points in a procedure.

To specify a debugging line in your program, code a D in column 7 (the indicator area). You can include
successive debugging lines, but each must have a D in column 7. You cannot break character-strings
across two lines.

All your debugging lines must be written so that the program is syntactically correct, whether the
debugging lines are compiled or treated as comments.

You can code debugging lines anywhere in your program after the OBJECT-COMPUTER paragraph.

A debugging line that contains only spaces in Area A and in Area B is treated as a blank line.

Debugging sections
Debugging sections are permitted only in the outermost program; they are not valid in nested programs.
Debugging sections are never triggered by procedures contained in nested programs.

Debugging sections are declarative procedures. Declarative procedures are described under “USE
statement” on page 705. A debugging section can be called, for example, by a PERFORM statement
that causes repeated execution of a procedure. Any associated procedure-name debugging declarative
section is executed once for each repetition.

A debugging section executes only if both the compile-time switch and the object-time switch are
activated.

The debug feature recognizes each separate occurrence of an imperative statement within an imperative
statement as the beginning of a separate statement.

You cannot refer to a procedure defined within a debugging section from a statement outside of the
debugging section.

References to the DEBUG-ITEM special register can be made only from within a debugging declarative
procedure.

DEBUG-ITEM special register
The DEBUG-ITEM special register provides information for a debugging declarative procedure about the
conditions that cause debugging section execution.

For details of the DEBUG-ITEM special register, see “DEBUG-ITEM” on page 19.

© Copyright IBM Corp. 1991, 2024 759

Activate compile-time switch
The compile-time switch activates the debugging lines and sections. To place the compile-time switch
in effect, specify WITH DEBUGGING MODE in the SOURCE COMPUTER paragraph of the configuration
section.

Format
SOURCE-COMPUTER.

computer-name

WITH

DEBUGGING MODE

.

WITH DEBUGGING MODE
When WITH DEBUGGING MODE is specified, all debugging sections and debugging lines are
compiled.

When WITH DEBUGGING MODE is omitted, all debugging sections and debugging lines are treated as
comments.

Usage note: If you include a COPY statement as a debugging line, the letter "D" must appear on the first
line of the COPY statement. The compiler treats the copied text as the debugging line or lines. The COPY
statement is executed, regardless of whether WITH DEBUGGING MODE is specified or not.

Activate object-time switch
The object-time switch is set when the runtime option DEBUG or NODEBUG is specified. (NODEBUG is the
default supplied by IBM.)

For details on the format, see the Language Environment Programming Guide.

The USE FOR DEBUGGING declarative procedures are activated when DEBUG is in effect and inhibited
when NODEBUG is in effect.

The debugging lines (lines with "D" or "d" in column 7) are not affected by the DEBUG or NODEBUG
option; they are always active if they have been compiled.

When WITH DEBUGGING MODE is not specified in the SOURCE-COMPUTER paragraph, the object-time
switch has no effect on execution of the object program.

You do not have to recompile the source unit to activate or deactivate the object-time switch.

760 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix E. Reserved words
A reserved word is a character-string with a predefined meaning in a COBOL source unit.

The following table identifies words that are reserved in Enterprise COBOL and words that you should
avoid because they might be reserved in a future release of Enterprise COBOL.

• Words marked X under Reserved are reserved for function implemented in Enterprise COBOL. If used as
user-defined names, these words are flagged with an S-level message.

• Words marked X under Standard only are 85 COBOL Standard reserved words for function not
implemented in Enterprise COBOL. (Some of the function is implemented in the Report Writer
Precompiler.) Use of these words as user-defined names is flagged with an S-level message.

• Words marked X under Potential reserved words are words that might be reserved in a future release of
Enterprise COBOL. IBM recommends that you not use these words as user-defined names. Use of these
words as user-defined names is flagged with an I-level message.

This column includes words reserved in the 2002 COBOL Standard.

The default reserved word table is shown below. You can select a different reserved word table by using
the WORD compiler option. For details, see WORD in the Enterprise COBOL Programming Guide.

Table 83. Reserved words

Word Reserved Standard only Potential
reserved words

+ Arithmetic operator - unary plus or addition X

- Arithmetic operator - unary minus or
subtraction

X

* Arithmetic operator - multiplication X

/ Arithmetic operator - division X

** Arithmetic operator - exponentiation X

> Relational operator - greater than X

< Relational operator - less than X

= Relational operator - equal and assignment
operator in COMPUTE

X

== Pseudo-text delimiter in COPY and
REPLACE statements

X

>= Relational operator - greater than or equal X

<= Relational operator - less than or equal X

<> Relational operator - not equal X

*> Comment indicator X

>> Compiler directive indicator X

ACCEPT X

ACCESS X

ACTIVE-CLASS X

© Copyright IBM Corp. 1991, 2024 761

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

ADD X

ADDRESS X

ADVANCING X

AFTER X

ALIGNED X

ALL X

ALLOCATE X

ALPHABET X

ALPHABETIC X

ALPHABETIC-LOWER X

ALPHABETIC-UPPER X

ALPHANUMERIC X

ALPHANUMERIC-EDITED X

ALSO X

ALTER X

ALTERNATE X

AND X

ANY X

ANYCASE X

APPLY X

ARE X

AREA X

AREAS X

ASCENDING X

ASSIGN X

AT X

AUTHOR X

B-AND X

B-NOT X

B-OR X

B-XOR X

BASED X

BASIS X

BEFORE X

762 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

BEGINNING X

BINARY X

BINARY-CHAR X

BINARY-DOUBLE X

BINARY-LONG X

BINARY-SHORT X

BIT X

BLANK X

BLOCK X

BOOLEAN X

BOTTOM X

BY X

BYTE-LENGTH X

CALL X

CANCEL X

CBL X

CD X

CF X

CH X

CHARACTER X

CHARACTERS X

CLASS X

CLASS-ID X

CLOCK-UNITS X

CLOSE X

COBOL X

CODE X

CODE-SET X

COL X

COLLATING X

COLS X

COLUMN X

COLUMNS X

COM-REG X

Appendix E. Reserved words 763

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

COMMA X

COMMON X

COMMUNICATION X

COMP X

COMP-1 X

COMP-2 X

COMP-3 X

COMP-4 X

COMP-5 X

COMPUTATIONAL X

COMPUTATIONAL-1 X

COMPUTATIONAL-2 X

COMPUTATIONAL-3 X

COMPUTATIONAL-4 X

COMPUTATIONAL-5 X

COMPUTE X

CONDITION X

CONFIGURATION X

CONSTANT X

CONTAINS X

CONTENT X

CONTINUE X

CONTROL X

CONTROLS X

CONVERTING X

COPY X

CORR X

CORRESPONDING X

COUNT X

CRT X

CURRENCY X

CURSOR X

DATA X

DATA-POINTER X

764 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

DATE X

DATE-COMPILED X

DATE-WRITTEN X

DAY X

DAY-OF-WEEK X

DBCS X

DE X

DEBUG-CONTENTS X

DEBUG-ITEM X

DEBUG-LINE X

DEBUG-NAME X

DEBUG-SUB-1 X

DEBUG-SUB-2 X

DEBUG-SUB-3 X

DEBUGGING X

DECIMAL-POINT X

DECLARATIVES X

DEFAULT X

DELETE X

DELIMITED X

DELIMITER X

DEPENDING X

DESCENDING X

DESTINATION X

DETAIL X

DISABLE X

DISPLAY X

DISPLAY-1 X

DIVIDE X

DIVISION X

DOWN X

DUPLICATES X

DYNAMIC X

EC X

Appendix E. Reserved words 765

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

EGCS X

EGI X

EJECT X

ELSE X

EMI X

ENABLE X

END X

END-ACCEPT X

END-ADD X

END-CALL X

END-COMPUTE X

END-DELETE X

END-DISPLAY X

END-DIVIDE X

END-EVALUATE X

END-EXEC X

END-IF X

END-INVOKE X

END-JSON X

END-MULTIPLY X

END-OF-PAGE X

END-PERFORM X

END-READ X

END-RECEIVE X

END-RETURN X

END-REWRITE X

END-SEARCH X

END-START X

END-STRING X

END-SUBTRACT X

END-UNSTRING X

END-WRITE X

END-XML X

ENDING X

766 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

ENTER X

ENTRY X

ENVIRONMENT X

EO X

EOP X

EQUAL X

ERROR X

ESI X

EVALUATE X

EVERY X

EXCEPTION X

EXCEPTION-OBJECT X

EXEC X

EXECUTE X

EXIT X

EXTEND X

EXTERNAL X

FACTORY X

FALSE X

FD X

FILE X

FILE-CONTROL X

FILLER X

FINAL X

FIRST X

FLOAT-EXTENDED X

FLOAT-LONG X

FLOAT-SHORT X

FOOTING X

FOR X

FORMAT X

FREE X

FROM X

FUNCTION X

Appendix E. Reserved words 767

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

FUNCTION-ID X

FUNCTION-POINTER X

GENERATE X

GET X

GIVING X

GLOBAL X

GO X

GOBACK X

GREATER X

GROUP X

GROUP-USAGE X

HEADING X

HIGH-VALUE X

HIGH-VALUES X

I-O X

I-O-CONTROL X

ID X

IDENTIFICATION X

IF X

IN X

INDEX X

INDEXED X

INDICATE X

INHERITS X

INITIAL X

INITIALIZE X

INITIATE X

INPUT X

INPUT-OUTPUT X

INSERT X

INSPECT X

INSTALLATION X

INTERFACE X

INTERFACE-ID X

768 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

INTO X

INVALID X

INVOKE X

IS X

JAVA X

JNIENVPTR X

JSON X

JSON-CODE X

JSON-STATUS X

JUST X

JUSTIFIED X

KANJI X

KEY X

LABEL X

LAST X

LEADING X

LEFT X

LENGTH X

LESS X

LIMIT X

LIMITS X

LINAGE X

LINAGE-COUNTER X

LINE X

LINE-COUNTER X

LINES X

LINKAGE X

LOCAL-STORAGE X

LOCALE X

LOCK X

LOW-VALUE X

LOW-VALUES X

MEMORY X

MERGE X

Appendix E. Reserved words 769

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

MESSAGE X

METHOD X

METHOD-ID X

MINUS X

MODE X

MODULES X

MORE-LABELS X

MOVE X

MULTIPLE X

MULTIPLY X

NATIONAL X

NATIONAL-EDITED X

NATIVE X

NEGATIVE X

NESTED X

NEXT X

NO X

NOT X

NULL X

NULLS X

NUMBER X

NUMERIC X

NUMERIC-EDITED X

OBJECT X

OBJECT-COMPUTER X

OBJECT-REFERENCE X

OCCURS X

OF X

OFF X

OMITTED X

ON X

OPEN X

OPTIONAL X

OPTIONS X

770 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

OR X

ORDER X

ORGANIZATION X

OTHER X

OUTPUT X

OVERFLOW X

OVERRIDE X

PACKED-DECIMAL X

PADDING X

PAGE X

PAGE-COUNTER X

PASSWORD X

PERFORM X

PF X

PH X

PIC X

PICTURE X

PLUS X

POINTER X

POINTER-24 X

POINTER-31 X

POINTER-32 X

POINTER-64 X

POSITION X

POSITIVE X

PRESENT X

PRINTING X

PROCEDURE X

PROCEDURE-POINTER X

PROCEDURES X

PROCEED X

PROCESSING X

PROGRAM X

PROGRAM-ID X

Appendix E. Reserved words 771

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

PROGRAM-POINTER X

PROPERTY X

PROTOTYPE X

PURGE X

QUEUE X

QUOTE X

QUOTES X

RAISE X

RAISING X

RANDOM X

RD X

READ X

READY X

RECEIVE X

RECORD X

RECORDING X

RECORDS X

RECURSIVE X

REDEFINES X

REEL X

REFERENCE X

REFERENCES X

RELATIVE X

RELEASE X

RELOAD X

REMAINDER X

REMOVAL X

RENAMES X

REPLACE X

REPLACING X

REPORT X

REPORTING X

REPORTS X

REPOSITORY X

772 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

RERUN X

RESERVE X

RESET X

RESUME X

RETRY X

RETURN X

RETURN-CODE X

RETURNING X

REVERSED X

REWIND X

REWRITE X

RF X

RH X

RIGHT X

ROUNDED X

RUN X

SAME X

SCREEN X

SD X

SEARCH X

SECTION X

SECURITY X

SEGMENT X

SEGMENT-LIMIT X

SELECT X

SELF X

SEND X

SENTENCE X

SEPARATE X

SEQUENCE X

SEQUENTIAL X

SERVICE X

SET X

SHARING X

Appendix E. Reserved words 773

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

SHIFT-IN X

SHIFT-OUT X

SIGN X

SIZE X

SKIP1 X

SKIP2 X

SKIP3 X

SORT X

SORT-CONTROL X

SORT-CORE-SIZE X

SORT-FILE-SIZE X

SORT-MERGE X

SORT-MESSAGE X

SORT-MODE-SIZE X

SORT-RETURN X

SOURCE X

SOURCE-COMPUTER X

SOURCES X

SPACE X

SPACES X

SPECIAL-NAMES X

SQL X

SQLIMS X

STANDARD X

STANDARD-1 X

STANDARD-2 X

START X

STATUS X

STOP X

STRING X

SUB-QUEUE-1 X

SUB-QUEUE-2 X

SUB-QUEUE-3 X

SUBTRACT X

774 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

SUM X

SUPER X

SUPPRESS X

SYMBOLIC X

SYNC X

SYNCHRONIZED X

SYSTEM-DEFAULT X

TABLE X

TALLY X

TALLYING X

TAPE X

TERMINAL X

TERMINATE X

TEST X

TEXT X

THAN X

THEN X

THROUGH X

THRU X

TIME X

TIMES X

TITLE X

TO X

TOP X

TRACE X

TRAILING X

TRUE X

TYPE X

TYPEDEF X

UNIT X

UNIVERSAL X

UNLOCK X

UNSTRING X

UNTIL X

Appendix E. Reserved words 775

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

UP X

UPON X

USAGE X

USE X

USER-DEFAULT X

USING X

UTF-8 X

VAL-STATUS X

VALID X

VALIDATE X

VALIDATE-STATUS X

VALUE X

VALUES X

VARYING X

VOLATILE X

WHEN X

WHEN-COMPILED X

WITH X

WORDS X

WORKING-STORAGE X

WRITE X

WRITE-ONLY X

XML X

XML-CODE X

XML-EVENT X

XML-INFORMATION X

XML-NAMESPACE X

XML-NAMESPACE-PREFIX X

XML-NNAMESPACE X

XML-NNAMESPACE-PREFIX X

XML-NTEXT X

XML-SCHEMA X

XML-TEXT X

ZERO X

776 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 83. Reserved words (continued)

Word Reserved Standard only Potential
reserved words

ZEROES X

ZEROS X

Related references
Appendix F, “Context-sensitive words,” on page 779

Appendix E. Reserved words 777

778 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix F. Context-sensitive words
A context-sensitive word is a COBOL word that is reserved only in the general formats in which it is
specified. If a context-sensitive word is used where the context-sensitive word is permitted in the general
format, the word is treated as a keyword; otherwise it is treated as a user-defined word.

Table 84. Context-sensitive words

Context-sensitive word Language construct or context

BYTE-LENGTH PICTURE clause

COMPAT ENTRY-NAME phrase

CYCLE EXIT statement

DLL ENTRY-INTERFACE phrase

ENTRY-INTERFACE FUNCTION-ID paragraph

ENTRY-NAME FUNCTION-ID paragraph

FIXED CALL ... USING parameters

INITIALIZED ALLOCATE statement

INTRINSIC REPOSITORY paragraph

LOC ALLOCATE statement

LONGMIXED ENTRY-NAME phrase

LONGUPPER ENTRY-NAME phrase

NAME JSON GENERATE statement

JSON PARSE statement

XML GENERATE statement

PARAGRAPH EXIT statement

RECURSIVE PROGRAM-ID paragraph

YYYYDDD ACCEPT statement

YYYYMMDD ACCEPT statement

Related references
“User-defined words” on page 12

Appendix E, “Reserved words,” on page 761

© Copyright IBM Corp. 1991, 2024 779

780 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix G. ASCII considerations
The compiler supports the American National Standard Code for Information Interchange (ASCII) for
magnetic tape files. Thus, the programmer can create and process tape files recorded in accordance with
several standards.

The standards are:

• American National Standard Code for Information Interchange, X3.4-1977
• American National Standard Magnetic Tape Labels for Information Interchange, X3.27-1978
• American National Standard Recorded Magnetic Tape for Information Interchange (800 CPI, NRZI),

X3.22-1967

Single-byte ASCII-encoded tape files, when read into the system, are automatically translated in the
buffers into single-byte EBCDIC. Internal manipulation of data is performed exactly as if the ASCII
files were single-byte EBCDIC-encoded files. For an output file, the system translates the EBCDIC
characters into single-byte ASCII in the buffers before writing the file on tape. Therefore, there are special
considerations concerning ASCII-encoded files when they are processed in COBOL.

This appendix also applies (with appropriate modifications) to the International Reference Version of
the ISO 7-bit code defined in International Standard 646, 7-Bit Coded Character Set for Information
Processing Interchange (ISCII). The ISCII code set differs from ASCII only in the graphic representation of
two code points:

• Ordinal number 37, which is a dollar sign in ASCII, but a lozenge in ISCII
• Ordinal number 127, which is a tilde (~) in ASCII, but an overline (or optionally a tilde) in ISCII.

The following paragraphs discuss the special considerations concerning ASCII-encoded (or ISCII-
encoded) files. The information given for STANDARD-1 also applies to STANDARD-2 except where
otherwise specified.

ENVIRONMENT DIVISION
In the ENVIRONMENT DIVISION, the OBJECT-COMPUTER, SPECIAL-NAMES, and FILE-CONTROL
paragraphs are affected by the use of ASCII-encoded files.

OBJECT-COMPUTER and SPECIAL-NAMES paragraphs
When at least one file in the program is an ASCII-encoded file, the alphabet-name clause of the
SPECIAL-NAMES paragraph must be specified; the alphabet-name must be associated with STANDARD-1
or STANDARD-2 (for ASCII or ISCII collating sequence or CODE SET, respectively).

When alphanumeric comparisons within the object program are to use the ASCII collating sequence, the
PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph must be specified; the
alphabet-name used must also be specified as an alphabet-name in the SPECIAL-NAMES paragraph, and
associated with STANDARD-1. For example:

Object-computer. IBM-system
 Program collating sequence is ASCII-sequence.
Special-names. Alphabet ASCII-sequence is standard-1.

When both clauses are specified, the ASCII collating sequence is used in this program to determine the
truth value of the following alphanumeric comparisons:

• Those explicitly specified in relation conditions
• Those explicitly specified in condition-name conditions
• Any alphanumeric sort or merge keys (unless the COLLATING SEQUENCE phrase is specified in the

MERGE or SORT statement).

© Copyright IBM Corp. 1991, 2024 781

When the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC collating sequence is used for
such comparisons.

The PROGRAM COLLATING SEQUENCE clause, in conjunction with the alphabet-name clause, can be
used to specify EBCDIC alphanumeric comparisons for an ASCII-encoded tape file or ASCII alphanumeric
comparisons for an EBCDIC-encoded tape file.

The literal option of the alphabet-name clause can be used to process internal data in a collating
sequence other than NATIVE or STANDARD-1.

FILE-CONTROL paragraph
For ASCII files, the ASSIGN clause assignment-name has the following format:

Format: assignment-name for QSAM files

label- S-

name

The file must be a QSAM file assigned to a magnetic tape device.

label-
Documents the device and device class to which a file is assigned. If specified, it must end with a
hyphen.

S-
The organization field. Optional for QSAM files, which always have sequential organization.

name
A required one-character to eight-character field that specifies the external name for this file.

I-O-CONTROL paragraph
The assignment-name in a RERUN clause must not specify an ASCII-encoded file.

ASCII-encoded files that contain checkpoint records cannot be processed.

DATA DIVISION
In the DATA DIVISION, there are special considerations for the FD entry and for data description entries.

For each logical file defined in the ENVIRONMENT DIVISION, there must be a corresponding FD entry and
level-01 record description entry in the FILE SECTION of the DATA DIVISION.

FD Entry: CODE-SET clause
The FD Entry for an ASCII-encoded file must contain a CODE-SET clause; the alphabet-name must be
associated with STANDARD-1 (for the ASCII code set) in the SPECIAL-NAMES paragraph.

For example:

Special-names. Alphabet ASCII-sequence is standard-1.
 ...
FD ASCII-file label records standard
 Recording mode is f
 Code-set is ASCII-sequence.

Data description entries
For ASCII files, the data description considerations listed in the topic apply.

• PICTURE clause specifications are valid for the following categories of data:

782 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

– Alphabetic
– Alphanumeric
– Alphanumeric-edited
– Numeric
– Numeric-edited

• For signed numeric items, the SIGN clause with the SEPARATE CHARACTER phrase must be specified.
• For the USAGE clause, only the DISPLAY phrase is valid.

PROCEDURE DIVISION
An ASCII-collated sort or merge operation can be specified in two ways as described in the topic.

• Through the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph. In this
case, the ASCII collating sequence is used for alphanumeric comparisons explicitly specified in relation
conditions and condition-name conditions.

• Through the COLLATING SEQUENCE phrase of the SORT or MERGE statement. In this case, only this
sort or merge operation uses the ASCII collating sequence.

In either case, alphabet-name must be associated with STANDARD-1 (for ASCII collating sequence) in the
SPECIAL-NAMES paragraph.

For this sort or merge operation, the COLLATING SEQUENCE phrase of the SORT or MERGE statement
takes precedence over the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER
paragraph.

If both the PROGRAM COLLATING SEQUENCE clause and the COLLATING SEQUENCE phrase are omitted
(or if the one in effect specifies an EBCDIC collating sequence), the sort or merge is performed using the
EBCDIC collating sequence.

Appendix G. ASCII considerations 783

784 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix H. Industry specifications
Enterprise COBOL supports various industry standards.

• ISO COBOL standards

– ISO 1989:1985, Programming languages - COBOL

ISO 1989:1985 is identical to ANSI INCITS 23-1985 (R2001), Programming Languages - COBOL
– ISO/IEC 1989/AMD1:1992, Programming languages - COBOL: Intrinsic function module

ISO/IEC 1989/AMD1:1992 is identical to ANSI INCITS 23a-1989 (R2001), Programming Languages -
Intrinsic Function Module for COBOL

– ISO/IEC 1989/AMD2:1994, Programming languages - Correction and clarification amendment for
COBOL

ISO/IEC 1989/AMD2:1994 is identical to ANSI INCITS 23b-1993 (R2001), Programming Language -
Correction Amendment for COBOL

All required modules are supported at the highest level defined by the standard.

The following optional modules of the standard are supported:

- Intrinsic Functions (1 ITR 0,1)
- Debug (1 DEB 0,2)
- Segmentation (2 SEG 0,2)

The Report Writer optional module of the standard is supported with the optional IBM COBOL Report
Writer Precompiler and Libraries (5798-DYR).

The following optional modules of the standard are not supported:

- Communications
- Debug (2 DEB 0,2)

– ISO/IEC 1989:2002, Information technology - Programming languages - COBOL (partial support)

ISO/IEC 1989:2002 is identical to ANSI INCITS 1989-2002 (R2013), Information technology -
Programming languages COBOL

For a list of 2002 COBOL Standard features that are implemented since Enterprise COBOL 3, see
Appendix I, “2002/2014 COBOL Standard features implemented in Enterprise COBOL 3 or later
versions,” on page 787.

– ISO/IEC 1989:2014, Information technology - Programming languages, their environments and
system software interfaces - Programming language COBOL (partial support)

ISO/IEC 1989:2014 is identical to ANSI INCITS 1989-2014, Information technology - Programming
languages, their environments and system software interfaces - Programming language COBOL

For a list of 2014 COBOL Standard features that are implemented since Enterprise COBOL 3, see
2002/2014 COBOL Standard features implemented in Enterprise COBOL 3 or later versions.

• ANSI COBOL standards

– ANSI INCITS 23-1985 (R2001), Programming Languages - COBOL
– ANSI INCITS 23a-1989 (R2001), Programming Languages - Intrinsic Function Module for COBOL
– ANSI INCITS 23b-1993 (R2001), Programming Language - Correction Amendment for COBOL

All required modules are supported at the highest level defined by the standard.

The following optional modules of the standard are supported:

© Copyright IBM Corp. 1991, 2024 785

https://www.ibm.com/docs/en/SS6SG3_6.4.0/lr/ref/rlstdim.html

- Intrinsic Functions (1 ITR 0,1)
- Debug (1 DEB 0,2)
- Segmentation (2 SEG 0,2)

The following optional modules of the standard are not supported:

- Communications
- Debug (2 DEB 0,2)

– ANSI INCITS 1989-2002 (R2013), Information technology - Programming languages COBOL (partial
support)

– ANSI INCITS 1989-2014, Information technology - Programming languages, their environments and
system software interfaces - Programming language COBOL (partial support)

• International Reference Version of ISO/IEC 646, 7-Bit Coded Character Set for Information Interchange
• The 7-bit coded character set defined in American National Standard X3.4-1977, Code for Information

Interchange

Enterprise COBOL has the following restriction related to COBOL standards:

• OPEN EXTEND is not supported for ASCII-encoded tapes (CODE-SET STANDARD-1 or STANDARD-2).

See Option settings for 85 COBOL Standard conformance in the Enterprise COBOL Programming Guide
for specification of the compiler options and Language Environment runtime options that are required to
support the above standards.

786 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix I. 2002/2014 COBOL Standard features
implemented in Enterprise COBOL 3 or later versions

Beginning with Enterprise COBOL 3, substantive changes are implemented according to the 2002 COBOL
Standard and 2014 COBOL Standard. This topic lists those changes that will potentially affect existing
COBOL programs and those changes that will not affect existing COBOL programs.

Table 85. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will potentially
affect existing programs

Features Notes

SPECIAL-NAMES paragraph, CURRENCY SIGN clause The letters 'N', 'n', 'E' and 'e' are now used as picture
symbols. The letter 'N' or 'E' can no longer be specified
as a currency sign in the CURRENCY SIGN clause.

SAME clause File-names referenced in a SAME clause shall be
described in the FILE-CONTROL paragraph of the
source element that contains the SAME clause.

Executable code production The implementor is not required to produce an
executable object program if a fatal exception
condition for which checking is not enabled is
detected by the compiler.

Exponentiation If the value of an expression to be raised to a
power is less than zero, the following condition shall
be true for the exponent: (FUNCTION FRACTION-
PART (exponent) = 0). Otherwise, the EC-SIZE-
EXPONENTIATION exception exists and the size error
condition is raised.

CORRESPONDING order The order of execution of the implied statements
created for corresponding operands for ADD, MOVE,
and SUBTRACT with the CORRESPONDING phrase
is defined to be the order of the specification
of the operands in the group following the word
CORRESPONDING. The previous COBOL standard did
not specify an order. In addition, the evaluation of
subscripts for the implied statements is done only
once, at the start of the execution of the actual ADD,
MOVE, or SUBTRACT statement. The previous COBOL
standard implied this, but was not specific.

Sending and receiving operands The terms sending operand and receiving operand
have been defined.

Incompatible data clarification The conditions that cause the incompatible data
condition are specified explicitly. They are limited
to boolean, numeric, and numeric-edited sending
operands.

EVALUATE statement, sequence of execution The sequence of evaluation of selection subjects and
objects is now defined to be from left to right and
selection objects are evaluated as each WHEN phrase
is processed. When a WHEN phrase is selected, no
more selection objects are evaluated.

© Copyright IBM Corp. 1991, 2024 787

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs

Features Notes

ACCEPT statement four-digit year The capability to access the four-digit year of the
Gregorian calendar is added to the ACCEPT statement.

Apostrophe as quotation mark The apostrophe character and the quotation mark
can be used in the opening and closing delimiters of
alphanumeric, boolean, and national literals. A given
literal can use either the apostrophe or the quotation
mark, but both the starting and ending characters are
required to be the same. Whichever character is used,
it is necessary to double that character to represent
one occurrence of the character within the literal. Both
formats can be used in a single source element.

Arithmetic operators No space is required between a left parenthesis and
unary operator or between a unary operator and a left
parenthesis.

AT END phrase The AT END phrase of the READ statement does not
have to be specified if there is no applicable USE
statement.

BINARY and floating point data Two new representations of numeric data type are
introduced, a binary representation that holds data
in a machine-specific way and is not restricted
to decimal ranges of values, and a floating-point
representation. The floating-point type exists both in a
numeric form, with a machine-specific representation,
and in a numeric-edited form.

CALL argument level numbers (any) CALL arguments can be elementary or groups with any
level number. Formerly, they had to be elementary or
have a level number of 1 or 77.

CALL BY CONTENT parameter difference A parameter passed by content does not have to have
the same description as the matching parameter in the
called program.

CALL parameter length difference The size of an argument in the USING phrase of the
CALL statement can be greater than the size of the
matching formal parameter if either the argument or
the formal parameter is a group item. Formerly, the
sizes were required to be the same.

CALL recursively The capability of calling an active COBOL program has
been added to COBOL.

COBOL words reserved in context Certain words added to the COBOL standard are
reserved only in the contexts in which they are
specified and were not added to the reserved word
list. See Appendix F, “Context-sensitive words,” on
page 779 for details.

CODE clause (Report Writer) The identifier phrase is provided in the CODE clause in
the report description entry.

788 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs (continued)

Features Notes

COLUMN clause A relative form is provided using PLUS integer, by
analogy with LINE; COLUMN RIGHT and COLUMN
CENTER are provided, allowing alignment of a
printable item at the right or center; and COL, COLS,
and COLUMNS are allowed as synonyms for COLUMN.

COLUMN, LINE, SOURCE, and VALUE clauses These clauses can have more than one operand in a
report group description entry.

Comment lines anywhere in a compilation group Comment lines can be written as any line in a
compilation group, including before the identification
division header.

Compiler directives • The CALLINTERFACE compiler directive specifies the
interface convention for CALL and SET statements.

• The DEFINE directive defines or undefines a
compilation variable.

• The EVALUATE directive provides a multi-branch
method of choosing the source lines to include in
a compilation group.

• The IF directive provides for a one-way or two-way
conditional compilation.

Control data name This is allowed to be omitted on TYPE CH/CF if only
one control is defined.

Conversion from two-digit year to four-digit year There are three functions for converting from a two-
digit year to a four-digit year. DATE-TO-YYYYMMDD,
DAY-TO-YYYYDDD, and YEAR-TO-YYYY convert from
YYnnnn to YYYYnnnn, YYnnn to YYYYnnn, and YY to
YYYY, respectively.

COPY statement An alphanumeric literal can be specified in place of
text-name-1 or library-name-1.

When more than one COBOL library is referenced,
text-name need not be qualified when the library text
resides in the default library.

The ability to nest COPY statements is provided.
Library text incorporated as a result of processing a
COPY statement without a REPLACING phrase can
contain a COPY statement without a REPLACING
phrase.

A SUPPRESS PRINTING phrase is added to the
COPY statement to suppress listing of library
text incorporated as a result of COPY statement
processing.

COPY and REPLACE statement partial word
replacement

LEADING and TRAILING phrases of the REPLACE
statement and the REPLACING phrase of the COPY
statement allow replacement of partial words in
source text and library text. This is useful for prefixing
and postfixing names.

Appendix I. 2002/2014 COBOL Standard features implemented in Enterprise COBOL 3 or later versions 789

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs (continued)

Features Notes

Currency sign extensions The CURRENCY SIGN clause has been extended to
allow for national characters and for multiple distinct
currency signs, which can have any length.

DISPLAY statement If the literal in a DISPLAY statement is numeric, it can
be signed.

DIVIDE BY zero DIVIDE BY zero conforms to the 2002 COBOL
Standard. Nothing has changed in IBM COBOL, but the
Standard is changed so that now Enterprise COBOL is
conforming. (Enterprise COBOL was not conforming to
the 85 COBOL Standard for DIVIDE BY zero.)

Dynamic-length elementary items The addition of the DYNAMIC LENGTH clause provides
the ability to describe a data item of varying size.

Dynamic storage allocation ALLOCATE and FREE statements are provided
for obtaining storage dynamically. This storage is
addressed by pointer data items.

EXIT statement The ability to immediately exit an inline PERFORM
statement, a paragraph, or a section has been added.

EXIT PROGRAM allowed as other than last statement EXIT PROGRAM is allowed to appear as other than
the last statement in a consecutive sequence of
imperative statements.

FILLER FILLER is allowed in the report section.

Floating comment delimiters • The floating comment indicator (*>) indicates a
comment line if it is the first character string in the
program-text area (Area A plus Area B), or indicates
an inline comment if it is after one or more character
strings in the program-text area.

• The compiler directive indicator (>>) indicates a
compiler directive line when followed by a compiler
directive word - with or without an intervening
space.

FUNCTION All INTRINSIC The REPOSITORY paragraph supports a function
specifier, and for some intrinsic functions, the keyword
FUNCTION is optional when a function is included in
the REPOSITORY paragraph.

GOBACK statement A GOBACK statement has been added that always
returns control, either to the operating system or to
the calling runtime element.

Hexadecimal literals The ability was added to specify alphanumeric,
boolean, and national literals using hexadecimal (radix
16) notation.

Inline comment A comment can be written on a line following any
character-strings of the source text or library text
that are written on that line. An inline comment is
introduced by the two contiguous characters '*>'.

790 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs (continued)

Features Notes

Index data item The definition of an index data item can include the
SYNCHRONIZED clause.

INITIALIZE statement, FILLER phrase FILLER data items can be initialized with the
INITIALIZE statement.

INITIALIZE statement, VALUE phrase A VALUE phrase can be specified in the INITIALIZE
statement to cause initialization of elementary data
items to the literal specified in the VALUE clause of the
associated data description entry.

Intrinsic function facility Previously, the intrinsic function facility was a
separate module and its implementation was optional.
The intrinsic function facility is integrated into the
specification and it shall be implemented by a
conforming implementation

Appendix I. 2002/2014 COBOL Standard features implemented in Enterprise COBOL 3 or later versions 791

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs (continued)

Features Notes

New intrinsic functions New intrinsic functions are added:

• ABS
• BYTE-LENGTH
• E
• EXP
• EXP10
• DATE-TO-YYYYMMDD
• DAY-TO-YYYYDDD
• DISPLAY-OF
• NATIONAL-OF
• NUMVAL-F
• PI
• SIGN
• TEST-NUMVAL
• TEST-NUMVAL-C
• TEST-NUMVAL-F
• TRIM
• YEAR-TO-YYYY

Support for industry standard date and time
formats

New date and time intrinsic functions are introduced
that support encoding and decoding of date and time
information to and from formats specified in ISO
8601, and that support encoding and decoding date
and time information to and from integers that are
suitable for arithmetic. These new intrinsic functions
are:

• COMBINED-DATETIME
• FORMATTED-CURRENT-DATE
• FORMATTED-DATE
• FORMATTED-DATETIME
• FORMATTED-TIME
• INTEGER-OF-FORMATTED-DATE
• SECONDS-FROM-FORMATTED-TIME
• SECONDS-PAST-MIDNIGHT
• TEST-DATE-YYYYMMDD
• TEST-DAY-YYYYDDD
• TEST-FORMATTED-DATETIME

INVALID KEY phrase The INVALID KEY phrase does not have to be specified
if there is no applicable USE statement.

792 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs (continued)

Features Notes

LOCAL-STORAGE SECTION A facility was added to define data that is set to its
initial values each time a function, method, or program
is activated. Each instance of this source element has
its own copy of this data.

National character handling The capability is added for using large character sets,
such as ISO/IEC 10646-1, in source text and library
text and in data at execution time. Class national and
categories national and national-edited are specified
by picture character-strings containing the symbol 'N';
national literals are identified by a separator N", N',
NX", or NX'. Usage national specifies representation of
data in a national character set. User-defined words
can contain extended letters. Processing of data of
class national is comparable to processing data of
class alphanumeric, though there are some minor
differences. Conversions between data of classes
alphanumeric and national are provided by intrinsic
functions.

Object orientation Support for object-oriented programming has been
added.

OCCURS clause Repetition vertically or horizontally and a STEP phrase
are added for Report Writer.

Optional word OF Allowed after SUM.

Optional word FOR and ON Allowed after TYPE CH or CF.

OR PAGE phrase of the CONTROL HEADING phrase This enables the control heading group to be printed
at the top of each page and after a control break.

PAGE FOOTING report group Such a group is allowed to have all relative LINE
clauses.

PAGE LIMIT clause New COLUMNS phrase is provided to define maximum
number of horizontal print positions in each report line
and a LAST CONTROL HEADING phrase was added.

Paragraph-name A paragraph-name is not required at the beginning of
the procedure division or a section.

PERFORM statement A common exit for multiple active PERFORM
statements is allowed.

Appendix I. 2002/2014 COBOL Standard features implemented in Enterprise COBOL 3 or later versions 793

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs (continued)

Features Notes

PICTURE clause The maximum number of characters that can be
specified in a picture character-string is increased
from 30 to 50.

The symbol 'E' can be used in a PICTURE character-
string to specify a floating-point numeric-edited data
item.

The symbol 'N' can be used in a PICTURE character-
string to specify a national or a national-edited data
item.

When the last symbol of a PICTURE character-string is
a period or a comma, one or more spaces can precede
the following separator period. It was unclear in the
previous standard whether a space could precede the
separator period in this context.

PLUS and MINUS The symbol + or - is synonymous with PLUS or MINUS,
respectively, in the COLUMN and LINE clauses.

Pointer data A new class of data is introduced, a pointer type
that holds data and program addresses in a machine-
specific or system-specific way.

PRESENT WHEN clause The PRESENT WHEN clauses allows lines and
printable items, or groups of them, to be printed or
not, depending on the truth value of a condition.

Program-names as literals The option to specify a literal as the program-name to
be externalized was added for names that are not valid
COBOL words or need to be case-sensitive.

RECORD KEY and ALTERNATE RECORD KEY Keys for indexed files can be made up from more than
one component.

Report Writer Previously, the Report Writer was a separate module
and its implementation was optional. The Report
Writer facility is integrated into the specification
and it shall be implemented by a conforming
implementation.

Report Writer national character support The capability of printing national characters and
alphanumeric characters in a report is provided.

Function specifier The REPOSITORY paragraph supports function
specifier, and for some intrinsic functions, the key
word FUNCTION is optional when a function is
included in the REPOSITORY paragraph.

SIGN clause in a report description entry The SEPARATE phrase is no longer required in a
report description entry and the SIGN clause can be
specified at the group level.

794 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs (continued)

Features Notes

SORT statement A SORT statement can be used to sort a table. This
sort can be done using the fields specified in the KEY
phrase defining the table, by using the entire table
element as the key, or by using specified key data
items.

GIVING files in a SORT statement can now be
specified in the same SAME RECORD AREA clause.

SOURCE clause in a report description entry The sending operand can be a function-identifier.

An arithmetic-expression is allowed as an operand
and a ROUNDED phrase was added.

SUM clause in a report description entry The SUM clause was extended in the following ways:

• Extension to total a repeating entry.
• Now allowed in any TYPE of report group, not only

control footing.
• SUM of arithmetic-expression format.
• Checks for overflow of a sum counter during

totalling.
• Any numeric report section item can be totalled, not

just another sum counter.
• ROUNDED phrase.

Underscore (_) character The basic special characters of the COBOL character
repertoire have been expanded to include the
underscore (_) character, which can be used in the
formation of COBOL words.

UNSTRING statement The sending operand can be reference modified.

USE BEFORE REPORTING The effect of GLOBAL in a report description and a USE
declarative is further elucidated.

User-defined functions The ability was added to write functions that are
activated in a manner similar to intrinsic functions.
The word FUNCTION is not specified as part of this
invocation.

VALUE clause, WHEN SET TO FALSE phrase in data
division

The WHEN SET TO FALSE phrase allows specification
of a FALSE condition value. This value is moved to
the associated conditional variable when the SET
TO FALSE statement is executed for the associated
condition-name.

VARYING clause A VARYING clause is provided in the validate and
Report Writer facilities to be used with an OCCURS
clause.

Appendix I. 2002/2014 COBOL Standard features implemented in Enterprise COBOL 3 or later versions 795

Table 86. 2002/2014 COBOL Standard features implemented in COBOL 3 or later versions that will not affect
existing programs (continued)

Features Notes

WITH RESET phrase This was added to the NEXT PAGE phrase of the NEXT
GROUP clause to reset PAGE-COUNTER back to 1.

Note: REPORT WRITER features such as CODE
clause, COLUMN clause, control data name, CONTROL
HEADING, PAGE FOOTING, PAGE LIMIT, SUM clause,
and report description entries are supported via the
optional Report Writer Precompiler.

796 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Appendix J. Accessibility features for Enterprise
COBOL for z/OS

Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully. The accessibility features in z/OS provide accessibility
for Enterprise COBOL for z/OS.

Accessibility features

z/OS includes the following major accessibility features:

• Interfaces that are commonly used by screen readers and screen-magnifier software
• Keyboard-only navigation
• Ability to customize display attributes such as color, contrast, and font size

z/OS uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/), to ensure
compliance to US Section 508 (https://www.access-board.gov/ict/) and Web Content Accessibility
Guidelines (WCAG) 2.0 (http://www.w3.org/TR/WCAG20/). To take advantage of accessibility features,
use the latest release of your screen reader in combination with the latest web browser that is supported
by this product.

Keyboard navigation
Users can access z/OS user interfaces by using TSO/E or ISPF.

Users can also access z/OS services by using IBM Developer for z/OS.

For information about accessing these interfaces, see the following publications:

• z/OS TSO/E Primer (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120)
• z/OS TSO/E User's Guide (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/

APPENDIX1.3)
• z/OS ISPF User's Guide Volume I (http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70)

These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and explains how to modify their
functions.

Interface information
The Enterprise COBOL for z/OS online product documentation is available in IBM Knowledge Center,
which is viewable from a standard web browser.

PDF files have limited accessibility support. With PDF documentation, you can use optional font
enlargement, high-contrast display settings, and can navigate by keyboard alone.

To enable your screen reader to accurately read syntax diagrams, source code examples, and text that
contains period or comma PICTURE symbols, you must set the screen reader to speak all punctuation.

Assistive technology products work with the user interfaces that are found in z/OS. For specific guidance
information, see the documentation for the assistive technology product that you use to access z/OS
interfaces.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

© Copyright IBM Corp. 1991, 2024 797

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
https://www.access-board.gov/ict/
https://www.access-board.gov/ict/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://publibfp.dhe.ibm.com/epubs/pdf/ikj2p200.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj2p200.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj4c260.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/isp2ug00.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/isp2ug00.pdf

TTY service
800-IBM-3383 (800-426-3383)
(within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

798 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

http://www.ibm.com/able
http://www.ibm.com/able

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

© Copyright IBM Corp. 1991, 2024 799

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. 1991, 2024.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, or
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's Privacy Policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details in the section entitled "Cookies, Web Beacons and Other Technologies,"

800 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://www.ibm.com/
software/info/product-privacy.

Programming interface information
This Language Reference documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of Enterprise COBOL.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.html.

Intel is a registered trademark of Intel Corporation in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 801

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.html

802 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Glossary

The terms in this glossary are defined in accordance with their meaning in COBOL. These terms might or
might not have the same meaning in other languages.

This glossary includes terms and definitions from the following publications:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL, and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module and ISO/IEC 1989/AMD2:1994,
Programming languages - Correction and clarification amendment for COBOL

• ANSI X3.172-2002, American National Standard Dictionary for Information Systems
• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL
• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments and

system software interfaces - Programming language COBOL

American National Standard definitions are preceded by an asterisk (*).

A

* abbreviated combined relation condition
The combined condition that results from the explicit omission of a common subject or a common
subject and common relational operator in a consecutive sequence of relation conditions.

abend
Abnormal termination of a program.

above the 2 GB bar
Storage located above the so-called 2 GB bar (or boundary). This storage is only addressable by
AMODE 64 programs.

above the 16 MB line
Storage located above the so-called 16 MB line (or boundary) but below the 2 GB bar. This storage
is not addressable by AMODE 24 programs. Before IBM introduced the MVS/XA architecture in the
1980s, the virtual storage for a program was limited to 16 MB. Programs that have been link-edited
as AMODE 24 can address only 16 MB of space, as though they were kept under an imaginary storage
line. Since VS COBOL II, a program can have AMODE 31 and can be loaded above the 16 MB line.

* access mode
The manner in which records are to be operated upon within a file.

* actual decimal point
The physical representation, using the decimal point characters period (.) or comma (,), of the decimal
point position in a data item.

actual document encoding
For an XML document, one of the following encoding categories that the XML parser determines by
examining the first few bytes of the document:

• ASCII
• EBCDIC
• UTF-8
• UTF-16, either big-endian or little-endian
• Other unsupported encoding
• No recognizable encoding

© Copyright IBM Corp. 1991, 2024 803

* alphabet-name
A user-defined word, in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, that
assigns a name to a specific character set or collating sequence or both.

* alphabetic character
A letter or a space character.

alphanumeric character position
See character position.

alphabetic data item
A data item that is described with a PICTURE character string that contains only the symbol A. An
alphabetic data item has USAGE DISPLAY.

* alphanumeric character
Any character in the single-byte character set of the computer.

alphanumeric data item
A general reference to a data item that is described implicitly or explicitly as USAGE DISPLAY, and
that has category alphanumeric, alphanumeric-edited, or numeric-edited.

alphanumeric-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol A or X and at least one of the simple insertion symbols B, 0, or /. An alphanumeric-edited data
item has USAGE DISPLAY.

* alphanumeric function
A function whose value is composed of a string of one or more characters from the alphanumeric
character set of the computer.

alphanumeric group item
A group item that is defined without a GROUP-USAGE NATIONAL clause. For operations such as
INSPECT, STRING, and UNSTRING, an alphanumeric group item is processed as though all its content
were described as USAGE DISPLAY regardless of the actual content of the group. For operations
that require processing of the elementary items within a group, such as MOVE CORRESPONDING, ADD
CORRESPONDING, or INITIALIZE, an alphanumeric group item is processed using group semantics.

alphanumeric literal
A literal that has an opening delimiter from the following set: ', ", X', X", Z', or Z". The string of
characters can include any character in the character set of the computer.

* alternate record key
A key, other than the prime record key, whose contents identify a record within an indexed file.

ANSI (American National Standards Institute)
An organization that consists of producers, consumers, and general-interest groups and establishes
the procedures by which accredited organizations create and maintain voluntary industry standards in
the United States.

argument
(1) An identifier, a literal, an arithmetic expression, or a function-identifier that specifies a value to
be used in the evaluation of a function. (2) An operand of the USING phrase of a CALL or INVOKE
statement, used for passing values to a called program or an invoked method.

* arithmetic expression
A numeric literal, an identifier representing a numeric elementary item, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or
an arithmetic expression enclosed in parentheses.

* arithmetic operation
The process caused by the execution of an arithmetic statement, or the evaluation of an arithmetic
expression, that results in a mathematically correct solution to the arguments presented.

* arithmetic operator
A single character, or a fixed two-character combination that belongs to the following set:

804 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Character Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

* arithmetic statement
A statement that causes an arithmetic operation to be executed. The arithmetic statements are ADD,
COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT.

array
An aggregate that consists of data objects, each of which can be uniquely referenced by subscripting.
An array is roughly analogous to a COBOL table.

* ascending key
A key upon the values of which data is ordered, starting with the lowest value of the key up to the
highest value of the key, in accordance with the rules for comparing data items.

ASCII
American National Standard Code for Information Interchange. The standard code uses a coded
character set that is based on 7-bit coded characters (8 bits including parity check). The standard
is used for information interchange between data processing systems, data communication systems,
and associated equipment. The ASCII set consists of control characters and graphic characters.

IBM has defined an extension to ASCII (characters 128-255).

ASCII DBCS
See double-byte ASCII.

assignment-name
A name that identifies the organization of a COBOL file and the name by which it is known to the
system.

* assumed decimal point
A decimal point position that does not involve the existence of an actual character in a data item. The
assumed decimal point has logical meaning but no physical representation.

AT END condition
A condition that is caused during the execution of a READ, RETURN, or SEARCH statement under
certain conditions:

• A READ statement runs on a sequentially accessed file when no next logical record exists in the file,
or when the number of significant digits in the relative record number is larger than the size of the
relative key data item, or when an optional input file is not available.

• A RETURN statement runs when no next logical record exists for the associated sort or merge file.
• A SEARCH statement runs when the search operation terminates without satisfying the condition
specified in any of the associated WHEN phrases.

B

basic character set
The basic set of characters used in writing words, character-strings, and separators of the language.
The basic character set is implemented in single-byte EBCDIC. The extended character set includes
DBCS characters, which can be used in comments, literals, and user-defined words.

Synonymous with COBOL character set in the 85 COBOL Standard.

batch compilation
Synonymous with sequence of programs.

Glossary 805

big-endian
The default format that the mainframe and the AIX® workstation use to store binary data and UTF-16
characters. In this format, the least significant byte of a binary data item is at the highest address and
the least significant byte of a UTF-16 character is at the highest address. Compare with little-endian.

binary item
A numeric data item that is represented in binary notation (on the base 2 numbering system). The
decimal equivalent consists of the decimal digits 0 through 9, plus an operational sign. The leftmost
bit of the item is the operational sign.

binary search
A dichotomizing search in which, at each step of the search, the set of data elements is divided by
two; some appropriate action is taken in the case of an odd number.

* block
A physical unit of data that is normally composed of one or more logical records. For mass storage
files, a block can contain a portion of a logical record. The size of a block has no direct relationship
to the size of the file within which the block is contained or to the size of the logical records that are
either contained within the block or that overlap the block. Synonymous with physical record.

boolean condition
A boolean condition determines whether a boolean literal is true or false. A boolean condition can only
be used in a constant conditional expression.

boolean literal
Can be either B'1', indicating a true value, or B'0', indicating a false value. Boolean literals can only be
used in constant conditional expressions.

breakpoint
A place in a computer program, usually specified by an instruction, where external intervention or a
monitor program can interrupt the program as it runs.

buffer
A portion of storage that is used to hold input or output data temporarily.

built-in function
See intrinsic function.

business method
A method of an enterprise bean that implements the business logic or rules of an application. (Oracle)

byte
A string that consists of a certain number of bits, usually eight, treated as a unit, and representing a
character or a control function.

byte order mark (BOM)
A Unicode character that can be used at the start of UTF-16 or UTF-32 text to indicate the byte order
of subsequent text; the byte order can be either big-endian or little-endian.

bytecode
Machine-independent code that is generated by the Java compiler and executed by the Java
interpreter. (Oracle)

C

callable services
In Language Environment, a set of services that a COBOL program can invoke by using the
conventional Language Environment-defined call interface. All programs that share the Language
Environment conventions can use these services.

called program
A program that is the object of a CALL statement. At run time the called program and calling program
are combined to produce a run unit.

* calling program
A program that executes a CALL to another program.

806 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

canonical decomposition
A way to represent a single precomposed Unicode character using two or more Unicode characters. A
canonical decomposition is typically used to separate latin letters with a diacritical mark so that the
latin letter and the diacritical mark are represented individually. See precomposed character for an
example showing a precomposed Unicode character and its canonical decomposition.

case structure
A program-processing logic in which a series of conditions is tested in order to choose between a
number of resulting actions.

cataloged procedure
A set of job control statements that are placed in a partitioned data set called the procedure library
(SYS1.PROCLIB). You can use cataloged procedures to save time and reduce errors in coding JCL.

CCSID
See coded character set identifier.

century window
A 100-year interval within which any two-digit year is unique. Several types of century window are
available to COBOL programmers:

• For the windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and YEAR-TO-
YYYY, you specify the century window with argument-2.

• For Language Environment callable services, you specify the century window in CEESCEN.

* character
The basic indivisible unit of the language.

character encoding unit
A unit of data that corresponds to one code point in a coded character set. One or more character
encoding units are used to represent a character in a coded character set. Also known as encoding
unit.

For USAGE NATIONAL, a character encoding unit corresponds to one 2-byte code point of UTF-16.

For USAGE DISPLAY, a character encoding unit corresponds to a byte.

For USAGE DISPLAY-1, a character encoding unit corresponds to a 2-byte code point in the DBCS
character set.

character position
The amount of physical storage or presentation space required to hold or present one character. The
term applies to any class of character. For specific classes of characters, the following terms apply:

• Alphanumeric character position, for characters represented in USAGE DISPLAY
• DBCS character position, for DBCS characters represented in USAGE DISPLAY-1
• National character position, for characters represented in USAGE NATIONAL; synonymous with

character encoding unit for UTF-16

character set
A collection of elements that are used to represent textual information, but for which no coded
representation is assumed. See also coded character set.

character string
A sequence of contiguous characters that form a COBOL word, a literal, a PICTURE character string, or
a comment-entry. A character string must be delimited by separators.

checkpoint
A point at which information about the status of a job and the system can be recorded so that the job
step can be restarted later.

* class
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class. Classes
can be defined hierarchically, allowing one class to inherit from another.

Glossary 807

class (object-oriented)
The entity that defines common behavior and implementation for zero, one, or more objects. The
objects that share the same implementation are considered to be objects of the same class.

* class condition
The proposition (for which a truth value can be determined) that the content of an item is wholly
alphabetic, is wholly numeric, is wholly DBCS, is wholly Kanji, or consists exclusively of the characters
that are listed in the definition of a class-name.

* class definition
The COBOL source unit that defines a class.

class hierarchy
A tree-like structure that shows relationships among object classes. It places one class at the top and
one or more layers of classes below it. Synonymous with inheritance hierarchy.

* class identification entry
An entry in the CLASS-ID paragraph of the IDENTIFICATION DIVISION; this entry contains
clauses that specify the class-name and assign selected attributes to the class definition.

class-name (object-oriented)
The name of an object-oriented COBOL class definition.

* class-name (of data)
A user-defined word that is defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION; this word assigns a name to the proposition (for which a truth value can be defined)
that the content of a data item consists exclusively of the characters that are listed in the definition of
the class-name.

class object
The runtime object that represents a class.

* clause
An ordered set of consecutive COBOL character strings whose purpose is to specify an attribute of an
entry.

client
In object-oriented programming, a program or method that requests services from one or more
methods in a class.

COBOL character set
The set of characters used in writing COBOL syntax. The complete COBOL character set consists of
these characters:

Character Meaning

0,1, . . . ,9 Digit

A,B, . . . ,Z Uppercase letter

a,b, . . . ,z Lowercase letter

Space

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

. Period (decimal point, full stop)

808 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Character Meaning

" Quotation mark

' Apostrophe

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

* COBOL word
See word.

code page
An assignment of graphic characters and control function meanings to all code points. For example,
one code page could assign characters and meanings to 256 code points for 8-bit code, and another
code page could assign characters and meanings to 128 code points for 7-bit code. For example, one
of the IBM code pages for English on the workstation is IBM-1252 and on the host is IBM-1047. A
coded character set.

code point
A unique bit pattern that is defined in a coded character set (code page). Graphic symbols and control
characters are assigned to code points.

coded character set
A set of unambiguous rules that establish a character set and the relationship between the characters
of the set and their coded representation. Examples of coded character sets are the character sets as
represented by ASCII or EBCDIC code pages or by the UTF-16 encoding scheme for Unicode.

coded character set identifier (CCSID)
An IBM-defined number in the range 1 to 65,535 that identifies a specific code page.

* collating sequence
The sequence in which the characters that are acceptable to a computer are ordered for purposes of
sorting, merging, comparing, and for processing indexed files sequentially.

* column
A byte position within a print line or within a reference format line. The columns are numbered from 1,
by 1, starting at the leftmost position of the line and extending to the rightmost position of the line. A
column holds one single-byte character.

* combined condition
A condition that is the result of connecting two or more conditions with the AND or the OR logical
operator. See also condition and negated combined condition.

combining characters
A Unicode character used to modify other succeeding or preceding Unicode characters. Combining
characters are typically Unicode diacritical mark used to modify latin letters. See precomposed
character for an example of combining character U+0308 (¨) used with latin letter U+0061 (a).

* comment-entry
An entry in the IDENTIFICATION DIVISION that is used for documentation and has no effect on
execution.

comment line
A source program line represented by an asterisk (*) in the indicator area of the line or by an asterisk
followed by greater-than sign (*>) as the first character string in the program text area (Area A plus
Area B), and any characters from the character set of the computer that follow in Area A and Area B of
that line. A comment line serves only for documentation. A special form of comment line represented

Glossary 809

by a slant (/) in the indicator area of the line and any characters from the character set of the
computer in Area A and Area B of that line causes page ejection before the comment is printed.

* common program
A program that, despite being directly contained within another program, can be called from any
program directly or indirectly contained in that other program.

compilation group
Synonymous with sequence of programs.

compilation unit
A unit of COBOL source code that can be separately compiled: a program, class, user-defined
function, or prototype definition. Also known as a source unit.

compilation variable
A symbolic name for a particular literal value or the value of a compile-time arithmetic expression as
specified by the DEFINE directive or by the DEFINE compiler option.

* compile
(1) To translate a program expressed in a high-level language into a program expressed in an
intermediate language, assembly language, or a computer language. (2) To prepare a machine-
language program from a computer program written in another programming language by making
use of the overall logic structure of the program, or generating more than one computer instruction for
each symbolic statement, or both, as well as performing the function of an assembler.

* compile time
The time at which COBOL source code is translated, by a COBOL compiler, to a COBOL object program.

compile-time arithmetic expression
A subset of arithmetic expressions that are specified in the DEFINE and EVALUATE directives or in
a constant conditional expression. The difference between compile-time arithmetic expressions and
regular arithmetic expressions is that in a compile-time arithmetic expression:

• The exponentiation operator shall not be specified.
• All operands shall be integer numeric literals or arithmetic expressions in which all operands are

integer numeric literals.
• The expression shall be specified in such a way that a division by zero does not occur.

compiler
A program that translates source code written in a higher-level language into machine-language
object code.

compiler-directing statement
A statement that causes the compiler to take a specific action during compilation. The standard
compiler-directing statements are COPY, REPLACE, and USE.

* complex condition
A condition in which one or more logical operators act upon one or more conditions. See also
condition, negated simple condition, and negated combined condition.

complex ODO
Certain forms of the OCCURS DEPENDING ON clause:

• Variably located item or group: A data item described by an OCCURS clause with the DEPENDING ON
option is followed by a nonsubordinate data item or group. The group can be an alphanumeric group
or a national group.

• Variably located table: A data item described by an OCCURS clause with the DEPENDING ON option
is followed by a nonsubordinate data item described by an OCCURS clause.

• Table with variable-length elements: A data item described by an OCCURS clause contains a
subordinate data item described by an OCCURS clause with the DEPENDING ON option.

• Index name for a table with variable-length elements.
• Element of a table with variable-length elements.

810 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

component
(1) A functional grouping of related files. (2) In object-oriented programming, a reusable object
or program that performs a specific function and is designed to work with other components and
applications. JavaBeans is Oracle's architecture for creating components.

composed form
Representation of a precomposed Unicode character through a canonical decomposition. See
precomposed character for details.

* computer-name
A system-name that identifies the computer where the program is to be compiled or run.

condition (exception)
An exception that has been enabled, or recognized, by Language Environment and thus is eligible to
activate user and language condition handlers. Any alteration to the normal programmed flow of an
application. Conditions can be detected by the hardware or the operating system and result in an
interrupt. They can also be detected by language-specific generated code or language library code.

condition (expression)
A status of data at run time for which a truth value can be determined. Where used in this information
in or in reference to "condition" (condition-1, condition-2,. . .) of a general format, the term refers
to a conditional expression that consists of either a simple condition optionally parenthesized or a
combined condition (consisting of the syntactically correct combination of simple conditions, logical
operators, and parentheses) for which a truth value can be determined. See also simple condition,
complex condition, negated simple condition, combined condition, and negated combined condition.

* conditional expression
A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM, or SEARCH
statement. See also simple condition and complex condition.

* conditional phrase
A phrase that specifies the action to be taken upon determination of the truth value of a condition that
results from the execution of a conditional statement.

* conditional statement
A statement that specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program depends on this truth value.

* conditional variable
A data item one or more values of which has a condition-name assigned to it.

* condition-name
A user-defined word that assigns a name to a subset of values that a conditional variable can assume;
or a user-defined word assigned to a status of an implementor-defined switch or device.

* condition-name condition
The proposition (for which a truth value can be determined) that the value of a conditional variable is a
member of the set of values attributed to a condition-name associated with the conditional variable.

* CONFIGURATION SECTION
A section of the ENVIRONMENT DIVISION that describes overall specifications of source and object
programs and class definitions.

CONSOLE
A COBOL environment-name associated with the operator console.

constant conditional expression
A subset of conditional expressions that may be used in IF directives or WHEN phrases of the
EVALUATE directives.

A constant conditional expression shall be one of the following items:

• A relation condition in which both operands are literals or arithmetic expressions that contain only
literal terms. The condition shall follow the rules for relation conditions, with the following additions:

– The operands shall be of the same category. An arithmetic expression is of the category numeric.

Glossary 811

– If literals are specified and they are not numeric literals, the relational operator shall be “IS
EQUAL TO”, “IS NOT EQUAL TO”, “IS =”, “IS NOT =”, or “IS <>”.

See also relation condition.
• A defined condition. See also defined condition.
• A boolean condition. See also boolean condition.
• A complex condition formed by combining the above forms of simple conditions into complex

conditions by using AND, OR, and NOT. Abbreviated combined relation conditions shall not be
specified. See also complex condition.

contained program
A COBOL program that is nested within another COBOL program.

* contiguous items
Items that are described by consecutive entries in the DATA DIVISION, and that bear a definite
hierarchic relationship to each other.

copybook
A file or library member that contains a sequence of code that is included in the source program at
compile time using the COPY statement. The file can be created by the user, supplied by COBOL, or
supplied by another product. Synonymous with copy file.

* counter
A data item used for storing numbers or number representations in a manner that permits these
numbers to be increased or decreased by the value of another number, or to be changed or reset to
zero or to an arbitrary positive or negative value.

cross-reference listing
The portion of the compiler listing that contains information on where files, fields, and indicators are
defined, referenced, and modified in a program.

currency-sign value
A character string that identifies the monetary units stored in a numeric-edited item. Typical examples
are $, USD, and EUR. A currency-sign value can be defined by either the CURRENCY compiler option
or the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.
If the CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the
dollar sign ($) is used as the default currency-sign value. See also currency symbol.

currency symbol
A character used in a PICTURE clause to indicate the position of a currency sign value in a numeric-
edited item. A currency symbol can be defined by either the CURRENCY compiler option or the
CURRENCY SIGN clause in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. If the
CURRENCY SIGN clause is not specified and the NOCURRENCY compiler option is in effect, the dollar
sign ($) is used as the default currency sign value and currency symbol. Multiple currency symbols
and currency sign values can be defined. See also currency sign value.

* current record
In file processing, the record that is available in the record area associated with a file.

* current volume pointer
A conceptual entity that points to the current volume of a sequential file.

D

* data clause
A clause, appearing in a data description entry in the DATA DIVISION of a COBOL program, that
provides information describing a particular attribute of a data item.

* data description entry
An entry in the DATA DIVISION of a COBOL program that is composed of a level-number followed by
a data-name, if required, and then followed by a set of data clauses, as required.

DATA DIVISION
The division of a COBOL program or method that describes the data to be processed by the program
or method: the files to be used and the records contained within them; internal WORKING-STORAGE

812 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

records that will be needed; data to be made available in more than one program in the COBOL run
unit.

* data item
A unit of data (excluding literals) defined by a COBOL program or by the rules for function evaluation.

data set
Synonym for file.

* data-name
A user-defined word that names a data item described in a data description entry. When used in the
general formats, data-name represents a word that must not be reference-modified, subscripted, or
qualified unless specifically permitted by the rules for the format.

DBCS
See double-byte character set (DBCS).

DBCS character
Any character defined in IBM's double-byte character set.

DBCS character position
See character position.

DBCS data item
A data item that is described by a PICTURE character string that contains at least one symbol G, or,
when the NSYMBOL(DBCS) compiler option is in effect, at least one symbol N. A DBCS data item has
USAGE DISPLAY-1.

* debugging line
Any line with a D in the indicator area of the line.

* debugging section
A section that contains a USE FOR DEBUGGING statement.

* declarative sentence
A compiler-directing sentence that consists of a single USE statement terminated by the separator
period.

* declaratives
A set of one or more special-purpose sections, written at the beginning of the PROCEDURE
DIVISION, the first of which is preceded by the key word DECLARATIVE and the last of which is
followed by the key words END DECLARATIVES. A declarative is composed of a section header,
followed by a USE compiler-directing sentence, followed by a set of zero, one, or more associated
paragraphs.

* de-edit
The logical removal of all editing characters from a numeric-edited data item in order to determine the
unedited numeric value of the item.

defined condition
A compile-time condition that tests whether a compilation variable is defined. Defined conditions are
specified in IF directives or WHEN phrases of the EVALUATE directives.

* delimited scope statement
Any statement that includes its explicit scope terminator.

* delimiter
A character or a sequence of contiguous characters that identify the end of a string of characters and
separate that string of characters from the following string of characters. A delimiter is not part of the
string of characters that it delimits.

dependent region
In IMS, the MVS virtual storage region that contains message-driven programs, batch programs, or
online utilities.

* descending key
A key upon the values of which data is ordered starting with the highest value of key down to the
lowest value of key, in accordance with the rules for comparing data items.

Glossary 813

digit
Any of the numerals from 0 through 9. In COBOL, the term is not used to refer to any other symbol.

* digit position
The amount of physical storage required to store a single digit. This amount can vary depending on the
usage specified in the data description entry that defines the data item.

* direct access
The facility to obtain data from storage devices or to enter data into a storage device in such a way
that the process depends only on the location of that data and not on a reference to data previously
accessed.

display floating-point data item
A data item that is described implicitly or explicitly as USAGE DISPLAY and that has a PICTURE
character string that describes an external floating-point data item.

* division
A collection of zero, one, or more sections or paragraphs, called the division body, that are formed and
combined in accordance with a specific set of rules. Each division consists of the division header and
the related division body. There are four divisions in a COBOL program: Identification, Environment,
Data, and Procedure.

* division header
A combination of words followed by a separator period that indicates the beginning of a division. The
division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DLL
See dynamic link library (DLL).

DLL application
An application that references imported programs, functions, or variables.

DLL linkage
A CALL in a program that has been compiled with the DLL and NODYNAM options; the CALL resolves
to an exported name in a separate module, or to an INVOKE of a method that is defined in a separate
module.

do construct
In structured programming, a DO statement is used to group a number of statements in a procedure.
In COBOL, an inline PERFORM statement functions in the same way.

do-until
In structured programming, a do-until loop will be executed at least once, and until a given condition
is true. In COBOL, a TEST AFTER phrase used with the PERFORM statement functions in the same
way.

do-while
In structured programming, a do-while loop will be executed if, and while, a given condition is true. In
COBOL, a TEST BEFORE phrase used with the PERFORM statement functions in the same way.

document type declaration
An XML element that contains or points to markup declarations that provide a grammar for a class of
documents. This grammar is known as a document type definition, or DTD.

document type definition (DTD)
The grammar for a class of XML documents. See document type declaration.

double-byte ASCII
An IBM character set that includes DBCS and single-byte ASCII characters. (Also known as ASCII
DBCS.)

814 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

double-byte EBCDIC
An IBM character set that includes DBCS and single-byte EBCDIC characters. (Also known as EBCDIC
DBCS.)

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more symbols than can be represented by 256 code points,
require double-byte character sets. Because each character requires 2 bytes, entering, displaying,
and printing DBCS characters requires hardware and supporting software that are DBCS-capable.

DWARF
DWARF was developed by the UNIX International Programming Languages Special Interest Group
(SIG). It is designed to meet the symbolic, source-level debugging needs of different languages in a
unified fashion by supplying language-independent debugging information. A DWARF file contains
debugging data organized into different elements. For more information, see DWARF program
information in the DWARF/ELF Extensions Library Reference.

* dynamic access
An access mode in which specific logical records can be obtained from or placed into a mass storage
file in a nonsequential manner and obtained from a file in a sequential manner during the scope of the
same OPEN statement.

dynamic CALL
A CALL literal statement in a program that has been compiled with the DYNAM option and the NODLL
option, or a CALL identifier statement in a program that has been compiled with the NODLL option.

dynamic-length
An adjective describing an item whose logical length might change at runtime.

dynamic-length elementary item
An elementary data item whose data declaration entry contains the DYNAMIC LENGTH clause.

dynamic-length group
A group item that contains a subordinate dynamic-length elementary item.

dynamic link library (DLL)
A file that contains executable code and data that are bound to a program at load time or run time,
rather than during linking. Several applications can share the code and data in a DLL simultaneously.
Although a DLL is not part of the executable file for a program, it can be required for an executable file
to run properly.

dynamic storage area (DSA)
Dynamically acquired storage composed of a register save area and an area available for dynamic
storage allocation (such as program variables). A DSA is allocated upon invocation of a program or
function and persists for the duration of the invocation instance. DSAs are generally allocated within
stack segments managed by Language Environment.

E

* EBCDIC (Extended Binary-Coded Decimal Interchange Code)
A coded character set based on 8-bit coded characters.

EBCDIC character
Any one of the symbols included in the EBCDIC (Extended Binary-Coded-Decimal Interchange Code)
set.

EBCDIC DBCS
See double-byte EBCDIC.

edited data item
A data item that has been modified by suppressing zeros or inserting editing characters or both.

* editing character
A single character or a fixed two-character combination belonging to the following set:

Glossary 815

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.cbcdd01/dwarfelfterminology.htm?sc=SSLTBW_latest

Character Meaning

Space

0 Zero

+ Plus

- Minus

CR Credit

DB Debit

Z Zero suppress

* Check protect

$ Currency sign

, Comma (decimal point)

. Period (decimal point)

/ Slant (forward slash)

EGCS
See extended graphic character set (EGCS).

EJB
See Enterprise JavaBeans.

EJB container
A container that implements the EJB component contract of the J2EE architecture. This contract
specifies a runtime environment for enterprise beans that includes security, concurrency, life cycle
management, transaction, deployment, and other services. An EJB container is provided by an EJB or
J2EE server. (Oracle)

EJB server
Software that provides services to an EJB container. An EJB server can host one or more EJB
containers. (Oracle)

element (text element)
One logical unit of a string of text, such as the description of a single data item or verb, preceded by a
unique code identifying the element type.

* elementary item
A data item that is described as not being further logically subdivided.

encapsulation
In object-oriented programming, the technique that is used to hide the inherent details of an
object. The object provides an interface that queries and manipulates the data without exposing
its underlying structure. Synonymous with information hiding.

enclave
When running under Language Environment, an enclave is analogous to a run unit. An enclave can
create other enclaves by using LINK and by using the system() function in C.

encoding unit
See character encoding unit.

end class marker
A combination of words, followed by a separator period, that indicates the end of a COBOL class
definition. The end class marker is:

END CLASS class-name.

816 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

end method marker
A combination of words, followed by a separator period, that indicates the end of a COBOL method
definition. The end method marker is:

END METHOD method-name.

* end of PROCEDURE DIVISION
The physical position of a COBOL source program after which no further procedures appear.

* end program marker
A combination of words, followed by a separator period, that indicates the end of a COBOL source
program. The end program marker is:

END PROGRAM program-name.

enterprise bean
A component that implements a business task and resides in an EJB container. (Oracle)

Enterprise JavaBeans
A component architecture defined by Oracle for the development and deployment of object-oriented,
distributed, enterprise-level applications.

* entry
Any descriptive set of consecutive clauses terminated by a separator period and written in the
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a COBOL program.

* environment clause
A clause that appears as part of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION
One of the four main component parts of a COBOL program, class definition, or method definition. The
ENVIRONMENT DIVISION describes the computers where the source program is compiled and those
where the object program is run. It provides a linkage between the logical concept of files and their
records, and the physical aspects of the devices on which files are stored.

environment-name
A name, specified by IBM, that identifies system logical units, printer and card punch control
characters, report codes, program switches or all of these. When an environment-name is associated
with a mnemonic-name in the ENVIRONMENT DIVISION, the mnemonic-name can be substituted in
any format in which such substitution is valid.

environment variable
Any of a number of variables that define some aspect of the computing environment, and are
accessible to programs that operate in that environment. Environment variables can affect the
behavior of programs that are sensitive to the environment in which they operate.

escape sequence
A sequence of characters that are used to represent certain special characters within string literals
and character literals.
Escape sequences consist of two or more characters, the first of which is the backslash (\) character,
which is called the "escape character"; the remaining characters determine the interpretation of the
escape sequence. For example, \n is an escape sequence that denotes a newline character.
Escape sequences are used in programming languages such as C, C++, Java, or Python. COBOL does
not have the concept of "escape sequence" or "escape character". To handle special characters within
COBOL literals, see Basic alphanumeric literals and DBCS literals in the Enterprise COBOL for z/OS
Language Reference.

execution time
See run time.

execution-time environment
See runtime environment.

Glossary 817

* explicit scope terminator
A reserved word that terminates the scope of a particular PROCEDURE DIVISION statement.

exponent
A number that indicates the power to which another number (the base) is to be raised. Positive
exponents denote multiplication; negative exponents denote division; and fractional exponents
denote a root of a quantity. In COBOL, an exponential expression is indicated with the symbol **
followed by the exponent.

* expression
An arithmetic or conditional expression.

* extend mode
The state of a file after execution of an OPEN statement, with the EXTEND phrase specified for that file,
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

extended graphic character set (EGCS)
A graphic character set, such as a kanji character set, that requires two bytes to identify each graphic
character. It is refined and replaced by double-byte character set (DBCS).

Extensible Markup Language
See XML.

extensions
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

external code page
For XML documents, the value specified by the CODEPAGE compiler option.

* external data
The data that is described in a program as external data items and external file connectors.

* external data item
A data item that is described as part of an external record in one or more programs of a run unit and
that can be referenced from any program in which it is described.

* external data record
A logical record that is described in one or more programs of a run unit and whose constituent data
items can be referenced from any program in which they are described.

external decimal data item
See zoned decimal data item and national decimal data item.

* external file connector
A file connector that is accessible to one or more object programs in the run unit.

external floating-point data item
See display floating-point data item and national floating-point data item.

external program
The outermost program. A program that is not nested.

* external switch
A hardware or software device, defined and named by the implementor, which is used to indicate that
one of two alternate states exists.

F

factory data
Data that is allocated once for a class and shared by all instances of the class. Factory data is declared
in the WORKING-STORAGE SECTION of the DATA DIVISION in the FACTORY paragraph of the class
definition, and is equivalent to Java private static data.

factory method
A method that is supported by a class independently of an object instance. Factory methods are
declared in the FACTORY paragraph of the class definition, and are equivalent to Java public static
methods. They are typically used to customize the creation of objects.

818 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

* figurative constant
A compiler-generated value referenced through the use of certain reserved words.

* file
A collection of logical records.

* file attribute conflict condition
An unsuccessful attempt has been made to execute an input-output operation on a file and the file
attributes, as specified for that file in the program, do not match the fixed attributes for that file.

* file clause
A clause that appears as part of any of the following DATA DIVISION entries: file description entry
(FD entry) and sort-merge file description entry (SD entry).

* file connector
A storage area that contains information about a file and is used as the linkage between a file-name
and a physical file and between a file-name and its associated record area.

File-Control
The name of an ENVIRONMENT DIVISION paragraph in which the data files for a given source
program are declared.

file control block
Block containing the addresses of I/O routines, information about how they were opened and closed,
and a pointer to the file information block.

* file control entry
A SELECT clause and all its subordinate clauses that declare the relevant physical attributes of a file.

FILE-CONTROL paragraph
A paragraph in the ENVIRONMENT DIVISION in which the data files for a given source unit are
declared.

* file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator FD,
followed by a file-name, and then followed by a set of file clauses as required.

* file-name
A user-defined word that names a file connector described in a file description entry or a sort-merge
file description entry within the FILE SECTION of the DATA DIVISION.

* file organization
The permanent logical file structure established at the time that a file is created.

file position indicator
A conceptual entity that contains the value of the current key within the key of reference for an
indexed file, or the record number of the current record for a sequential file, or the relative record
number of the current record for a relative file, or indicates that no next logical record exists, or that
an optional input file is not available, or that the AT END condition already exists, or that no valid next
record has been established.

* FILE SECTION
The section of the DATA DIVISION that contains file description entries and sort-merge file
description entries together with their associated record descriptions.

file system
The collection of files that conform to a specific set of data-record and file-description protocols, and
a set of programs that manage these files.

* fixed file attributes
Information about a file that is established when a file is created and that cannot subsequently
be changed during the existence of the file. These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key, the alternate record keys, the code set, the
minimum and maximum record size, the record type (fixed or variable), the collating sequence of the
keys for indexed files, the blocking factor, the padding character, and the record delimiter.

Glossary 819

* fixed-length record
A record associated with a file whose file description or sort-merge description entry requires that all
records contain the same number of bytes.

fixed-point item
A numeric data item defined with a PICTURE clause that specifies the location of an optional sign, the
number of digits it contains, and the location of an optional decimal point. The format can be either
binary, packed decimal, or external decimal.

floating comment indicators (*>)
A floating comment indicator indicates a comment line if it is the first character string in the program-
text area (Area A plus Area B), or indicates an inline comment if it is after one or more character
strings in the program-text area.

floating point
A format for representing numbers in which a real number is represented by a pair of distinct
numerals. In a floating-point representation, the real number is the product of the fixed-point part
(the first numeral) and a value obtained by raising the implicit floating-point base to a power denoted
by the exponent (the second numeral). For example, a floating-point representation of the number
0.0001234 is 0.1234 -3, where 0.1234 is the mantissa and -3 is the exponent.

floating-point data item
A numeric data item that contains a fraction and an exponent. Its value is obtained by multiplying the
fraction by the base of the numeric data item raised to the power that the exponent specifies.

* format
A specific arrangement of a set of data.

* function
A temporary data item whose value is determined at the time the function is referenced during the
execution of a statement.

* function-identifier
A syntactically correct combination of character strings and separators that references a function.
The data item represented by a function is uniquely identified by a function-name with its arguments,
if any. A function-identifier can include a reference-modifier. A function-identifier that references an
alphanumeric function can be specified anywhere in the general formats that an identifier can be
specified, subject to certain restrictions. A function-identifier that references an integer or numeric
function can be referenced anywhere in the general formats that an arithmetic expression can be
specified.

function-name
A word that names the mechanism whose invocation, along with required arguments, determines the
value of a function.

function-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS FUNCTION-POINTER clause contains the address of a function entry point. Typically used to
communicate with C and Java programs.

G

garbage collection
The automatic freeing by the Java runtime system of the memory for objects that are no longer
referenced.

* global name
A name that is declared in only one program but that can be referenced from the program and from
any program contained within the program. Condition-names, data-names, file-names, record-names,
report-names, and some special registers can be global names.

global reference
A reference to an object that is outside the scope of a method.

820 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

group item
(1) A data item that is composed of subordinate data items. See alphanumeric group item and national
group item. (2) When not qualified explicitly or by context as a national group or an alphanumeric
group, the term refers to groups in general.

grouping separator
A character used to separate units of digits in numbers for ease of reading. The default is the
character comma.

H

header label
(1) A data-set label that precedes the data records in a unit of recording media. (2) Synonym for
beginning-of-file label.

hide (a method)
To redefine (in a subclass) a factory or static method defined with the same method-name in a parent
class. Thus, the method in the subclass hides the method in the parent class.

* high-order end
The leftmost character of a string of characters.

hiperspace
In a z/OS environment, a range of up to 2 GB of contiguous virtual storage addresses that a program
can use as a buffer.

I

IBM COBOL extension
COBOL syntax and semantics supported by IBM compilers in addition to those described in the 85
COBOL Standard.

IDENTIFICATION DIVISION
One of the four main component parts of a COBOL program, class definition, or method definition.
The IDENTIFICATION DIVISION identifies the program, class, or method. The IDENTIFICATION
DIVISION can include the following documentation: author name, installation, or date.

* identifier
A syntactically correct combination of character strings and separators that names a data item.
When referencing a data item that is not a function, an identifier consists of a data-name, together
with its qualifiers, subscripts, and reference-modifier, as required for uniqueness of reference. When
referencing a data item that is a function, a function-identifier is used.

IGZCBSN
The bootstrap routine for COBOL/370 1.1. It must be link-edited with any module that contains a
COBOL/370 1.1 program.

IGZCBSO
The bootstrap routine for COBOL for MVS & VM 1.2, COBOL for OS/390 & VM and Enterprise COBOL.
It must be link-edited with any module that contains a COBOL for MVS & VM 1.2, COBOL for OS/390 &
VM or Enterprise COBOL program.

IGZEBST
The bootstrap routine for VS COBOL II. It must be link-edited with any module that contains a VS
COBOL II program.

ILC
InterLanguage Communication. Interlanguage communication is defined as programs that call or are
called by other high-level languages. Assembler is not considered a high-level language; thus, calls to
and from assembler programs are not considered ILC.

* imperative statement
A statement that either begins with an imperative verb and specifies an unconditional action to be
taken or is a conditional statement that is delimited by its explicit scope terminator (delimited scope
statement). An imperative statement can consist of a sequence of imperative statements.

Glossary 821

* implicit scope terminator
A separator period that terminates the scope of any preceding unterminated statement, or a phrase of
a statement that by its occurrence indicates the end of the scope of any statement contained within
the preceding phrase.

IMS
Information Management System, IBM licensed product. IMS supports hierarchical databases, data
communication, translation processing, and database backout and recovery.

* index
A computer storage area or register, the content of which represents the identification of a particular
element in a table.

* index data item
A data item in which the values associated with an index-name can be stored in a form specified by
the implementor.

indexed data-name
An identifier that is composed of a data-name, followed by one or more index-names enclosed in
parentheses.

* indexed file
A file with indexed organization.

* indexed organization
The permanent logical file structure in which each record is identified by the value of one or more keys
within that record.

indexing
Synonymous with subscripting using index-names.

* index-name
A user-defined word that names an index associated with a specific table.

inheritance
A mechanism for using the implementation of a class as the basis for another class. By definition,
the inheriting class conforms to the inherited classes. Enterprise COBOL does not support multiple
inheritance; a subclass has exactly one immediate superclass.

inheritance hierarchy
See class hierarchy.

* initial program
A program that is placed into an initial state every time the program is called in a run unit.

* initial state
The state of a program when it is first called in a run unit.

inline
In a program, instructions that are executed sequentially, without branching to routines, subroutines,
or other programs.

inline comments
An inline comment is identified by a floating comment indicator (*>) preceded by one or more
character-strings in the program-text area, and can be written on any line of a compilation group.
All characters that follow the floating comment indicator up to the end of area B are comment text.

* input file
A file that is opened in the input mode.

* input mode
The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that file
and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

* input-output file
A file that is opened in the I-O mode.

822 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

* INPUT-OUTPUT SECTION
The section of the ENVIRONMENT DIVISION that names the files and the external media required by
an object program or method and that provides information required for transmission and handling of
data at run time.

* input-output statement
A statement that causes files to be processed by performing operations on individual records or
on the file as a unit. The input-output statements are ACCEPT (with the identifier phrase), CLOSE,
DELETE, DISPLAY, OPEN, READ, REWRITE, SET (with the TO ON or TO OFF phrase), START, and
WRITE.

* input procedure
A set of statements, to which control is given during the execution of a format 1 SORT statement, for
the purpose of controlling the release of specified records to be sorted.

instance data
Data that defines the state of an object. The instance data introduced by a class is defined in
the WORKING-STORAGE SECTION of the DATA DIVISION in the OBJECT paragraph of the class
definition. The state of an object also includes the state of the instance variables introduced by
classes that are inherited by the current class. A separate copy of the instance data is created for each
object instance.

* integer
(1) A numeric literal that does not include any digit positions to the right of the decimal point. (2) A
numeric data item defined in the DATA DIVISION that does not include any digit positions to the
right of the decimal point. (3) A numeric function whose definition provides that all digits to the right
of the decimal point are zero in the returned value for any possible evaluation of the function.

integer function
A function whose category is numeric and whose definition does not include any digit positions to the
right of the decimal point.

Interactive System Productivity Facility (ISPF)
An IBM software product that provides a menu-driven interface for the TSO or VM user. ISPF includes
library utilities, a powerful editor, and dialog management.

interlanguage communication (ILC)
The ability of routines written in different programming languages to communicate. ILC support lets
you readily build applications from component routines written in a variety of languages.

intermediate result
An intermediate field that contains the results of a succession of arithmetic operations.

* internal data
The data that is described in a program and excludes all external data items and external file
connectors. Items described in the LINKAGE SECTION of a program are treated as internal data.

* internal data item
A data item that is described in one program in a run unit. An internal data item can have a global
name.

internal decimal data item
A data item that is described as USAGE PACKED-DECIMAL or USAGE COMP-3, and that has a
PICTURE character string that defines the item as numeric (a valid combination of symbols 9, S, P, or
V). Synonymous with packed-decimal data item.

* internal file connector
A file connector that is accessible to only one object program in the run unit.

internal floating-point data item
A data item that is described as USAGE COMP-1 or USAGE COMP-2. COMP-1 defines a single-
precision floating-point data item. COMP-2 defines a double-precision floating-point data item. There
is no PICTURE clause associated with an internal floating-point data item.

* intrarecord data structure
The entire collection of groups and elementary data items from a logical record that a contiguous
subset of the data description entries defines. These data description entries include all entries

Glossary 823

whose level-number is greater than the level-number of the first data description entry describing the
intra-record data structure.

intrinsic function
A predefined function, such as a commonly used arithmetic function, called by a built-in function
reference.

* invalid key condition
A condition, at run time, caused when a specific value of the key associated with an indexed or relative
file is determined to be not valid.

* I-O-CONTROL
The name of an ENVIRONMENT DIVISION paragraph in which object program requirements for rerun
points, sharing of same areas by several data files, and multiple file storage on a single input-output
device are specified.

* I-O-CONTROL entry
An entry in the I-O-CONTROL paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that provide information required for the transmission and handling of data on named files
during the execution of a program.

* I-O mode
The state of a file after execution of an OPEN statement, with the I-O phrase specified, for that file
and before the execution of a CLOSE statement without the REEL or UNIT phase for that file.

* I-O status
A conceptual entity that contains the two-character value indicating the resulting status of an input-
output operation. This value is made available to the program through the use of the FILE STATUS
clause in the file control entry for the file.

is-a
A relationship that characterizes classes and subclasses in an inheritance hierarchy. Subclasses that
have an is-a relationship to a class inherit from that class.

ISPF
See Interactive System Productivity Facility (ISPF).

iteration structure
A program processing logic in which a series of statements is repeated while a condition is true or
until a condition is true.

J

J2EE
See Java 2 Platform, Enterprise Edition (J2EE).

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications, defined by Oracle. The J2EE
platform consists of a set of services, application programming interfaces (APIs), and protocols that
provide the functionality for developing multitiered, Web-based applications. (Oracle)

Java Batch Launcher and Toolkit for z/OS (JZOS)
A set of tools that helps you develop z/OS Java applications that run in a traditional batch
environment, and that access z/OS system services.

Java batch-processing program (JBP)
An IMS batch-processing program that has access to online databases and output message queues.
JBPs run online, but like programs in a batch environment, they are started with JCL or in a TSO
session.

Java batch-processing region
An IMS dependent region in which only Java batch-processing programs are scheduled.

Java Database Connectivity (JDBC)
A specification from Oracle that defines an API that enables Java programs to access databases.

Java message-processing program (JMP)
A Java application program that is driven by transactions and has access to online IMS databases and
message queues.

824 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Java message-processing region
An IMS dependent region in which only Java message-processing programs are scheduled.

Java Native Interface (JNI)
A programming interface that lets Java code that runs inside a Java virtual machine (JVM)
interoperate with applications and libraries written in other programming languages.

Java virtual machine (JVM)
A software implementation of a central processing unit that runs compiled Java programs.

JavaBeans
A portable, platform-independent, reusable component model. (Oracle)

JBP
See Java batch-processing program (JBP).

JDBC
See Java Database Connectivity (JDBC).

JMP
See Java message-processing program (JMP).

job control language (JCL)
A control language used to identify a job to an operating system and to describe the job's
requirements.

JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format.

JVM
See Java virtual machine (JVM).

JZOS
See Java Batch Launcher and Toolkit for z/OS.

K

K
When referring to storage capacity, two to the tenth power; 1024 in decimal notation.

* key
A data item that identifies the location of a record, or a set of data items that serve to identify the
ordering of data.

* key of reference
The key, either prime or alternate, currently being used to access records within an indexed file.

* keyword
A context-sensitive word or a reserved word whose presence is required when the format in which the
word appears is used in a source unit.

kilobyte (KB)
One kilobyte equals 1024 bytes.

L

* language-name
A system-name that specifies a particular programming language.

Language Environment
Short form of z/OS Language Environment. A set of architectural constructs and interfaces that
provides a common runtime environment and runtime services for C, C++, COBOL, FORTRAN and PL/I
applications. It is required for programs compiled by Language Environment-conforming compilers
and for Java applications.

Language Environment-conforming
A characteristic of compiler products (such as Enterprise COBOL, COBOL for OS/390 & VM, COBOL
for MVS & VM, C/C++ for MVS & VM, PL/I for MVS & VM) that produce object code conforming to the
Language Environment conventions.

Glossary 825

last-used state
A state that a program is in if its internal values remain the same as when the program was exited (the
values are not reset to their initial values).

* letter
A character belonging to one of the following two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

* level indicator
Two alphabetic characters that identify a specific type of file or a position in a hierarchy. The level
indicators in the DATA DIVISION are: CD, FD, and SD.

* level-number
A user-defined word (expressed as a two-digit number) that indicates the hierarchical position of
a data item or the special properties of a data description entry. Level-numbers in the range from
1 through 49 indicate the position of a data item in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 can be written either as a single digit or as a zero followed by
a significant digit. Level-numbers 66, 77, and 88 identify special properties of a data description entry.

* library-name
A user-defined word that names a COBOL library that the compiler is to use for compiling a given
source program.

* library text
A sequence of text words, comment lines, inline comments, the separator space, or the separator
pseudo-text delimiter in a COBOL library.

Lilian date
The number of days since the beginning of the Gregorian calendar. Day one is Friday, October 15,
1582. The Lilian date format is named in honor of Luigi Lilio, the creator of the Gregorian calendar.

* linage-counter
A special register whose value points to the current position within the page body.

link
(1) The combination of the link connection (the transmission medium) and two link stations, one
at each end of the link connection. A link can be shared among multiple links in a multipoint or
token-ring configuration. (2) To interconnect items of data or portions of one or more computer
programs; for example, linking object programs by a linkage-editor to produce an executable file.

LINKAGE SECTION
The section in the DATA DIVISION of the called program or invoked method that describes data
items available from the calling program or invoking method. Both the calling program or invoking
method and the called program or invoked method can refer to these data items.

linker
A term that refers to either the z/OS binder (linkage-editor).

literal
A character string whose value is specified either by the ordered set of characters comprising the
string or by the use of a figurative constant.

little-endian
The default format that Intel processors use to store binary data and UTF-16 characters. In this
format, the most significant byte of a binary data item is at the highest address and the most
significant byte of a UTF-16 character is at the highest address. Compare with big-endian.

local reference
A reference to an object that is within the scope of your method.

locale
A set of attributes for a program execution environment that indicates culturally sensitive
considerations, such as character code page, collating sequence, date and time format, monetary
value representation, numeric value representation, or language.

826 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

* LOCAL-STORAGE SECTION
The section of the DATA DIVISION that defines storage that is allocated and freed on a per-
invocation basis, depending on the value assigned in the VALUE clauses.

* logical operator
One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND, or OR, or both
can be used as logical connectives. NOT can be used for logical negation.

* logical record
The most inclusive data item. The level-number for a record is 01. A record can be either an
elementary item or a group of items. Synonymous with record.

* low-order end
The rightmost character of a string of characters.

M

main program
In a hierarchy of programs and subroutines, the first program that receives control when the programs
are run within a process.

makefile
A text file that contains a list of the files for your application. The make utility uses this file to update
the target files with the latest changes.

* mass storage
A storage medium in which data can be organized and maintained in both a sequential manner and a
nonsequential manner.

* mass storage device
A device that has a large storage capacity, such as a magnetic disk.

* mass storage file
A collection of records that is stored in a mass storage medium.

* megabyte (MB)
One megabyte equals 1,048,576 bytes.

* merge file
A collection of records to be merged by a MERGE statement. The merge file is created and can be used
only by the merge function.

message-processing program (MPP)
An IMS application program that is driven by transactions and has access to online IMS databases and
message queues.

message queue
The data set on which messages are queued before being processed by an application program or
sent to a terminal.

method
Procedural code that defines an operation supported by an object and that is executed by an INVOKE
statement on that object.

* method definition
The COBOL source code that defines a method.

* method identification entry
An entry in the METHOD-ID paragraph of the IDENTIFICATION DIVISION; this entry contains a
clause that specifies the method-name.

method invocation
A communication from one object to another that requests the receiving object to execute a method.

method-name
The name of an object-oriented operation. When used to invoke the method, the name can be an
alphanumeric or national literal or a category alphanumeric or category national data item. When used
in the METHOD-ID paragraph to define the method, the name must be an alphanumeric or national
literal.

Glossary 827

method hiding
See hide.

method overloading
See overload.

method overriding
See override.

* mnemonic-name
A user-defined word that is associated in the ENVIRONMENT DIVISION with a specified
implementor-name.

module definition file
A file that describes the code segments within a program object.

MPP
See message-processing program (MPP).

multitasking
A mode of operation that provides for the concurrent, or interleaved, execution of two or more tasks.

multithreading
Concurrent operation of more than one path of execution within a computer. Synonymous with
multiprocessing.

N

name
A word (composed of not more than 30 characters) that defines a COBOL operand.

namespace
See XML namespace.

national character
(1) A UTF-16 character in a USAGE NATIONAL data item or national literal. (2) Any character
represented in UTF-16.

national character data
A general reference to data represented in UTF-16.

national character position
See character position.

national data
See national character data.

national data item
A data item of category national, national-edited, or numeric-edited of USAGE NATIONAL.

national decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE NATIONAL and that
contains a valid combination of PICTURE symbols 9, S, P, and V.

national-edited data item
A data item that is described by a PICTURE character string that contains at least one instance of the
symbol N and at least one of the simple insertion symbols B, 0, or /. A national-edited data item has
USAGE NATIONAL.

national floating-point data item
An external floating-point data item that is described implicitly or explicitly as USAGE NATIONAL and
that has a PICTURE character string that describes a floating-point data item.

national group item
A group item that is explicitly or implicitly described with a GROUP-USAGE NATIONAL clause. A
national group item is processed as though it were defined as an elementary data item of category
national for operations such as INSPECT, STRING, and UNSTRING. This processing ensures correct
padding and truncation of national characters, as contrasted with defining USAGE NATIONAL data
items within an alphanumeric group item. For operations that require processing of the elementary

828 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

items within a group, such as MOVE CORRESPONDING, ADD CORRESPONDING, and INITIALIZE, a
national group is processed using group semantics.

* native character set
The implementor-defined character set associated with the computer specified in the OBJECT-
COMPUTER paragraph.

* native collating sequence
The implementor-defined collating sequence associated with the computer specified in the OBJECT-
COMPUTER paragraph.

native method
A Java method with an implementation that is written in another programming language, such as
COBOL.

* negated combined condition
The NOT logical operator immediately followed by a parenthesized combined condition. See also
condition and combined condition.

* negated simple condition
The NOT logical operator immediately followed by a simple condition. See also condition and simple
condition.

nested program
A program that is directly contained within another program.

* next executable sentence
The next sentence to which control will be transferred after execution of the current statement is
complete.

* next executable statement
The next statement to which control will be transferred after execution of the current statement is
complete.

* next record
The record that logically follows the current record of a file.

* noncontiguous items
Elementary data items in the WORKING-STORAGE SECTION and LINKAGE SECTION that bear no
hierarchic relationship to other data items.

* noncontiguous items
Elementary data items in the WORKING-STORAGE and LINKAGE SECTIONs that bear no hierarchic
relationship to other data items.

* nonnumeric item
A data item whose description permits its content to be composed of any combination of characters
taken from the computer's character set. Certain categories of nonnumeric items may be formed from
more restricted character sets.

null
A figurative constant that is used to assign, to pointer data items, the value of an address that is not
valid. NULLS can be used wherever NULL can be used.

* numeric character
A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric data item
(1) A data item whose description restricts its content to a value represented by characters chosen
from the digits 0 through 9. If signed, the item can also contain a +, -, or other representation of
an operational sign. (2) A data item of category numeric, internal floating-point, or external floating-
point. A numeric data item can have USAGE DISPLAY, NATIONAL, PACKED-DECIMAL, BINARY, COMP,
COMP-1, COMP-2, COMP-3, COMP-4, or COMP-5.

numeric-edited data item
A data item that contains numeric data in a form suitable for use in printed output. The data item can
consist of external decimal digits from 0 through 9, the decimal separator, commas, the currency sign,

Glossary 829

sign control characters, and other editing characters. A numeric-edited item can be represented in
either USAGE DISPLAY or USAGE NATIONAL.

* numeric function
A function whose class and category are numeric but that for some possible evaluation does not
satisfy the requirements of integer functions.

* numeric item
A data item whose description restricts its content to a value represented by characters chosen from
the digits from '0' through '9'; if signed, the item may also contain a '+', '-', or other representation of
an operational sign.

* numeric literal
A literal composed of one or more numeric characters that can contain a decimal point or an algebraic
sign, or both. The decimal point must not be the rightmost character. The algebraic sign, if present,
must be the leftmost character.

O

object
An entity that has state (its data values) and operations (its methods). An object is a way to
encapsulate state and behavior. Each object in the class is said to be an instance of the class.

object code
Output from a compiler or assembler that is itself executable machine code or is suitable for
processing to produce executable machine code.

* OBJECT-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
object program is run, is described.

* object computer entry
An entry in the OBJECT-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the object program is to be executed.

object deck
A portion of an object program suitable as input to a linkage-editor. Synonymous with object module
and text deck.

object instance
A single object, of possibly many, instantiated from the specifications in the object paragraph of a
COBOL class definition. An object instance has a copy of all the data described in its class definition
and all inherited data. The methods associated with an object instance includes the methods defined
in its class definition and all inherited methods.

An object instance can be an instance of a Java class.

object module
Synonym for object deck or text deck.

* object of entry
A set of operands and reserved words, within a DATA DIVISION entry of a COBOL program, that
immediately follows the subject of the entry.

object-oriented programming
A programming approach based on the concepts of encapsulation and inheritance. Unlike procedural
programming techniques, object-oriented programming concentrates on the data objects that
comprise the problem and how they are manipulated, not on how something is accomplished.

object program
A set or group of executable machine-language instructions and other material designed to interact
with data to provide problem solutions. In this context, an object program is generally the machine
language result of the operation of a COBOL compiler on a source program or class definition. Where
there is no danger of ambiguity, the word program can be used in place of object program.

object reference
A value that identifies an instance of a class. If the class is not specified, the object reference is
universal and can apply to instances of any class.

830 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

* object time
The time at which an object program is executed. Synonymous with run time.

* obsolete element
A COBOL language element in the 85 COBOL Standard that was deleted from the 2002 COBOL
Standard.

ODO object
In the example below, X is the object of the OCCURS DEPENDING ON clause (ODO object).

WORKING-STORAGE SECTION.
01 TABLE-1.
 05 X PIC S9.
 05 Y OCCURS 3 TIMES
 DEPENDING ON X PIC X.

The value of the ODO object determines how many of the ODO subject appear in the table.

ODO subject
In the example above, Y is the subject of the OCCURS DEPENDING ON clause (ODO subject). The
number of Y ODO subjects that appear in the table depends on the value of X.

* open mode
The state of a file after execution of an OPEN statement for that file and before the execution of a
CLOSE statement without the REEL or UNIT phrase for that file. The particular open mode is specified
in the OPEN statement as either INPUT, OUTPUT, I-O, or EXTEND.

* operand
(1) The general definition of operand is "the component that is operated upon." (2) For the purposes
of this document, any lowercase word (or words) that appears in a statement or entry format can
be considered to be an operand and, as such, is an implied reference to the data indicated by the
operand.

operation
A service that can be requested of an object.

* operational sign
An algebraic sign that is associated with a numeric data item or a numeric literal, to indicate whether
its value is positive or negative.

optional file
A file that is declared as being not necessarily available each time the object program is run.

* optional word
A reserved word that is included in a specific format only to improve the readability of the language.
Its presence is optional to the user when the format in which the word appears is used in a source
unit.

* output file
A file that is opened in either output mode or extend mode.

* output mode
The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase specified,
for that file and before the execution of a CLOSE statement without the REEL or UNIT phrase for that
file.

* output procedure
A set of statements to which control is given during execution of a format 1 SORT statement after the
sort function is completed, or during execution of a MERGE statement after the merge function reaches
a point at which it can select the next record in merged order when requested.

overflow condition
A condition that occurs when a portion of the result of an operation exceeds the capacity of the
intended unit of storage.

overload
To define a method with the same name as another method that is available in the same class, but
with a different signature. See also signature.

Glossary 831

override
To redefine an instance method (inherited from a parent class) in a subclass.

P

package
A group of related Java classes, which can be imported individually or as a whole.

packed-decimal data item
See internal decimal data item.

padding character
An alphanumeric or national character that is used to fill the unused character positions in a physical
record.

page
A vertical division of output data that represents a physical separation of the data. The separation is
based on internal logical requirements or external characteristics of the output medium or both.

* page body
That part of the logical page in which lines can be written or spaced or both.

* paragraph
In the PROCEDURE DIVISION, a paragraph-name followed by a separator period and by zero, one,
or more sentences. In the IDENTIFICATION DIVISION and ENVIRONMENT DIVISION, a paragraph
header followed by zero, one, or more entries.

* paragraph header
A reserved word, followed by the separator period, that indicates the beginning of a paragraph in the
IDENTIFICATION DIVISION and ENVIRONMENT DIVISION. The permissible paragraph headers in
the IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION
 DIVISION)
CLASS-ID. (Class IDENTIFICATION DIVISION)
METHOD-ID. (Method IDENTIFICATION
 DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the ENVIRONMENT DIVISION are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class
 CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name
A user-defined word that identifies and begins a paragraph in the PROCEDURE DIVISION.

parameter
(1) Data passed between a calling program and a called program. (2) A data element in the USING
phrase of a method invocation. Arguments provide additional information that the invoked method
can use to perform the requested operation.

Persistent Reusable JVM
A JVM that can be serially reused for transaction processing by resetting the JVM between
transactions. The reset phase restores the JVM to a known initialization state.

* phrase
An ordered set of one or more consecutive COBOL character strings that form a portion of a COBOL
procedural statement or of a COBOL clause.

832 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

* physical record
See block.

pointer data item
A data item in which address values can be stored. Data items are explicitly defined as pointers with
the USAGE IS POINTER clause. ADDRESS OF special registers are implicitly defined as pointer data
items. Pointer data items can be compared for equality or moved to other pointer data items.

port
(1) To modify a computer program to enable it to run on a different platform. (2) In the Internet
suite of protocols, a specific logical connector between the Transmission Control Protocol (TCP) or the
User Datagram Protocol (UDP) and a higher-level protocol or application. A port is identified by a port
number.

portability
The ability to transfer an application program from one application platform to another with relatively
few changes to the source program.

precomposed character
A single Unicode character that can be represented using two or more Unicode characters through a
canonical decomposition. A precomposed character does not have the same physical representation
as its composed character form. For example, Unicode character U+00E4 (ä) is a precomposed
character that can be represented as a combination of Unicode characters U+0061 + U+0308 (ä) -
latin small letter a + combining diaeresis. A precomposed character is typically used to represent a
latin letter with a diacritical mark or some other combining character.

preinitialization
The initialization of the COBOL runtime environment in preparation for multiple calls from programs,
especially non-COBOL programs. The environment is not terminated until an explicit termination.

* prime record key
A key whose contents uniquely identify a record within an indexed file.

* priority-number
A user-defined word that classifies sections in the PROCEDURE DIVISION for purposes of
segmentation. Segment numbers can contain only the characters 0 through 9. A segment number
can be expressed as either one or two digits.

private
As applied to factory data or instance data, accessible only by methods of the class that defines the
data.

* procedure
A paragraph or group of logically successive paragraphs, or a section or group of logically successive
sections, within the PROCEDURE DIVISION.

* procedure branching statement
A statement that causes the explicit transfer of control to a statement other than the next executable
statement in the sequence in which the statements are written in the source code. The procedure
branching statements are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO, MERGE (with the OUTPUT
PROCEDURE phrase), PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE
phrase), XML PARSE.

PROCEDURE DIVISION
The COBOL division that contains instructions for solving a problem.

procedure integration
One of the functions of the COBOL optimizer is to simplify calls to performed procedures or contained
programs.

PERFORM procedure integration is the process whereby a PERFORM statement is replaced by its
performed procedures. Contained program procedure integration is the process where a call to a
contained program is replaced by the program code.

* procedure-name
A user-defined word that is used to name a paragraph or section in the PROCEDURE DIVISION. It
consists of a paragraph-name (which can be qualified) or a section-name.

Glossary 833

procedure pointer
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE IS
PROCEDURE-POINTER clause contains the address of a procedure entry point.

procedure-pointer data item
A data item in which a pointer to an entry point can be stored. A data item defined with the USAGE
IS PROCEDURE-POINTER clause contains the address of a procedure entry point. Typically used to
communicate with COBOL and Language Environment programs.

process
The course of events that occurs during the execution of all or part of a program. Multiple processes
can run concurrently, and programs that run within a process can share resources.

program
(1) A sequence of instructions suitable for processing by a computer. Processing may include the use
of a compiler to prepare the program for execution, as well as a runtime environment to execute it. (2)
A logical assembly of one or more interrelated modules. Multiple copies of the same program can be
run in different processes.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or an
alphanumeric literal that identifies a COBOL source program.

* program identification entry
In the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION, an entry that contains clauses
that specify the program-name and assign selected program attributes to the program.

program-name
In the IDENTIFICATION DIVISION and the end program marker, a user-defined word or
alphanumeric literal that identifies a COBOL source program.

project
The complete set of data and actions that are required to build a target, such as a dynamic link library
(DLL) or other executable (EXE).

* pseudo-text
A sequence of text words, comment lines, inline comments, or the separator space in a source
program or COBOL library bounded by, but not including, pseudo-text delimiters.

* pseudo-text delimiter
Two contiguous equal sign characters (==) used to delimit pseudo-text.

* punctuation character
A character that belongs to the following set:

Character Meaning

, Comma

; Semicolon

: Colon

. Period (full stop)

" Quotation mark

(Left parenthesis

) Right parenthesis

Space

= Equal sign

Q

834 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

QSAM (Queued Sequential Access Method)
An extended version of the basic sequential access method (BSAM). When this method is used, a
queue is formed of input data blocks that are awaiting processing or of output data blocks that have
been processed and are awaiting transfer to auxiliary storage or to an output device.

* qualified data-name
An identifier that is composed of a data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qualifier.

* qualifier
(1) A data-name or a name associated with a level indicator that is used in a reference either together
with another data-name (which is the name of an item that is subordinate to the qualifier) or together
with a condition-name. (2) A section-name that is used in a reference together with a paragraph-name
specified in that section. (3) A library-name that is used in a reference together with a text-name
associated with that library.

R

* random access
An access mode in which the program-specified value of a key data item identifies the logical record
that is obtained from, deleted from, or placed into a relative or indexed file.

* record
See logical record.

* record area
A storage area allocated for the purpose of processing the record described in a record description
entry in the FILE SECTION of the DATA DIVISION. In the FILE SECTION, the current number of
character positions in the record area is determined by the explicit or implicit RECORD clause.

* record description
See record description entry.

* record description entry
The total set of data description entries associated with a particular record. Synonymous with record
description.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed-length), V (variable-length),
S (spanned), or U (undefined).

record key
A key whose contents identify a record within an indexed file.

* record-name
A user-defined word that names a record described in a record description entry in the DATA
DIVISION of a COBOL program.

* record number
The ordinal number of a record in the file whose organization is sequential.

recording mode
The format of the logical records in a file. Recording mode can be F (fixed length), V (variable length),
S (spanned), or U (undefined).

recursion
A program calling itself or being directly or indirectly called by one of its called programs.

recursively capable
A program is recursively capable (can be called recursively) if the RECURSIVE attribute is on the
PROGRAM-ID statement.

reel
A discrete portion of a storage medium, the dimensions of which are determined by each implementor
that contains part of a file, all of a file, or any number of files. Synonymous with unit and volume.

reentrant
The attribute of a program or routine that lets more than one user share a single copy of a program
object.

Glossary 835

* reference format
A format that provides a standard method for describing COBOL source programs.

reference modification
A method of defining a new category alphanumeric, category DBCS, or category national data item
by specifying the leftmost character and length relative to the leftmost character position of a USAGE
DISPLAY, DISPLAY-1, or NATIONAL data item.

* reference-modifier
A syntactically correct combination of character strings and separators that defines a unique data
item. It includes a delimiting left parenthesis separator, the leftmost character position, a colon
separator, optionally a length, and a delimiting right parenthesis separator.

* relation
See relational operator or relation condition.

* relation character
A character that belongs to the following set:

Character Meaning

> Greater than

< Less than

= Equal to

* relation condition
The proposition (for which a truth value can be determined) that the value of an arithmetic expression,
data item, alphanumeric literal, or index-name has a specific relationship to the value of another
arithmetic expression, data item, alphanumeric literal, or index name. See also relational operator.

* relational operator
A reserved word, a relation character, a group of consecutive reserved words, or a group of
consecutive reserved words and relation characters used in the construction of a relation condition.
The permissible operators and their meanings are:

Character Meaning

IS GREATER THAN Greater than

IS > Greater than

IS NOT GREATER THAN Not greater than

IS NOT > Not greater than

IS LESS THAN Less than

IS < Less than

IS NOT LESS THAN Not less than

IS NOT < Not less than

IS EQUAL TO Equal to

IS = Equal to

IS NOT EQUAL TO Not equal to

IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO Greater than or equal to

IS >= Greater than or equal to

836 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Character Meaning

IS LESS THAN OR EQUAL TO Less than or equal to

IS <= Less than or equal to

* relative file
A file with relative organization.

* relative key
A key whose contents identify a logical record in a relative file.

* relative organization
The permanent logical file structure in which each record is uniquely identified by an integer value
greater than zero, which specifies the logical ordinal position of the record in the file.

* relative record number
The ordinal number of a record in a file whose organization is relative. This number is treated as a
numeric literal that is an integer.

* reserved word
A COBOL word that is specified in the list of words that can be used in a COBOL source program, but
that must not appear in the program as a user-defined word or system-name.

* resource
A facility or service, controlled by the operating system, that an executing program can use.

* resultant identifier
A user-defined data item that is to contain the result of an arithmetic operation.

reusable environment
A reusable environment is created when you establish an assembler program as the main program by
using either the old COBOL interfaces for preinitialization (RTEREUS runtime option), or the Language
Environment interface, CEEPIPI.

routine
A set of statements in a COBOL program that causes the computer to perform an operation or series
of related operations. In Language Environment, refers to either a procedure, function, or subroutine.

* routine-name
A user-defined word that identifies a procedure written in a language other than COBOL.

* run time
The time at which an object program is executed. Synonymous with object time.

runtime environment
The environment in which a COBOL program executes.

* run unit
A stand-alone object program, or several object programs, that interact by means of COBOL CALL or
INVOKE statements and function at run time as an entity.
A run unit is also called an enclave in Language Environment terminology.

S

SBCS
See single-byte character set (SBCS).

scope terminator
A COBOL reserved word that marks the end of certain PROCEDURE DIVISION statements.It can be
either explicit (END-ADD, for example) or implicit (separator period).

* section
A set of zero, one, or more paragraphs or entities, called a section body, the first of which is preceded
by a section header. Each section consists of the section header and the related section body.

* section header
A combination of words followed by a separator period that indicates the beginning of a section in
any of these divisions: ENVIRONMENT, DATA, or PROCEDURE. In the ENVIRONMENT DIVISION and

Glossary 837

DATA DIVISION, a section header is composed of reserved words followed by a separator period.
The permissible section headers in the ENVIRONMENT DIVISION are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the DATA DIVISION are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a separator period.

* section-name
A user-defined word that names a section in the PROCEDURE DIVISION.

segmentation
A feature of Enterprise COBOL that is based on the 85 COBOL Standard segmentation module. The
segmentation feature uses priority-numbers in section headers to assign sections to fixed segments
or independent segments. Segment classification affects whether procedures contained in a segment
receive control in initial state or last-used state.

selection structure
A program processing logic in which one or another series of statements is executed, depending on
whether a condition is true or false.

* sentence
A sequence of one or more statements, the last of which is terminated by a separator period.

* separately compiled program
A program that, together with its contained programs, is compiled separately from all other programs.

* separator
A character or two or more contiguous characters used to delimit character strings.

* separator comma
A comma (,) followed by a space used to delimit character strings.

* separator period
A period (.) followed by a space used to delimit character strings.

* separator semicolon
A semicolon (;) followed by a space used to delimit character strings.

sequence of programs
A sequence of separate COBOL programs in a single source file that can be input to the compiler.

A sequence of programs is also called a batch compilation or a compilation group.

sequence structure
A program processing logic in which a series of statements is executed in sequential order.

* sequential access
An access mode in which logical records are obtained from or placed into a file in a consecutive
predecessor-to-successor logical record sequence determined by the order of records in the file.

* sequential file
A file with sequential organization.

* sequential organization
The permanent logical file structure in which a record is identified by a predecessor-successor
relationship established when the record is placed into the file.

838 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

serial search
A search in which the members of a set are consecutively examined, beginning with the first member
and ending with the last.

session bean
In EJB, an enterprise bean that is created by a client and that usually exists only for the duration of a
single client/server session. (Oracle)

77-level-description-entry
A data description entry that describes a noncontiguous data item that has level-number 77.

* sign condition
The proposition (for which a truth value can be determined) that the algebraic value of a data item or
an arithmetic expression is either less than, greater than, or equal to zero.

signature
(1) The name of an operation and its parameters. (2) The name of a method and the number and types
of its formal parameters.

* simple condition
Any single condition chosen from this set:

• Relation condition
• Class condition
• Condition-name condition
• Switch-status condition
• Sign condition

See also condition and negated simple condition.

single-byte character set (SBCS)
A set of characters in which each character is represented by a single byte. See also ASCII and
EBCDIC (Extended Binary-Coded Decimal Interchange Code).

slack bytes (within records)
Bytes inserted by the compiler between data items to ensure correct alignment of some elementary
data items. Slack bytes contain no meaningful data. The SYNCHRONIZED clause instructs the
compiler to insert slack bytes when they are needed for proper alignment.

slack bytes (between records)
Bytes inserted by the programmer between blocked logical records of a file, to ensure correct
alignment of some elementary data items. In some cases, slack bytes between records improve
performance for records processed in a buffer.

* sort file
A collection of records to be sorted by a format 1 SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator SD,
followed by a file-name, and then followed by a set of file clauses as required.

* SOURCE-COMPUTER
The name of an ENVIRONMENT DIVISION paragraph in which the computer environment, where the
source program is compiled, is described.

* source computer entry
An entry in the SOURCE-COMPUTER paragraph of the ENVIRONMENT DIVISION; this entry contains
clauses that describe the computer environment in which the source program is to be compiled.

* source item
An identifier designated by a SOURCE clause that provides the value of a printable item.

source program
Although a source program can be represented by other forms and symbols, in this document the
term always refers to a syntactically correct set of COBOL statements. A COBOL source program

Glossary 839

commences with the IDENTIFICATION DIVISION or a COPY statement and terminates with the end
program marker, if specified, or with the absence of additional source program lines.

source unit
A unit of COBOL source code that can be separately compiled: a program or a class definition. Also
known as a compilation unit.

special character
A character that belongs to the following set:

Character Meaning

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (forward slash)

= Equal sign

$ Currency sign

, Comma

; Semicolon

. Period (decimal point, full stop)

" Quotation mark

' Apostrophe

(Left parenthesis

) Right parenthesis

> Greater than

< Less than

: Colon

_ Underscore

SPECIAL-NAMES
The name of an ENVIRONMENT DIVISION paragraph in which environment-names are related to
user-specified mnemonic-names.

* special names entry
An entry in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION; this entry provides
means for specifying the currency sign; choosing the decimal point; specifying symbolic characters;
relating implementor-names to user-specified mnemonic-names; relating alphabet-names to
character sets or collating sequences; and relating class-names to sets of characters.

* special registers
Certain compiler-generated storage areas whose primary use is to store information produced in
conjunction with the use of a specific COBOL feature.

* standard data format
The concept used in describing the characteristics of data in a COBOL DATA DIVISION under which
the characteristics or properties of the data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than a form oriented to the manner in
which the data is stored internally in the computer, or on a particular external medium.

* statement
A syntactically valid combination of words, literals, and separators, beginning with a verb, written in a
COBOL source program.

840 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

structured programming
A technique for organizing and coding a computer program in which the program comprises a
hierarchy of segments, each segment having a single entry point and a single exit point. Control
is passed downward through the structure without unconditional branches to higher levels of the
hierarchy.

* subclass
A class that inherits from another class. When two classes in an inheritance relationship are
considered together, the subclass is the inheritor or inheriting class; the superclass is the inheritee or
inherited class.

* subject of entry
An operand or reserved word that appears immediately following the level indicator or the level-
number in a DATA DIVISION entry.

* subprogram
See called program.

* subscript
An occurrence number that is represented by either an integer, a data-name optionally followed by an
integer with the operator + or -, or an index-name optionally followed by an integer with the operator
+ or -, that identifies a particular element in a table. A subscript can be the word ALL when the
subscripted identifier is used as a function argument for a function allowing a variable number of
arguments.

* subscripted data-name
An identifier that is composed of a data-name followed by one or more subscripts enclosed in
parentheses.

substitution character
A character that is used in a conversion from a source code page to a target code page to represent a
character that is not defined in the target code page.

* superclass
A class that is inherited by another class. See also subclass.

surrogate pair
In the UTF-16 format of Unicode, a pair of encoding units that together represents a single Unicode
graphic character. The first unit of the pair is called a high surrogate and the second a low surrogate.
The code value of a high surrogate is in the range X'D800' through X'DBFF'. The code value of a low
surrogate is in the range X'DC00' through X'DFFF'. Surrogate pairs provide for more characters than
the 65,536 characters that fit in the Unicode 16-bit coded character set.

switch-status condition
The proposition (for which a truth value can be determined) that an UPSI switch, capable of being set
to an on or off status, has been set to a specific status.

* symbolic-character
A user-defined word that specifies a user-defined figurative constant.

syntax
(1) The relationship among characters or groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The structure of expressions in a language. (3) The
rules governing the structure of a language. (4) The relationship among symbols. (5) The rules for the
construction of a statement.

* system-name
A COBOL word that is used to communicate with the operating environment.

T

* table
A set of logically consecutive items of data that are defined in the DATA DIVISION by means of the
OCCURS clause.

* table element
A data item that belongs to the set of repeated items comprising a table.

Glossary 841

text deck
Synonym for object deck or object module.

* text-name
A user-defined word that identifies library text.

* text word
A character or a sequence of contiguous characters between margin A and margin R in a COBOL
library, source program, or pseudo-text that is any of the following characters:

• A separator, except for space; a pseudo-text delimiter; and the opening and closing delimiters for
alphanumeric literals. The right parenthesis and left parenthesis characters, regardless of context
within the library, source program, or pseudo-text, are always considered text words.

• A literal including, in the case of alphanumeric literals, the opening quotation mark and the closing
quotation mark that bound the literal.

• Any other sequence of contiguous COBOL characters except comment lines and the word COPY
bounded by separators that are neither a separator nor a literal.

thread
A stream of computer instructions (initiated by an application within a process) that is in control of a
process.

token
In the COBOL editor, a unit of meaning in a program. A token can contain data, a language keyword, an
identifier, or other part of the language syntax.

top-down design
The design of a computer program using a hierarchic structure in which related functions are
performed at each level of the structure.

top-down development
See structured programming.

trailer-label
(1) A data-set label that follows the data records on a unit of recording medium. (2) Synonym for
end-of-file label.

troubleshoot
To detect, locate, and eliminate problems in using computer software.

* truth value
The representation of the result of the evaluation of a condition in terms of one of two values: true or
false.

typed object reference
A data-name that can refer only to an object of a specified class or any of its subclasses.

U

* unary operator
A plus (+) or a minus (-) sign that precedes a variable or a left parenthesis in an arithmetic expression
and that has the effect of multiplying the expression by +1 or -1, respectively.

unbounded table
A table with OCCURS integer-1 to UNBOUNDED instead of specifying integer-2 as the upper
bound.

Unicode
A universal character encoding standard that supports the interchange, processing, and display of text
that is written in any of the languages of the modern world. There are multiple encoding schemes to
represent Unicode, including UTF-8, UTF-16, and UTF-32. Enterprise COBOL supports Unicode using
UTF-16 in big-endian format as the representation for the national data type.

Uniform Resource Identifier (URI)
A sequence of characters that uniquely names a resource; in Enterprise COBOL, the identifier of a
namespace. URI syntax is defined by the document Uniform Resource Identifier (URI): Generic Syntax.

842 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

http://www.rfc-editor.org/rfc/rfc3986.txt

unit
A module of direct access, the dimensions of which are determined by IBM.

universal object reference
A data-name that can refer to an object of any class.

unrestricted storage
In AMODE 31, unrestricted storage is below the 2 GB bar and can be above or below the 16 MB line.
In AMODE 64, unrestricted storage encompasses all the storage available to your program, both
above and below the 2 GB bar.

* unsuccessful execution
The attempted execution of a statement that does not result in the execution of all the operations
specified by that statement. The unsuccessful execution of a statement does not affect any data
referenced by that statement, but can affect status indicators.

UPSI switch
A program switch that performs the functions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

URI
See Uniform Resource Identifier (URI).

* user-defined word
A COBOL word that must be supplied by the user to satisfy the format of a clause or statement.

V

* variable
A data item whose value can be changed by execution of the object program. A variable used in an
arithmetic expression must be a numeric elementary item.

variable-length item
A group item that contains a table described with the DEPENDING phrase of the OCCURS clause.

* variable-length record
A record associated with a file whose file description or sort-merge description entry permits records
to contain a varying number of character positions.

* variable-occurrence data item
A variable-occurrence data item is a table element that is repeated a variable number of times.
Such an item must contain an OCCURS DEPENDING ON clause in its data description entry or be
subordinate to such an item.

* variably located group
A group item following, and not subordinate to, a variable-length table in the same record. The group
item can be an alphanumeric group or a national group.

* variably located item
A data item following, and not subordinate to, a variable-length table in the same record.

* verb
A word that expresses an action to be taken by a COBOL compiler or object program.

volume
A module of external storage. For tape devices it is a reel; for direct-access devices it is a unit.

volume switch procedures
System-specific procedures that are executed automatically when the end of a unit or reel has been
reached before end-of-file has been reached.

VSAM file system
A file system that supports COBOL sequential, relative, and indexed organizations.

W

web service
A modular application that performs specific tasks and is accessible through open protocols like HTTP
and SOAP.

Glossary 843

white space
Characters that introduce space into a document. They are:

• Space
• Horizontal tabulation
• Carriage return
• Line feed
• Next line

as named in the Unicode Standard.

* word
A character string of not more than 30 characters that forms a user-defined word, a system-name, a
reserved word, or a function-name.

* WORKING-STORAGE SECTION
The section of the DATA DIVISION that describes WORKING-STORAGE data items, composed either
of noncontiguous items or WORKING-STORAGE records or of both.

workstation
A generic term for computers, including personal computers, 3270 terminals, intelligent workstations,
and UNIX terminals. Often a workstation is connected to a mainframe or to a network.

wrapper
An object that provides an interface between object-oriented code and procedure-oriented code.
Using wrappers lets programs be reused and accessed by other systems.

X

x
The symbol in a PICTURE clause that can hold any character in the character set of the computer.

XML
Extensible Markup Language. A standard metalanguage for defining markup languages that was
derived from and is a subset of SGML. XML omits the more complex and less-used parts of SGML and
makes it much easier to write applications to handle document types, author and manage structured
information, and transmit and share structured information across diverse computing systems. The
use of XML does not require the robust applications and processing that is necessary for SGML. XML is
developed under the auspices of the World Wide Web Consortium (W3C).

XML data
Data that is organized into a hierarchical structure with XML elements. The data definitions are
defined in XML element type declarations.

XML declaration
XML text that specifies characteristics of the XML document such as the version of XML being used
and the encoding of the document.

XML document
A data object that is well formed as defined by the W3C XML specification.

XML namespace
A mechanism, defined by the W3C XML Namespace specifications, that limits the scope of a collection
of element names and attribute names. A uniquely chosen XML namespace ensures the unique
identity of an element name or attribute name across multiple XML documents or multiple contexts
within an XML document.

XML schema
A mechanism, defined by the W3C, for describing and constraining the structure and content of XML
documents. An XML schema, which is itself expressed in XML, effectively defines a class of XML
documents of a given type, for example, purchase orders.

Z

844 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

z/OS UNIX file system
A collection of files and directories that are organized in a hierarchical structure and can be accessed
by using z/OS UNIX.

zoned decimal data item
An external decimal data item that is described implicitly or explicitly as USAGE DISPLAY and that
contains a valid combination of PICTURE symbols 9, S, P, and V. The content of a zoned decimal data
item is represented in characters 0 through 9, optionally with a sign. If the PICTURE string specifies a
sign and the SIGN IS SEPARATE clause is specified, the sign is represented as characters + or -. If
SIGN IS SEPARATE is not specified, the sign is one hexadecimal digit that overlays the first 4 bits of
the sign position (leading or trailing).

#

85 COBOL Standard
The COBOL language defined by the following standards:

• ANSI INCITS 23-1985, Programming languages - COBOL, as amended by ANSI INCITS 23a-1989,
Programming Languages - COBOL - Intrinsic Function Module for COBOL and ANSI INCITS 23b-1993,
Programming Languages - Correction Amendment for COBOL

• ISO 1989:1985, Programming languages - COBOL, as amended by ISO/IEC 1989/AMD1:1992,
Programming languages - COBOL: Intrinsic function module and ISO/IEC 1989/AMD2:1994,
Programming languages - Correction and clarification amendment for COBOL

2002 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989-2002, Information technology - Programming languages - COBOL

2014 COBOL Standard
The COBOL language defined by the following standard:

• INCITS/ISO/IEC 1989:2014, Information technology - Programming languages, their environments
and system software interfaces - Programming language COBOL

Glossary 845

846 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

List of resources

Enterprise COBOL for z/OS

COBOL for z/OS publications
You can find the following publications in the Enterprise COBOL for z/OS library:

• What's New, SC31-5708-00
• Customization Guide, SC27-8712-03
• Language Reference, SC27-8713-03
• Programming Guide, SC27-8714-03
• Migration Guide, GC27-8715-03
• Performance Tuning Guide, SC27-9202-02
• Messages and Codes, SC27-4648-02
• Program Directory, GI13-4526-03
• Licensed Program Specifications, GI13-4532-03

Softcopy publications
The following collection kits contain Enterprise COBOL and other product publications. You can find them
at https://www.ibm.com/resources/publications.

• z/OS Software Products Collection
• z/OS and Software Products DVD Collection

Support
If you have a problem using Enterprise COBOL for z/OS, see the following site that provides up-to-date
support information: https://www.ibm.com/support/pages/node/6560933.

Related publications

z/OS library publications
You can find the following publications in the z/OS library.

Run-Time Library Extensions

• Common Debug Architecture Library Reference
• Common Debug Architecture User’s Guide
• DWARF/ELF Extensions Library Reference

z/Architecture®

• Principles of Operation

z/OS DFSMS

• Access Method Services for Catalogs
• Checkpoint/Restart
• Macro Instructions for Data Sets
• Using Data Sets

© Copyright IBM Corp. 1991, 2024 847

https://www.ibm.com/support/pages/node/611415
https://www.ibm.com/resources/publications
https://www.ibm.com/support/pages/node/6560933
https://www.ibm.com/systems/z/os/zos/library/bkserv/

• Utilities

z/OS DFSORT

• Application Programming Guide
• Installation and Customization

z/OS ISPF

• Dialog Developer's Guide and Reference
• User's Guide Vol I
• User's Guide Vol II

z/OS Language Environment

• Concepts Guide
• Customization
• Debugging Guide
• Language Environment Vendor Interfaces
• Programming Guide
• Programming Reference
• Run-Time Messages
• Run-Time Application Migration Guide
• Writing Interlanguage Communication Applications

z/OS MVS

• JCL Reference
• JCL User's Guide
• Programming: Callable Services for High-Level Languages
• Program Management: User's Guide and Reference
• System Commands
• z/OS Unicode Services User's Guide and Reference
• z/OS XML System Services User's Guide and Reference

z/OS TSO/E

• Command Reference
• Primer
• User's Guide

z/OS UNIX System Services

• Command Reference
• Programming: Assembler Callable Services Reference
• User's Guide

z/OS XL C/C++

• Programming Guide
• Run-Time Library Reference

CICS Transaction Server for z/OS
You can find the following publications in the CICS library:

• Developing CICS Applications

848 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/PDF.html?sc=SSGMCP_latest

• API (EXEC CICS) Reference
• Developing CICS System Programs
• Global User Exit Reference
• XPI Reference
• Using EXCI with CICS

COBOL Report Writer Precompiler
• Programmer's Manual, SC26-4301
• Installation and Operation, SC26-4302

Db2 for z/OS
You can find the following publications in the Db2 library:

• Application Programming and SQL Guide
• Command Reference
• SQL Reference

IBM z/OS Debugger (formerly IBM Debug for z Systems and Debug Tool)
You can find information about IBM z/OS Debugger in the IBM z/OS Debugger library.

IBM Developer for z/OS (formerly IBM Developer for z Systems)
You can find information about IBM Developer for z/OS in the IBM Developer for z/OS library.

Note: IBM Developer for z/OS supersedes IBM Developer for z Systems® and Rational® Developer for z
Systems.

You can find the following publications by searching their publication numbers in the IBM Publications
Center.

IMS
• Application Programming API Reference, SC18-9699
• Application Programming Guide, SC18-9698

WebSphere® Application Server for z/OS
• Applications, SA22-7959

Softcopy publications for z/OS
The following collection kit contains z/OS and related product publications:

• z/OS CD Collection Kit, SK3T-4269

Java
• IBM SDK for Java - Tools Documentation, publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
• The Java 2 Enterprise Edition Developer's Guide, download.oracle.com/javaee/1.2.1/devguide/html/

DevGuideTOC.html
• Java 2 on z/OS, www.ibm.com/servers/eserver/zseries/software/java/
• The Java EE 5 Tutorial, download.oracle.com/javaee/5/tutorial/doc/
• The Java Language Specification, Third Edition, by Gosling et al., java.sun.com/docs/books/jls/

List of resources 849

http://www.ibm.com/support/docview.wss?uid=swg27019288
http://www.ibm.com/support/docview.wss?uid=swg27050482
https://www.ibm.com/support/pages/node/713179
https://www.ibm.com/resources/publications
https://www.ibm.com/resources/publications
http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://download.oracle.com/javaee/1.2.1/devguide/html/DevGuideTOC.html
http://www.ibm.com/servers/eserver/zseries/software/java/
http://download.oracle.com/javaee/5/tutorial/doc/
http://java.sun.com/docs/books/jls/

• The Java Native Interface, download.oracle.com/javase/1.5.0/docs/guide/jni/
• JDK 5.0 Documentation, download.oracle.com/javase/1.5.0/docs/

JSON
• JavaScript Object Notation (JSON), www.json.org

Unicode and character representation
• Unicode, www.unicode.org/
• Character Data Representation Architecture Reference and Registry, SC09-2190

XML
• Extensible Markup Language (XML), www.w3.org/XML/
• Namespaces in XML 1.0, www.w3.org/TR/xml-names/
• Namespaces in XML 1.1, www.w3.org/TR/xml-names11/
• XML specification, www.w3.org/TR/xml/

850 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

http://download.oracle.com/javase/1.5.0/docs/guide/jni/
http://download.oracle.com/javase/1.5.0/docs/
http://www.json.org
http://www.unicode.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/xml/

Index

Special Characters
- (minus)

insertion character 221, 222
SIGN clause 231
symbol in PICTURE clause 212

, (comma)
insertion character 220
symbol in PICTURE clause 210, 212

: (colon)
description 50
required use of 694

(/ or *>) comment line 60
(period) symbol in PICTURE clause 210
* symbol in PICTURE clause 210
*> (floating comment indicator) 60
*CBL (*CONTROL) statement 686
*CONTROL (*CBL) statement 686
/ (slash)

insertion character 220
symbol in PICTURE clause 212

+ (plus)
insertion character 221, 222, 224
SIGN clause 231
symbol in PICTURE clause 212

< (less than) 273
<= (less than or equal to) 273
= (equal) 273
> (greater than) 273
>= (greater than or equal to) 273
>> (compiler directive indicator)

CALLINTERFACE directive 709
compiler directive 709
DEFINE directive 713
EVALUATE directive 714
IF directive 716
INLINE directive 710

>> (JAVA-CALLABLE)
directive 721

>> (JAVA-SHAREABLE)
directive 723

$ (default currency symbol)
in PICTURE clause 212
insertion character 221, 222
symbol in PICTURE clause 210

Numerics
0

insertion character 220
symbol in PICTURE clause 212

0 symbol in PICTURE clause 210
2002 COBOL Standard features 787
2014 COBOL Standard features 787
66, RENAMES data description entry 228
66, renames level-number 169
77, elementary item level-number 169

88, condition-name data description entry 194
88, conditional variable level number 169
9 symbol in PICTURE clause 210
9, symbol in PICTURE clause 212

A
A symbol in PICTURE clause 208
abbreviated combined relation condition

examples 289
using parentheses in 287

ABS function 517
ACCEPT statement

description and format 307
FROM phrase 307
mnemonic-name in 307
overlapping operands, unpredictable results 298
system information transfer 309

access mode
description 148
dynamic

DELETE statement 332
description 149
READ statement 429

DYNAMIC 149
random

DELETE statement 332
description 149
READ statement 428

RANDOM 149
sequential

DELETE statement 332
description 149
READ statement 426

SEQUENTIAL 148
ACCESS MODE clause 148
accessibility

keyboard navigation 797
of Enterprise COBOL for z/OS
797
of this information 797
using z/OS 797

accessibility features for this product 797
ACOS function 519
ADD statement

common phrases 294
CORRESPONDING phrase 313
description and format 311
END-ADD phrase 313
GIVING phrase 312
NOT ON SIZE ERROR phrase 313
ON SIZE ERROR phrase 313
ROUNDED phrase 313

ADDRESS OF special register 19
ADV compiler option 474
advanced function printing 477
ADVANCING phrase 473

Index 851

AFTER phrase
INSPECT statement 360
PERFORM statement 417
with REPLACING 356
with TALLYING 355
WRITE statement 473

alignment rules 174
ALL literal

figurative constant 16
STOP statement 457
STRING statement 459

ALL phrase
INSPECT statement 355, 356
SEARCH statement 438
UNSTRING statement 466

ALL subscripting 72, 501
ALLOCATE statement

description and format 313
UNBOUNDED tables 315

ALPHABET clause 127
alphabet-name

description 127
MERGE statement 397
PROGRAM COLLATING SEQUENCE clause 123
SORT statement 451

alphabetic category 172
alphabetic character in ACCEPT 307
ALPHABETIC class test 270
alphabetic function arguments 500
alphabetic items

alignment rules 175
elementary move rules 402
how to define 213
PICTURE clause 213

ALPHABETIC-LOWER class test 270
ALPHABETIC-UPPER class test 270
alphanumeric category 172
alphanumeric comparisons 276
alphanumeric function arguments 500
alphanumeric functions 498
alphanumeric group items 169
alphanumeric items

alignment rules 175
elementary move rules 402
how to define 213
PICTURE clause 213

alphanumeric literals
in hexadecimal notation 40
with DBCS characters 39

alphanumeric operands, comparing 276
alphanumeric-edited category 173
alphanumeric-edited items

alignment rules 175
elementary move rules 402
how to define 214
PICTURE clause 214

ALSO phrase
ALPHABET clause 127
EVALUATE statement 340

ALTER statement
description and format 317
GO TO statement and 347
segmentation considerations 318

altered GO TO statement 347

alternate key data item 151
ALTERNATE RECORD KEY clause

DUPLICATES phrase 152
AND logical operator 283
ANNUITY function 521
ANSI COBOL standards 785
ANSI X3.22 781
ANSI X3.27 781
ANSI X3.4 781
APPLY WRITE-ONLY clause 158
Area A (cols. 8-11) 55
Area B (cols. 12-72) 57
arguments 499
arithmetic expression

COMPUTE statement 330
description 266
EVALUATE statement 341
relation condition 272

arithmetic operators
description 267
permissible symbol pairs 267

arithmetic statements
ADD 311
common phrases 294
COMPUTE 330
DIVIDE 335
list of 297
multiple results 298
MULTIPLY 406
operands 297
programming notes 298
SUBTRACT 462

ASCENDING KEY phrase
collating sequence 202
description 396
MERGE statement 396
OCCURS clause 201
SORT statement 448, 449

ASCII
collating sequence 754
specifying in SPECIAL-NAMES paragraph 127

ASCII considerations
ASSIGN clause 782
CODE-SET clause 782
data description entries 782
DATA DIVISION 782
ENVIRONMENT DIVISION 781
I-O-CONTROL paragraph 782
OBJECT-COMPUTER paragraph 781
PROCEDURE DIVISION 783
PROGRAM COLLATING SEQUENCE clause 781
SPECIAL-NAMES paragraph 781

ASCII standard 785
ASIN function 523
ASSIGN clause

ASCII considerations 782
description 142
format 138
SELECT clause and 142

assigning index values 440
assignment-name

ASSIGN clause 142
environment variable 142
RECORD DELIMITER clause 148

852 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

assignment-name (continued)
RERUN clause 155

assistive technologies 797
asterisk (*)

comment line 60
insertion character 224

AT END phrase
READ statement 425
RETURN statement 432
SEARCH statement 435
SEARCH statement (binary search) 438
SEARCH statement (serial search) 436

AT END-OF-PAGE phrases 474
at-end condition

READ statement 428
RETURN statement 432

ATAN function 525
ATTRIBUTE-CHARACTER XML event 29
ATTRIBUTE-CHARACTERS XML event 29
ATTRIBUTE-NAME XML event 29
ATTRIBUTE-NATIONAL-CHARACTER XML event 29
ATTRIBUTES phrase 482
AUTHOR paragraph

description 117
format 99

B
B

insertion character 220
symbol in PICTURE clause 208

basic character set 3
basic PERFORM statement

format and description 413
Basic UTF-8 literals 43
BASIS statement 685
basis-name 64
batch compile 85
BEFORE phrase

INSPECT statement 360
PERFORM statement 417
with REPLACING 356
with TALLYING 355
WRITE statement 473

Bibliography 847
big-endian 7
binary arithmetic operators 267
binary data item, DISPLAY statement 333
BINARY phrase in USAGE clause 238
binary search 438
BIT-OF function 527
BIT-TO-CHAR function 529
blank lines 61
BLANK WHEN ZERO clause

description and format 195
INDEX phrase in USAGE clause 241

BLOCK CONTAINS clause
description 185
format 179

boolean conditions
description 719

branching
GO TO statement 346
out-of-line PERFORM statement 414

BY CONTENT phrase
CALL statement 321

BY REFERENCE phrase
CALL statement 320

BY VALUE phrase
CALL statement 322
INVOKE statement 363

BYTE-LENGTH function 531

C
call convention 709, 710
CALL statement

CANCEL statement and 326
description and format 318
LINKAGE SECTION 264
ON OVERFLOW phrase 318
PROCEDURE DIVISION header 258, 264
program termination 318
subprogram linkage 318
transfer of control 79
USING phrase 264

called and calling programs, description 318
Calling static Java methods from COBOL

CALL statement 324
CALLINTERFACE directive 709
CANCEL statement 326
carriage control character 473
category

of group items 169
relationship to classes of data 170
relationship to usages of data 170

category descriptions 172
category of data

alphabetic 172, 213
alphanumeric 172, 213
alphanumeric-edited 173, 214
DBCS 173, 214
external floating-point 173
internal floating-point 173
national 173, 215
national-edited 173, 216
numeric 174, 217
numeric-edited 174, 218
UTF-8 174, 218

category of functions 171
category of literals 172
CBL (PROCESS) statement 686
CBLQDA runtime option 411
CCSID 7
CHAR function 533
character code set, specifying 127
character encoding unit 7
character sets 7
character-strings

COBOL words 11
representation in PICTURE clause 212
size determination 175

CHARACTERS BY phrase 356
CHARACTERS phrase

BLOCK CONTAINS clause 185
INSPECT statement 355
MEMORY SIZE clause 123
USAGE clause and 185

Index 853

characters, valid in COBOL program 3
checkpoint processing, RERUN clause 155
CICS

restrictions
parsing with validation using FILE 489

class (object-oriented) 89
class (of data)

of data items 170
of figurative constants 170
of functions 170
of group items 169
of literals 170

CLASS clause 129
class condition 269
class definition

class procedure division 257
CLASS-ID paragraph 105
configuration section 121
description 89
effect of SELF and SUPER 362
factory procedure division 257
IDENTIFICATION DIVISION 105
object procedure division 257
requirements for indexed tables 202

class identification division 99
class IDENTIFICATION DIVISION 105
class procedure division 257
CLASS-ID paragraph 105
class-name 13, 14, 64
class-name class test 270
class-name, OO 64
clauses

definition 54
syntactical hierarchy 53

CLOSE statement
format and description 327

COBOL
class definition 89
language structure 3
method definition 93
program structure 83
reference format 55

COBOL / Java interoperability
description 721

COBOL classes 89
COBOL objects 89
COBOL standards 785
COBOL words

with DBCS characters 11
with single-byte characters 11

code page names 7
code pages 7
CODE-SET clause

ALPHABET clause and 127
ASCII considerations 782
description 192
format 179
NATIVE phrase and 192

CODEPAGE compiler option 7
collating sequence

ASCENDING/DESCENDING KEY phrase and 202
ASCII 754
EBCDIC 751
specified in OBJECT-COMPUTER paragraph 123

collating sequence (continued)
specified in SPECIAL-NAMES paragraph 127

COLLATING SEQUENCE phrase
ALPHABET clause 127
MERGE statement 397
SORT statement 451

colon character
description 50
required use of 694

column 7
indicator area 58
specifying comments 60

combined condition
description 285
evaluation rules 286
logical operators and evaluation results 286
order of evaluation 286
permissible element sequences 285

COMBINED-DATETIME 535
comma (,)

DECIMAL-POINT IS COMMA clause 131
insertion character 220

comment lines
description 60
in IDENTIFICATION DIVISION 117
in library text 692
in source text 703

COMMENT XML event 29
comments

sending xxvii
COMMON clause 102
common processing facilities 299
COMP-1 through COMP-5 data items 239
comparison tables 273
comparison types 273
comparisons

alphanumeric operands 276
cycle, INSPECT statement 360
DBCS operands 277
function pointer operands 281
group operands 279
in EVALUATE statement 342
index data items 279
index-names 279
national operands 277
numeric operands 279
object reference operands 282
procedure pointer operands 281
rules for COPY statement 691
UTF-8 operands 278

compile-time arithmetic expressions
description 719

compiler directive 709
Compiler directive

DATA 710
compiler limits 745
compiler options

ADV 474
CODEPAGE 7
controlling listing output 686
NUMPROC 283
PGMNAME 326
specifying 686
THREAD 202

854 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

compiler options (continued)
TRUNC 176

compiler-directing statements
*CBL (*CONTROL) 686
*CONTROL (*CBL) 686
BASIS 685
CBL (PROCESS) 686
COPY 688
DELETE 697
EJECT 698
ENTER 698
INSERT 699
PROCESS (CBL) 686
READY TRACE 699
REPLACE 700
RESET TRACE 699
SERVICE LABEL 703
SERVICE RELOAD 704
SKIP1 704
SKIP2 704
SKIP3 704
TITLE 704
USE 705

complex conditions
abbreviated combined relation 287
combined condition 285
description 283
negated simple 284

complex OCCURS DEPENDING ON (CODO) 206
composite of operands 297
COMPUTATIONAL data items 238
COMPUTATIONAL phrases in USAGE clause 239
COMPUTE statement

common phrases 296
description and format 330

computer-name 14, 122, 123
condition

abbreviated combined relation 287
class 269
combined 285
complex 283
condition-name 271
EVALUATE statement 341
IF statement 348
negated simple 284
PERFORM UNTIL statement 418
relation 272
SEARCH statement (binary search) 438
SEARCH statement (serial search) 437
sign 283
simple 268
switch-status 283

condition-name
and conditional variable 194
description and format 271
rules for values 249
SEARCH statement 439
SET statement 443
SPECIAL-NAMES paragraph 127
switch status condition 127

conditional compilation
description 712
directives

DEFINE directive 713

conditional compilation (continued)
directives (continued)

EVALUATE directive 714
IF directive 716

examples 717
predefined compilation variables 720

conditional expressions
boolean conditions 719
compile-time arithmetic expressions 719
constant conditional expressions 718
DBCS operands 277
defined condition expressions 719
description 268
index-names and index data items 279
order of evaluation of operands 286
parentheses in abbreviated combined relation
conditions 287
UTF-8 operands 278

conditional statements
description 292
GO TO statement 347
IF statement 348
list of 292
PERFORM statement 417

conditional variable 194
configuration section

classes 121
methods 121
programs 121
REPOSITORY paragraph 132
SOURCE-COMPUTER paragraph 122
SPECIAL-NAMES paragraph 124
user-defined functions 121

conformance rules
SET...USAGE OBJECT REFERENCE 446

constant conditional expressions
description 718

contained programs 83
CONTENT-CHARACTER XML event 29
CONTENT-CHARACTERS XML event 29
CONTENT-NATIONAL-CHARACTER XML event 29
CONTENT-OF function 537
context-sensitive word 779
continuation

area 55
lines 58, 60

CONTINUE statement 331
CONTROL statement (*CONTROL) 686
conversion of data, DISPLAY statement 333
CONVERTING phrase

JSON GENERATE statement 378
JSON PARSE statement 389

COPY libraries 68
COPY statement

comparison rules 691
description and format 688
example 693
replacement rules 691
REPLACING phrase 690
searching order 697
SUPPRESS option 690

CORRESPONDING (CORR) phrase
ADD statement 313
description 313

Index 855

CORRESPONDING (CORR) phrase (continued)
MOVE statement 400
SUBTRACT statement 463
with ON SIZE ERROR phrase 297

COS function 539
COUNT IN phrase

UNSTRING statement 466
XML GENERATE statement 481

COUNT phrase
JSON GENERATE statement 374

CR (credit)
insertion character 221
symbol in PICTURE clause 210

cs (currency symbol)
in PICTURE clause 208

CURRENCY SIGN clause
description 129
Euro currency sign 129

currency sign value 129
currency symbol

in PICTURE clause 210
specifying in CURRENCY SIGN clause 129

currency symbol, default ($) 221
CURRENT-DATE function 541
customer support 847

D
data

alignment 174
categories 170, 212
classes 170
hierarchies used in qualification 167
organization 146
signed 176
truncation of 176, 198

DATA 710
data category

alphabetic 213
alphanumeric 213
alphanumeric-edited 214
DBCS 214
national 215
national-edited 216
numeric 217
numeric-edited 218
UTF-8 218

data category descriptions 172
data conversion, DISPLAY statement 333
data description entries

ASCII considerations 782
data description entry

BLANK WHEN ZERO clause 195
data-name 194
DYNAMIC LENGTH clause 195
FILLER phrase 195
GLOBAL clause 197
indentation and 169
JUSTIFIED clause 198
level-66 format (previously defined items) 193
level-88 format (condition-names) 194
level-number description 194
OCCURS clause 200
OCCURS DEPENDING ON (ODO) clause

data description entry (continued)
OCCURS DEPENDING ON (ODO) clause (continued)

format 204
PICTURE clause 207
REDEFINES clause 225
RENAMES clause 228
SIGN clause 230
SYNCHRONIZED clause 231
USAGE clause 237
USAGE IS NATIONAL clause and 198
VALUE clause 245
VOLATILE clause 252

data division
file description (FD) entry 184
levels of data 167
LINKAGE SECTION 165
LOCAL-STORAGE SECTION 165
sort description (SD) entry 184
WORKING-STORAGE SECTION
163

DATA DIVISION
ASCII considerations 782
data description entry 193
data relationships 167
in factory definition 161
in method definition 161
in object definition 161
in program definition 161

DATA DIVISION names 69
data flow

STRING statement 460
UNSTRING statement 468

data item
characteristics 193
description entry definition 163
EXTERNAL clause 197

data item description entry 164
data items

categories 171
classes 171

data manipulation statements
ACCEPT 307
INITIALIZE 350
list of 299
MOVE 400
overlapping operands 299
READ 424
RELEASE 429
RETURN 430
REWRITE 432
SET 440
STRING 457
UNSTRING 464
WRITE 471

data organization
access modes and 149
indexed 146
line-sequential 147
relative 147
sequential 146

DATA RECORDS clause
description 189
format 179

data relationships

856 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

data relationships (continued)
DATA DIVISION 167

data transfer 307
data units

factory data 166
file data 166
function prototype data 167
instance data 166
method data 166
overview 165
program data 166
user-defined function data 167

data-item-description-entry
LINKAGE SECTION 165

data-name
data description entry 194
definition 63

data-pointer
USAGE clause 242, 243

DATE 309
DATE YYYYMMDD 310
DATE-COMPILED paragraph

description 117
format 99

DATE-OF-INTEGER function 543
DATE-TO-YYYYMMDD function 545
DATE-WRITTEN paragraph

description 117
format 99

DAY 310
DAY YYYYDDD 310
DAY-OF-INTEGER function 547
DAY-OF-WEEK 310
DAY-TO-YYYYDDD function 549
DB (debit)

insertion character 221
symbol in PICTURE clause 210

DBCS (Double-Byte Character Set)
elementary move rules 403
using in comments 117

DBCS category 173
DBCS character set 3
DBCS characters

in COBOL words 12
in literals 39

DBCS class condition 270
DBCS comparisons 277
DBCS function arguments 500
DBCS items

alignment rules 175
how to define 214
in ACCEPT 307
PICTURE clause 214

DBCS literals
in ACCEPT 307

DBCS notation xxiv
de-editing 404
DEBUG-CONTENTS 19
DEBUG-ITEM special register 19, 759
DEBUG-LINE 19
DEBUG-NAME 19
debugging 759
DEBUGGING declarative 705, 707
debugging lines 61, 122, 759

debugging mode
compile-time switch 760
object-time switch 760

DEBUGGING MODE clause 122, 707, 759, 760
debugging sections 759
decimal point (.) 296
DECIMAL-POINT IS COMMA clause

description 131
NUMVAL function 605
NUMVAL-C function 607

declarative procedures
description and format 264
PERFORM statement 413
USE statement 264

declaratives
DEBUGGING 707
EXCEPTION/ERROR 705
precedence rules for nested programs 707

DECLARATIVES key word
begin in Area A 57
description 264

declaratives section 264
DEFINE directive 713
defined condition expressions

description 719
DELETE statement

description and format 697
dynamic access 332
format and description 332
INVALID KEY phrase 332
random access 332
sequential access 332

DELIMITED BY phrase
STRING 458
UNSTRING statement 466

delimited scope statement 293
delimiter

INSPECT statement 357
UNSTRING statement 466

DELIMITER IN phrase, UNSTRING statement 466
DEPENDING phrase

GO TO statement 347
OCCURS clause 204

derived class 89
DESCENDING KEY phrase

collating sequence 202
description 396
MERGE statement 396
SORT statement 448, 449

disability 797
display floating-point 215
DISPLAY phrase in USAGE clause 240
DISPLAY statement

description and format 333
DISPLAY-OF function 551
DIVIDE statement

common phrases 296
description and format 335
REMAINDER phrase 338

division header
format, ENVIRONMENT DIVISION 121
format, IDENTIFICATION DIVISION 99
format, PROCEDURE DIVISION 258
specification of 56

Index 857

DO-UNTIL structure, PERFORM statement 417
DO-WHILE structure, PERFORM statement 417
DOCUMENT-TYPE-DECLARATION XML event 29
Double-Byte Character Set (DBCS)

PICTURE clause and 214
using in comments 117

DOWN BY phrase, SET statement 442
DUPLICATES phrase

SORT statement 451
dynamic access mode

data organization and 149
DELETE statement 332
description 149
READ statement 429

DYNAMIC LENGTH clause
description 195
format 195

dynamic-length items
dynamic-length elementary items 176
dynamic-length group items 176

E
E function 553
E symbol in PICTURE clause 208
EBCDIC

code page 1140 751
CODE-SET clause and 192
collating sequence 751
specifying in SPECIAL-NAMES paragraph 127

editing
fixed insertion 221
floating insertion 222
replacement 224
signs 176
simple insertion 220
special insertion 221
suppression 224

editing sign control symbol 210
editing signs 176
EGCS 350, 818
eject page 60
EJECT statement 698
elementary items

alignment rules 174
basic subdivisions of a record 167
MOVE statement 401
size determination in program 175
size determination in storage 175

elementary move rules 401
ELSE NEXT SENTENCE phrase 348
ENCODING phrase

XML GENERATE statement 481
ENCODING phrase, in XML PARSE 490
encoding units 7
ENCODING-DECLARATION XML event 29
end class marker 57
END DECLARATIVES key word 264
end markers 57
end method marker 57
END PROGRAM 85
end program marker 57
END-ADD phrase 313
END-CALL phrase 324

END-IF phrase 348
END-INVOKE phrase 366
END-JSON phrase

JSON GENERATE statement 379
JSON PARSE statement 391

END-OF-CDATA-SECTION XML event 29
END-OF-DOCUMENT XML event 29
END-OF-ELEMENT XML event 29
end-of-file processing 327
END-OF-INPUT XML event 29
END-OF-PAGE phrases 474
END-PERFORM phrase 413
END-SUBSTRACT phrase 464
END-WRITE phrase 475
END-XML phrase

XML GENERATE statement 485
XML PARSE statement 491

entries
definition 54
syntactical hierarchy 53

ENTRY statement
description and format 338
subprogram linkage 338

environment division
configuration section

ALPHABET clause 127
CURRENCY SIGN clause 129
OBJECT-COMPUTER paragraph 123
REPOSITORY paragraph 132
SPECIAL-NAMES paragraph 129
SYMBOLIC CHARACTERS clause 131
XML-SCHEMA clause 131

REPOSITORY paragraph 132
ENVIRONMENT DIVISION

ASCII considerations 781
configuration section

SOURCE-COMPUTER paragraph 122
SPECIAL-NAMES paragraph 124

input-output section
FILE-CONTROL paragraph 138

environment variable
assignment-name 142
DSN option 132, 142
for a line sequential file 142
for a QSAM file 142
for a VSAM file 142
for an XML schema file 132
PATH option 132, 142
XML schema file 132

environment-name
SPECIAL-NAMES paragraph 126, 127

EOP phrases 474
equal sign (=) 272
EQUAL TO relational operator 272
EUC 7
Euro currency sign

specifying in CURRENCY SIGN clause 129
EVALUATE directive 714
EVALUATE statement

comparing operands 342
determining truth value 341
format and description 339

evaluation rules
combined conditions 286

858 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

evaluation rules (continued)
EVALUATE statement 342
nested IF statement 349

EXCEPTION XML event 29
EXCEPTION/ERROR declarative

CLOSE statement 328
DELETE statement 332
description and format 705

execution flow
ALTER statement 317
basic PERFORM statement 413
PERFORM statement 412

EXIT METHOD statement
format and description 343

EXIT PARAGRAPH statement
format and description 344

EXIT PERFORM statement
format and description 344

EXIT PROGRAM statement
format and description 343

EXIT SECTION statement
format and description 345

EXIT statement
format and description 342
PERFORM statement 414

EXP function 555
EXP10 function 557
explicit attributes, of data 78
explicit scope terminators 293
exponentiation

exponential expression 266
expression, arithmetic 266
EXTEND phrase

OPEN statement 409
extended character set 3
extension language elements 729
EXTERNAL clause

with data item 197
with file name 184

external decimal item
DISPLAY statement 333

external floating-point
DISPLAY statement 333

external floating-point category 173
external floating-point in ACCEPT 307
external floating-point items

alignment rules 175
how to define 214
PICTURE clause 214

external-class-name 14, 134
external-fileid 14

F
FACTORIAL function 559
factory data 89
factory data division

format 162
factory data unit 166
factory definition

FACTORY paragraph 107
format and description 91

factory identification division 99, 107
factory method 89, 94

FACTORY paragraph 107
factory procedure division 257
factory procedure division header 259
factory WORKING-STORAGE 163
FALSE phrase 341
FD (file description) entry

BLOCK CONTAINS clause 185
DATA RECORDS clause 189
description 184
format 179
GLOBAL clause 185
level indicator 167
VALUE OF clause 189

feedback
sending xxvii

figurative constant
DISPLAY statement 333
STOP statement 457
STRING statement 459

figurative constants
ALL literal 16
HIGH-VALUE 15
HIGH-VALUES 15
LOW-VALUE 16
LOW-VALUES 16
NULL 17
NULLS 17
QUOTE 16
QUOTES 16
SPACE 15
SPACES 15
symbolic-character 17
ZERO 15
ZEROES 15
ZEROS 15

file
definition 166

file organization
and access modes 149
definition 149
LINAGE clause 189
line-sequential 147
types of 146

file position indicator
description 305
READ statement 428

file section
RECORD clause 186

FILE SECTION
EXTERNAL clause 184

FILE STATUS clause
DELETE statement and 332
description 153
file status key 299
format 138
INVALID KEY phrase and 303

file status key
common processing facility 299
value and meaning 300

FILE-CONTROL paragraph
ASSIGN clause 142
description and format 138
FILE STATUS clause 153
ORGANIZATION clause 146

Index 859

FILE-CONTROL paragraph (continued)
PADDING CHARACTER clause 148
RECORD KEY clause 150
RELATIVE KEY clause 152
RESERVE clause 146
SELECT clause 142

file-description-entry 163
file-name 64
file-name, specifying on SELECT clause 142
FILLER phrase

CORRESPONDING phrase 194
data description entry 194

fixed insertion editing 221
fixed segments 265
fixed-length

records 185
floating comment indicator (*>)

comment lines 60
description 60
inline comment 60

floating comment indicators 15
floating comment indicators (*>) 820
floating insertion editing 222
floating-point

DISPLAY statement 333
floating-point literals 45
FOOTING phrase of LINAGE clause 189
FOR REMOVAL phrase 327, 328
format notation, rules for xxi
Format of argument and return values

date and time intrinsic functions 503
FORMATTED-CURRENT-DATE 561
FORMATTED-DATE function 563
FORMATTED-DATETIME function 565
FORMATTED-TIME function 567
FREE statement

description and format 345
UNBOUNDED tables 315

FROM phrase
ACCEPT statement 307
REWRITE statement 432
SUBTRACT statement 462
with identifier 304
WRITE statement 472

function arguments 499
function definition

FUNCTION-ID paragraph 113
IDENTIFICATION DIVISION 113

function definitions 509
function identification division 99, 113
function pointer

in SET statement 440
function pointer data items

relation condition 281
function prototype definition

IDENTIFICATION DIVISION 114
function prototype definition structure 97
function type 498
FUNCTION-ID paragraph 113
function-identifier 77
function-names 14
function-pointer data items

SET statement 444
FUNCTION-POINTER phrase in USAGE clause 241

functions
arguments 499
categories 171
class and category of 170
classes 171
description 495
rules for usage 498
types of functions 498

G
G symbol in PICTURE clause 208
garbage collection 89
GIVING phrase

ADD statement 312
arithmetic 296
DIVIDE statement 338
MERGE statement 398
MULTIPLY statement 406
SORT statement 453
SUBTRACT statement 463

GLOBAL clause
with data item 197
with file name 185

Glossary 803
GO TO statement

altered 347
conditional 347
format and description 346
SEARCH statement 435, 439
unconditional 346

GO TO, DEPENDING ON phrase 317
GOBACK statement 345
graphic character 7
GREATER THAN OR EQUAL TO symbol (>=) 272
GREATER THAN symbol (>) 272
group comparisons 279
group items

alphanumeric 169
class and category of 169
description 167
MOVE statement 405
national 169, 198
usage of 169
utf8 170

group move rules 405
GROUP-USAGE clause

description 198
format 198

GROUP-USAGE NATIONAL clause 198
groups

categories 171
classes 171

H
halting execution 457
HEX-OF function 569
HEX-TO-CHAR function 571
hexadecimal notation

for alphanumeric literals 40
for national literals 47

Hexadecimal notation 44

860 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

Hexadecimal notation for UTF-8 literals 44
hiding 112
hierarchy of data 167
HIGH-VALUE figurative constant 15, 127
HIGH-VALUES figurative constant 15, 127
hyphen (-), in indicator area 58

I
I-O-CONTROL paragraph

APPLY WRITE-ONLY clause 158
ASCII considerations 782
checkpoint processing in 155
description 137, 154
MULTIPLE FILE TAPE clause 158
order of entries 154
RERUN clause 155
SAME AREA clause 156
SAME RECORD AREA clause 157
SAME SORT AREA clause 157
SAME SORT-MERGE AREA clause 158

IBM extensions xxiii, 729
identification division

FACTORY paragraph 107
FUNCTION-ID paragraph
113
METHOD-ID paragraph 111
OBJECT paragraph 109

IDENTIFICATION DIVISION
CLASS-ID paragraph 105
format 99
format (program, class, method) 99
optional paragraphs 117
PROGRAM-ID paragraph 101

identifier 266
identifiers 69, 266
IF directive 716
IF statement 348
imperative statement 290
implementor-name 14
implicit

redefinition of storage area 184, 226
scope terminators 294

implicit attributes, of data 78
indentation 57, 169
independent segments 265
index

data item 279, 401
relative indexing 74
SET statement 74

index data item 72
INDEX phrase in USAGE clause 241
index-name

assigning values 440
comparisons 279
OCCURS clause 203
PERFORM statement 423
SET statement 440, 441

INDEXED BY phrase 202
indexed files

CLOSE statement 328
DELETE statement 332
FILE-CONTROL paragraph format 138
I-O-CONTROL paragraph format 154

indexed files (continued)
organization 146
permissible statements for 411
READ statement 427
REWRITE statement 433
START statement 456

indexed organization
description 146
FILE-CONTROL paragraph format 138
I-O-CONTROL paragraph format 154

indexing
description 72
MOVE statement evaluation 401
OCCURS clause 72, 200
relative 74
SET statement and 74

indicator area 55
industry specifications 785
inheritance 89, 106
INHERITS clause 105
INITIAL clause 102
initial state of program 102
INITIALIZE statement

format and description 350
overlapping operands, unpredictable results 298

inline comments 48, 822
INLINE directive 710
INPUT phrase

OPEN statement 409
USE statement 705

INPUT PROCEDURE phrase
RELEASE statement 429
SORT statement 452

Input-Output section
description 137
file control paragraph 137
FILE-CONTROL keyword 137
FILE-CONTROL paragraph 138
format 137
I-O-CONTROL paragraph 154

input-output statements
ACCEPT 307
CLOSE 327
common processing facilities 299
DELETE 332
DISPLAY 333
EXCEPTION/ERROR procedures 706
general description 299
OPEN 408
READ 424
REWRITE 432
START 455
WRITE 471

INSERT statement 699
insertion editing

fixed (numeric-edited items) 221
floating (numeric-edited items) 222
simple 220
special (numeric-edited items) 221

INSPECT statement
AFTER phrase 357
BEFORE phrase 357
comparison cycle 360
CONVERTING phrase 358

Index 861

INSPECT statement (continued)
overlapping operands, unpredictable results 298
REPLACING phrase 355

INSTALLATION paragraph
description 117
format 99

instance data 89, 93, 166
instance definition

format and description 91
instance method 89, 93
instance variable 89
integer arguments 499
INTEGER function 573
integer function arguments 500
integer functions 498
INTEGER-OF-DATE function 575
INTEGER-OF-DAY function 577
INTEGER-OF-FORMATTED-DATE function 579
INTEGER-PART function 581
internal floating-point

DISPLAY statement 333
size of items 176

internal floating-point category 173
internal floating-point items

alignment rules 175
how to define 213

INTO phrase
DIVIDE statement 335
READ statement 424
RETURN statement 431
STRING statement 458
UNSTRING statement 466
with identifier 304

intrinsic functions
ABS 517
ACOS 519
alphanumeric functions 498
ANNUITY 521
ASIN 523
ATAN 525
BIT-OF 527
BIT-TO-CHAR 529
BYTE-LENGTH 531
categories 171
CHAR 533
classes 171
COMBINED-DATETIME 535
CONTENT-OF 537
COS 539
CURRENT-DATE 541
DATE-OF-INTEGER 543
DATE-TO-YYYYMMDD 545
DAY-OF-INTEGER 547
DAY-TO-YYYYDDD 549
DISPLAY-OF 551
E 553
EXP 555
EXP10 557
FACTORIAL 559
floating-point literals 501
FORMATTED-CURRENT-DATE 561
FORMATTED-DATE 563
FORMATTED-DATETIME 565
FORMATTED-TIME 567

intrinsic functions (continued)
HEX-OF 569
HEX-TO-CHAR 571
INTEGER 573
integer functions 498
INTEGER-OF-DATE 575
INTEGER-OF-DAY 577
INTEGER-OF-FORMATTED-DATE 579
INTEGER-PART 581
LENGTH 583
LOG 585
LOG10 587
LOWER-CASE 589
MAX 591
MEAN 593
MEDIAN 595
MIDRANGE 597
MIN 599
MOD 601
national functions 498
NATIONAL-OF 603
numeric functions 498
NUMVAL 605
NUMVAL-C 607
NUMVAL-F 609
ORD 611
ORD-MAX 613
ORD-MIN 615
PI 617
PRESENT-VALUE 619
RANDOM 621
RANGE 623
REM 625
REVERSE 627
SECONDS-FROM-FORMATTED-TIME
629
SECONDS-PAST-MIDNIGHT 631
SIGN 633
SIN 635
SQRT 637
STANDARD-DEVIATION 639
SUM 641
summary of 509
TAN 643
TEST-DATE-YYYYMMDD 645
TEST-DAY-YYYYDDD 647
TEST-FORMATTED-DATETIME 649
TEST-NUMVAL 651
TEST-NUMVAL-C 653
TEST-NUMVAL-F 655
TRIM 657
ULENGTH 659
UPOS 661
UPPER-CASE 663
USUBSTR 665
USUPPLEMENTARY 667
UUID4 669
UVALID 671
UWIDTH 675
VARIANCE 677
WHEN-COMPILED 679
YEAR-TO-YYYY 681

invalid key condition 303
INVALID KEY phrase

862 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

INVALID KEY phrase (continued)
DELETE statement 332
READ statement 425
REWRITE statement 433
START statement 456
WRITE statement 474

INVOKE statement
BY VALUE phrase 363
format and description 362
LENGTH OF special register 364
NEW phrase 363
NOT ON EXCEPTION phrase 366
ON EXCEPTION phrase 365
RETURNING phrase 364
SELF special object identifier 363
SUPER special object identifier 363
USING phrase 363

ISCII considerations 781
ISCII standard 785
ISO 646 781
ISO COBOL standards 785

J
Java

class-name 134
package 134

JAVA and COBOL
types

Mapping between COBOL and Java 725
Java classes 89
Java interoperability

data types 364, 366, 368
literal types 364

Java interoperation 89
Java Native Interface (JNI) 21, 89
Java objects 89
Java String data 89
JAVA-CALLABLE

directives
JAVA-CALLABLE directive 721

JAVA-CALLABLE directive 721
JAVA-SHAREABLE

directives
JAVA-SHAREABLE directive
723

JAVA-SHAREABLE directive 723
java.lang.Object 89
JNI environment pointer 89
JNIENVPTR special register 21, 89
JSON GENERATE statement

CONVERTING phrase 378
COUNT phrase 374
description 371
END-JSON phrase 379
exception event 379
format 371
format conversion 381
JSON name formation 382
NAME phrase 376
NOT ON EXCEPTION phrase 379
ON EXCEPTION phrase 379
operation 380
SUPPRESS phrase 376

JSON GENERATE statement (continued)
trimming 382

JSON PARSE statement
CONVERTING phrase 389
description 382
END-JSON phrase 391
format 382
NAME phrase 387
nested JSON PARSE 392
NOT ON EXCEPTION phrase 391
ON EXCEPTION phrase 391
operation 392
SUPPRESS phrase 389
WITH DETAIL phrase 387

JSON processing
JSON-CODE special register 21, 382
JSON-EVENT special register 382
JSON-NAMESPACE special register 382
JSON-NAMESPACE-PREFIX special register 382
JSON-NNAMESPACE special register 382
JSON-NNAMESPACE-PREFIX special register 382
JSON-NTEXT special register 382
JSON-STATUS special register 22
JSON-TEXT special register 382

JSON-CODE special register
use in JSON GENERATE 379
use in JSON PARSE 391

JSON-STATUS special register 22
JUSTIFIED clause

description and format 198
effect on initial settings 198
STRING statement 459
truncation of data 198
USAGE IS INDEX clause and 198
VALUE clause and 246

K
Kanji 270
key of reference 146
KEY phrase

OCCURS clause 201
READ statement 425
SEARCH statement 438
SORT statement 448, 449
START statement 455

keyboard navigation 797
keyword 825

L
LABEL RECORDS clause

format 179
language-name 14
LEADING phrase

INSPECT statement 355, 356
SIGN clause 231

LENGTH function 583
LENGTH OF special register

INVOKE statement 364
LESS THAN OR EQUAL TO symbol (<=) 272
LESS THAN symbol (<) 272
level

Index 863

level (continued)
01 item 167
02-49 item 167

level indicator
(FD and SD) 57
definition 167

level-number
(01 and 77) 57
66, renames 169
77, elementary item 169
88, conditional variable 169
definition 167
description and format 194
FILLER phrase 195

levels of data 167
library-name

COPY statement 688
limits of the compiler 745
LINAGE clause

description 189
diagram of phrases 189
format 179

LINAGE-COUNTER special register
description 23
WRITE statement 474

LINE
WRITE statement 473

line advancing 473
line-sequential file organization 147
LINES

WRITE statement 473
LINES AT BOTTOM phrase 189
LINES AT TOP phrase 189
linkage section

requirement for indexed items 202
VALUE clause 245

LINKAGE SECTION
called subprogram 264
description 165

List of resources 847
literals

and arithmetic expressions 266
ASSIGN clause 142
categories 172
classes 172
CODE-SET clause and ALPHABET clause
127
CURRENCY SIGN clause 129
DBCS 41
description 38
null-terminated alphanumeric 41
STOP statement 457
UTF-8 43
VALUE clause 246
Z literals 41

literals, class and category of 170
local-storage

requirement for indexed items 202
LOCAL-STORAGE

defining with RECURSIVE clause 102
LOG function 585
LOG10 function 587
logical operator

complex condition 283

logical operator (continued)
in evaluation of combined conditions 286
list of 283

logical record
definition 166
file data 166
program data 166
record description entry and 166
RECORDS phrase 186

LOW-VALUE figurative constant 16, 127
LOW-VALUES figurative constant 16, 127
LOWER-CASE function 589
lowercase letters

in PICTURE clause 208

M
Mapping between COBOL and Java types 725
MAX function 591
maximum index value 74
MEAN function 593
MEDIAN function 595
MEMORY SIZE clause 123
MERGE statement

ASCENDING/DESCENDING KEY phrase 396
COLLATING SEQUENCE phrase 397
format and description 396
GIVING phrase 398
OUTPUT PROCEDURE phrase 399
segmentation considerations 400
USING phrase 398

method data 166
method data division

format 161
method definition

effect of SELF and SUPER 362
format and description 93
IDENTIFICATION DIVISION 111
method procedure division 257
METHOD-ID paragraph 111

method FILE SECTION 163
method hiding 112
method identification division 99, 111
method LOCAL-STORAGE 165
method overloading 112
method overriding 112
method procedure division 257, 258
method procedure division header 259
method WORKING-STORAGE 163
METHOD-ID paragraph 111
method-name 64
methods

available to subclasses 106
exiting 343
invoking 362
method definition

inheritance rules 106
recursively reentering 102
reusing 105

MIDRANGE function 597
MIN function 599
minus sign (-)

COBOL character 3
fixed insertion symbol 221

864 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

minus sign (-) (continued)
floating insertion symbol 222, 224
SIGN clause 231

mnemonic-name
ACCEPT statement 307
DISPLAY statement 333
SET statement 443
SPECIAL-NAMES paragraph 127
WRITE statement 473

MOD function 601
MOVE statement

CORRESPONDING phrase 400
elementary moves 401
format and description 400
group moves 405
record area 405

MULTIPLE FILE TAPE clause 158
multiple record processing, READ statement 426
multiple results, arithmetic statements 298
MULTIPLY statement

common phrases 296
format and description 406

N
N symbol in PICTURE clause 209
NAME phrase

JSON GENERATE statement 376
JSON PARSE statement 387
XML GENERATE statement 483

NAMESPACE phrase 482
NAMESPACE-DECLARATION XML event 29
NAMESPACE-PREFIX phrase 482
national category 173
national comparisons 277
national data items

elementary move rules 403
in a class condition 269
in ACCEPT 307
in UNSTRING statement 464
SEARCH statement 438

national floating-point 215
national function arguments 500
national functions 498
national groups

CORRESPONDING phrase 199
description 199
INITIALIZE statement 199
qualification of data-names 199
RENAMES clause 199
where processed as group 199
XML GENERATE statement 199

national items
alignment rules 175
how to define 215
PICTURE clause 215

national literals
in ACCEPT 307

national literals in hexadecimal notation 47
NATIONAL phrase in USAGE clause 241
national-edited category 173
national-edited items

alignment rules 175
how to define 216

NATIONAL-OF function 603
native binary data item 239
native character set 127
native collating sequence 127
negated combined condition 285
negated simple condition 284
NEGATIVE in sign condition 283
nested IF structure

description 349
EVALUATE statement 339

nested programs
description 83
precedence rules for 707

NEW phrase
INVOKE statement 363

next executable statement 79
NEXT RECORD phrase, READ statement 425
NEXT SENTENCE phrase

IF statement 348
SEARCH statement 435
SEARCH statement (binary search) 439
SEARCH statement (serial search) 436

NO ADVANCING phrase, DISPLAY statement 334
NO REWIND phrase

OPEN statement 409
nonreel file, definition 328
NOT AT END phrase

READ statement 425
RETURN statement 432

NOT END-OF-PAGE phrase 474
NOT INVALID KEY phrase

DELETE statement 332
READ statement 426
REWRITE statement 433
START statement 456

NOT ON EXCEPTION phrase
CALL statement 324
INVOKE statement 366
JSON GENERATE statement 379
JSON PARSE statement 391
XML GENERATE statement 485
XML PARSE statement 491

NOT ON OVERFLOW phrase
STRING statement 459
UNSTRING statement 467

NOT ON SIZE ERROR phrase
ADD statement 313
DIVIDE statement 338
general description 296
MULTIPLY statement 407
SUBTRACT statement 463

NSYMBOL compiler option 3
NULL

figurative constant 17
null block branch, CONTINUE statement 331
null-terminated alphanumeric literals 41
NULL/NULLS

data pointer 281, 443
figurative constant 251
function-pointer 282, 445
object reference 282, 446
procedure-pointer 282, 445

NULLS
figurative constant 17

Index 865

numeric arguments 499, 501
numeric category 174
NUMERIC class test 269
numeric comparisons 279
numeric function arguments 500
numeric functions 498
numeric items

alignment rules 175
how to define 217
millennium dates 217
PICTURE clause 217

numeric literals 45
numeric-edited category 174
numeric-edited item

editing signs 176
elementary move rules 403

numeric-edited items
alignment rules 175
how to define 218
PICTURE clause 218

NUMVAL function 605
NUMVAL-C function 607
NUMVAL-F function 609

O
object data division

format 162
object definition

OBJECT paragraph 109
object identification division 99, 109
object instance data 166
OBJECT paragraph 109
object procedure division 257
object program 83
object reference

in SET statement 440
OBJECT REFERENCE phrase 242
object WORKING-STORAGE 163
OBJECT-COMPUTER paragraph

ASCII considerations 781
object-oriented class-name 64
object-oriented COBOL

class definition 89
comparison rules 282
conformance rules

SET...USAGE OBJECT REFERENCE 446
effect of VALUE clause 163
factory definition 91
IDENTIFICATION DIVISION (class and method) 99
INHERITS clause 105
INVOKE statement 362
method definition 93
method-name 64
object definition 91
OBJECT REFERENCE phrase in USAGE clause 242
OO class name 64
procedure division (classes and methods) 257
REPOSITORY paragraph 132
SELF and SUPER special object identifiers 15
specifying configuration section 121
subclasses and methods 106

objects in EVALUATE statement 340
obsolete language elements xxiii

OCCURS clause
ASCENDING/DESCENDING KEY phrase 201
description 200
INDEXED BY phrase 202
restrictions 201
UNBOUNDED 204
variable-length tables format 204

OCCURS DEPENDING ON (ODO) clause
complex 206
description 205
object of 205
RECORD clause 186
REDEFINES clause and 200
SEARCH statement and 200
subject and object of 205
subject of 200, 205
subscripting 72

OFF phrase, SET statement 442
OMITTED phrase 321
ON EXCEPTION phrase

CALL statement 323
INVOKE statement 365
JSON GENERATE statement 379
JSON PARSE statement 391
XML GENERATE statement 484
XML PARSE statement 491

ON OVERFLOW phrase
CALL statement 324
STRING statement 459, 467

ON phrase, SET statement 442
ON SIZE ERROR phrase

ADD statement 313
arithmetic statements 296
COMPUTE statement 331
DIVIDE statement 338
MULTIPLY statement 407
SUBTRACT statement 463

OPEN statement
for new/existing files 409
format and description 408
I-O phrase 409
phrases 408
programming notes 410
system dependencies 411

operands
comparison of alphanumeric 276
comparison of DBCS 277
comparison of group 279
comparison of national 277
comparison of numeric 279
comparison of UTF-8 278
composite of 297
overlapping 298, 299

operation of JSON GENERATE statement 380
operation of JSON PARSE statement 392
operation of XML GENERATE statement 485
operational sign

algebraic, description of 176
SIGN clause and 176
USAGE clause and 176

operational signs 176
optional words, syntax notation xxi
ORD function 611
ORD-MAX function 613

866 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

ORD-MIN function 615
order of entries

clauses in FILE-CONTROL paragraph 138
I-O-CONTROL paragraph 154

order of evaluation in combined conditions 286
ORGANIZATION clause

description 146
format 138
INDEXED phrase 146
LINE SEQUENTIAL phrase 146
RELATIVE phrase 146
SEQUENTIAL phrase 146

out-of-line PERFORM statement 414
outermost programs, debugging 707
OUTPUT phrase 409
OUTPUT PROCEDURE phrase

MERGE statement 399
RETURN statement 430
SORT statement 453

OVERFLOW phrase
CALL statement 324
STRING statement 459, 467

overlapping operands invalid in
arithmetic statements 298
data manipulation statements 299

overloading 112
overriding 112

P
P symbol in PICTURE clause 209, 211
PACKED-DECIMAL phrase in USAGE clause 239
PADDING CHARACTER clause 148
PAGE

WRITE statement 473
page eject 60
paragraph

header, specification of 56
termination, EXIT statement 342

paragraph-name
description 266
specification of 56

paragraphs
description 53, 265
syntactical hierarchy 53

parent class 89
parentheses

combined conditions, use 285
in arithmetic expressions 267

parsing XML documents
with validation

restrictions 489
partial listings 686
PASSWORD clause

description 152
system dependencies 152

PERFORM statement
branching 414
conditional 417
END-PERFORM phrase 413
EVALUATE statement 339
execution sequences 414
EXIT statement 342
format and description 412

PERFORM statement (continued)
in-line 414
out-of-line 414
TIMES phrase 417
VARYING phrase 418, 420

period (.)
actual decimal point 221

PGMNAME compiler option
CANCEL statement 326

phrases
definition 54
syntactical hierarchy 53

physical record
BLOCK CONTAINS clause 185
definition 166
file data 166
file description entry and 166
RECORDS phrase 186

PI function 617
PICTURE character-strings 48
PICTURE clause

and class condition 269
computational items and 238
CURRENCY SIGN clause 129
data categories 212
DECIMAL-POINT IS COMMA clause 131, 208
description 207
editing 219
format 207
symbols used in 208

PICTURE SYMBOL phrase 130
picture symbols

- 210
, 210
. 210
* 210
/ 210
+ 210
$ (currency symbol) 210
0 210
9 210
A 208
asterisk 210
B 208
comma 210
CR 210
currency symbol (cs) 210, 212
DB 210
E 208
G 208
minus 210
N 209
P 209, 211
period 210
plus 210
S 209
sequence of 210
slash 210
U 209
V 209
X 209
Z 209

plus (+)
fixed insertion symbol 221

Index 867

plus (+) (continued)
floating insertion symbol 222, 224
insertion character 224
SIGN clause 231

pointer data items
relation condition 280
SET statement 443
USAGE clause 242

POINTER phrase
STRING statement 458
UNSTRING statement 467

POINTER phrase in USAGE clause 242, 243
pointer-32 data items

USAGE clause 243
POSITIVE in sign condition 283
PRESENT-VALUE function 619
print files, WRITE statement 476
priority-number 123, 265
procedure branching

GO TO statement 346
statements, executed sequentially 307

procedure branching statements 307
procedure division

description 257
format (programs, methods, classes) 257

PROCEDURE DIVISION
ASCII considerations 783
declarative procedures 264
header 258
statements 307

PROCEDURE DIVISION header
RETURNING phrase 263
USING phrase 260

PROCEDURE DIVISION names 68
procedure pointer data items

relation condition 281
procedure-name

GO TO statement 346
MERGE statement 399
PERFORM statement 413
SORT statement 452

procedure-pointer data items
SET statement 444
USAGE clause 244

PROCEDURE-POINTER phrase in USAGE clause 244
procedures, description 265
PROCESS (CBL) statement 686
PROCESSING PROCEDURE phrase, in XML PARSE 490
PROCESSING-INSTRUCTION-DATA XML event 29
PROCESSING-INSTRUCTION-TARGET XML event 29
product support 847
PROGRAM COLLATING SEQUENCE clause

ALPHABET clause 127
ASCII considerations 781
SPECIAL-NAMES paragraph and 123

program data 166
program data division

format 161
program definition

program procedure division 257
program identification division 99
program LOCAL-STORAGE 165
program procedure division 257
program procedure division header 258

program termination
GOBACK statement 345
STOP statement 457

program WORKING-STORAGE 163
PROGRAM-ID paragraph

description 101
format 99

program-name 64
program-name, rules for referencing 86
program, separately compiled 83
Programming interface information 801
programming notes

ACCEPT statement 307
altered GO TO statement 317
arithmetic statements 298
data manipulation statements 457, 464
DELETE statement 332
EXCEPTION/ERROR procedures 707
OPEN statement 410
PERFORM statement 414
RECORD clause 186
STRING statement 457
UNSTRING statement 464

programming structures 417
programs, recursive 102
pseudo-text

COPY statement operand 690
description 61

pseudo-text and partial-
word

continuation rules 701
pseudo-text delimiters 51
publications 847
punch files, WRITE statement 476

Q
qualification 67
quotation mark character 58
QUOTE figurative constant 16
QUOTES figurative constant 16

R
railroad track format, how to read xxi
random access mode

data organization and 149
DELETE statement 332
description 149
READ statement 428

RANDOM function 621
RANGE function 623
RCFs

sending xxvii
READ statement

AT END phrases 425
dynamic access mode 429
format and description 424
INTO identifier phrase 304, 425
INVALID KEY phrase 303, 425
KEY phrase 425
multiple record processing 426
NEXT RECORD phrase 425

868 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

READ statement (continued)
overlapping operands, unpredictable results 298
programming notes 429
random access mode 428

reader comments
sending xxvii

READY TRACE statement 699
receiving field

COMPUTE statement 330
MOVE statement 400
multiple results rules 298
SET statement 441
STRING statement 458
UNSTRING statement 466

record
area description 186
elementary items 167
fixed-length 185
logical, definition of 166
physical, definition of 166

record area
MOVE statement 405

RECORD clause
description and format 186
omission of 186

RECORD CONTAINS 0 CHARACTERS 186
RECORD DELIMITER clause 148
record description entry

levels of data 167
logical record 166

RECORD KEY clause
description 150
format 138

record key in indexed file 332
record-description entry

LINKAGE SECTION 165
record-description-entry 163
record-name 64
RECORDING MODE clause 191
RECORDS phrase

BLOCK CONTAINS clause 185
RERUN clause 156

RECURSIVE clause 102
recursive methods 362
recursive programs

requirement for indexed items 202
REDEFINES clause

description 225
examples of 227
format 225
general considerations 227
OCCURS clause restriction 225
undefined results 228
VALUE clause and 225

redefinition, implicit 184
REEL phrase 327, 328
reference format 55
reference-modification

description 75
MOVE statement evaluation 401

reference, methods of
simple data 69

relation character
COPY statement 690

relation character (continued)
INITIALIZE statement 350
INSPECT statement 355

relation conditions
abbreviated combined 287
alphanumeric comparisons 273, 276
comparison operations 273
data pointer 280
DBCS comparisons 273, 277
description 272
function-pointer operands 281
general relation 272
group comparisons 273
national comparisons 273
numeric comparisons 273
object reference 282
operands of equal size 277
operands of unequal size 277
procedure pointer operands 281
UTF-8 comparisons 278

relational operator
in abbreviated combined relation condition 287
meaning of each 273
relation condition use 272

relational operators 15
relative files

access modes allowed 150
CLOSE statement 328
DELETE statement 332
FILE-CONTROL paragraph format 138
I-O-CONTROL paragraph format 154
organization 147
permissible statements for 411
READ statement 426
RELATIVE KEY clause 150, 152
REWRITE statement 434
START statement 456

RELATIVE KEY clause
description 152
format 138

relative organization
access modes allowed 150
description 147
FILE-CONTROL paragraph format 138
I-O-CONTROL paragraph format 154

RELEASE statement 298, 429
REM function 625
REMAINDER phrase of DIVIDE statement 338
RENAMES clause

description and format 228
INITIALIZE statement 351
level 66 item 169, 228
PICTURE clause 207

repeated words, syntax notation xxii
REPLACE statement

comparison operation 702
continuation rules for pseudo-text and partial-word
701
description and format 700
special notes 702

replacement editing 224
replacement rules for COPY statement 691
REPLACING phrase

COPY statement 690

Index 869

REPLACING phrase (continued)
INITIALIZE statement 350, 351

REPOSITORY paragraph 132, 135
required words, syntax notation xxi
RERUN clause

checkpoint processing 155
description 155
format 154
RECORDS phrase 155
sort/merge 156

RESERVE clause
description 146
format 138

reserved words 14, 761
RESET TRACE statement 699
resolution of names 66
restrictions

CICS
parsing with validation using FILE 489

result field
GIVING phrase 296
NOT ON SIZE ERROR phrase 296
ON SIZE ERROR phrase 296
ROUNDED phrase 296

RETURN statement
AT END phrase 432
description and format 430
overlapping operands, unpredictable results 298

RETURN-CODE special register 24
RETURNING NATIONAL phrase, in XML PARSE 489
RETURNING phrase

CALL statement 323
INVOKE statement 364
PROCEDURE DIVISION header 263

reusing logical records 433
REVERSE function 627
REWRITE statement

description and format 432
FROM identifier phrase 304
INVALID KEY phrase 433

ROUNDED phrase
ADD statement 313
COMPUTE statement 331
description 296
DIVIDE statement 338
MULTIPLY statement 407
size error checking and 297
SUBTRACT statement 463

RSD file
WRITE statement 473

rules for condition-name entries 249
rules for syntax notation xxi
run unit

description 83
termination with CANCEL statement 327

runtime options
DEBUG 760
NODEBUG 760

S
S symbol in PICTURE clause 209
SAME clause 156
SAME RECORD AREA clause

SAME RECORD AREA clause (continued)
description 157
format 154

SAME SORT AREA clause
description 157
format 154

SAME SORT-MERGE AREA clause
description 158
format 154

scope of names 63
scope terminator

explicit 293
implicit 294

SD (sort file description) entry
data division 184
DATA RECORDS clause 189
description 184
level indicator 167

SD (Sort File Description) entry
description 179

SEARCH statement
AT END phrase 435, 436
binary search 438
description and format 434
serial search 436
SET statement 436
VARYING phrase 437
WHEN phrase 439

SEARCH STATEMENT
NEXT SENTENCE phrase 435

searching
order for COPY statement 697

SECONDS-FROM-FORMATTED-TIME function 629
SECONDS-PAST-MIDNIGHT function 631
section header

description 265
specification of 56

section-name
description 265
in EXCEPTION/ERROR declarative 705

sections 53, 265
SECURITY paragraph

description 117
format 99

SEGMENT-LIMIT clause 123
segmentation 265
segmentation considerations 318, 400, 454
SELECT clause

ASSIGN clause and 142
format 138
specifying a file name 142

SELECT OPTIONAL clause
CLOSE statement 328
description 142
format 138
specification for sequential I-O files 142

selection objects in EVALUATE statement 340
selection subjects in EVALUATE statement 340
SELF 282
SELF special object identifier 15, 363
sending field

MOVE statement 400
SET statement 441
STRING statement 458

870 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

sending field (continued)
UNSTRING statement 464

sentences
definition 54
description 266
syntactical hierarchy 53

SEPARATE CHARACTER phrase of SIGN clause 231
separately compiled program 83
separators 49, 249
separators, rules for 50
sequence number area (cols. 1-6) 55
sequential access mode

data organization and 149
DELETE statement 332
description 149
READ statement 426
REWRITE statement 433

sequential files
access mode allowed 150
CLOSE statement 327, 328
description 146
file description entry 179
FILE-CONTROL paragraph format 138
LINAGE clause 189
OPEN statement 408
PASSWORD clause valid with 152
permissible statements for 411
READ statement 427
REWRITE statement 433
SELECT OPTIONAL clause 142

serial search
PERFORM statement 418

SERVICE LABEL statement 703
SERVICE RELOAD statement 704
SET statement

description and format 440
DOWN BY phrase 442
dynamic-length elementary items 446
function-pointer data items 241, 444
index data item 241
object reference data items 446
OFF phrase 442
ON phrase 442
overlapping operands, unpredictable results 298
pointer data items 443
procedure-pointer data items 444
requirement for indexed items 202
SEARCH statement 442
TO FALSE phrase 443
TO phrase 441
TO TRUE phrase 443
UP BY phrase 442

sharing data 197
sharing files 185
SHIFT-IN special register 24
SHIFT-OUT special register 24
sibling program 83
SIGN clause 230
sign condition 283
SIGN function 633
SIGN IS SEPARATE clause 231
signed

numeric item, definition 217
operational signs 176

simple condition
combined 285
description and types 268
negated 284

simple data reference 69
simple insertion editing 220
SIN function 635
single-byte ASCII 7
single-byte EBCDIC 7
size-error condition 296
skip to next page 60
SKIP1 statement 704
SKIP2 statement 704
SKIP3 statement 704
slack bytes

between 235
within 233

slash (/)
comment lines 60
insertion character 220
symbol in PICTURE clause 210

SORT statement
ASCENDING KEY phrase 448, 449
COLLATING SEQUENCE phrase 451
DESCENDING KEY phrase 448, 449
description and format 447
DUPLICATES phrase 451
GIVING phrase 453
INPUT PROCEDURE phrase 452
OUTPUT PROCEDURE phrase 453
segmentation considerations 454
USING phrase 452

SORT-CONTROL special register 25, 454
SORT-CORE-SIZE special register 25, 454
SORT-FILE-SIZE special register 26, 454
SORT-MESSAGE special register 26, 454
SORT-MODE-SIZE special register 27, 454
SORT-RETURN special register 27, 454
Sort/Merge feature

I-O-CONTROL paragraph format 154
MERGE statement 396
RELEASE statement 429
RERUN clause 156
RETURN statement 430
SAME SORT AREA clause 157
SAME SORT-MERGE AREA clause 158
SORT statement 447

Sort/Merge file statement phrases
ASCENDING/DESCENDING KEY phrase 396
COLLATING SEQUENCE phrase 397
GIVING phrase 398
OUTPUT PROCEDURE phrase 399
USING phrase 398

source code
library, programming notes 693
listing 687

source code format 55
source language debugging 759
source program

standard COBOL reference format 55
SOURCE-COMPUTER paragraph 122
SPACE figurative constant 15
SPACES figurative constant 15
special insertion editing 221

Index 871

special object identifiers
SELF 15
SUPER 15

special registers
ADDRESS OF 19
DEBUG-ITEM 19
JNIENVPTR 21
JSON-CODE 21
JSON-STATUS 22
LENGTH OF 22
LINAGE-COUNTER 23
RETURN-CODE 24
SHIFT-OUT, SHIFT-IN 24
SORT-CONTROL 25
SORT-CORE-SIZE 25
SORT-FILE-SIZE 26
SORT-MESSAGE 26
SORT-MODE-SIZE 27
SORT-RETURN 27
TALLY 27
WHEN-COMPILED 28
XML-CODE 28, 29
XML-EVENT 29
XML-INFORMATION 34
XML-NAMESPACE 29, 34
XML-NAMESPACE-PREFIX 29, 36
XML-NNAMESPACE 29, 35
XML-NNAMESPACE-PREFIX 29, 36
XML-NTEXT 29, 37
XML-TEXT 29, 37

SPECIAL-NAMES paragraph
ACCEPT statement 307
ALPHABET clause 127
ASCII considerations 781
ASCII-encoded file specification 192
CLASS clause 129
CODE-SET clause and 192
CURRENCY SIGN clause 129
DECIMAL-POINT IS COMMA clause 131
description 124
format 124
mnemonic-name 127
XML-SCHEMA clause 131

SQRT function 637
STANDALONE-DECLARATION XML event 29
standard alignment

JUSTIFIED clause 198
standard alignment rules

UTF-8 data items 175
STANDARD-1

RECORD DELIMITER clause 148
STANDARD-1 phrase 128
STANDARD-2 phrase 128
STANDARD-DEVIATION function 639
standards 785
START statement

description and format 455
indexed file 456
INVALID KEY phrase 303, 456
relative files 456
status key considerations 455

START-OF-CDATA-SECTION XML event 29
START-OF-DOCUMENT XML event 29
START-OF-ELEMENT XML event 29

statement operations
common phrases 294
file position indicator 305
INTO and FROM phrases 304

statements
categories of 290
conditional 292
data manipulation 299
definition 54
delimited scope 293
description 266
imperative 290
input-output 299
procedure branching 307
syntactical hierarchy 53
types of 54

static data 89
static method 89
status key

common processing facility 299
file processing 706

STOP RUN statement 457
STOP statement 457
storage

map listing 687
MEMORY SIZE clause 123
REDEFINES clause 225

storage manipulation statements
ALLOCATE 313
FREE 345

STRING statement
description and format 457
execution of 459
overlapping operands, unpredictable results 298

structure of the COBOL language 3
structured programming

DO-WHILE and DO-UNTIL
417

subclass 89
subclasses and methods 106
subjects in EVALUATE statement 340
subprogram linkage

CALL statement 318
CANCEL statement 326
ENTRY statement 339

subprogram termination
CANCEL statement 327
EXIT PROGRAM statement 343
GOBACK statement 345

subscripting
definition and format 72
INDEXED BY phrase of OCCURS clause 202
MOVE statement evaluation 401
OCCURS clause specification 200
table references 72
using data-names 74
using index-names (indexing) 72
using integers 74

substitution characters
DISPLAY-OF 551
NATIONAL-OF 603

substitution field of INSPECT REPLACING 355
substrings, specifying (reference-modification) 75
SUBTRACT statement

872 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

SUBTRACT statement (continued)
common phrases 294
description and format 462

SUM function 641
SUPER special object identifier 15, 363
superclass 89
support 847
SUPPRESS option, COPY 690
suppress output 686
SUPPRESS phrase

JSON GENERATE statement 376
JSON PARSE statement 389
XML GENERATE statement 483

suppression editing 224
switch-status condition 283
SYMBOLIC CHARACTERS clause 131
symbolic-character 13, 65
symbolic-character figurative constant 17
symbols in PICTURE clause 208
SYNCHRONIZED clause

effect on other language elements 231
VALUE clause and 246

syntax notation, rules for xxi
system considerations, subprogram linkage

CALL statement 318
CANCEL statement 326

system information transfer, ACCEPT statement 309
system input device, ACCEPT statement 307
system-names

computer-name 122
SOURCE-COMPUTER paragraph 122

T
table references

indexing 72
subscripting 72

TALLY special register 27
TALLYING phrase

INSPECT statement 355
UNSTRING statement 467

TAN function 643
termination of execution

EXIT METHOD statement 343
EXIT PARAGRAPH statement 344
EXIT PERFORM statement 344
EXIT PROGRAM statement 343
EXIT SECTION statement 345
GOBACK statement 345
STOP RUN statement 457

terminators, scope 293
TEST-DATE-YYYYMMDD function 645
TEST-DAY-YYYYDDD function 647
TEST-FORMATTED-DATETIME function 649
TEST-NUMVAL function 651
TEST-NUMVAL-C function 653
TEST-NUMVAL-F function 655
text words 690
text-name

literal-1 689
THREAD compiler option

requirement for indexed items 202
THROUGH (THRU) phrase

ALPHABET clause 127

THROUGH (THRU) phrase (continued)
CLASS clause 129
EVALUATE statement 340
PERFORM statement 413
RENAMES clause 228
VALUE clause 248

TIME 310
TIMES phrase of PERFORM statement 417
TITLE statement 704
TO FALSE phrase, SET statement 443
TO phrase, SET statement 441
TO TRUE phrase, SET statement 443
transfer of control

ALTER statement 317, 318
basic PERFORM statement 413
explicit 79
GO TO statement 346
IF statement 348
implicit 79
JSON PARSE statement 382
PERFORM statement 412
XML PARSE statement 488

transfer of data
ACCEPT statement 307
MOVE statement 400
STRING statement 457
UNSTRING statement 464

TRIM function 657
TRIM function arguments 500
trimming of generated JSON data 382
trimming of generated XML data 487
TRUNC compiler option 176
truncation of data

arithmetic item 176
JUSTIFIED clause 198
ROUNDED phrase 296
TRUNC compiler option 176

truth value
complex conditions 283
EVALUATE statement 341
IF statement 348
of complex condition 284
sign condition 283
with conditional statement 292

type conformance
SET...USAGE OBJECT REFERENCE 446

TYPE phrase
XML GENERATE statement 483

types of functions 498

U
U symbol in PICTURE clause 209
ULENGTH function 659
unary operator 267
unconditional GO TO statement 346
Unicode 3, 7
unique names 169
uniqueness of reference 67
unit file, definition 328
UNIT phrase 327
universal object reference 242
UNKNOWN-REFERENCE-IN-ATTRIBUTE XML event 29
UNKNOWN-REFERENCE-IN-CONTENT XML event 29

Index 873

UNRESOLVED-REFERENCE XML event 29
unsigned numeric item, definition 217
UNSTRING statement

description and format 464
execution 468
overlapping operands, unpredictable results 298
receiving field 466
sending field 464

UP BY phrase, SET statement 442
UPON phrase, DISPLAY 333
UPOS function 661
UPPER-CASE function 663
UPSI-0 through UPSI-7, program switches

and switch-status condition 283
condition-name 127
processing special conditions 127
SPECIAL-NAMES paragraph 127

USAGE clause
BINARY phrase 238
CODE-SET clause and 192
COMPUTATIONAL phrases 239
description 237
DISPLAY phrase 240
DISPLAY-1 phrase 240
format 237
FUNCTION-POINTER phrase 241
INDEX phrase 241
NATIONAL phrase 198, 241
operational signs and 176
PACKED-DECIMAL phrase 239
POINTER phrase 242, 243
PROCEDURE-POINTER phrase 244
VALUE clause and 246

USAGE COMP-1
size of items 176

USAGE COMP-2
size of items 176

USAGE DISPLAY
size of items 175
STRING statement and 459

USAGE DISPLAY-1
size of items 175
STRING statement and 459

USAGE NATIONAL
size of items 176
STRING statement and 459

USAGE OBJECT REFERENCE phrase 362
USAGE UTF-8

size of items 176
USE FOR DEBUGGING declarative 760
USE statement

format and description 705
user labels

DEBUGGING declarative 707
user-defined function definition

configuration section 121
user-defined function definition structure 95
user-defined words 12
USING phrase

ASSIGN clause 142
CALL statement 320
in PROCEDURE DIVISION header 258
INVOKE statement 363
MERGE statement 398

USING phrase (continued)
PROCEDURE DIVISION header 260
SORT statement 452
subprogram linkage 264

USUBSTR function 665
USUPPLEMENTARY function 667, 669
UTF-16 3, 7
UTF-8 3, 7
UTF-8 category 174
UTF-8 comparisons 278
UTF-8 data types

alignment rules 175
UTF-8 function arguments 500
UTF-8 functions 498
UTF-8 groups

CORRESPONDING phrase 199
description 199
INITIALIZE statement 199
qualification of data-names 199
RENAMES clause 199
where processed as group 199

UTF-8 items
how to define 218

UTF-8 literals 43
UTF-8 phrase 245
UVALID function 671
UWIDTH function 675

V
V symbol in PICTURE clause 209
VALIDATING phrase, in XML PARSE 489
validating XML documents

restrictions 489
VALUE clause

condition-name 248
effect on object-oriented programs 163
format 245, 248
level 88 item 169
NULL/NULLS figurative constant 241, 251
rules for condition-name entries 249
rules for literal values 246

VALUE OF clause
description 189
format 179

variable-length tables 204, 205
VARIANCE function 677
VARYING phrase

PERFORM statement 418
SEARCH statement 437

VERSION-INFORMATION XML event 29
VOLATILE clause

format 252

W
WHEN phrase

EVALUATE statement 340
SEARCH statement (binary search) 439
SEARCH statement (serial search) 437

WHEN SET TO FALSE phrase
VALUE clause 248

WHEN-COMPILED function 679

874 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

WHEN-COMPILED special register 28
WITH DEBUGGING MODE clause 122, 707, 759
WITH DETAIL phrase

JSON PARSE statement 387
WITH DUPLICATES phrase, SORT statement 451
WITH FOOTING phrase 189
WITH NO ADVANCING phrase 334
WITH NO REWIND phrase, CLOSE statement 328
WITH POINTER phrase

STRING statement 458
UNSTRING statement 467

WORKING-STORAGE SECTION 163
WRITE statement

AFTER ADVANCING 473, 476
ALTERNATE RECORD KEY 477
BEFORE ADVANCING 473, 476
description 471
END-OF-PAGE phrase 474
format 471
FROM identifier phrase 304
indexed files 477
NOT END-OF-PAGE phrase 474
relative files 477
sequential files 475

X
X symbol in PICTURE clause 209
XML document

parsing with validation
restrictions 489

XML event
ATTRIBUTE-CHARACTER 29
ATTRIBUTE-CHARACTERS 29
ATTRIBUTE-NAME 29
ATTRIBUTE-NATIONAL-CHARACTER 29
COMMENT 29
CONTENT-CHARACTER 29
CONTENT-CHARACTERS 29
CONTENT-NATIONAL-CHARACTER 29
DOCUMENT-TYPE-DECLARATION 29
ENCODING-DECLARATION 29
END-OF-CDATA-SECTION 29
END-OF-DOCUMENT 29
END-OF-ELEMENT 29
END-OF-INPUT 29
EXCEPTION 29
NAMESPACE-DECLARATION 29
PROCESSING-INSTRUCTION-DATA 29
PROCESSING-INSTRUCTION-TARGET 29
STANDALONE-DECLARATION 29
START-OF-CDATA-SECTION 29
START-OF-DOCUMENT 29
START-OF-ELEMENT 29
UNKNOWN-REFERENCE-IN-ATTRIBUTE
29
UNKNOWN-REFERENCE-IN-CONTENT 29
UNRESOLVED-REFERENCE 29
VERSION-INFORMATION 29

XML GENERATE statement
ATTRIBUTES phrase 482
COUNT IN phrase 481
description 479
element name formation 487

XML GENERATE statement (continued)
ENCODING phrase 481
END-XML phrase 485
exception event 484
format 479
format conversion 486
NAME phrase 483
NAMESPACE phrase 482
NAMESPACE-PREFIX phrase 482
NOT ON EXCEPTION phrase 485
ON EXCEPTION phrase 484
operation 485
SUPPRESS phrase 483
trimming 487
TYPE phrase 483
XML-DECLARATION phrase 482

XML PARSE statement
control flow 492
description 488
exception event 491
format 488
nested XML GENERATE 492
nested XML PARSE 492
ON EXCEPTION phrase 491
PROCESSING PROCEDURE phrase 490

XML parsing
with validation

restrictions 489
XML processing

ENCODING phrase, in XML GENERATE 481
ENCODING phrase, in XML PARSE 490
PROCESSING PROCEDURE phrase, in XML PARSE 490
RETURNING NATIONAL phrase, in XML PARSE 489
VALIDATING phrase, in XML PARSE 489
XML-CODE special register 28, 29, 488
XML-EVENT special register 29, 488
XML-INFORMATION special register 34
XML-NAMESPACE special register 29, 34, 488
XML-NAMESPACE-PREFIX special register 29, 36, 488
XML-NNAMESPACE special register 29, 35, 488
XML-NNAMESPACE-PREFIX special register 29, 36, 488
XML-NTEXT special register 29, 37, 488
XML-TEXT special register 29, 37, 488

XML schema file
environment variable 132

XML-CODE special register
use in XML GENERATE 485
use in XML PARSE 491

XML-DECLARATION phrase 482
XML-EVENT special register 29, 492
XML-INFORMATION special register 34
XML-NAMESPACE special register 29, 34
XML-NAMESPACE special register, in XML PARSE 492
XML-NAMESPACE-PREFIX special register 29, 36
XML-NNAMESPACE special register 29, 35
XML-NNAMESPACE-PREFIX special register 29, 36
XML-NTEXT special register 29, 37, 493
XML-SCHEMA clause

specified in SPECIAL-NAMES paragraph 131
xml-schema-name

description 131
specifying in SPECIAL-NAMES paragraph 131
XML-SCHEMA clause 131

XML-TEXT special register 29, 37, 493

Index 875

Y
YEAR-TO-YYYY function 681

Z
Z

insertion character 224
null-terminated literals 41
symbol in PICTURE clause 209
Z literals 41

zero
filling, elementary moves 401
suppression and replacement editing 224

ZERO figurative constant 15
ZERO in sign condition 283
ZEROES figurative constant 15
ZEROS figurative constant 15

876 Enterprise COBOL for z/OS: Enterprise COBOL for z/OS 6.4 Language Reference

IBM®

Product Number: 5655-EC6

SC27-8713-03

	Contents
	Tables
	Preface
	About this information
	How to read the syntax diagrams
	How to use examples
	IBM extensions
	Obsolete language elements
	DBCS notation
	Acknowledgment

	Additional documentation and support
	Summary of changes
	Enterprise COBOL for z/OS 6.4 with PTFs installed
	Enterprise COBOL for z/OS 6.4

	How to send your comments

	Part 1. COBOL language structure
	Chapter 1. Characters
	Chapter 2. Character sets and code pages
	Character encoding units

	Chapter 3. Character-strings: COBOL words and literals
	COBOL words with single-byte characters
	User-defined words with DBCS characters
	User-defined words
	System-names
	Function-names
	Reserved words
	Figurative constants
	Special registers
	ADDRESS OF
	DEBUG-ITEM
	IGY-JAVAIOP-CALL-EXCEPTION
	JNIENVPTR
	JSON-CODE
	JSON-STATUS
	LENGTH OF
	LINAGE-COUNTER
	RETURN-CODE
	SHIFT-OUT and SHIFT-IN
	SORT-CONTROL
	SORT-CORE-SIZE
	SORT-FILE-SIZE
	SORT-MESSAGE
	SORT-MODE-SIZE
	SORT-RETURN
	TALLY
	WHEN-COMPILED
	XML-CODE
	XML-EVENT
	XML-INFORMATION
	XML-NAMESPACE
	XML-NNAMESPACE
	XML-NAMESPACE-PREFIX
	XML-NNAMESPACE-PREFIX
	XML-NTEXT
	XML-TEXT

	Literals
	Alphanumeric literals
	Basic alphanumeric literals
	Alphanumeric literals with DBCS characters
	Hexadecimal notation for alphanumeric literals
	Null-terminated alphanumeric literals

	DBCS literals
	UTF-8 literals
	Basic UTF-8 literals
	Hexadecimal notation for UTF-8 literals

	Numeric literals
	National literals
	Basic national literals
	Hexadecimal notation for national literals
	Where national literals can be used

	PICTURE character-strings
	Comments

	Chapter 4. Separators
	Rules for separators

	Chapter 5. Sections and paragraphs
	Sentences, statements, and entries
	Entries
	Clauses
	Sentences
	Statements
	Phrases

	Chapter 6. Reference format
	Sequence number area
	Indicator area
	Area A
	Division headers
	Section headers
	Paragraph headers or paragraph names
	Level indicators (FD and SD) or level-numbers (01 and 77)
	DECLARATIVES and END DECLARATIVES
	End program, end class, and end method markers

	Area B
	Entries, sentences, statements, clauses
	Continuation lines

	Area A or Area B
	Level-numbers
	Comment lines
	Floating comment indicators (*>)
	Compiler-directing statements
	Compiler directives
	Debugging lines
	Pseudo-text
	Blank lines

	Chapter 7. Scope of names
	Types of names
	External and internal resources
	Resolution of names

	Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names
	Uniqueness of reference
	Qualification
	Identical names
	References to COPY libraries
	References to PROCEDURE DIVISION names
	References to DATA DIVISION names
	Condition-name
	Index-name
	Index data item
	Subscripting
	Reference modification
	Function-identifier

	Data attribute specification

	Chapter 9. Transfer of control

	Part 2. COBOL source unit structure
	Chapter 10. COBOL program structure
	Nested programs
	Conventions for program-names

	Chapter 11. COBOL class definition structure
	Chapter 12. COBOL method definition structure
	Chapter 13. COBOL user-defined function definition structure
	Chapter 14. COBOL function prototype definition structure

	Part 3. IDENTIFICATION DIVISION
	Chapter 15. PROGRAM-ID paragraph
	Chapter 16. CLASS-ID paragraph
	General rules
	Inheritance

	Chapter 17. FACTORY paragraph
	Chapter 18. OBJECT paragraph
	Chapter 19. METHOD-ID paragraph
	Chapter 20. FUNCTION-ID paragraph
	Chapter 21. Optional paragraphs

	Part 4. ENVIRONMENT DIVISION
	Chapter 22. Configuration section
	SOURCE-COMPUTER paragraph
	OBJECT-COMPUTER paragraph
	SPECIAL-NAMES paragraph
	ALPHABET clause
	CLASS clause
	CURRENCY SIGN clause
	DECIMAL-POINT IS COMMA clause
	SYMBOLIC CHARACTERS clause
	XML-SCHEMA clause
	REPOSITORY paragraph
	General rules
	Identifying and referencing a class

	Chapter 23. Input-Output section
	FILE-CONTROL paragraph
	SELECT clause
	ASSIGN clause
	RESERVE clause
	ORGANIZATION clause
	File organization

	PADDING CHARACTER clause
	RECORD DELIMITER clause
	ACCESS MODE clause
	File organization and access modes
	Access modes
	Relationship between data organizations and access modes

	RECORD KEY clause
	ALTERNATE RECORD KEY clause
	RELATIVE KEY clause
	PASSWORD clause
	FILE STATUS clause
	I-O-CONTROL paragraph
	RERUN clause
	SAME AREA clause
	SAME RECORD AREA clause
	SAME SORT AREA clause
	SAME SORT-MERGE AREA clause
	MULTIPLE FILE TAPE clause
	APPLY WRITE-ONLY clause

	Part 5. DATA DIVISION
	Chapter 24. DATA DIVISION overview
	FILE SECTION
	WORKING-STORAGE SECTION
	LOCAL-STORAGE SECTION
	LINKAGE SECTION
	Data units
	File data
	Program data
	Method data
	Factory data
	Instance data
	User-defined function data
	Function prototype data

	Data relationships
	Levels of data
	Levels of data in a record description entry
	Special level-numbers
	Indentation
	Classes and categories of group items
	Classes and categories of data
	Category descriptions
	Alignment rules
	Character-string and item size
	Signed data
	Operational signs
	Editing signs

	Dynamic-length items

	Chapter 25. DATA DIVISION--file description entries
	FILE SECTION
	EXTERNAL clause
	GLOBAL clause
	BLOCK CONTAINS clause
	RECORD clause
	Format 1
	Format 2
	Format 3

	LABEL RECORDS clause
	VALUE OF clause
	DATA RECORDS clause
	LINAGE clause
	LINAGE-COUNTER special register

	RECORDING MODE clause
	CODE-SET clause

	Chapter 26. DATA DIVISION--data description entry
	Format 1
	Format 2
	Format 3
	Level-numbers
	BLANK WHEN ZERO clause
	DYNAMIC LENGTH clause
	EXTERNAL clause
	GLOBAL clause
	JUSTIFIED clause
	GROUP-USAGE clause
	OCCURS clause
	Fixed-length tables
	ASCENDING KEY and DESCENDING KEY phrases
	INDEXED BY phrase
	Variable-length tables
	OCCURS DEPENDING ON clause

	PICTURE clause
	Symbols used in the PICTURE clause
	Character-string representation
	Data categories and PICTURE rules
	PICTURE clause editing
	Simple insertion editing
	Special insertion editing
	Fixed insertion editing
	Floating insertion editing
	Zero suppression and replacement editing

	REDEFINES clause
	REDEFINES clause considerations
	REDEFINES clause examples
	Undefined results

	RENAMES clause
	SIGN clause
	SYNCHRONIZED clause
	Slack bytes
	Slack bytes within records
	Slack bytes between records

	USAGE clause
	Computational items
	DISPLAY phrase
	DISPLAY-1 phrase
	FUNCTION-POINTER phrase
	INDEX phrase
	NATIONAL phrase
	OBJECT REFERENCE phrase
	POINTER phrase
	POINTER-32 phrase
	PROCEDURE-POINTER phrase
	NATIVE phrase
	UTF-8 phrase

	VALUE clause
	Format 1
	Format 2
	Format 3

	VOLATILE clause

	Part 6. PROCEDURE DIVISION
	Chapter 27. Procedure division structure
	Requirements for a method procedure division
	The PROCEDURE DIVISION header
	USING phrase
	RETURNING phrase
	References to items in the LINKAGE SECTION

	Declaratives
	Procedures
	Arithmetic expressions
	Arithmetic operators

	Conditional expressions
	Simple conditions
	Class condition
	Condition-name condition
	Relation conditions
	General relation conditions
	Alphanumeric comparisons
	DBCS comparisons
	National comparisons
	UTF-8 comparisons
	Numeric comparisons
	Group comparisons
	Comparison of index-names and index data items

	Data pointer relation conditions
	Procedure-pointer and function-pointer relation conditions
	Object-reference relation conditions
	Sign condition
	Switch-status condition
	Complex conditions
	Negated simple conditions
	Combined conditions
	Abbreviated combined relation conditions

	Statement categories
	Imperative statements
	Conditional statements
	Delimited scope statements
	Explicit scope terminators
	Implicit scope terminators
	Compiler-directing statements

	Statement operations
	CORRESPONDING phrase
	GIVING phrase
	ROUNDED phrase
	SIZE ERROR phrases
	Arithmetic statements
	Arithmetic statement operands
	Data manipulation statements
	Input-output statements
	Common processing facilities

	Chapter 28. PROCEDURE DIVISION statements
	ACCEPT statement
	Data transfer
	System date-related information transfer
	DATE, DATE YYYYMMDD, DAY, DAY YYYYDDD, DAY-OF-WEEK, and TIME
	Example of the ACCEPT statement

	ADD statement
	ALLOCATE statement
	Example: ALLOCATE and FREE storage for UNBOUNDED tables

	ALTER statement
	Segmentation considerations

	CALL statement
	Calling static Java methods from COBOL

	CANCEL statement
	CLOSE statement
	Effect of CLOSE statement on file types

	COMPUTE statement
	CONTINUE statement
	DELETE statement
	DISPLAY statement
	DIVIDE statement
	ENTRY statement
	EVALUATE statement
	Determining values
	Comparing selection subjects and objects
	Executing the EVALUATE statement

	EXIT statement
	Format 1 (simple)
	Format 2 (program)
	Format 3 (method)
	Format 5 (inline-perform)
	Format 6 (procedure)

	FREE statement
	GOBACK statement
	GO TO statement
	Unconditional GO TO
	Conditional GO TO
	Altered GO TO

	IF statement
	Transferring control
	Nested IF statements

	INITIALIZE statement
	INITIALIZE statement rules

	INSPECT statement
	Data flow
	Comparison cycle
	Example of the INSPECT statement

	INVOKE statement
	Interoperable data types for OO COBOL and Java
	Miscellaneous argument types for COBOL and Java

	JSON GENERATE statement
	Nested JSON GENERATE or JSON PARSE statements
	Operation of JSON GENERATE
	Format conversion of elementary data
	Trimming of generated JSON data
	JSON name formation

	JSON PARSE statement
	Nested JSON GENERATE or JSON PARSE statements
	Operation of JSON PARSE
	Examples of matched and mismatched data definitions and JSON text
	Count of table elements set by JSON PARSE
	Valid and invalid elementary moves

	MERGE statement
	MERGE special registers
	Segmentation considerations

	MOVE statement
	Elementary moves
	Elementary move rules
	Valid and invalid elementary moves

	Moves involving file record areas
	Group moves

	MULTIPLY statement
	OPEN statement
	General rules
	OPEN statement notes

	PERFORM statement
	Basic PERFORM statement
	PERFORM with TIMES phrase
	PERFORM with UNTIL phrase
	PERFORM with VARYING phrase
	Varying identifiers
	Varying two identifiers
	Varying three identifiers
	Varying more than three identifiers
	Varying phrase rules

	READ statement
	Processing files with variable-length records or multiple record descriptions
	Sequential access mode
	Random access mode
	Dynamic access mode
	READ statement notes

	RELEASE statement
	RETURN statement
	REWRITE statement
	Reusing a logical record
	Sequential files
	Indexed files
	Relative files

	SEARCH statement
	Serial search
	Binary search
	Search statement considerations

	SET statement
	Format 1: SET for basic table handling
	Format 2: SET for adjusting indexes
	Format 3: SET for external switches
	Format 4: SET for condition-names
	Format 5: SET for USAGE IS POINTER data items
	Format 6: SET for procedure-pointer and function-pointer data items
	Format 7: SET for USAGE OBJECT REFERENCE data items
	Format 8: SET for length of dynamic-length elementary items

	SORT statement
	SORT special registers
	Segmentation considerations

	START statement
	Indexed files
	Relative files

	STOP statement
	STRING statement
	Data flow
	Example of the STRING statement

	SUBTRACT statement
	UNSTRING statement
	Data flow
	Values at the end of execution of the UNSTRING statement
	Example of the UNSTRING statement

	WRITE statement
	WRITE for sequential files
	WRITE for indexed files
	WRITE for relative files

	XML GENERATE statement
	Nested XML GENERATE or XML PARSE statements
	Operation of XML GENERATE
	Format conversion of elementary data
	Trimming of generated XML data
	XML element name and attribute name formation

	XML PARSE statement
	Nested XML GENERATE or XML PARSE statements
	Control flow

	Part 7. Intrinsic functions
	Chapter 29. Specifying a function
	Function definition and evaluation
	Types of functions
	Rules for usage
	Arguments
	Examples
	ALL subscripting
	Format of arguments and return values for date and time intrinsic functions

	Chapter 30. Function definitions
	Chapter 31. ABS
	Chapter 32. ACOS
	Chapter 33. ANNUITY
	Chapter 34. ASIN
	Chapter 35. ATAN
	Chapter 36. BIT-OF
	Chapter 37. BIT-TO-CHAR
	Chapter 38. BYTE-LENGTH
	Chapter 39. CHAR
	Chapter 40. COMBINED-DATETIME
	Chapter 41. CONTENT-OF
	Chapter 42. COS
	Chapter 43. CURRENT-DATE
	Chapter 44. DATE-OF-INTEGER
	Chapter 45. DATE-TO-YYYYMMDD
	Chapter 46. DAY-OF-INTEGER
	Chapter 47. DAY-TO-YYYYDDD
	Chapter 48. DISPLAY-OF
	Chapter 49. E
	Chapter 50. EXP
	Chapter 51. EXP10
	Chapter 52. FACTORIAL
	Chapter 53. FORMATTED-CURRENT-DATE
	Chapter 54. FORMATTED-DATE
	Chapter 55. FORMATTED-DATETIME
	Chapter 56. FORMATTED-TIME
	Chapter 57. HEX-OF
	Chapter 58. HEX-TO-CHAR
	Chapter 59. INTEGER
	Chapter 60. INTEGER-OF-DATE
	Chapter 61. INTEGER-OF-DAY
	Chapter 62. INTEGER-OF-FORMATTED-DATE
	Chapter 63. INTEGER-PART
	Chapter 64. LENGTH
	Chapter 65. LOG
	Chapter 66. LOG10
	Chapter 67. LOWER-CASE
	Chapter 68. MAX
	Chapter 69. MEAN
	Chapter 70. MEDIAN
	Chapter 71. MIDRANGE
	Chapter 72. MIN
	Chapter 73. MOD
	Chapter 74. NATIONAL-OF
	Chapter 75. NUMVAL
	Chapter 76. NUMVAL-C
	Chapter 77. NUMVAL-F
	Chapter 78. ORD
	Chapter 79. ORD-MAX
	Chapter 80. ORD-MIN
	Chapter 81. PI
	Chapter 82. PRESENT-VALUE
	Chapter 83. RANDOM
	Chapter 84. RANGE
	Chapter 85. REM
	Chapter 86. REVERSE
	Chapter 87. SECONDS-FROM-FORMATTED-TIME
	Chapter 88. SECONDS-PAST-MIDNIGHT
	Chapter 89. SIGN
	Chapter 90. SIN
	Chapter 91. SQRT
	Chapter 92. STANDARD-DEVIATION
	Chapter 93. SUM
	Chapter 94. TAN
	Chapter 95. TEST-DATE-YYYYMMDD
	Chapter 96. TEST-DAY-YYYYDDD
	Chapter 97. TEST-FORMATTED-DATETIME
	Chapter 98. TEST-NUMVAL
	Chapter 99. TEST-NUMVAL-C
	Chapter 100. TEST-NUMVAL-F
	Chapter 101. TRIM
	Chapter 102. ULENGTH
	Chapter 103. UPOS
	Chapter 104. UPPER-CASE
	Chapter 105. USUBSTR
	Chapter 106. USUPPLEMENTARY
	Chapter 107. UUID4
	Chapter 108. UVALID
	Chapter 109. UWIDTH
	Chapter 110. VARIANCE
	Chapter 111. WHEN-COMPILED
	Chapter 112. YEAR-TO-YYYY

	Part 8. Compiler-directing statements and compiler directives
	Chapter 113. Compiler-directing statements
	BASIS statement
	PROCESS(CBL) statement
	*CONTROL (*CBL) statement
	Source code listing
	Object code listing
	Storage map listing

	COPY statement
	Comparison and replacement rules
	Comparison and replacement examples
	Copy member search order

	DELETE statement
	EJECT statement
	ENTER statement
	INSERT statement
	READY or RESET TRACE statement
	REPLACE statement
	Comparison rules
	Replacement rules

	SERVICE LABEL statement
	SERVICE RELOAD statement
	SKIP statements
	TITLE statement
	USE statement
	EXCEPTION/ERROR declarative
	Precedence rules for nested programs
	DEBUGGING declarative

	Chapter 114. Compiler directives
	CALLINTERFACE
	DATA
	INLINE
	Conditional compilation
	DEFINE
	EVALUATE
	IF
	Examples of conditional compilation
	Constant conditional expressions
	Defined conditions
	Boolean conditions

	Compile-time arithmetic expressions
	Predefined compilation variables

	COBOL/Java interoperability
	JAVA-CALLABLE
	JAVA-SHAREABLE
	Mapping between COBOL and Java data types for non-OO COBOL/Java interoperability

	Appendix A. IBM extensions
	Appendix B. Compiler limits
	Appendix C. EBCDIC and ASCII collating sequences
	EBCDIC collating sequence
	US English ASCII code page

	Appendix D. Source language debugging
	Debugging lines
	Debugging sections
	DEBUG-ITEM special register
	Activate compile-time switch
	Activate object-time switch

	Appendix E. Reserved words
	Appendix F. Context-sensitive words
	Appendix G. ASCII considerations
	ENVIRONMENT DIVISION
	OBJECT-COMPUTER and SPECIAL-NAMES paragraphs
	FILE-CONTROL paragraph
	I-O-CONTROL paragraph

	DATA DIVISION
	FD Entry: CODE-SET clause
	Data description entries

	PROCEDURE DIVISION

	Appendix H. Industry specifications
	Appendix I. 2002/2014 COBOL Standard features implemented in Enterprise COBOL 3 or later versions
	Appendix J. Accessibility features for Enterprise COBOL for z/OS
	Notices
	Programming interface information
	Trademarks

	Glossary
	List of resources
	Enterprise COBOL for z/OS
	Related publications

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

